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Abstract
Processing digital information stands as a crucial foundation of Industry 4.0, facilitating a spectrum of activities from moni-
toring processes to their understanding and optimization. The application of data processing techniques, including feature 
extraction and classification, coupled with the identification of the most suitable features for specific purposes, continues to 
pose a significant challenge in the manufacturing sector. This research investigates the suitability of classification methods 
for machine and tool state classification by employing acoustic emission (AE) sensors during the dry turning of Ti6Al4V. 
Features such as quantiles, Fourier coefficients, and mel-frequency cepstral coefficients are extracted from the AE signals 
to facilitate classification. From this features the 20 best are selected for the classification to reduce the dimension of the 
feature space and redundancy. Algorithms including decision tree, k-nearest-neighbors (KNN), and quadratic discriminant 
analysis (QDA) are tested for the classification of machine states. Of these, QDA exhibits the highest accuracy at 98.6 %. 
Nonetheless, an examination of the confusion matrix reveals that certain classes, influenced by imbalanced training data, 
exhibit a lower prediction accuracy. In summary, the study affirms the potential of AE sensors for machine state recognition 
and tool condition monitoring. Although QDA emerges as the most acurate classifier, there remains an avenue for refinement, 
particularly in training data optimization and decision-making processes, to augment accuracy.
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1  Introduction

Advanced condition monitoring techniques are employed 
to supervise the machining process regarding the machine 
tool, workpiece, and cutting tools, with a primary focus on 
error detection [1] and tool wear detection [2]. Established 
analytical methods, including support vector machines, 
k-nearest-neighbors, decision trees, and artificial neural 
networks, have been predominantly used for fault detection 
of machining processes [3]. Techniques that are independent 
of specific models for configuring the hyper-parameters of 
monitoring systems through the utilization of look-up tables 

are commonly used in the industry [4]. Conventionally, both 
time and frequency domain features of sensor signals have 
been crucial for machine fault detection, including acoustic 
emissions and overarching machine parameters [5].

Methods like these focus on monitoring the process while 
the tool is engaged in the workpiece, so the use of such a 
system should be avoided if the tool is broken or the machine 
is in the wrong state. To achieve a more precise use of the 
process monitoring the knowledge of the current machine 
state is necessary [6]. Additionally, the machine state is an 
important factor in many fields like smart manufacturing or 
industry 4.0 [7].

The foundation of this work is also a process monitor-
ing system, using acoustic emission sensors for observation 
of residual stress states in a longitudinal turning process of 
titanium alloy [8]. In the machining of titanium alloys, the 
physical mechanism of chip formation must be considered 
for accurate interpretation of data measured during process 
monitoring. Thermal softening leads to adiabatic shear 
bands, resulting in saw-tooth-shaped chip formation [9], 
a phenomenon known as chip segmentation. This specific 
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morphological structure of chips significantly affects the 
thermomechanical dynamics at the interface between the 
workpiece and cutting tool. Consequently, this influences 
the material removal rates and the overall dynamic behavior 
of the machining system [10]. The formation of serrated 
chips generates non-cyclical mechanical waves, referred to 
as chip segmentation frequency, detectable by acoustic emis-
sion sensors [11]. These frequencies can be correlated with 
other process information, such as surface integrity and can 
be measured by acoustic emission sensors [12].

For the evaluation of for example the chip segmentation 
frequency, it is extremely important to know in which state 
the machine is, especially when the tool is cutting. It therefor 
makes sense to use the already available acoustic emission 
sensor signals to estimate the current machine state, instead 
of installing additional hardware. The combination of a pro-
cess monitoring system with a machine state classification 
system using the same sensors provides a good opportunity 
to retrofit legacy machines, which is an important task for 
smart manufacturing [13].

In this manuscript, established classification methods 
are applied and tested to estimate the current machine state 
in a longitudinal turning process of Ti6Al4V using acous-
tic emission sensors. In particular, the states "Off", "Idle", 
"Contact", "Cut", "Break", "Cut-Break" and "Reverb" have 
to be determined. Initially, the features extractable from 
AE signals, which will be utilized for monitoring the pro-
cess, are introduced. Since the chip segmentation leads to 
a characteristic form of the structure-borne sensor signals, 
it is necessary to investigate special features for an optimal 
result. Subsequently a feasible way of feature selection is 
demonstrated to get the most efficient features. Then three 
common methods: Decision Tree, K-Nearest Neighbor, and 
Quadratic Discriminant Analysis to classificate the machine 
state based on the extracted features are described. Finally, 
the accuracy of these classification techniques in assessing 
machining states is evaluated. Since the method contains 
an automated feature selection and in addition an evalua-
tion of the classification algorithm, it can be applied with 
additional training to other process parameters, materials or 
cutting processes.

2 � Experimental Setup

Dry turning experiments on Ti6Al4V were executed utiliz-
ing an Index V100 vertical turning machine. The cutting tool 
employed was an uncoated carbide insert, type CCMW120404 
with a cutting edge radius ( r� ) of 50 μ m. The geometrical spec-
ifications of the tool holder set the tool cutting edge angle ( �r ) 
at 95◦ , rake angle ( � ) at 0◦ , and a clearance angle ( � ) of 7◦ . 
During these machining tests, process control variables such 
as cutting speed ( vc ), feed rate (f) and cutting depth ( ap ) have 

been investigated as summarized in Table 1. The different sets 
of process control variables, when combined with inherent 
disparities in measurement configurations, induce variations in 
the acquired signals, spanning amplitude, waveform morphol-
ogy, spectral diversity, among other attributes.

For discerning chip segmentation frequencies, a triad of 
piezoelectric acoustic emission (AE) sensors, the VS12-E 
model by Vallen Systeme, were mounted onto the tool holder 
aligned with the cutting trajectory, as visualized in figure 1. 
The raw AE sensor output underwent preliminary process-
ing via an AE preamplifier, subsequently captured by a NI 
PXI station with a sampling frequency of 1 MHz at 16 bit 
resolution. Ambient acoustic detection was facilitated using 
PCB-378C01 microphones from PCB SYNOTECH GmbH, 
operational within a 6.3–126 kHz frequency spectrum. The 
comprehensive experimental procedure, spanning from real-
time data collection to subsequent data processing, was opti-
mized to fall within a 10 to 100 ms time frame. Throughout 
the machining phase, while the tool’s cutting edge remained 
stationary, the spatial coordinates (x, y, z) of the workpiece 
underwent dynamic modifications.

3 � Features

The concept of this work involves extracting multiple fea-
tures from the acoustic emission signals, taken to classify the 
machine state, rather than using the raw signals. Here, it will 
be examined how this approach works in a longitudinal cutting 
process of titanium alloy for classification of machine states. 
Some of the features to estimate segmentation frequency were 
developed specifically for this process. Consequently, a large 
number of features were evaluated, and only those intended 
for use are described here.

3.1 � Preprocessing and data structure

It is not feasible to calculate the features from an entire signal, 
as this approach would not be suitable for an online classi-
fier. Instead, signals from different sensors are segmented into 
shorter sections, called "chunks" in this work, which are not 
overlapping. Investigations have shown that a chunk size of 
8.192 , equivalent to a time span of 8.192 ms, yields optimal 
results with the following algorithms. The task is now to clas-
sify the machine state for each individual chunk, for which 
purpose features are calculated from each chunk, forming the 
basis for subsequent classification.

Table 1   Process control variables

v
c
 (m/min) f (mm/rev) a

p
 (mm)

40–120 0.08−0.20 0.25–1
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In Figs. 2 and 3 examples of the structure-borne signals 
respectively microphone signals are shown. It can be seen, 
that the structure-borne signals have a characteristic saw-
tooth form during cutting. In the following sections, several 

features are presented that are specifically suitable for this 
characteristic form. For both signal types it is not easy to 
notice a difference between the cut and the cut with bro-
ken tool. Also, there are signals where contact and cut look 
almost the same.

To ensure a robust classification considering sensor posi-
tioning, particularly in scenarios with multiple sensors of the 
same type, the data have been reorganized. Consequently, 
the signals have been divided into data from microphones 
and structure-borne sensors along the y-direction. From each 
chunk, all possible combinations of one structure-borne sig-
nal and one microphone signal are taken as training and test 
samples, respectively.

3.2 � Quantile

An X%-quantile is the threshold at which a certain percent-
age of the data set have a smaller or equal value. This helps 
to analyze the data distribution and offers insights into its 
central tendency and spread. To calculate the quantiles the 
absolute values of the signals are taken. Subsequently, quan-
tiles ranging from 10 % to 90 %, with a step size of 10 %, are 
selected as features.

3.2.1 � Spectral energy

The information of signals is often located across various 
spectral ranges. Therefore, filtering different frequency 
ranges of the raw signal is an obvious feature. To achieve 
this, three different infinite impulse response (IIR) filters 
are employed: a lowpass, a bandpass, and a highpass filter. 
Each filter employs four IIR coefficients and follows a But-
terworth filter design, as described in [14]. The selection of 
cutoff frequencies ensures immediate adjacency of neighbor-
ing filters. Specifically, cutoff frequencies of 16.66 kHz and 

Fig. 1   Set-Up AE sensors

Fig. 2   Acoustic emission example signal of the structure-borne sen-
sor

Fig. 3   Acoustic emission example signal of the microphone
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33.33 kHz are utilized. To create a singular feature, the mean 
value and standard deviation of the absolute values derived 
from the resulting filtered signals are computed.

3.3 � Fourier Transform

To convey fundamental properties of the spectrogram to the 
classifier, the Fast-Fourier-Transform is calculated from the 
signals as described in [15]. To get less but more robust 
features, with respect to signal noise, the result is divided 
into 20 equally sized frequency bins, and the corresponding 
absolute values are summed for each bin. These 20 values 
are normalized such that their sum equals one, representing 
the percentage contribution of each amplitude to the total 
sum. This approach allows the spectrogram to be represented 
in a computationally efficient manner and compensates for 
minor frequency variations through the aggregation into 
frequency bins. These values are particularly relevant for 
identifying whether vibrations of specific frequencies are 
present or not. This is especially applicable in fracture detec-
tion, as a noticeable frequency shift occurs after a fracture 
in the cutting edge.

3.4 � Spectral flatness

To determine how much a signal is overlaid with white noise, 
the spectral flatness can be calculated as described in [16]. 
This is useful for detecting the states "Off" and "Idle". To 
calculate the value, the geometric mean of the amplitudes is 
divided by the arithmetic mean. If all amplitudes have very 
similar values, the geometric mean approaches the arithme-
tic mean, and the spectral flatness becomes close to one. The 
signal consists of pure noise. If the amplitude values differ 
significantly, the value of spectral flatness approaches zero.

3.5 � Spectral roll‑off

The term "Spectral Roll-off" encompasses the roll-off fre-
quencies [17]. These frequencies indicate how much energy 
lies within the range below them. With an 85 %-roll-off fre-
quency, for instance, 85 % of the signal’s energy is located 
below that frequency. This can be utilized to differentiate 
between the two states of "Off" and "Idle" from the states of 
"Contact" and "Cut", as larger amplitudes occur at higher 
frequencies in the latter states.

To compute these frequencies, the energy of the spectrum 
is calculated for each range. In a second step, the energy 
of the frequencies below each frequency range is summed. 
Finally, the summed energies are divided by the total energy 
of the signal to determine the percentage.

For this work, the roll-off frequencies were calculated in 
10 % increments from 50 % up to 90 %.

3.5.1 � Mel‑frequency cepstral coefficients

Mel-frequency cepstral coefficients (MFCCs) are used to 
condense a spectrum into a few key parameters. To achieve 
this, a spectrum is computed on the mel scale, and then 
transformed using a cosine transformation into a set of coef-
ficients as described in [18]. In the first step, the spectrum 
is calculated by applying a discrete Fourier transformation 
to the chunks filtered with a Hanning window. The result of 
this transformation can also be interpreted as Short-Time-
Fourier-Transform of the signal and yields a list of ampli-
tudes Xk with corresponding frequencies �k . Subsequently 
the energy in each channel is calculated, where one chan-
nel is realized by triangular filters in the frequency domain. 
These filters are overlapping and their distance and bandwith 
increase with higher frequencies. The split into these chan-
nels can be interpreted as mapping the frequencies on a mel 
scale. The number of computed features per chunk depends 
on the number of channels chosen for this step. Now the 
logarithm to base 10 is calculated for each energy per chan-
nel. In the final step, a discrete cosine transformation (DCT) 
is performed, using a Type II DCT in practice. In addition to 
the original signal, MFCCs are also computed for the first 
and second derivatives.

3.5.2 � Derivatives

During the cutting process, the signal from the structure-
borne sensors exhibits a characteristic sawtooth pattern. Due 
to this sawtooth characteristic, the structure-borne signals 
exhibit sharp edges. These sharp edges potentially carry sub-
stantial process-related information. To capture this informa-
tion, the absolute values of the discretized derivative using 
the difference quotient must be taken into account. For gen-
erating singular features per chunk, both the mean and the 
standard deviation are computed. Moreover, from the second 
derivative also the same features can be computed.

3.6 � Sawtooth recognition

In Fig. 2 it can be seen, that the sawtooth mainly occurs dur-
ing the cutting in structure-borne signals, but only rarely in 
contact, its detection proves to be a valuable feature. This 
sawtooth pattern is easily distinguished by its pronounced 
peaks, which can be effectively identified through its sec-
ond derivative as described before. A chunk is classified as 
a sawtooth when the 98-percentile of the signal’s second 
derivative exceeds a predetermined threshold. In practical 
testing, a threshold value of 0.1 has proven appropriate for 
this application, with the chunk undergoing normalization 
to a range between −1 and 1 before differentiation.
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3.7 � FIR filter

Investigations have shown, that in the structure-borne sig-
nals as can be seen in Fig. 2 the positions of the peaks carry 
substantial information, whereas the subsequent fading does 
not. To filter the fading a simple finite impulse response fil-
ter (FIR) can be applied. A FIR filter with two coefficients, 
namely −1 and 0.969, is sufficient to get a resulting signal 
with pronounced peaks at the signal’s step positions. Subse-
quently, both the mean and standard deviation of the abso-
lute values are computed for a single chunk.

3.8 � Selection

Since 105 different features have been computed at this point 
it is not recommended to use all of them. Features can be 
heavily overlaid with noise, so their use in a classifier with 
distance calculation introduces noise into the classification 
process. Also features often contain the same information 
and are thus redundant. Not all features have been explained 
in this work, just those that are used.

The analysis of variances (ANOVA) encompasses meth-
ods for investigating the dispersion of variables in datasets 
and can help to choose the best features as described in [19]. 
The goal is to identify variables that provide high informa-
tion content about class membership. Using the variances 
determined between classes �2

b
 and within classes �2

w
 , the 

ability of variables to partition the dataset into classes can 
be evaluated. For a number of M classes C1,… ,CM , with 
Nm training samples per class the F-score is calculated by

where x̄ is the overall mean and x̄j is the mean of a single 
class. F indicates the proportion of dispersion within the 
classes to the total variance. The objective is to find a set of 
variables with minimal dispersion within the classes while 
maximizing the separation of class means. The k variables 
with the highest F-scores are taken for the classification task.

4 � Classification

The main purpose of the classification approach is to 
decide in which state the machine is, based on the calcu-
lated features of the chunks. For this work, seven different 

(1)

F =

𝜎2
b

𝜎2
w

=

M∑

m=1

Nm(x̄m − x̄)2∕(M − 1)

M∑

m=1

Nm∑

n=1

(xmn − x̄m)
2
∕

M∑

m=1

(Nm − 1)

,

states have been considered. If the machine is turned 
off, there could be some noise from, for instance other 
machines in the same room, and if it is on but nothing is 
moving, there is noise from the hydraulic system of the 
machine. For the process, both cases are defined as the 
state "Off". If the workpiece is turning but nothing else 
moves, or if the workpiece is moving but there is no con-
tact between the tool and workpiece, the state is defined 
as "Idle". In some cases, the workpiece has a step whereat 
the rear part has to be cut. Then, in the front part of the 
workpiece, the tool and the workpiece are in contact with-
out cutting. So this state is defined as "Contact". The main 
state and the aim of this work is the state "Cut", which is 
the obvious state. Since the process is tested in a wide field 
of parameters, tool breaks are inevitable. But the moment 
of a tool break is quite short, which leads to an imbalanced 
dataset. There are only a few chunks where the tool breaks 
occur, whereas there are thousands of chunks for all the 
other states, which is a bad condition for the training of 
the classifiers. So in the case of a tool break, there are 
two states defined. At first, the "Break", and second, the 
cut with a tool break called "Cut-Break". For the second 
state, a big amount of examples exists, so the algorithms 
can be trained to recognize this state. After the cut, there 
are short moments where the machine does not cut, but the 
sensors measure acoustic emissions. This happens because 
of reflections of the airborne and structure-borne signals. 
These short states are defined as "Reverb".

4.1 � Decision tree

A decision tree classifier aims to partition the training 
dataset into different classes using a decision tree struc-
ture, thereby learning classification rules. A decision tree 
consists of a root node, internal nodes, and multiple leafs 
as described in [20]. Each classification begins at the root 
node. At each node, a binary decision is made based on 
one single feature, if it is higher or lower than a thresh-
old. The threshold and the chosen feature are constant and 
learned in the training, while the value of the feature varies 
for every chunk. Depending on the decision of the node, 
the next decision is made based on the feature and the 
threshold of the next node. This procedure is repeated until 
the end of the nodes, a so called leaf, that is assigned to 
a class is reached. Normally a maximum depth is given, 
but not all branches of the tree have to have this maximum 
number of decisions.

A decision tree is extremely simple and fast in inference, 
the difficulty is to find out which are the best features and 
their associated thresholds on which nodes. During the crea-
tion of the decision tree, the training dataset is divided into 
subsets at each node. Therefore the Gini index
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is used. For a given feature and a threshold the probability 
pjm is defined as the amount of training observations with 
the threshold with index j of class Cm . The Gini index is 
small if all pjm are near 0 or 1, which is equivalent with a 
bad classification. In an iterative process, the feature and 
threshold with the highest Gini index at the current node is 
selected. To prevent overfitting, an early stopping criterion 
should be applied to the decision tree. It makes sense to set 
a minimum Gini index, if the result is below this, a node is 
defined as a leaf. Additionally often a maximum depth of the 
decision tree is defined.

4.2 � K‑nearest neighbor

The k-nearest-neighbor (KNN) classifier is one of the sim-
plest and fastest classification algorithms to implement. It 
operates by classifying a sample of unknown class based 
on the majority consensus of its k nearest neighbors, as 
described in [21].

Fundamental parameters that need to be defined during 
the classifier’s design include the value of k, representing the 
number of nearest neighbors, and the formula for calculating 
the distance. Depending on the value of k, the class bounda-
ries of the KNN classifier can be more or less smoothed, 
however with lower values of k leading to a risk of overfit-
ting. For distance calculation, it is important to normalize 
the features’ variances beforehand to ensure consistent fea-
ture weighting. Various approaches for distance calculation 
can also be employed as described in [22]. In most cases, 
the Euclidean distance

between two vectors x and y that represent the Nf  different 
features of two samples, is a sufficient choice and should 
only be deviated from in specific scenarios.

For classification using the KNN algorithm, the dis-
tance between the target sample and all stored samples in 
the classifier must be computed. This computation can be 
computationally intensive and memory-demanding in the 
implementation if too many training samples exist. Hence, 
efficient algorithms can be used to fasten the computation as 
for example the ball tree [23] or the k-d tree [24].

It is important to ensure that the training dataset is repre-
sentative for the intended application, as the classification 
process relies on comparing with historical values rather 
than learning a strict "rule".

(2)G =

M∑

m=1

pjm(1 − pjm)

(3)d(x, y) =

√√√
√

Nf∑

n=1

(xn − yn)
2

4.3 � Quadratic discriminant analysis

Quadratic discriminant analysis (QDA) is a classical statis-
tical method used in pattern recognition and classification 
tasks as described in [25]. It is closely related to linear 
discriminant analysis (LDA) but differs in its underlying 
assumptions and modeling approach. Quadratic discri-
minant analysis is a powerful technique for classification 
tasks, particularly when dealing with non-linear decision 
boundaries and varying covariance structures among 
classes. QDA, like LDA, aims to find a discriminant 
function that maximizes the separation between different 
classes in a given dataset.

For a sample x , QDA models the conditional probability 
belonging to class Cm as a multivariate Gaussian distribu-
tion, with its own covariance matrix �m and mean vector 
�m per class. Based on this model, it can be shown that the 
most likely class is the one that maximizes the term

where pm is the prior probability that a sample x belongs to 
the m-th class. In the training of the QDA, the samples are 
used to estimate the parameters of Eq. (4).

Due to the model, QDA can provide accurate results when 
the class distributions have different covariance structures. 
However, QDA has its limitations as well. One major 
drawback is that it requires estimating a separate covari-
ance matrix for each class, which becomes computation-
ally expensive as the number of features increases. This can 
lead to overfitting when dealing with high-dimensional data. 
Additionally, QDA assumes that the class distributions are 
Gaussian, which might not hold true for all features.

(4)
�m(x) = −

1

2
(x − �m)

T
�m(x − �m)

−

1

2
log ||�m

|| + log pm,

(5)p̂m =

Nm
∑M

m=1
Nm

(6)�̂m =

1

Nm

Nm∑

n=1

xn

(7)�̂m =

1

Nm

Nm∑

n=1

(xn − �̂m)(xn − �̂m)
T
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5 � Results

In the following section, the results and a comparison 
between the three methods are presented, as well as their 
advantages and disadvantages.

5.1 � Selected features

At first, it is shown which features are selected by 
ANOVA, which is described in Sect. 3.8. Out of the 105 
computed features, 20 have been selected. Most features 
are based on the structure-borne signals, which is as 
expected, since they are less disturbed by other effects 
and their volume is a good indicator for the contact 
between tool and workpiece. Also, as expected, many 
features are taken from specific frequency bands. From 
the sensor signals, the following features are selected:

•	 Structure-borne: Quantile (10%)
•	 Structure-borne: Derivative 2 (std)
•	 Structure-borne: FIR (std)
•	 Structure-borne: Bandpass (mean, std)
•	 Structure-borne: Highpass (mean, std)
•	 Structure-borne: Fourier bins (6–11)
•	 Structure-borne: Spectral roll-off (80 %, 90 %)
•	 Structure-borne: Spectral flatness
•	 Structure-borne: Sawtooth
•	 Microphone: MFCC (0–2)

As it can be seen from the list of selected features, the 
selection is not optimal. The approach of ANOVA pro-
vides the most expressive features, but there are several 
features that are quite related. Many features like Fourier 
bins or bandpass observe the same frequency bands in a 
very similar way. This Problem can be solved in future by 
using for example MANOVA [26].

5.2 � Classification performance

Several methods have been tested for this classification task, 
but only the three best have been introduced in Sect. 4. Oth-
ers that have been tested, but have been worse or did not 
bring better results despite extra effort, are naive Bayes clas-
sifier, multilayer perceptron, support vector machine, and 
random forest.

To evaluate the performance of the classifier, two metrics 
have been chosen. First of all the correct classification rate

has been calculated as a crude evaluation metric, where Ntrue 
is the number of correct classifications and Ntest is the total 
number of samples in the test dataset. To get the rate in per-
cent, the fraction is multiplicated with 100 %.

The introduced methods have been tested with different 
parameters and the most relevant correct classification rates 
are

•	 KNN ( k = 4 ): 91.5 %
•	 KNN ( k = 15 ): 92.2 %
•	 Decision tree ( depth = 5 ): 93.8 %
•	 QDA: 98.6 %.

It can be seen that a decision tree and a KNN have a quite 
similar performance. This is consistent for different param-
eters of both methods. Additionally, the KNN with 15 neigh-
bors performs not that much better than the KNN with just 4 
neighbors so a simple KNN with k = 4 should be preferred. 
Random forests have also been tested ( Rtrue = 92.6% ) but 
they perform not better than a simple decision tree, so the 
additional expense is not justified. The QDA performs much 
better than the other methods and has the best results.

For a detailed evaluation, the confusion matrix can be 
taken. In Table 2 the confusion matrix of the QDA is shown. 
The first line shows the amount of training examples Nm and 

(8)Rtrue =
Ntrue

Ntest

⋅ 100%

Table 2   Confusion matrix of 
the QDA classifier. The results 
are in % and the first row shows 
the number of samples N

m
 in 

the training set per class

Off Idle Contact Cut Break Cut-Break Reverb
4851 76,296 390,804 63,894 186 27,840 240

100.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 99.2 0.8 0.0 0.0 0.0 0.0
0.0 0.1 99.9 0.0 0.0 0.0 0.0
0.0 0.0 0.0 98.5 0.0 1.5 0.0
0.0 0.0 0.0 75.0 0.0 25.0 0.0
0.0 0.0 0.1 81.6 0.0 18.3 0.0
0.0 0.0 100.0 0.0 0.0 0.0 0.0
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every subsequent line shows the classes in the same order 
like the columns.

At first, it can be seen that the amount of training data is 
not balanced over the classes, which leads to unequal treat-
ment of the classes by the classifier. The reason for this is 
that, for example, a tool break is just a short moment in 
a whole cut, so there are thousands of examples for "Cut" 
respectively "Cut-Break", while there is just one example 
for "Break". This is why all classifier have a bad perfor-
mance for this class, which is often classified as "Cut" or 
"Cut-Break" and only the QDA recognizes some of the tool 
breaks. To recognize a tool break, the class "Cut-Break" per-
forms way better. This class is also the source for the better 
performance of the QDA. The KNN (39.5 %) and the deci-
sion tree (42.7 %) are not able to recognize this class in the 
required quality. It would be a better approach for KNN and 
decision tree to split the problem to train a classifier just for 
tool breaks, especially since a tool break can be recognized 
in the microphone signals as a high peak.

A similar problem exists with the class "Reverb", which 
also has not many examples. None of the methods recog-
nizes this class, but since this is no important class in prac-
tice, it has no bad effects. Hence, the samples of the class 
"Reverb" can be ignored.

The performance for the main classes is very good. To 
prove this, the error rates have been calculated again, with-
out the classes "Break" and "Reverb". Additionally, the class 
"Cut-Break" has been merged together with the class "Cut". 
Without a new training of the methods the resulting clas-
sification rates are

•	 KNN ( k = 4 ): 95.6 %
•	 KNN ( k = 15 ): 98.3 %
•	 Decision tree ( depth = 5 ): 99.6 %
•	 QDA: 98.9 %.

Especially the classes "Contact" and "Cut" can be separated 
really good and in this case the decision tree has the best 
overall performance. The remaining errors can be improved 
by using multiple decisions of the classifier to implement a 
filtering over time.

6 � Conclusion

In conclusion, this study investigates the suitability of meth-
ods for the machine state classification using acoustic emis-
sion sensor data on the example of longitudinal turning of 
titanium alloy. As discrete machine states, among others 
"Contact" or "Cut" and in addition tool states like "Break" 
or "Cut-Break" were defined. Experiments on a turning 
machine Index V100 were conducted, extracting various 
features from structure-borne and microphone signals. 

Decision trees, k-nearest-neighbors, and quadratic discrimi-
nant analysis were employed for classification, with QDA 
demonstrating superior performance due to its ability to 
model diverse covariance structures. Challenges arose with 
limited examples in certain classes. While QDA exhibited 
potential, future work could involve rebalancing techniques, 
ensemble methods, and temporal filtering to enhance results. 
The goal was to extend an acoustic emission system for 
process monitoring to classify the machine states, without 
implementing additional hardware. If the importance of the 
classes is taken into account, the decision tree provides the 
best results of 99.6 % so the goal is achieved.
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