KIT | KIT-Bibliothek | Impressum | Datenschutz

Continuous flow oxidation of HMF using supported AuPd-alloy

Neukum, Dominik 1; Lakshmi Nilayam, Ajai Raj 2,3; Ludwig, Maya Eyleen 1; Vadarlis, Athanasios Angelos ORCID iD icon 1; Grunwaldt, Jan-Dierk ORCID iD icon 1,4; Saraçi, Erisa 1,4
1 Institut für Katalyseforschung und -technologie (IKFT), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
4 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)

Abstract:

The oxidation of 5-(Hydroxymethyl)furfural (HMF) to 2,5-Furandicarboxylic acid (FDCA) holds significant promise for replacing fossil-based monomers. Continuous flow operation enhances the process in terms of green chemistry by improving heat and mass transfer, enabling easier scalability of the reaction and ensuring higher safety with a smaller reactor volume. In this study, we investigated the use of heterogeneous catalysts in a fixed-bed reactor for the continous oxidation of HMF. Air served as green oxidant, water as non-toxic solvent, and Na2CO3 as mild base. An AuPd-alloy-based catalyst supported on activated carbon demonstrated remarkable performance, yielding 81% FDCA at a liquid hourly space velocity of 31.4 h-1. This corresponds to a productivity of 68 molFDCA molM-1 h-1, which is, to our knowledge, one order of magnitude higher than typically reported for the heterogeneously catalyzed continuous oxidation of HMF. In addition, the catalyst showed a good stability over 90 h of time on stream without any detectable deactivation. The formation of humins led to a progressive catalyst deactivation. The developed catalytic system and continuous process offer a more sustainable and efficient approach to future production of the renewable monomer FDCA.


Verlagsausgabe §
DOI: 10.5445/IR/1000168982
Veröffentlicht am 01.03.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Katalyseforschung und -technologie (IKFT)
Institut für Nanotechnologie (INT)
Institut für Technische Chemie und Polymerchemie (ITCP)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2044-4753, 2044-4761
KITopen-ID: 1000168982
HGF-Programm 38.03.02 (POF IV, LK 01) Power-based Fuels and Chemicals
Erschienen in Catalysis Science & Technology
Verlag Royal Society of Chemistry (RSC)
Vorab online veröffentlicht am 28.02.2024
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page