KIT | KIT-Bibliothek | Impressum | Datenschutz

Support vector machines within a bivariate mixed-integer linear programming framework

Warwicker, John Alasdair 1; Rebennack, Steffen 1
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)

Abstract:

Support vector machines (SVMs) are a powerful machine learning paradigm, performing supervised learning for classification and regression analysis. A number of SVM models in the literature have made use of advances in mixed-integer linear programming (MILP) techniques in order to perform this task efficiently. In this work, we present three new models for SVMs that make use of piecewise linear (PWL) functions. This allows effective separation of data points where a simple linear SVM model may not be sufficient. The models we present make use of binary variables to assign data points to SVM segments, and hence fit within a recently presented framework for machine learning MILP models. Alongside presenting an inbuilt feature selection operator, we show that the models can benefit from robust inbuilt outlier detection. Experimental results show when each of the presented models is effective, and we present guidelines on which of the models are preferable in different scenarios.


Verlagsausgabe §
DOI: 10.5445/IR/1000168976
Veröffentlicht am 01.03.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2024
Sprache Englisch
Identifikator ISSN: 0957-4174
KITopen-ID: 1000168976
Erschienen in Expert Systems with Applications
Verlag Elsevier
Band 245
Seiten 122998
Vorab online veröffentlicht am 09.01.2024
Schlagwörter Support vector machine, Optimisation, Mixed-integer linear programming, Outlier detection, Feature selection
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page