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Abstract

This dissertation presents theoretical advancements in the study of linear light-matter

interactions, emerging from the enhancement of the well-established T-matrix method

through the application of group representation theory.

The main contributions are threefold. Firstly, the monochromatic T-matrix method is

expanded into the polychromatic domain, enabling the description of linear interactions

between pulses and objects, both at rest and moving with relativistic velocities. Numerical

simulations demonstrate the theory’s applicability, particularly in computing the transfer

of energy and momentum between the pulse and a moving object.

The second contribution focuses on the description of the object’s chirality. The

challenge of differentiating between enantiomers is addressed with a novel quantity called

chirality signature. This measure, for the first time, captures the infinite-dimensional

nature of chirality, allowing for the continuous distinction between any pair of enantiomers.

Additionally, its conformal invariance is established.

The third contribution introduces a novel method of describing linear light-matter

interactions by representing a scatterer’s action as a sum of symmetry transformations.

The coefficient of this decomposition, named the scattering function, is defined on the

symmetry group manifold and is bijectively connected to the T-matrix. It has been shown

that the scattering function’s values can reflect the positions of objects within a cluster.

This insight opens up two promising avenues for advancement: the first involves the use

of the scattering function in imaging and inverse object design, and the second suggests

progress in understanding the Rayleigh hypothesis. Unlike the T-matrix, the scattering

function is not constrained by the sphere circumscribing the object.
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1 Introduction

Interaction between electromagnetic radiation and matter represents an example of a

physical phenomenon that surrounds us in nearly every aspect of our lives. Advancements

that we experience daily, from fast telecommunications and efficient capturing of the

solar power, to the progress in medical imaging, are possible because of our increasing

understanding of this physical phenomenon.

One of the well-established methods to describe a large class of linear light-matter

interactions is the T-matrix formalism, developed byWaterman [1]. It provides an accurate

and efficient numerical method to describe electromagnetic scattering by means of a linear

operator. Given an incident illumination, the T-matrix of an object or a cluster of objects

produces the corresponding scattered field. Usually, the incident field is expanded in

the regular multipolar fields, while the scattered field is decomposed into the irregular

outgoing multipolar fields. The T-matrix maps between these two sets of coefficients but

is independent of the specific incident field. This formalism has proven to be a powerful

method that continues to inspire a wide range of applications [2, 3].

Despite its advantages, the T-matrix method has limitations, such as the questionable

validity of the expansion of scattered fields inside the smallest encompassing sphere

of an object [4, 5, 6, 7, 8, 9, 10]. This hinders the description of scattering by clusters

of objects, whose circumscribing spheres intersect. Another limitation concerns the

monochromatic character of formalism: it has been defined and systematically developed

only for monochromatic fields, with equal frequency for both incident and scattered fields.

The present dissertation addresses this particular limitation. The linearity of Maxwell’s

equations allows to represent the incident and the scattered fields in their most general

polychromatic form as a superposition of monochromatic fields with different frequencies.

Here, the first systematic development of the polychromatic T-matrix formalism is presented,

which extends the range of its application to new classes of problems.

First, this is the direct description of objects interacting with electromagnetic pulses,

which has significant practical applications in various fields such as pulsed optical tweezers

[11], control of matter magnetization [12], and refractive index measurements [13]. The

second class of problems includes linear light-matter interactions, where the frequency of

the scattered field is not identical to the frequency of the incident field. For example,

the interaction of a monochromatic light with a constantly moving object produces

a polychromatic scattered field that includes frequencies not present in the incident

illumination. The polychromatic T-matrix allows one to solve such a problem directly by

applying the Lorentz boost transformation to the operator. Another example is Raman

scattering, where the action of the internal vibrations of the object adds or subtracts energy

from the incident field, thereby changing its frequency.

My work is guided by the ideas from group representation theory, a subject that studies

symmetry transformations of physical systems [14]. One of its core ingredients, relevant for
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1 Introduction

the T-matrix, is the concept of irreducible representations of a group of transformations.

Its meaning for the scattering that can be understood by decomposing the field into

the irreducible parts. The T-matrix then can be seen as an operator connecting these

simplest elements of the field. Peterson and Ström [15] used these ideas to show that the

monochromatic T-matrix acts between irreducible representations of the symmetry group

of the 3D Euclidean space. This group consists of spacial rotations and translations, the

irreducible representations of whose allowed to conveniently formulate the transformation

laws of the T-matrix under these transformations, as well as to compute T-matrices of

composite objects.

However, the 3D Euclidean group does not provide the group-theoretical ground for

the most general polychromatic electromagnetic fields. As it was shown by Wigner [16],

physical fields describing elementary particles such as electrons and photons arise from

the irreducible representations of the Poincaré group, which is the group of isometries

of the 4D Minkowski spacetime. This group consists of the 3D Euclidean group together

with time translations and Lorentz transformations, also called Lorentz boosts. The latter

describe changes from the stationary reference frame to the one moving with constant

velocity. They also change the frequency content of the field, as exemplified by the

Doppler effect. In addition to providing simple formulations of transformation laws for the

electromagnetic field, the group-theoretical perspective allows one to introduce the unique

scalar product of two arbitrary fields [17], with the defining property that the value of

such scalar product is invariant under all actions of the Poincaré group (and even under a

larger group, the group of conformal transformations [17]). The scalar product allows one

to represent electric fields as states in a Hilbert space and gives access to the convenient

Dirac bra-ket notation. In this setting, one may benefit from the simple formulas for

fundamental quantities [18, §9, Chap. 3], such as energy and momentum, contained in the

field, as well as their conservation laws in scattering [19].

The decomposition of the regular electromagnetic field into irreducible parts with

respect to the Poincaré group was first studied by Moses [20], and here his results are

further generalized to the case of irregular fields, which are necessary for the description of

outgoing and incoming electromagnetic fields. Motivated by the simple group-theoretical

arguments, this dissertation introduces new definitions for the polychromatic multipolar

fields, the defining property of which is the unitary behavior under all actions of the

Poincaré group, including the Lorentz boosts. For the first time, the closed-form expression

for the Lorentz boosts in multipolar basis is derived, which allows to relativistically describe

scattering by moving objects, formulated within the new polychromatic T-matrix method

[21]. This approach is applicable to general objects, given their T-matrix at rest, while

previous developments were limited to the relativistic motion of spherical objects [22, 23].

Since the polychromatic domain encompasses electromagnetic fields of arbitrary time-

dependence, the polychromatic T-matrix formalism presents a new theoretical method of

describing time-dependent scattering, complementing existing approaches [24, 25].

The T-matrix contains the complete information of an object that can be accessed via

light-matter interactions. This fact, combined with the framework of symmetry groups,

provides a powerful language for studying complex attributes of matter, such as chirality.

The concept of chirality describes the phenomenon that all objects in the world fall into

two categories: objects that can be superimposed into their mirror images, and those that

2



can not. Entities from the latter category are called chiral and they exist in pairs, called

enantiomers: an object and its mirror version.

Chirality is a fundamental concept influencing a broad range of phenomena, from the

left-right asymmetry of the weak interaction in particle physics to the chiral magnetic

fields of galaxies. In pharmacy, it is crucial to select a particular molecular enantiomer

from a chemical reaction, and to discard its undesired counterpart, since they are typically

simultaneously produced in the same reaction. Theoretical challenges in the field of

chirality analysis are related to the quantification of chirality. If an object is chiral, can

one assign a quantity that describes how chiral it is? Given two enantiomers, how can one

label them and distinguish one from the other? The idea of chirality has been transferred

to the context of light-matter interactions, and formulated with the help of the T-matrix

formalism in [26]. The new property, called electromagnetic chirality (em-chirality), was

introduced in relation to the difference between an object’s interaction with fields of

opposite polarization handedness. The scalar measure of em-chirality as a function of

the T-matrix 𝜒 (𝑇 ) was introduced as well, which can take values between [0, 1] with 0

standing for electromagnetically achiral objects and 1 for maximally em-chiral objects.

In this thesis, a further development of [26] is presented, which solves the question of

labeling both enantiomers of a chiral object. It is well-known, that despite their widespread

adoption, the terms ’left-handed’ and ’right-handed’ are not universally applicable to

all chiral objects [27, 28]. The reason is that a sufficiently complex chiral object can

undergo a continuous transformation into its mirror image while maintaining its chiral

nature throughout the transformation process [29]. This phenomenon is known as the

chiral connectedness property. It presents the main challenge for the differentiation

of enantiomers: any one-dimensional label that is introduced to continuously label the

handedness of an object will encounter a chiral object without a well-defined handedness.

This phenomenon stems from the infinite-dimensional nature of chirality [27]. In this

manuscript, the first quantitative description of chirality is introduced, which captures

its infinite-dimensional nature entirely. The introduced quantity is called the chirality

signature, and it solves the problem of differentiating between any pair of enantiomers.

Another advancement in understanding electromagnetic scattering from the group-

theoretical point of view is presented in the last chapter of this dissertation. There, a

novel description of linear electromagnetic scattering is introduced, formulated with the

help of a complex-valued function, called the scattering function. This new function is

defined on a manifold of symmetry transformations and contains the same information

as the T-matrix, being bijectively connected to it. Its physical role manifests through the

decomposition of the T-matrix into the actions of the corresponding symmetry group, such

as rotations and translations. Remarkably, the profile of the scattering function reflects the

geometry of the cluster, which highlights its potential value in inverse design and image

reconstruction applications.

The dissertation is structured as follows. Chapter 2 introduces the relevant concepts

of the group theory, Chapter 3 provides a detailed group-theoretical view on regular

electromagnetic fields, and Chapter 4 generalizes it to irregular fields. In Chapter 5, the

theory of polychromatic T- and S-matrices is presented. Chapter 6 discusses its applications

to the transfer of physical quantities between electromagnetic fields and objects, both at

rest and moving with constant speed. Chapter 7 is devoted to electromagnetic chirality

3



1 Introduction

and to the solution of the problem of enantiomeric differentiation with the introduction

of the chirality signature. Chapter 8 presents a new approach to scattering based on the

decomposition of the T-matrix into actions of symmetry transformations.

4



2 Relevant aspects of group representation
theory

One of the fundamental elements of this thesis is the theory of group representations.

While this manuscript is written to be accessible for people without prior knowledge of

this theory, readers who seek a deeper understanding are referred to the book by Wu-Ki

Tung [14]. It provides a pedagogical introduction with a focus on applications in physics.

2.1 Projection into irreducible components

The primary aim of this section is to familiarize the reader with the idea of decomposing a

function into irreducible parts with respect to the actions of a given transformation group.

This method is best illustrated with the help of some elementary examples.

Consider an arbitrary function 𝑓 : R→ R. A well-known procedure is to decompose

such function into even and odd parts:

𝑓 = 𝑓+ + 𝑓− (2.1)

with

𝑓+(𝑥) =
𝑓 (𝑥) + 𝑓 (−𝑥)

2

(2.2)

𝑓−(𝑥) =
𝑓 (𝑥) − 𝑓 (−𝑥)

2

, (2.3)

such that the new parts change under the parity transformation 𝐼𝑝 in an elementary

manner

𝐼𝑝 𝑓+ = 𝑓+ (2.4)

𝐼𝑝 𝑓− = −𝑓−. (2.5)

In terms of the identity operator 1 and the parity operator, the decomposition may be also

written as

𝑓+ =

(
1

2

1 + 1

2

𝐼𝑝

)
𝑓 = Π+𝑓 (2.6)

𝑓− =

(
1

2

1 − 1

2

𝐼𝑝

)
𝑓 = Π−𝑓 . (2.7)

In the context of group representation theory, this decomposition is called projection into

irreducible components for the group of transformations { 1, 𝐼𝑝 }. Note that expressions in

5



2 Relevant aspects of group representation theory

the brackets do not depend on 𝑓 or on the space where 𝑓 is defined. They would be the

same if the same parity decomposition would be conducted, say, for a three-dimensional

vector field.

The generalization of this procedure to the case of more complex transformations than

parity is one of the important tasks of the group representation theory. The core ingredient

here is the abstract group of transformations (defined solely by group multiplication law),

while the spaces where it may be represented may be different. It means that one may use

well-studied groups, in particular their projectors Π, and apply them to the distinct systems.

One of the beneficial results of such application is the access to the elementary building

blocks that have the simplest possible transformation laws under given transformations.

Two following examples illustrate how the representation theory of the same group

may lead to a variety of results, depending on the spaces where its action is considered.

For the group of rotations 𝑆𝑂 (2) parametrized by a single rotation angle 𝛼 , the projectors

are known to be

Π𝑚 =
1

2𝜋

∫
2𝜋

0

𝑑𝛼 𝑒𝑖𝑚𝛼𝑅(𝛼), (2.8)

with integer𝑚 and 𝑅(𝛼) being rotation by 𝛼 in a given representation space. The form of

the projector is general, while the action of 𝑅(𝛼) depends on the representation space (or,

equivalently, on physical context) and has to be defined or postulated additionally.

First, consider a representation space that consists of functions 𝑓 defined on a circle,

with rotations acting as

𝑅(𝛼) 𝑓 (𝜙) ≔ 𝑓 (𝜙 − 𝛼). (2.9)

The application of a projector gives

Π𝑚 𝑓 (𝜙) =
1

2𝜋

∫
2𝜋

0

𝑑𝛼 𝑒𝑖𝑚𝛼𝑅(𝛼) 𝑓 (𝜙)

=
1

2𝜋

∫
2𝜋

0

𝑑𝛼 𝑒𝑖𝑚𝛼 𝑓 (𝜙 − 𝛼)

= − 1

2𝜋

∫ 𝜙−2𝜋

𝜙

𝑑𝛼 𝑒𝑖𝑚(𝜙−𝛼) 𝑓 (𝛼)

= 𝑒𝑖𝑚𝜙
1

2𝜋

∫
2𝜋

0

𝑑𝛼 𝑒−𝑖𝑚𝛼 𝑓 (𝛼)

≕ 𝑒𝑖𝑚𝜙𝑎𝑚, (2.10)

where the substitution 𝜙 −𝛼 ↦→ 𝛼 and the periodicity of the circle were used. The resulting

projection consists of two parts: one is the function 𝑒𝑖𝑚𝜙 that transforms in a ‘simplest’

manner under Eq. (2.9) — the rotation for it is just multiplication by a complex number, —

and the other is the decomposition coefficient. The sum of all projected parts gives the

initial function, as in Eq. (2.1), producing the well-known Fourier series:

𝑓 (𝜙) =
∞∑︁

𝑚=−∞
Π𝑚 𝑓 (𝜙) =

∞∑︁
𝑚=−∞

𝑒𝑖𝑚𝜙𝑎𝑚 . (2.11)

6



2.1 Projection into irreducible components

For the second example consider a space of complex functions analytical on some

annulus, with rotation acting via

𝑅(𝛼) 𝑓 (𝑧) ≔ 𝑓 (𝑒−𝑖𝛼𝑧). (2.12)

Now application of the projector gives

Π𝑚 𝑓 (𝑧) =
1

2𝜋

∫
2𝜋

0

𝑑𝛼 𝑒𝑖𝑚𝛼𝑅(𝛼) 𝑓 (𝑧)

=
1

2𝜋

∫
2𝜋

0

𝑑𝛼 𝑒𝑖𝑚𝛼 𝑓 (𝑒−𝑖𝛼𝑧). (2.13)

Parametrization of a complex curve 𝜉 = 𝑒−𝑖𝛼 allows to write the last expression as a contour
integral over the unit circle (note the first integration is clockwise):

Π𝑚 𝑓 (𝑧) =
1

2𝜋
𝑖

∲
|𝜉 |=1

𝑑𝜉

𝜉
𝜉−𝑚 𝑓 (𝜉𝑧)

=
1

2𝜋𝑖

∳
|𝜉 |=1

𝑑𝜉 𝜉−𝑚−1𝑓 (𝜉𝑧) . (2.14)

Substituting 𝜉𝑧 ↦→ 𝜉 gives

Π𝑚 𝑓 (𝑧) =
1

2𝜋𝑖

∳
|𝜉 |=|𝑧 |

𝑑𝜉

𝑧

(𝑧
𝜉

)𝑚+1

𝑓 (𝜉)

= 𝑧𝑚
1

2𝜋𝑖

∳
𝑑𝜉

𝑓 (𝜉)
𝜉𝑚+1

≕ 𝑧𝑚𝑐𝑚, (2.15)

where the integral value is the same for any simple closed curve in the annulus. Again, 𝑧𝑚

transforms in an elementary way under rotation Eq. (2.12) and the sum of all components

provides the decomposition of the function in the Laurent series:

𝑓 (𝑧) =
∞∑︁

𝑚=−∞
Π𝑚 𝑓 (𝑧) =

∞∑︁
𝑚=−∞

𝑧𝑚𝑐𝑚 . (2.16)

Numerous well-known decompositions in physics, such as those involving Bloch waves

or multipolar fields, have a similar interpretation in terms of group theory. Establishing

a connection between a physical theory and the theory of group representations can

provide new and insightful perspectives. This dissertation focuses on the transformation

of electromagnetic fields under the group of 4D space-time symmetries, also called

the Poincaré group. The decomposition of the electromagnetic field into irreducible

components with respect to this group was first explored by Harry Moses [20]. This

manuscript builds on his work and that of others, to enhance and generalize some of the

existing methods relevant to the study of electromagnetic scattering.
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2 Relevant aspects of group representation theory

2.2 Poincaré group

All transformations of the Minkowski space-time that leave the scalar product 𝑥 𝜇𝑦𝜇 =

−𝑥0𝑦0 + 𝒙 · 𝒚 invariant constitute the 10-parameter Poincaré group. 3 of its parameters

are responsible for translations in space, 1 for translation in time, 3 for rotations in space,

and another 3 for Lorentz boosts. The latter relativistically describe the change of the

reference frame to the one that moves the a constant speed. The next section provides a

brief overview of Lorentz boosts.

2.2.1 Lorentz boosts

First, it is important to distinguish between the transformation of the reference frame

and the transformation of the object. In the first case, the transformation is called active,

and in the second it is called passive. Throughout the article, unless stated otherwise,

transformations are assumed to be active.

Active Lorentz boosts provide a relativistic description of an object in uniform motion

with velocity 𝒗, possibly close to the speed of light 𝑐 . A 4-vector of a point in Minkowski

space-time is transformed under a Lorentz boost in the z-direction via [14, Chap. 10]

𝑥 𝜇 =

©­­­«
𝑐𝑡

𝑥1

𝑥2

𝑥3

ª®®®¬ ↦→ 𝐿𝑧 (𝜉)𝜇𝜈 𝑥𝜈 =
©­­­«
cosh(𝜉) 0 0 sinh(𝜉)

0 1 0 0

0 0 1 0

sinh(𝜉) 0 0 cosh(𝜉)

ª®®®¬
©­­­«
𝑐𝑡

𝑥1

𝑥2

𝑥3

ª®®®¬ , (2.17)

where the boost parameter is called rapidity and is connected to the velocity via 𝜉 =

arctanh(𝑣/𝑐). Rapidity provides a natural parametrizaation of boosts, making a lot of

formulas more compact, compared with formulation with 𝒗. However, the speed of the

boost will be also used in this text.

A general Lorentz boost in an arbitrary direction 𝒏̂ can be expressed as a composition

of a boost in the z-direction and spacial rotations:

𝐿𝒏̂ (𝜉) = 𝑅(𝜙, 𝜃, 0)𝐿𝑧 (𝜉)𝑅−1(𝜙, 𝜃, 0). (2.18)

Here the direction of the boost 𝒏̂ is parametrized by polar angle 𝜃 = arccos (𝑘𝑧/|𝒌 |) and
azimuthal angle 𝜙 = atan2

(
𝑘𝑦, 𝑘𝑥

)
, with the rotations 𝑅 parametrized via Euler angles in

𝑧𝑦𝑧-convention.

For a massless 4-wave vector 𝑘𝜇 with 𝑘𝜇𝑘𝜇 = 0, or 𝑘0 = |𝒌 | ≕ 𝑘 , the z-direction boost

implies

𝑘𝜇 =

©­­­«
|𝒌 |
𝑘𝑥
𝑘𝑦
𝑘𝑧

ª®®®¬ ↦→
©­­­«
cosh(𝜉) |𝒌 | + sinh(𝜉)𝑘𝑧

𝑘𝑥
𝑘𝑦

sinh(𝜉) |𝒌 | + cosh(𝜉)𝑘𝑧

ª®®®¬ =
˜𝑘𝜇 . (2.19)
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2.2 Poincaré group

The angles and the wave number of the boosted wave vector can be written in terms of

the old ones via
˜𝜙 = 𝜙 and

cos( ˜𝜃 ) = cos(𝜃 ) cosh(𝜉) + sinh(𝜉)
cosh(𝜉) + cos(𝜃 ) sinh(𝜉) =

cos(𝜃 ) + tanh(𝜉)
1 + cos(𝜃 ) tanh(𝜉) (2.20)

˜𝑘 = 𝑘 (cosh(𝜉) + cos(𝜃 ) sinh(𝜉)) . (2.21)

The transformation properties of electric and magnetic fields do not follow from the

transformation rules of the points in space-time, but they have to be defined additionally.

Specifically, the active Lorentz boost with velocity 𝒗 of real-valued electromagnetic fields

is defined as [30, Sec.11.10]

Ẽ(𝒓, 𝑡) = 𝛾E(𝒓̃, 𝑡) − 𝛾𝒗 × B(𝒓̃ , 𝑡) − 𝛾2𝒗

(𝛾 + 1)𝑐2
𝒗 · E(𝒓̃, 𝑡) (2.22)

B̃(𝒓, 𝑡) = 𝛾B(𝒓̃, 𝑡) + 1

𝑐2
𝛾𝒗 × E(𝒓̃, 𝑡) − 𝛾2𝒗

(𝛾 + 1)𝑐2
𝒗 · B(𝒓̃, 𝑡) (2.23)

with inversely transformed space-time point

(
𝑐𝑡

𝒓̃

)
= 𝐿−1(𝜉)

(
𝑐𝑡

𝒓

)
and 𝛾 = (1 − 𝑣2/𝑐2)−1/2

.

The passive version of the Lorentz boost, i.e. the boost of the reference frame instead

of the field, differs from Eqs. (2.22-2.23) by the substitution 𝒗 → −𝒗 and should not be

confused with the active version.

9





3 Electromagnetic fields: wave function
and Hilbert space formalism in the plane
wave basis

In the frequency domain, Maxwell’s equations for the electric field 𝑬̃ (𝒓 , 𝑘) and magnetic

field 𝑩̃(𝒓, 𝑘) in vacuum, written in SI units, are

∇ × 𝑬̃ (𝒓, 𝑘) = 𝑖𝑐𝑘𝑩̃(𝒓, 𝑘), ∇ × 𝑩̃(𝒓, 𝑘) = −𝑖𝑘
𝑐2
𝑬̃ (𝒓, 𝑘), (3.1)

∇ · 𝑬̃ (𝒓, 𝑘) = 0, ∇ · 𝑩̃(𝒓, 𝑘) = 0, (3.2)

where 𝑐 = 1/√𝜖0𝜇0 is the speed of light in vacuum and for convenience the frequency is

expressed in terms of the absolute value of the wave vector 𝑘 =
√
𝒌 · 𝒌 = |𝒌 | = 𝜔/𝑐 . Since

the magnetic field is entirely determined by the electric field, our focus will be solely on

the latter.

It is convenient to start from the complex-valued electric field in the space-time domain.

It is defined by setting the components of negative frequency in the Fourier decomposition

of the field to zero:

𝑬 (𝒓 , 𝑡) = 1

√
2𝜋

∫ ∞

0

𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡 𝑬̃ (𝒓, 𝑘). (3.3)

Then the real-valued electric field can be restored via

E(𝒓, 𝑡) = 𝑬 (𝒓, 𝑡) + 𝑬∗(𝒓, 𝑡) = 2ℜ[𝑬 (𝒓, 𝑡)] . (3.4)

3.1 Plane waves |k𝜆⟩ and wave function 𝑓𝜆 (k)
One can express the electric field as a sum of plane waves of right-handed circular

polarization, helicity 𝜆 = −1, and of left-handed circular polarization, helicity 𝜆 = 1,

using polarization vectors as defined in [31] (Sec. 1.1.4)

𝒆𝜆 ( ˆ𝒌) := − 1

√
2

(𝜆𝒆𝜃 ( ˆ𝒌) + 𝑖𝒆𝜙 ( ˆ𝒌)) (3.5)

=
1

√
2

©­«
−𝜆 cos𝜙 cos𝜃 + 𝑖 sin𝜙

−𝜆 sin𝜙 cos𝜃 − 𝑖 cos𝜙

𝜆 sin𝜃

ª®¬ , (3.6)
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3 Electromagnetic fields: wave function and Hilbert space formalism in the plane wave basis

where 𝒆𝜃 , 𝒆𝜙 are spherical basis vectors,
ˆ𝒌 is the unit vector along the direction of the

wave vector, with 𝜃 = arccos (𝑘𝑧/|𝒌 |) and 𝜙 = atan2

(
𝑘𝑦, 𝑘𝑥

)
being its polar and azimuthal

angles.

The vectors 𝒆𝜆 ( ˆ𝒌), 𝜆 = ±1 together with 𝒆0( ˆ𝒌) := ˆ𝒌 form a local orthonormal basis at 𝒌 .
They serve as eigenvectors of the helicity operator Λ = 𝑖ℏ𝒌×

𝑘
:

𝑖ℏ𝒌×
𝑘

𝒆𝜆 ( ˆ𝒌) = 𝜆ℏ𝒆𝜆 ( ˆ𝒌) , for 𝜆 = −1, 0, 1. (3.7)

The basis vectors with helicity 𝜆 = ±1 are suitable for decomposing transverse fields into

components of definite circular polarizations, as the 𝜆 = 0 fields have zero curl and do

not occur in 𝑘 > 0 Maxwell fields. To achieve the decomposition, the first step involves

performing the 3D Fourier transform of the complex electric field

𝑬 (𝒓 , 𝑡) = 1√︁
(2𝜋)3

∫
𝑑3𝒌 𝑬 (𝒌) 𝑒−𝑖𝑘𝑐𝑡𝑒𝑖𝒌 ·𝒓 , (3.8)

with the absolute value of wave vector 𝑘 = |𝒌 | = 𝜔/𝑐 . The next step is to project the

polarization vectors of helicity 𝜆 = ±1 onto 𝑬 (𝒌), using dimensional constants chosen for

future convenience:

𝑓𝜆 (𝒌) =
√

2

√︂
𝜖0

𝑐ℏ
𝒆𝜆 ( ˆ𝒌)∗ · 𝑬 (𝒌), (3.9)

resulting in 𝑬 (𝒌) =
√︃

𝑐ℏ
2𝜖0

∑
𝜆=±1

𝑓𝜆 (𝒌)𝒆𝜆 ( ˆ𝒌). This leads to the decomposition:

𝑬 (𝒓, 𝑡) =

√︄
𝑐ℏ

2𝜖0

1√︁
(2𝜋)3

∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
𝑓𝜆 (𝒌) 𝑘 𝒆𝜆 ( ˆ𝒌) 𝑒𝑖 (𝒌 ·𝒓−𝑐𝑘𝑡), (3.10)

where the coefficients 𝑓𝜆 (𝒌) follow the transformation laws of a photon wave function

according to [20].

The independent helicity 𝜆 = ±1 components of the electric field, representing left- and

right-handed polarization, are described by the two complex Riemann-Silberstein vectors:

𝑭𝜆 (𝒓, 𝑡) =
(
𝑬 (𝒓, 𝑡) + 𝑖𝜆𝑐𝑩(𝒓, 𝑡)

)
/
√

2, (3.11)

which can be written in terms of the wave function coefficients as

𝑭𝜆 (𝒓, 𝑡) =
1√︁
(2𝜋)3

∫
𝑑3𝒌

𝑬 (𝒌) + 𝑖𝜆𝑐𝑩̄(𝒌)
√

2

𝑒𝑖 (𝒌 ·𝒓−𝑐𝑘𝑡) (3.12)

=
1

√
2

1√︁
(2𝜋)3

∫
𝑑3𝒌

(
𝑬 (𝒌) + 𝑖𝜆𝒌×

𝑘
𝑬 (𝒌)

)
𝑒𝑖 (𝒌 ·𝒓−𝑐𝑘𝑡) (3.13)

=

√︄
𝑐ℏ

𝜖0

1

√
2

1√︁
(2𝜋)3

∫
𝑑3𝒌

1

√
2

(
𝑓+(𝒌)𝒆+( ˆ𝒌) + 𝑓−(𝒌)𝒆−( ˆ𝒌)

+ 𝜆𝑓+(𝒌)𝒆+( ˆ𝒌) − 𝜆𝑓−(𝒌)𝒆−( ˆ𝒌)
)
𝑒𝑖 (𝒌 ·𝒓−𝑐𝑘𝑡)

=

√︄
𝑐ℏ

𝜖0

1√︁
(2𝜋)3

∫
𝑑3𝒌

𝑘
𝑓𝜆 (𝒌)𝒆𝜆 ( ˆ𝒌) 𝑘 𝑒𝑖 (𝒌 ·𝒓−𝑐𝑘𝑡) . (3.14)
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3.1 Plane waves |k𝜆⟩ and wave function 𝑓𝜆 (k)

Here, the Maxwell equation in the wave vector space 𝒌 × 𝑬 (𝒌) = 𝑐𝑘𝑩̄(𝒌) is used in the

second line of Eq. (3.14). Given that the complex-valued form of electric and magnetic

fields is considered, the two Riemann-Silberstein vectors, 𝑭− for waves of the right-handed

circular polarization and 𝑭+ for the left-handed, are independent and together provide the

complete description of the electromagnetic field.

The proposed definition for the electromagnetic plane wave is

|𝒌 𝜆⟩ ≡ 𝑸𝜆 (𝒌, 𝒓, 𝑡)

=

√︄
𝑐ℏ

𝜖0

1

√
2

1√︁
(2𝜋)3

𝑘 𝒆𝜆 ( ˆ𝒌)𝑒−𝑖𝑘𝑐𝑡𝑒𝑖𝒌 ·𝒓 ,

(3.15)

(3.16)

so the decomposition of the electromagnetic field can be written compactly as

𝑬 (𝒓 , 𝑡) =
∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
𝑓𝜆 (𝒌) 𝑸𝜆 (𝒌, 𝒓, 𝑡). (3.17)

The factor 𝑘 in the definition of the plane wave in Eq. (3.16) is significant. This

factor arises from the transition in Eq. (3.10) from the integration measure 𝑑3𝒌 of the 3D

Fourier transform, to the Lorentz-invariant integration measure in he light cone
𝑑3𝒌
𝑘

[32,

Eq. (2.5.15)][14, Sec. 10.4.6]. This change introduces a factor of 𝑘 in the definition of the

plane wave in Eq. (3.16). As demonstrated in Sec. 3.5, this specific factor of 𝑘 ensures

that 𝑸𝜆 (𝒌, 𝒓, 𝑡) and 𝑓𝜆 (𝒌) transform as massless unitary irreducible representations of the

Poincaré group with helicity 𝜆 = ±1. These transformation properties align with the

requirements for the photon wave function according to Wigner’s classification [16]. The

transformation rules are provided in [14, Eqs. (10.4-23), (10.4-24)]:

𝑇 (𝑎𝜇) |𝒌 𝜆⟩ = |𝒌 𝜆⟩ 𝑒−𝑖𝑎𝜇𝑘𝜇 (3.18)

𝑅(𝛼, 𝛽,𝛾) |𝒌 𝜆⟩ = | ˜𝒌 𝜆⟩ 𝑒−𝑖𝜆𝜓 , ˜𝒌 = 𝑅(𝛼, 𝛽,𝛾)𝒌 (3.19)

𝐿𝑧 (𝜉) |𝒌 𝜆⟩ = |𝒌′ 𝜆⟩ , 𝒌′ = 𝐿𝑧 (𝜉)𝒌 (3.20)

where 𝑇 (𝑎𝜇) is a 4D translation in Minkowski space-time with metric signature (− + ++),
so 𝑎𝜇𝑘𝜇 = −𝑎0 |𝒌 |+𝒂 ·𝒌 . The operator 𝑅(𝛼, 𝛽,𝛾) = 𝑅𝑧 (𝛼)𝑅𝑦 (𝛽)𝑅𝑧 (𝛾) stands for rotation with
corresponding Euler angles. The angle𝜓 satisfies𝑅(0, 0,𝜓 ) = 𝑅( ˜𝜙, ˜𝜃, 0)−1𝑅(𝛼, 𝛽,𝛾)𝑅(𝜙, 𝜃, 0),
where

˜𝜙, ˜𝜃 are spherical angles of the rotated wave vector
˜𝒌 = 𝑅(𝛼, 𝛽,𝛾)𝒌). Operator 𝐿𝑧 (𝜉)

is a Lorentz boost (App.2.2.1) along the z-axis with rapidity 𝜉 . Since a boost along an

arbitrary direction can be decomposed into rotations and a boost in the z-direction with

Eq. (2.18), only the boost along the z-direction is explicitly considered.

In this representation, plane waves undergo transformations under parity and time

reversal
1
as follows:

𝐼𝑠 |𝒌𝜆⟩ = |−𝒌 − 𝜆⟩ (3.21)

𝐼𝑡 |𝒌𝜆⟩ = |−𝒌 𝜆⟩ . (3.22)

1
The time reversal is represented anti-unitarily by an operator 𝐼𝑡 satisfying ⟨𝐼𝑡𝜙 |𝐼𝑡𝜓 ⟩ = ⟨𝜙 |𝜓 ⟩∗ = ⟨𝜓 |𝜙⟩.
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3 Electromagnetic fields: wave function and Hilbert space formalism in the plane wave basis

The integration measure

∫
𝑑3𝒌
𝑘

is invariant under the actions of the Poincaré group,

which enables the formulation of field transformations via transforming the coefficients

𝑓𝜆 (𝒌) in a way similar to transforming the basis vectors [14, Secs. 7.6 and 10.5.1]. For

example, for a boost in the z-direction Eq. (3.20), the invariance of the measure implies

that ∫
𝑑3𝒌

|𝒌 | =

∫
𝑑3𝐿−1

𝑧 (𝜉)𝒌
|𝐿−1

𝑧 (𝜉)𝒌 |
. (3.23)

This, combined with the linearity of the boost operator and Eq. (3.20), leads to:

𝐿𝑧 (𝜉) |𝑓 ⟩ =
∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
𝑓𝜆 (𝒌) |𝐿𝑧 (𝜉)𝒌 𝜆⟩

=
∑︁
𝜆=±1

∫
𝑑3𝐿−1

𝑧 (𝜉)𝒌
|𝐿−1

𝑧 (𝜉)𝒌 |
𝑓𝜆 (𝐿−1

𝑧 (𝜉)𝒌) |𝒌𝜆⟩

=
∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
𝑓𝜆 (𝐿−1

𝑧 (𝜉)𝒌) |𝒌𝜆⟩ . (3.24)

The complete list of transformation rules for the coefficients 𝑓𝜆 (𝒌) is as follows:

𝑇 (𝑎𝜇) 𝑓𝜆 (𝒌) = 𝑓𝜆 (𝒌)𝑒−𝑖𝑎
𝜇𝑘𝜇 , (3.25)

𝑅(𝛼, 𝛽,𝛾) 𝑓𝜆 (𝒌) = 𝑓𝜆 ( ˜𝒌)𝑒−𝑖𝜆𝜓 , ˜𝒌 = 𝑅−1(𝛼, 𝛽,𝛾)𝒌 (3.26)

𝐿𝑧 (𝜉) 𝑓𝜆 (𝒌) = 𝑓𝜆 (𝒌′), 𝒌′ = 𝐿−1

𝑧 (𝜉)𝒌 . (3.27)

Here,𝜓 is determined from𝑅(0, 0,𝜓 ) = 𝑅(𝜙, 𝜃, 0)−1𝑅(𝛼, 𝛽,𝛾)𝑅( ˜𝜙, ˜𝜃, 0), where ˜𝜙, ˜𝜃 correspond

to the wave vector
˜𝒌 = 𝑅−1(𝛼, 𝛽,𝛾)𝒌 . The transformations under parity and time reversal

are expressed as:

𝐼𝑠 𝑓𝜆 (𝒌) = 𝑓−𝜆 (−𝒌) (3.28)

𝐼𝑡 𝑓𝜆 (𝒌) = 𝑓 ∗𝜆 (−𝒌). (3.29)

The transformation properties of the defined plane waves and coefficients in the

decomposition Eq. (3.17) validate the representation of the electric field as a ket:

|𝑓 ⟩ =
∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
𝑓𝜆 (𝒌) |𝒌𝜆⟩ . (3.30)

3.2 Scalar product in plane wave basis

The coefficients 𝑓𝜆 (𝒌) are associated with a Hilbert space of states with finite norm with

respect to the scalar product

⟨𝑓 |𝑔⟩ =
∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
𝑓 ∗
𝜆
(𝒌)𝑔𝜆 (𝒌). (3.31)
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3.3 Representation of vector potential

Wave functions that possess infinite norms are not physical, since they correspond to

fields with an infinite number of photons. Because of the additional dimensional factors

in Eq. (3.9), the coefficient function 𝑓𝜆 (𝒌) has the units of length: [𝑓𝜆 (𝒌)] = m. The scalar

product Eq. (3.31) is consequently dimensionless, aligning with the physical interpretation

of ⟨𝑓 |𝑓 ⟩ as the number of photons [33] that are contained in the field described by |𝑓 ⟩.
The integral in [33, Eq. (1)] offers a distinct representation of the same scalar product, as

can be seen by comparing Eq. (3) and Eq. (6) in [17].

This scalar product also serves as a tool to quantify fundamental quantities carried

by the field, such as energy, linear momentum, and angular momentum, through the

evaluation of expectation values ⟨𝑓 |Γ |𝑓 ⟩, where Γ stands for the self-adjoint generator

of the corresponding symmetry transformation: time translation for energy, spatial

translation for linear momentum and rotation for angular momentum.

It is well-established [17] that the scalar product in Eq. (3.31) remains invariant under the

conformal group, which stands as the largest group of invariance of Maxwell equations [34].

This group encompasses the Poincaré group and includes special conformal transformations

and dilations.

In the next section, it is discussed how the same analysis done in this section for the

electric field may be applied to the formulation in terms of the electromagnetic vector

potential. In particular, why the plane waves for decomposing the vector potential do not

feature the extra factor of 𝑘 .

3.3 Representation of vector potential

The transverse part of the vector potential determines the transverse electric field as

follows:

𝑬 (𝒓, 𝑡) = −𝜕𝑨
⊥(𝒓, 𝑡)
𝜕𝑡

, (3.32)

independently of the gauge [35, Eq. B.26]. In the wave vector space, one consequently

finds

¯𝑨⊥(𝒌) = −𝑖𝑬 (𝒌)
𝑐𝑘

, (3.33)

and the decomposition analogous to Eq. (3.10) can be expressed as

𝑨⊥(𝒓, 𝑡) =

√︄
ℏ

𝑐𝜖0

1

√
2

−𝑖√︁
(2𝜋)3

∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
𝑓𝜆 (𝒌) 𝒆𝜆 ( ˆ𝒌) 𝑒𝑖 (𝒌 ·𝒓−𝑐𝑘𝑡), (3.34)

where the coefficients of the decomposition 𝑓𝜆 (𝒌) are the same as those of the corresponding

electric field. To maintain the invariant measure
𝑑3𝒌
𝑘
, the decomposition in Eq. (3.34) gives

rise to a definition of plane waves for the vector potential that differs from one of the

electric plane waves by the factor of 𝑖𝑘/𝑐:

𝑸𝐴⊥

𝜆
(𝒌, 𝒓, 𝑡) = −𝑖

√︄
ℏ

𝑐𝜖0

1

√
2

1√︁
(2𝜋)3

𝒆𝜆 ( ˆ𝒌)𝑒−𝑖𝑘𝑐𝑡𝑒𝑖𝒌 ·𝒓 . (3.35)
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3 Electromagnetic fields: wave function and Hilbert space formalism in the plane wave basis

Plane waves of the vector potential are ruled by the same transformation laws Eqs. (3.18-

3.20) and Eq. (3.21), with the exception of time reversal. In time reversal, the presence

of the imaginary unit 𝑖 introduces an additional factor of (−1) on the right-hand side of

Eq. (3.22). The differentiation
𝜕
𝜕𝑡
in Eq. (3.32) also hints at the difference in time-reversal

transformation properties. The factor of 𝑘 exactly compensates for the different way that

𝑨⊥(𝒓, 𝑡) and 𝑬 (𝒓, 𝑡) transform under Lorentz boosts, namely as the space component of a

four-vector, and as the space-time component of an anti-symmetric tensor, respectively.

3.4 On basis states and the Hilbert space

The Hilbert space is defined to contain states |𝑓 ⟩ that possess finite norm

⟨𝑓 |𝑓 ⟩ < ∞. (3.36)

A plane basis state |𝒌𝜆⟩ is not in the Hilbert space, because its wave function contains the

Dirac delta distribution

|𝒌𝜆⟩ =
∑︁
𝜆′=±1

∫
𝑑3𝒌′

𝑘′
𝛿𝜆𝜆′ 𝑘 𝛿

(3) (𝒌′ − 𝒌) |𝒌′𝝀′⟩ , (3.37)

and its norm is infinite:

⟨𝒌𝜆 |𝒌𝜆⟩ =
∑︁
𝜆′=±1

∫
𝑑3𝒌′

𝑘′
[
𝛿𝜆𝜆′ 𝑘 𝛿

(3) (𝒌′ − 𝒌)
]∗
𝛿𝜆𝜆′ 𝑘 𝛿

(3) (𝒌′ − 𝒌) (3.38)

= 𝑘 𝛿 (3) (0). (3.39)

This makes it physically unrealizable and not belonging to the Hilbert space. Similar issues

arise for states from any continuous spectrum, as opposed to the discrete spectrum. This

reflects the well-known fact that the Hilbert space formalism is not sufficient to describe

Dirac’s bra-ket notation for operators with continuous spectrum. A mathematically

complete treatment of the Dirac formalism involves the construction called rigged Hilbert

space, also known as Gel’fand triplet, which is a triad of spaces: a Hilbert space, a space of

distributions, and a space of test functions. A short pedagogical introduction to this topic

is given in [36].

In the current work, the Dirac formalism is only used as a convenient way of writing

and proving formulas that work for physically realizable states. Distributions arise only in

intermediate steps before being eliminated by integration to produce a finite result.

3.5 Lorentz boost of plane waves

Here, the transformation of𝑸𝜆 (𝒌, 𝒓, 𝑡) under an active boost in the 𝑧-direction with rapidity
𝜉 is explicitly derived. First, one notes that the Riemann-Silberstein vectors in Eq. (3.12)

transform under active Lorentz boosts as:

𝑭𝜆 (𝒓, 𝑡) = 𝛾𝑭𝜆 (𝒓̃ , 𝑡) +
𝑖𝜆𝛾

𝑐
𝒗 × 𝑭𝜆 (𝒓̃, 𝑡) −

𝛾2𝒗

(𝛾 + 1)𝑐2
𝒗 · 𝑭𝜆 (𝒓̃, 𝑡). (3.40)
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3.5 Lorentz boost of plane waves

The transformation rule for general electromagnetic fields in [30, Eq. (11.149)] is used to

derive the action of the boost (see also Eq. (3.40)):

𝑸𝜆 (𝒌, 𝒓, 𝑡) = 𝛾𝑸𝜆 (𝒌, 𝒓̃, 𝑡) +
𝑖𝜆𝛾

𝑐
𝒗 × 𝑸𝜆 (𝒌, 𝒓̃, 𝑡) −

𝛾2𝒗

(𝛾 + 1)𝑐2
𝒗 · 𝑸𝜆 (𝒌, 𝒓̃, 𝑡)

≡
(
𝛾1 + 𝑖𝜆𝛾

𝑐
𝒗 × − 𝛾2𝒗

(𝛾 + 1)𝑐2
𝒗 ·

)
𝑸𝜆 (𝒌, 𝒓̃, 𝑡), (3.41)

where in Eq. (3.41) 𝑸𝜆 is factored out and, leaving the sum of three linear operators 1,

𝒗×, and 𝒗 𝒗· in brackets. Here 𝒗 = 𝑣𝒆𝑧 = 𝑐 tanh(𝜉)𝒆𝑧 , 𝛾 = (1 − 𝑣2/𝑐2)−1/2 = cosh(𝜉),
𝛾𝑣 = 𝑐 sinh(𝜉) and space-time coordinates are inversely transformed via

(
𝑐𝑡

𝒓̃

)
= 𝐿−1

𝑧 (𝜉)
(
𝑐𝑡

𝒓

)
=

©­­­«
cosh(𝜉) 0 0 − sinh(𝜉)

0 1 0 0

0 0 1 0

− sinh(𝜉) 0 0 cosh(𝜉)

ª®®®¬
©­­­«
𝑐𝑡

𝑥

𝑦

𝑧

ª®®®¬ . (3.42)

It is crucial to distinguish between the passive and active versions of the Lorentz boost. In

the passive version, where the reference frame is boosted instead of the field, Eqs. (3.41-3.42)

incorporate −𝒗 in place of 𝒗 (and, equivalently, −𝜉 instead of 𝜉).
The helicity basis vectors 𝒆𝜎 ( ˆ𝒌) can be obtained by rotation of the reference helicity

basis vector pointing in the z-direction: 𝒆𝜎 ( ˆ𝒌) = 𝑅(𝜙, 𝜃, 0)𝒆𝜎 (𝒛̂), in particular

𝑅(𝛼, 𝛽,𝛾) 𝒆𝜆 ( ˆ𝒌) =
∑︁
𝜎=±1,0

𝐷1

𝜎𝜆
(𝛼, 𝛽,𝛾) 𝒆𝜎 ( ˆ𝒌). (3.43)

Here 𝐷
𝑗
𝑚𝑛 (𝛼, 𝛽,𝛾) = 𝑒−𝑖𝑚𝛼𝑑 𝑗𝑚𝑛 (𝛽)𝑒−𝑖𝑛𝛾 are Wigner matrices and 𝑑

𝑗
𝑚𝑛 (𝛽) are small Wigner

matrices, as defined in [14], Sec. 7.3. Continuing the derivation:(
𝛾1 + 𝑖𝜆𝛾

𝑐
𝒗 × − 𝛾2𝒗

(𝛾 + 1)𝑐2
𝒗 ·

)
𝑘 𝒆𝜆 ( ˆ𝒌)

=

(
cosh(𝜉)1 + 𝑖𝜆 sinh(𝜉)𝒆𝑧 × − sinh

2(𝜉)𝒆𝑧
cosh(𝜉) + 1

𝒆𝑧 ·
) ∑︁
𝜎=−1,0,1

𝐷1

𝜎𝜆
(𝜙, 𝜃, 0) 𝑘 𝒆𝜎 (𝒛̂)

=
∑︁

𝜎=−1,0,1

𝐷1

𝜎𝜆
(𝜙, 𝜃, 0)

(
cosh(𝜉) + 𝜆𝜎 sinh(𝜉) − sinh

2(𝜉)𝛿0𝜎

cosh(𝜉) + 1

)
𝑘 𝒆𝜎 (𝒛̂) (3.44)

=
∑︁

𝜎=−1,0,1

𝑒−𝑖𝜙𝜎 𝑑1

𝜎𝜆
(𝜃 )

(
𝜎𝜆 sinh(𝜉) + cosh(𝜉) + cosh

2(𝜉) − sinh
2(𝜉)𝛿0𝜎

cosh(𝜉) + 1

)
𝑘 𝒆𝜎 (𝒛̂)

=
∑︁

𝜎=−1,0,1

𝑒−𝑖𝜙𝜎 𝑑1

𝜎𝜆
( ˜𝜃 ) ˜𝑘 𝒆𝜎 (𝒛̂) (3.45)

= ˜𝑘 𝒆𝜆 ( ˆ
˜𝒌). (3.46)

For the step leading to Eq. (3.44) one uses 𝒆𝑧×𝒆𝜎 (𝒛̂) = −𝑖𝜎𝒆𝜎 (𝒛̂) and 𝒆𝑧
(
𝒆𝑧 ·𝒆𝜎 (𝒛̂)

)
= 𝛿0𝜎𝒆𝜎 (𝒛̂)

for 𝜎 = −1, 0, 1. Eq. (3.45) follows from the transformation rules for the wave vector 𝒌 as

17



3 Electromagnetic fields: wave function and Hilbert space formalism in the plane wave basis

discussed in Sec.2.2.1:

˜𝑘 𝑑1

0𝜆
( ˜𝜃 ) = 𝜆 ˜𝑘

√
2

sin( ˜𝜃 ) = 𝜆𝑘
√

2

sin(𝜃 ) = 𝑘 𝑑1

0𝜆
(𝜃 ) (3.47)

that holds for 𝜆 = ±1, 𝜎 = 0. In case 𝜆 = ±1, 𝜎 = ±1, the following holds:

˜𝑘 𝑑1

𝜎𝜆
( ˜𝜃 ) =

˜𝑘

2

(
1 + 𝜎𝜆 cos( ˜𝜃 )

)
(3.48)

=
𝑘
(
cosh(𝜉) + cos(𝜃 ) sinh(𝜉)

)
2

(
1 + 𝜎𝜆 cos(𝜃 ) cosh(𝜉) + sinh(𝜉)

cosh(𝜉) + cos(𝜃 ) sinh(𝜉)

)
=
𝑘

2

(
cosh(𝜉) + cos(𝜃 ) sinh(𝜉) + 𝜎𝜆(cos(𝜃 ) cosh(𝜉) + sinh(𝜉))

)
=
𝑘

2

(
1 + 𝜎𝜆 cos(𝜃 )

) (
cosh(𝜉) + 𝜎𝜆 sinh(𝜉)

)
= 𝑘 𝑑1

𝜎𝜆
(𝜃 )

(
1 + 𝜎𝜆 sinh(𝜉)

)
. (3.49)

The final step follows from the fact that Lorentz boosts 𝐿 preserves the norm of the

4-vectors:

𝑒−𝑖𝑘
𝜇 (𝐿−1𝑥)𝜇 = 𝑒−𝑖 (𝐿𝑘)

𝜇𝑥𝜇 , (3.50)

which implies Eq. (3.20):

(
𝛾1 + 𝑖𝜆𝛾𝑣

𝑐
𝒆𝑧 × − 𝛾2𝑣2𝒆𝑧

(𝛾 + 1)𝑐2
𝒆𝑧 ·

)
𝑸𝜆 (𝒌, 𝒓̃, 𝑡) = 𝑸𝜆 ( ˜𝒌, 𝒓 , 𝑡). (3.51)

This derivation relies on the extra factor of 𝑘 in the definition Eq. (3.16), and the plane

wave would not transform according to the unitary representation in Eq. (3.20) without it.
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4 Electromagnetic fields: wave function
and Hilbert space formalism in the
angular momentum basis

The multipolar fields play a central role in the scattering formalism: they constitute the

convenient basis with respect to which the fields are expanded. Opposite to the plane

wave fields, the multipolar basis fields are labeled with discrete indices, which makes

them convenient entities to use in numerical approaches. In the beginning, the regular

multipolar basis is discussed, which is unitarily connected to the plane wave basis, and

then the irregular basis is introduced, derived in relation to its regular counterpart.

4.1 Regular fields

4.1.1 Angular momentum basis for regular fields |𝑘 𝑗𝑚𝜆⟩

There are multiple types of bases in which states |𝑓 ⟩ can be expanded. Apart from the

plane wave basis that has been discussed so far, the angular momentum basis constitutes

a useful type of basis as well. The connection between the latter and the former is well

known [14, Sec. 8.4.1]:

|𝑘 𝑗𝑚𝜆⟩ =
√︂

2 𝑗 + 1

4𝜋

∫
2𝜋

0

𝑑𝜙

∫
1

−1

𝑑 (cos𝜃 ) 𝐷 𝑗

𝑚𝜆
(𝜙, 𝜃, 0)∗ |𝒌𝜆⟩ (4.1)

|𝒌𝜆⟩ =
∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

√︂
2 𝑗 + 1

4𝜋
𝐷
𝑗

𝑚𝜆
(𝜙, 𝜃, 0) |𝑘 𝑗𝑚𝜆⟩ . (4.2)

The corresponding connection between coefficients in the angular momentum and the

plane wave basis is written as

𝑓 𝑗𝑚𝜆 (𝑘) =
√︂

2 𝑗 + 1

4𝜋

∫
2𝜋

0

𝑑𝜙

∫
1

−1

𝑑 (cos𝜃 ) 𝐷 𝑗

𝑚𝜆
(𝜙, 𝜃, 0) 𝑓𝜆 (𝒌) (4.3)

𝑓𝜆 (𝒌) =
∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

√︂
2 𝑗 + 1

4𝜋
𝐷
𝑗

𝑚𝜆
(𝜙, 𝜃, 0)∗ 𝑓 𝑗𝑚𝜆 (𝑘) . (4.4)
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4 Electromagnetic fields: wave function and Hilbert space formalism in the angular
momentum basis

and follows from the orthogonality and completeness relations of the Wigner matrices:

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

2 𝑗 + 1

8𝜋2
𝐷
𝑗

𝑚𝜆
(𝛼1, 𝛽1, 𝛾1)𝐷 𝑗

𝑚𝜆
(𝛼2, 𝛽2, 𝛾2)∗ = 𝛿 (𝛼1 − 𝛼2)𝛿 (cos 𝛽1 − cos 𝛽2)𝛿 (𝛾1 − 𝛾2)

(4.5)∫
2𝜋

0

𝑑𝛼

∫
1

−1

𝑑 cos 𝛽

∫
2𝜋

0

𝑑𝛾
2 𝑗 + 1

8𝜋2
𝐷
𝑗1
𝑚1𝑛1

(𝛼, 𝛽,𝛾)𝐷 𝑗2
𝑚2𝑛2

(𝛼, 𝛽,𝛾)∗ = 𝛿 𝑗1 𝑗2𝛿𝑚1𝑚2
𝛿𝑛1𝑛2

. (4.6)

The labels of basis vectors |𝑘 𝑗𝑚𝜆⟩ are quantum numbers that correspond to eigenvalues

of Hermitian operators of energy 𝐻 , total angular momentum 𝐽 2 = 𝐽 2

𝑥 + 𝐽 2

𝑦 + 𝐽 2

𝑧 , angular

momentum along 𝑧-axis 𝐽𝑧 , and helicity Λ:

𝐻 |𝑘 𝑗𝑚𝜆⟩ = ℏ𝑐𝑘 |𝑘 𝑗𝑚𝜆⟩
𝐽 2 |𝑘 𝑗𝑚𝜆⟩ = ℏ2 𝑗 ( 𝑗 + 1) |𝑘 𝑗𝑚𝜆⟩ , 𝑗 = 1, 2, . . .

𝐽𝑧 |𝑘 𝑗𝑚𝜆⟩ = ℏ𝑚 |𝑘 𝑗𝑚𝜆⟩ , 𝑚 = − 𝑗,− 𝑗 + 1, . . . , 𝑗

Λ |𝑘 𝑗𝑚𝜆⟩ = ℏ𝜆 |𝑘 𝑗𝑚𝜆⟩ , 𝜆 = ±1.

In common terminology, 𝑗 = 1 states are called the dipolar fields, 𝑗 = 2 the quadrupolar

fields, and so on.

A general state can be represented in the angular momentum basis by using Eqs. (4.1-4.4)

in Eq. (3.30), which leads to

|𝑓 ⟩ =
∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑓 𝑗𝑚𝜆 (𝑘) |𝑘 𝑗𝑚𝜆⟩ , (4.7)

and the scalar product in Eq. (3.31) can correspondingly bewritten in the angularmomentum

basis as

⟨𝑔 |𝑓 ⟩ =
∑︁
𝜆=±1

∫ ∞

0

𝑑𝑘 𝑘

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑔∗
𝑗𝑚𝜆

(𝑘) 𝑓 𝑗𝑚𝜆 (𝑘). (4.8)

The coefficients 𝑓 𝑗𝑚𝜆 (𝑘) have the units of meters just as 𝑓𝜆 (𝒌).
This construction allows one to compute the representation of the angular momentum

basis vector fields in (𝒓 , 𝑡)-space for the regular electromagnetic fields:

𝑹 𝑗𝑚𝜆 (𝑘, 𝒓 , 𝑡) :=

√︂
2 𝑗 + 1

4𝜋

∫
2𝜋

0

𝑑𝜙

∫
1

−1

𝑑 (cos𝜃 ) 𝐷 𝑗

𝑚𝜆
(𝜙, 𝜃, 0)∗𝑸𝜆 (𝒌, 𝒓, 𝑡)

=

√︄
𝑐ℏ

𝜖0

𝑘 𝑒−𝑖𝑘𝑐𝑡
√

2

√︁
(2𝜋)3

√︂
2 𝑗 + 1

4𝜋

∫
2𝜋

0

𝑑𝜙

∫
1

−1

𝑑 (cos𝜃 ) 𝐷 𝑗

𝑚𝜆
(𝜙, 𝜃, 0)∗𝒆𝜆 ( ˆ𝒌)𝑒𝑖𝒌 ·𝒓 . (4.9)

Here, the integration proceeds over the polar and azimuthal angles (𝜃, 𝜙) of the wave
vector. The result of the integration is

𝑹 𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡) =

√︄
𝑐ℏ

𝜖0

𝑘 𝑒−𝑖𝑘𝑐𝑡
√
𝜋
√

2 𝑗 + 1

𝑗+1∑︁
𝐿= 𝑗−1

√
2𝐿 + 1 𝑖𝐿 𝑗𝐿 (𝑘𝑟 )𝐶 𝑗𝜆

𝐿0,1𝜆
𝒀 𝐿𝑗𝑚 (𝒓) (4.10)

≡ |𝑘 𝑗𝑚𝜆⟩ ,
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4.1 Regular fields

with Clebsch-Gordan coefficients 𝐶
𝑗3𝑚3

𝑗1𝑚1 𝑗2𝑚2

and vector spherical harmonics as defined in

[31, Sec. 7.3.1]:

𝒀 𝐿𝑗𝑚 (𝒓) =
√︂

2𝐿 + 1

4𝜋

∑︁
𝜎=±1,0

𝒆𝜎 (𝒛̂)𝐷𝐿𝑚−𝜎,0(𝜙, 𝜃, 0)∗𝐶
𝑗𝑚

𝐿𝑚−𝜎,1𝜎 . (4.11)

The regular electromagnetic field 𝑬 (𝒓, 𝑡) can then be decomposed into the multipolar

components in accordance with Eq. (4.7):

𝑬 (𝒓, 𝑡) =
∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑓 𝑗𝑚𝜆 (𝑘)𝑹 𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡). (4.12)

To find the relation between constructed angularmomentum basis vector fields 𝑹 𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡)
and the well-known usual regular electric and magnetic multipoles

𝑵 𝑗𝑚 (𝑘𝑟, 𝒓) = 𝑖 𝑗 𝑗−1(𝑘𝑟 )
√︂

𝑗 + 1

2 𝑗 + 1

𝒀 𝑗−1

𝑗𝑚
(𝒓) − 𝑖 𝑗 𝑗+1(𝑘𝑟 )

√︂
𝑗

2 𝑗 + 1

𝒀 𝑗+1

𝑗𝑚
(𝒓) (4.13)

𝑴 𝑗𝑚 (𝑘𝑟, 𝒓) = 𝑗 𝑗 (𝑘𝑟 )𝒀 𝑗𝑗𝑚 (𝒓) (4.14)

one can use the expression for Clebsch-Gordan coefficients

𝐶
𝑗𝜆

𝐿0,1𝜆
=


√︃

𝑗

2(2 𝑗+3) , if 𝐿 = 𝑗 + 1

− 𝜆√
2

, if 𝐿 = 𝑗√︃
( 𝑗+1)

2(2 𝑗−1) , if 𝐿 = 𝑗 − 1

(4.15)

for 𝜆 = ±1. The fields 𝑹 𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡) are then connected to the usual regular electric and

magnetic multipoles via

|𝑘 𝑗𝑚𝜆⟩ ≡ 𝑹 𝑗𝑚𝜆 (𝑘, 𝒓 , 𝑡)

= −

√︄
𝑐ℏ

𝜖0

1

√
2𝜋

𝑘 𝑖 𝑗
(
𝑒−𝑖𝑘𝑐𝑡 𝑵 𝑗𝑚 (𝑘𝑟, 𝒓) + 𝜆 𝑒−𝑖𝑘𝑐𝑡 𝑴 𝑗𝑚 (𝑘𝑟, 𝒓)

)
. (4.16)

The corresponding inverse relations read

𝑒−𝑖𝑘𝑐𝑡 𝑵 𝑗𝑚 (𝑘𝑟, 𝒓) = −
√︂
𝜖0

𝑐ℏ

1

2

(
𝑹 𝑗𝑚+(𝑘, 𝒓 , 𝑡) + 𝑹 𝑗𝑚−(𝑘, 𝒓, 𝑡)

) (−𝑖) 𝑗√2𝜋

𝑘
(4.17)

𝑒−𝑖𝑘𝑐𝑡 𝑴 𝑗𝑚 (𝑘𝑟, 𝒓) = −
√︂
𝜖0

𝑐ℏ

1

2

(
𝑹 𝑗𝑚+(𝑘, 𝒓 , 𝑡) − 𝑹 𝑗𝑚−(𝑘, 𝒓 , 𝑡)

) (−𝑖) 𝑗√2𝜋

𝑘
. (4.18)

The extra factor of 𝑘 in the plane wave definition of Eq. (3.16) leads to the extra factor

of 𝑘 in the definition of the angular momentum basis in Eq. (4.16), contrasting with the

usual definition of multipolar basis 𝑴 and 𝑵 . This distinction guarantees that the fields

𝑹 𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡) have the same transformation properties as the abstract |𝑘 𝑗𝑚𝜆⟩ under the
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4 Electromagnetic fields: wave function and Hilbert space formalism in the angular
momentum basis

action of the Poincaré group (see Sec.(4.1.3)). 𝑹 𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡) transform unitarily, in particular

under Lorentz boosts, because they are unitarily connected to 𝑸𝜆 (𝒌, 𝒓, 𝑡) via Eq. (4.9), and
it has already been shown that 𝑸𝜆 (𝒌, 𝒓, 𝑡) transforms unitarily under Lorentz boosts.

The next section presents the derivation of the closed-formmatrix element of the Lorentz

boost in the angular momentum basis. It can be used to apply Lorentz boosts directly to

the regular multipolar fields, and, as it is shown later, to the irregular multipolar fields as

well.

4.1.2 Matrix element of Lorentz boost

Here, the matrix element of the Lorentz boost along the z-direction in the angular

momentum basis is derived. The core idea of the derivation consists in switching to

the plane wave basis via Eqs. (4.1)-(4.2) and utilizing the known transformation property

of the plane waves Eq. (3.20) before switching back to the angular momentum basis. The

plane wave basis states |𝒌𝜆⟩ will be referred to as |𝑘𝜃𝜙𝜆⟩ for convenience. First,
𝐿𝑧 (𝜉) |𝑘 𝑗𝑚𝜆⟩ =

= 𝐿𝑧 (𝜉)
√︂

2 𝑗 + 1

4𝜋

∫
2𝜋

0

𝑑𝜙

∫
1

−1

𝑑 (cos𝜃 ) 𝐷 𝑗

𝑚𝜆
(𝜙, 𝜃, 0)∗ |𝑘𝜃𝜙𝜆⟩

=

√︂
2 𝑗 + 1

4𝜋

∫
2𝜋

0

𝑑𝜙

∫
1

−1

𝑑 (cos𝜃 ) 𝐷 𝑗

𝑚𝜆
(𝜙, 𝜃, 0)∗ |𝑘′𝜃 ′𝜙𝜆⟩ (4.19)

with boosted plane wave |𝑘′𝜂′𝜙𝜆⟩ according to Eq. (3.20). Its azimuthal angle is unchanged,

the wavenumber and the polar angles are transformed according to Eqs. (2.20), (2.21):

cos(𝜃 ′) = cos(𝜃 ) + tanh(𝜉)
1 + cos(𝜃 ) tanh(𝜉) (4.20)

𝑘′ = 𝑘 (cosh(𝜉) + cos(𝜃 ) sinh(𝜉)) . (4.21)

Writing the transformed plane wave in the angular momentum basis gives

𝐿𝑧 (𝜉) |𝑘 𝑗𝑚𝜆⟩ =
√︂

2 𝑗 + 1

4𝜋

∫
2𝜋

0

𝑑𝜙

∫
1

−1

𝑑 (cos𝜃 ) 𝐷 𝑗

𝑚𝜆
(𝜙, 𝜃, 0)∗

×
∞∑︁
𝑗 ′=1

𝑗 ′∑︁
𝑚′=− 𝑗 ′

√︂
2 𝑗 ′ + 1

4𝜋
𝐷
𝑗 ′

𝑚𝜆
(𝜙, 𝜃 ′, 0) |𝑘′ 𝑗 ′𝑚𝜆⟩ (4.22)

=
1

2

∫
1

−1

𝑑 (cos𝜃 )
∞∑︁
𝑗 ′=1

√︁
2 𝑗 + 1

√︁
2 𝑗 ′ + 1 𝑑

𝑗

𝑚𝜆
(𝜃 )𝑑 𝑗

′

𝑚𝜆
(𝜃 ′) |𝑘′ 𝑗 ′𝑚𝜆⟩ , (4.23)

where the last step involved integration over 𝜙 . It is possible to write this expression in

terms of the integral over wavenumber by substitution defined via Eq. (4.21):

𝐿𝑧 (𝜉) |𝑘 𝑗𝑚𝜆⟩ =
1

2

∫ 𝑘𝑒𝜉

𝑘𝑒−𝜉

𝑑𝑘′

𝑘 sinh(𝜉)

∞∑︁
𝑗 ′=1

√︁
2 𝑗 + 1

√︁
2 𝑗 ′ + 1 𝑑

𝑗

𝑚𝜆
(𝜃 )𝑑 𝑗

′

𝑚𝜆
(𝜃 ′) |𝑘′ 𝑗 ′𝑚𝜆⟩ (4.24)

=
1

2

∫ 𝑘𝑒 |𝜉 |

𝑘𝑒−|𝜉 |

𝑑𝑘′

𝑘 sinh( |𝜉 |)

∞∑︁
𝑗 ′=1

√︁
2 𝑗 ′ + 1

√︁
2 𝑗 + 1𝑑

𝑗 ′

𝑚𝜆
(𝜃 ′) 𝑑 𝑗

𝑚𝜆
(𝜃 ) |𝑘′ 𝑗 ′𝑚𝜆⟩ . (4.25)

22



4.1 Regular fields

Both of the last equations hold for both positive and negative 𝜉 that correspond to the

movement in positive and negative 𝑧-direction. The matrix element of the Lorentz boost

is defined to satisfy

𝐿𝑧 (𝜉) |𝑘 𝑗𝑚𝜆⟩ =
∫ ∞

0

𝑑𝑘′ 𝑘′
∑︁
𝜆′=±1

∞∑︁
𝑗 ′=1

𝑗 ′∑︁
𝑚′=− 𝑗 ′

|𝑘′ 𝑗 ′𝑚′𝜆′⟩ ⟨𝑘′ 𝑗 ′𝑚′𝜆′|𝐿𝑧 (𝜉) |𝑘 𝑗𝑚𝜆⟩ . (4.26)

Bringing Eq. (4.25) in this form leads to

⟨𝑘′ 𝑗 ′𝑚′𝜆′|𝐿𝑧 (𝜉) |𝑘 𝑗𝑚𝜆⟩ = 𝛿𝜆′𝜆𝛿𝑚′𝑚Θ
(
|𝜉 | − |ln(𝑘′/𝑘) |

)√2 𝑗 ′ + 1

√
2 𝑗 + 1

2𝑘′𝑘 sinh( |𝜉 |) 𝑑
𝑗 ′

𝑚𝜆
(𝜃 ′)𝑑 𝑗

𝑚𝜆
(𝜃 ),

(4.27)

with

cos𝜃 ′ =
𝑘′ cosh(𝜉) − 𝑘
𝑘′ sinh(𝜉) (4.28)

cos𝜃 =
𝑘′ − 𝑘 cosh(𝜉)
𝑘 sinh(𝜉) . (4.29)

The Heaviside function

Θ(𝑥) =
{

1, if 𝑥 ≥ 0

0, if 𝑥 < 0

(4.30)

accounts for the correct spectrum of boosted wave numbers 𝑒−|𝜉 | ≤ 𝑘′/𝑘 ≤ 𝑒 |𝜉 | :∫ ∞

0

𝑑𝑘′Θ
(
|𝜉 | − |ln(𝑘′/𝑘) |

)
=

∫ 𝑘𝑒 |𝜉 |

𝑘𝑒−|𝜉 |
𝑑𝑘′. (4.31)

Eq. (4.24) is the closed-form expression equivalent to Eq. (5.15) in [37].

Setting rapidity 𝜉 = 0 in Eqs. (4.20), (4.21), (4.23) leads to

𝐿𝑧 (0) |𝑘 𝑗𝑚𝜆⟩ =
1

2

√︁
2 𝑗 + 1

∞∑︁
𝑗 ′=1

√︁
2 𝑗 ′ + 1

∫
1

−1

𝑑 (cos𝜃 ) 𝑑 𝑗
𝑚𝜆

(𝜃 ) 𝑑 𝑗
′

𝑚𝜆
(𝜃 ) |𝑘 𝑗 ′𝑚′𝜆⟩

=

∞∑︁
𝑗 ′=1

𝛿 𝑗 ′ 𝑗 |𝑘 𝑗 ′𝑚𝜆⟩ = |𝑘 𝑗𝑚𝜆⟩ , (4.32)

where the well-known orthogonality of small Wigner matrices is used:

1

2

√︁
2 𝑗 + 1

√︁
2 𝑗 ′ + 1

∫
1

−1

𝑑 (cos𝜃 ) 𝑑 𝑗
𝑚𝜆

(𝜃 ) 𝑑 𝑗
′

𝑚′𝜆′ (𝜃 ) = 𝛿 𝑗 𝑗 ′ . (4.33)

This validates the expected result that the zero velocity Lorentz boost acts as the identity

operator.
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4 Electromagnetic fields: wave function and Hilbert space formalism in the angular
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The derived law for transformation of |𝑘 𝑗𝑚𝜆⟩ describes the transformation properties

of basis vector fields 𝑹 𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡) for all space-time points (𝒓, 𝑡).
The corresponding transformation properties of the wavefunction coefficients 𝑓 𝑗𝑚𝜆 (𝑘)

can be derived, for example, by using Eq. (4.26)

𝐿𝑧 (𝜉) |𝑓 ⟩ =
∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑓 𝑗𝑚𝜆 (𝑘)𝐿𝑧 (𝜉) |𝑘 𝑗𝑚𝜆⟩ (4.34)

=

∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑓 𝑗𝑚𝜆 (𝑘)
∫ ∞

0

𝑑𝑘′ 𝑘′
∑︁
𝜆′=±1

∞∑︁
𝑗 ′=1

𝑗 ′∑︁
𝑚′=− 𝑗 ′

|𝑘′ 𝑗 ′𝑚′𝜆′⟩

× 𝛿𝜆𝜆′𝛿𝑚′𝑚Θ
(
|𝜉 | − |ln(𝑘′/𝑘) |

)√2 𝑗 ′ + 1

√
2 𝑗 + 1

2𝑘′𝑘 sinh( |𝜉 |) 𝑑
𝑗 ′

𝑚𝜆
(𝜃 ′)𝑑 𝑗

𝑚𝜆
(𝜃 ) (4.35)

=

∫ ∞

0

𝑑𝑘′ 𝑘′
∑︁
𝜆′=±1

∞∑︁
𝑗 ′=1

𝑗 ′∑︁
𝑚′=− 𝑗 ′

|𝑘′ 𝑗 ′𝑚′𝜆′⟩

×
∫ 𝑘 ′𝑒 |𝜉 |

𝑘 ′𝑒−|𝜉 |
𝑑𝑘 𝑘

∞∑︁
𝑗=1

√
2 𝑗 ′ + 1

√
2 𝑗 + 1

2𝑘′𝑘 sinh( |𝜉 |) 𝑑
𝑗 ′

𝑚′𝜆′ (𝜃
′)𝑑 𝑗

𝑚𝜆
(𝜃 ) 𝑓 𝑗𝑚′𝜆′ (𝑘) (4.36)

=:

∫ ∞

0

𝑑𝑘′ 𝑘′
∑︁
𝜆′=±1

∞∑︁
𝑗 ′=1

𝑗 ′∑︁
𝑚′=− 𝑗 ′

|𝑘′ 𝑗 ′𝑚′𝜆′⟩ 𝑓 ′
𝑗 ′𝑚′𝜆′ (𝑘

′), (4.37)

with the coefficient of the transformed field 𝑓 ′
𝑗 ′𝑚′𝜆′ (𝑘

′). After renaming primed and

unprimed variables it can be written as

𝑓 ′
𝑗𝑚𝜆

(𝑘) =
∫ ∞

0

𝑑𝑘′ 𝑘′Θ
(
|𝜉 | − |ln(𝑘/𝑘′) |

)√2 𝑗 + 1

√
2 𝑗 ′ + 1

2𝑘𝑘′ sinh( |𝜉 |) 𝑑
𝑗

𝑚𝜆
(𝜃 )𝑑 𝑗

′

𝑚𝜆
(𝜃 ′) 𝑓𝜆′ (𝒌′) (4.38)

=

∫ 𝑘𝑒 |𝜉 |

𝑘𝑒−|𝜉 |
𝑑𝑘′ 𝑘′

√
2 𝑗 + 1

√
2 𝑗 ′ + 1

2𝑘𝑘′ sinh( |𝜉 |) 𝑑
𝑗

𝑚𝜆
(𝜃 )𝑑 𝑗

′

𝑚𝜆
(𝜃 ′) 𝑓𝜆′ (𝒌′). (4.39)

Here,

cos𝜃 =
𝑘 cosh(𝜉) − 𝑘′
𝑘 sinh(𝜉) (4.40)

cos𝜃 ′ =
𝑘 − 𝑘′ cosh(𝜉)
𝑘′ sinh(𝜉) . (4.41)

Substituting 𝑘′ from Eq. (4.40) gives alternative form

𝑓 ′
𝜆
(𝒌) = 1

2

√︁
2 𝑗 + 1

∞∑︁
𝑗 ′=1

√︁
2 𝑗 ′ + 1

∫
1

−1

𝑑 (cos𝜃 ) 𝑑 𝑗
𝑚𝜆

(𝜃 ) 𝑑 𝑗
′

𝑚𝜆
(𝜃 ′) 𝑓 𝑗 ′𝑚𝜆 (𝑘′), (4.42)

with 𝑘′ given by Eq. (4.40) and 𝜃 ′ by

cos(𝜃 ′) = cos(𝜃 ) − tanh(𝜉)
1 − cos(𝜃 ) tanh(𝜉) . (4.43)

24



4.1 Regular fields

Equation (4.42) can be illustrated graphically. Consider a multipolar pulse with a 50 fs

Gaussian time width defined by a wavefunction 𝑓 𝑗𝑚𝜆 (𝑘) with 𝑗 = 1,𝑚 = 1 and 𝜆 = 1:

𝑓111(𝑘) = 𝑒
− (𝑘−𝑘

0
)2

2Δ𝑘 , (4.44)

defined on the wavenumber domain 8.72 𝜇m
−1 ≤ 𝑘 ≤ 9.23 𝜇m

−1
. The center wavelength

is
2𝜋
𝑘0

= 700 nm and
1

𝑐Δ𝑘
= 50 fs. The coefficients 𝑓 ′𝑗11

(𝑘) of the Lorentz boosted field are

computed numerically via Eq. (4.42) and depicted in Fig. (4.1). The boosted coefficients

have non-zero components for all 𝑗 ∈ N, however, only the first 6 are plotted.

(a) (b)

Figure 4.1: Active Lorentz boost of a wave function in z-direction |𝑓 ′⟩ = 𝐿𝑧 (𝜉) |𝑓 ⟩ with
positive rapidity 𝜉 = 0.05 (a) and negative rapidity 𝜉 = −0.05 (b). The initial

wave function (dashed) describes a multipolar pulse with quantum numbers

𝑗 = 1, 𝑚 = 1, 𝜆 = 1 and Gaussian spectral profile. The boosted coefficients

𝑓 ′
𝑗𝑚𝜆

= ⟨ 𝑗𝑚𝜆 |𝑓 ′⟩ are shown for multipolar order up to 𝑗 = 6. Apart from the

change of the wave functions’ values under the Lorentz boost one may also

observe the spreading of the wave function in the wavenumber domain.

4.1.3 Complete list of transformations for |𝑘 𝑗𝑚𝜆⟩ and 𝑓 𝑗𝑚𝜆 (𝑘)

For future reference, the complete set of transformation laws for the angular momentum

basis states under the isometries of Minkowski space-time is included in this section. Apart

from the Lorentz boost, these transformation properties are well-known and can be found,
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for example, in [14].

𝑇𝑡 (𝜏) |𝑘 𝑗𝑚𝜆⟩ = |𝑘 𝑗𝑚𝜆⟩ 𝑒𝑖𝑘𝑐𝜏 (4.45)

𝑇𝑧 (𝑎) |𝑘 𝑗𝑚𝜆⟩ =
∞∑︁
𝑗 ′=1

√︂
2 𝑗 ′ + 1

2 𝑗 + 1

𝑗+ 𝑗 ′∑︁
𝑙=| 𝑗− 𝑗 ′ |

(2𝑙 + 1) (−𝑖)𝑙 𝑗𝑙 (𝑎𝑘)𝐶 𝑗𝑚

𝑗 ′𝑚,𝑙0𝐶
𝑗𝜆

𝑗 ′𝜆,𝑙0 |𝑘 𝑗
′𝑚𝜆⟩ , (4.46)

𝑅(𝛼, 𝛽,𝛾) |𝑘 𝑗𝑚𝜆⟩ =
𝑗∑︁

𝑚′=− 𝑗
𝐷
𝑗

𝑚′𝑚 (𝛼, 𝛽,𝛾) |𝑘 𝑗𝑚
′𝜆⟩ (4.47)

𝐿𝑧 (𝜉) |𝑘 𝑗𝑚𝜆⟩ =
1

2

√︁
2 𝑗 + 1

∞∑︁
𝑗 ′=1

√︁
2 𝑗 ′ + 1

∫
1

−1

𝑑 (cos𝜃 ) 𝑑 𝑗
𝑚𝜆

(𝜃 ) 𝑑 𝑗
′

𝑚𝜆
(𝜃 ′) |𝑘′ 𝑗 ′𝑚𝜆⟩ , (4.48)

where 𝜃 ′ and 𝑘′ are related to 𝜃 and 𝑘 via Eqs. (4.20-4.21). 𝑇𝑡 (𝜏) represents time translation

by 𝜏 , 𝑇𝑧 (𝑎) denotes translation in the positive 𝑧-direction by 𝑎, and the translation in the

general direction 𝒏̂(𝛼, 𝛽) can be described by 𝑇𝒏̂ (𝜉) = 𝑅(𝛼, 𝛽, 0)𝑇𝑧 (𝑎)𝑅−1(𝛼, 𝛽, 0) in the

similar way as general Lorentz boosts.

The actions of parity and time reversal are given by

𝐼𝑠 |𝑘 𝑗𝑚𝜆⟩ = |𝑘 𝑗𝑚 − 𝜆⟩ (−1) 𝑗 (4.49)

𝐼𝑡 |𝑘 𝑗𝑚𝜆⟩ = − |𝑘 𝑗 −𝑚𝜆⟩ (−1) 𝑗+𝑚 . (4.50)

The corresponding rules for transformations of coefficients are

𝑇𝑡 (𝜏) 𝑓 𝑗𝑚𝜆 (𝑘) = 𝑓 𝑗𝑚𝜆 (𝑘)𝑒𝑖𝑘𝑐𝜏 (4.51)

𝑇𝑧 (𝑎) 𝑓 𝑗𝑚𝜆 (𝑘) =
∞∑︁
𝑗 ′=1

√︂
2 𝑗 + 1

2 𝑗 ′ + 1

𝑗+ 𝑗 ′∑︁
𝑙=| 𝑗− 𝑗 ′ |

(2𝑙 + 1) (−𝑖)𝑙 𝑗𝑙 (𝑎𝑘)𝐶 𝑗 ′𝑚
𝑗𝑚,𝑙0

𝐶
𝑗 ′𝜆
𝑗𝜆,𝑙0

𝑓 𝑗 ′𝑚𝜆 (𝑘), (4.52)

𝑅(𝛼, 𝛽,𝛾) 𝑓 𝑗𝑚𝜆 (𝑘) =
𝑗∑︁

𝑚′=− 𝑗
𝐷
𝑗

𝑚𝑚′ (𝛼, 𝛽,𝛾) 𝑓 𝑗𝑚′𝜆 (𝑘), (4.53)

𝐿𝑧 (𝜉) 𝑓 𝑗𝑚𝜆 (𝑘) =
1

2

√︁
2 𝑗 + 1

∞∑︁
𝑗 ′=1

√︁
2 𝑗 ′ + 1

∫
1

−1

𝑑 (cos𝜃 ) 𝑑 𝑗
𝑚𝜆

(𝜃 ) 𝑑 𝑗
′

𝑚𝜆
(𝜃 ′) 𝑓 𝑗 ′𝑚𝜆 (𝑘′) (4.54)

with 𝜃 ′ and 𝑘′ given by

cos(𝜃 ′) = cos(𝜃 ) − tanh(𝜉)
1 − cos(𝜃 ) tanh(𝜉) , (4.55)

𝑘′ = 𝑘
(
cosh(𝜉) − cos(𝜃 ) sinh(𝜉)

)
. (4.56)

The actions of parity and time reversal are

𝐼𝑠 𝑓 𝑗𝑚𝜆 (𝑘) = 𝑓 𝑗𝑚−𝜆 (𝑘) (−1) 𝑗 (4.57)

𝐼𝑡 𝑓 𝑗𝑚𝜆 (𝑘) = −𝑓 ∗
𝑗−𝑚𝜆 (𝑘) (−1) 𝑗+𝑚 . (4.58)
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4.2 Irregular fields

The discussion has been conducted so far for regular fields, which are solutions toMaxwell’s

equations in the whole space without sources. It is however not sufficient to consider such

fields for the complete description of electromagnetic scattering. The necessary extension

contains irregular fields, which can describe electromagnetic fields that are absorbed or

emitted (called incoming and outgoing). Mathematically, such fields are not defined on the

whole space domain, but on a subset of it. The excluded part of the space hides singularities

of functions that describe irregular fields.

4.2.1 Angular momentum basis for irregular fields |𝑘 𝑗𝑚𝜆⟩in/out

The angular momentum basis is highly convenient for the description of the incoming and

outgoing fields. The extension of the regular formalism consists in considering fields similar

to Eq. (4.10), with one difference in the function responsible for the radial dependence of

the field. Namely, the basis for the new type of fields has spherical Hankel functions in

place of the spherical Bessel functions. Here, the definition with an additional factor of

1/2 is introduced:

|𝑘 𝑗𝑚𝜆⟩in/out ≡ 𝑺 in/out
𝑗𝑚𝜆

(𝑘, 𝒓, 𝑡)

=
1

2

√︄
𝑐ℏ

𝜖0

𝑘 𝑒−𝑖𝑘𝑐𝑡
√
𝜋
√

2 𝑗 + 1

𝑗+1∑︁
𝐿= 𝑗−1

√
2𝐿 + 1 𝑖𝐿ℎin/out

𝐿
(𝑘𝑟 )𝐶 𝑗𝜆

𝐿0,1𝜆
𝒀 𝐿𝑗𝑚 (𝒓). (4.59)

The functionsℎin/out
𝐿

= 𝑗𝐿∓𝑖𝑛𝐿 are spherical Hankel functions with𝑛𝐿 standing for spherical
Neumann functions. The factor of 1/2 in the definition of Eq. (4.59) leads to

𝑺 in
𝑗𝑚𝜆

+ 𝑺out
𝑗𝑚𝜆

= 𝑹 𝑗𝑚𝜆 . (4.60)

The convenience of defining the irregular basis field in this way will be explained in

Sec. 4.2.3.

The purpose of this chapter is to prove that the basis fields in Eq. (4.59) transform under

the action of the Poincaré group just as their regular counterparts do and to connect these

fields to the group-theoretical formalism under the name |𝑘 𝑗𝑚𝜆⟩in/out ≡ 𝑺 in/out
𝑗𝑚𝜆

(𝑘, 𝒓 , 𝑡). This
will provide an important part of the theoretical foundation for polychromatic scattering.

In the monochromatic setting, the incoming/outgoing electric and magnetic multipoles

are defined by substituting spherical Hankel functions of the second/first kind instead of

the spherical Bessel functions in the regular multipoles in Eqs. (4.13 -4.14):

𝑵 in/out

𝑗𝑚 (𝑘𝑟, 𝒓) = 𝑖ℎin/out𝑗−1
(𝑘𝑟 )

√︂
𝑗 + 1

2 𝑗 + 1

𝒀 𝑗−1

𝑗𝑚
(𝒓) − 𝑖ℎin/out𝑗+1

(𝑘𝑟 )
√︂

𝑗

2 𝑗 + 1

𝒀 𝑗+1

𝑗𝑚
(𝒓) (4.61)

𝑴 in/out

𝑗𝑚 (𝑘𝑟, 𝒓) = ℎin/out𝑗 (𝑘𝑟 )𝒀 𝑗
𝑗𝑚
(𝒓). (4.62)
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The |𝑘 𝑗𝑚𝜆⟩in/out can be connected to them as:

𝑺 in/out
𝑗𝑚𝜆

(𝑘, 𝒓, 𝑡) = −1

2

√︄
𝑐ℏ

𝜖0

1

√
2𝜋

𝑘 𝑖 𝑗
(
𝑒−𝑖𝑘𝑐𝑡 𝑵 in/out

𝑗𝑚 (𝑘𝑟, 𝒓) + 𝜆 𝑒−𝑖𝑘𝑐𝑡 𝑴 in/out

𝑗𝑚 (𝑘𝑟, 𝒓)
)
. (4.63)

The role of 𝑴 in/out
and 𝑵 in/out

in the context of monochromatic scattering and their

connection to the theory of representations of the 3D Euclidean is discussed in [15]. One

implication of this work is the fact that irregular basis states such as 𝑺 in/out
𝑗𝑚𝜆

transform as the

regular fields 𝑹 𝑗𝑚𝜆 under spatial translations. It follows from the definition Eq. (4.59) that

incoming and outgoing multipolar fields also transform as their regular analogs under time

translation. The next section is devoted to the proof that the irregular fields |𝑘 𝑗𝑚𝜆⟩in/out
transform under Lorentz boosts as the regular |𝑘 𝑗𝑚𝜆⟩, which will complete the picture

of their transformations under all isometries of the Minkowski space-time. This result is

necessary for properly connecting the T-matrix and S-matrix formalisms to the Poincaré

group.

4.2.2 Lorentz boost of irregular fields

In this section, it is proved that the irregular basis vectors 𝑺 in/out
𝑗𝑚𝜆

(𝑘, 𝒓, 𝑡) transform under

boosts in the same way as the regular basis vectors 𝑹 𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡). Since the same statement

holds for rotations, it is sufficient to prove the statement for Lorentz boosts in the z-

direction, and the general statement will follow from the decomposition of a Lorentz boost

into rotations and the Lorentz boost in the z-direction. Hence, the statement to prove is

𝑺 in/out
𝑗𝑚𝜆

(𝑘, 𝒓 , 𝑡) ↦→ 1

2

√︁
2 𝑗 + 1

∞∑︁
𝑗 ′=1

√︁
2 𝑗 ′ + 1

∫
1

−1

𝑑 (cos𝜃 ) 𝑑 𝑗
𝑚𝜆

(𝜃 ) 𝑑 𝑗
′

𝑚𝜆
(𝜃 ′) 𝑺 in/out

𝑗 ′𝑚𝜆 (𝑘′, 𝒓, 𝑡),

(4.64)

which comes from Eq. (4.23) but is written in terms of irregular fields.

First, recall the definition of Lorentz boost for electromagnetic fields, which is formulated

in the space-time domain and holds for electromagnetic fields of all types. Written in the

form of Eq. (3.40), it implies that

𝑺 in/out
𝑗𝑚𝜆

(𝑘, 𝒓, 𝑡) →
(

cosh(𝜉)1 + 𝑖𝜆 sinh(𝜉)𝒆𝑧 × − sinh
2(𝜉)𝒆𝑧

cosh(𝜉) + 1

𝒆𝑧 ·
)
𝑺 in/out
𝑗𝑚𝜆

(𝑘, 𝒓̃, 𝑡). (4.65)

Lorentz boosts in the z-direction form a one-parameter Lie group, hence it is enough to

prove the equality of derivatives with respect to the boost parameter 𝜉 at zero:

𝜕𝜉
1

2

√︁
2 𝑗 + 1

∞∑︁
𝑗 ′=1

√︁
2 𝑗 ′ + 1

∫
1

−1

𝑑 (cos𝜃 ) 𝑑 𝑗
𝑚𝜆

(𝜃 ) 𝑑 𝑗
′

𝑚𝜆
(𝜃 ′) 𝑺 in/out

𝑗 ′𝑚𝜆 (𝑘′, 𝒓 , 𝑡)
���
𝜉=0

= 𝜕𝜉

(
cosh(𝜉)1 + 𝑖𝜆 sinh(𝜉)𝒆𝑧 × − sinh

2(𝜉)𝒆𝑧
cosh(𝜉) + 1

𝒆𝑧 ·
)
𝑺 in/out
𝑗𝑚𝜆

(𝑘, 𝒓̃, 𝑡)
���
𝜉=0

. (4.66)

28



4.2 Irregular fields

The task is further simplified by the fact that regular fields already satisfy this condition.

The only difference consists in the functions governing radial dependence, with spherical

Hankel functions replacing spherical Bessel functions. Lengthy but straightforward

calculations allow one to re-write Eq. (4.66) — as well as its counterpart for regular fields

— by separating the radial and angular dependencies on both sides:

𝑟ℎin/out
0

(𝑟 )𝑨(𝒓 , 𝑡) + 𝑟ℎin/out
1

(𝑟 )𝑩(𝒓, 𝑡) +
𝑁∑︁
𝑙=0

ℎin/out
𝑙

(𝑟 )𝑪𝑙 (𝒓, 𝑡)

= 𝑟ℎin/out
0

(𝑟 )𝑨′(𝒓, 𝑡) + 𝑟ℎin/out
1

(𝑟 )𝑩′(𝒓, 𝑡) +
𝑁∑︁
𝑙=0

ℎin/out
𝑙

(𝑟 )𝑪′
𝑙
(𝒓, 𝑡), (4.67)

where 𝑨, 𝑩, 𝑪 , 𝑨′
, 𝑩′

, 𝑪′
are some coefficient functions, the exact form of which does

not play a role in this derivation. The decomposition with primed coefficient functions

corresponds to the right-hand side of Eq. (4.66) and the unprimed one to the left-hand

side. 𝑁 is some natural number, and for readability and without loss of generality the

wavenumber 𝑘 is set to 1.

Since the statement in question already holds for regular fields, the same coefficients

solve the equation for spherical Bessel functions:

𝑟 𝑗0(𝑟 )𝑨(𝒓, 𝑡) + 𝑟 𝑗1(𝑟 )𝑩(𝒓, 𝑡) +
𝑁∑︁
𝑙=0

𝑗𝑙 (𝑟 )𝑪𝑙 (𝒓, 𝑡)

= 𝑟 𝑗0(𝑟 )𝑨′(𝒓, 𝑡) + 𝑟 𝑗1(𝑟 )𝑩′(𝒓, 𝑡) +
𝑁∑︁
𝑙=0

𝑗𝑙 (𝑟 )𝑪′
𝑙
(𝒓, 𝑡). (4.68)

Writing

sin(𝑟 )𝑨(𝒓, 𝑡) +
(
sin(𝑟 )
𝑟

− cos(𝑟 )
)
𝑩(𝒓, 𝑡) +

𝑁∑︁
𝑙=0

𝑗𝑙 (𝑟 )𝑪𝑙 (𝒓, 𝑡)

= sin(𝑟 )𝑨′(𝒓, 𝑡) +
(
sin(𝑟 )
𝑟

− cos(𝑟 )
)
𝑩′(𝒓, 𝑡) +

𝑁∑︁
𝑙=0

𝑗𝑙 (𝑟 )𝑪′
𝑙
(𝒓, 𝑡) (4.69)

allows one to use the fact that the spherical Bessel functions and
sin(𝑟 )
𝑟

vanish in the limit

𝑟 → ∞. Therefore, the coefficients at sin- and cos-functions must coincide: 𝑨(𝒓, 𝑡) =

𝑨′(𝒓, 𝑡) and 𝑩(𝒓, 𝑡) = 𝑩′(𝒓 , 𝑡). Next, from

𝑁∑︁
𝑙=0

𝑗𝑙 (𝑟 )𝑪𝑙 (𝒓, 𝑡) =
𝑁∑︁
𝑙=0

𝑗𝑙 (𝑟 )𝑪′
𝑙
(𝒓, 𝑡) (4.70)

and from the orthogonality of spherical Bessel functions it follows that 𝑪𝑙 (𝒓, 𝑡) = 𝑪′
𝑙
(𝒓, 𝑡)

for all 𝑙 . This concludes the proof that the statement in Eq. (4.67) holds for the Hankel

functions as well. A similar implication also holds for any functions that satisfy the same

differential equation that defines spherical Bessel functions.
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4.2.3 Relation between incoming, outgoing, and regular multipolar fields

In this section the inclusion of the additional factor 1/2 in the definition of irregular basis

fields 𝑺 in/out is motivated, and the implications are discussed.

Consider a regular electromagnetic pulse with a Gaussian spectral profile of width Δ:

𝑬p(𝒓, 𝑡) = 𝐴
∫ ∞

0

𝑑𝑘 𝑘 𝑒
− (𝑘−𝑘

0
)2

2Δ2 𝑹 𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡), (4.71)

with some normalization constant 𝐴. This pulse is constructed as a spectral superposition

of regular basis vector fields 𝑹 𝑗𝑚𝜆 (𝑘, 𝒓 , 𝑡) with some fixed 𝑗 ,𝑚 and 𝜆. It can be decomposed

into incoming and outgoing parts using the connection between spherical Bessel and

Hankel functions 𝑗 = (ℎin + ℎout)/2 as

𝑬p(𝒓, 𝑡) = 𝑬 in

p
(𝒓 , 𝑡) + 𝑬out

p
(𝒓 , 𝑡) (4.72)

with

𝑬 in

p
(𝒓, 𝑡) = 𝐴

∫ ∞

0

𝑑𝑘 𝑘 𝑒
− (𝑘−𝑘

0
)2

2Δ2 𝑺 in
𝑗𝑚𝜆

(𝑘, 𝒓, 𝑡) (4.73)

𝑬out

p
(𝒓, 𝑡) = 𝐴

∫ ∞

0

𝑑𝑘 𝑘 𝑒
− (𝑘−𝑘

0
)2

2Δ2 𝑺out
𝑗𝑚𝜆

(𝑘, 𝒓, 𝑡) (4.74)

for |𝒓 | > 0.

The finite length of the regular pulse 𝑬𝑝 (𝒓, 𝑡) allows one to define two distinct time

periods: the one before the pulse initially reaches the origin at 𝒓 = 0 and the one after the

pulse has completely traversed the origin. During the first period, the pulse is entirely

composed of the incoming part:

𝑬p(𝒓, 𝑡) = 𝑬 in

p
(𝒓, 𝑡) (4.75)

while 𝑬out

p
(𝒓, 𝑡) = 0. On the other hand, during the second period, the pulse solely consists

of the outgoing part:

𝑬p(𝒓, 𝑡) = 𝑬out

p
(𝒓, 𝑡) (4.76)

while 𝑬 in

p
(𝒓 , 𝑡) = 0.

An illustrative example is presented in Fig. (4.2), where numerically computed values

of specific Gaussian pulses are defined by Eqs. (4.71),(4.73) and (4.74) are shown. These

pulses have a center wavelength of
2𝜋
𝑘0

= 400 nm, Gaussian width Δ−1 = 300 nm, total

angular momentum 𝑗 = 1, angular momentum around the 𝑧-axis𝑚 = 1, and helicity 𝜆 = 1.

The integrals are confined to the region 5𝜇m
−1 ≤ 𝑘 ≤ 26 𝜇m

−1
, covering the Gaussian

profile of the wave function while excluding a negligible portion. Integration is computed

using a Riemann sum with 𝑁𝑘 = 150 equidistant points. The displayed space region has a

radius of 6.4 𝜇m. Points near the origin are omitted in the plots of irregular fields due to

the divergence of the Hankel functions. In the scattering scenarios, the singularities will
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be inside the excluded region that contains the scatterer, and the evanescent fields will be

present in the near-field for the times when the object still interacts with light.

The time stamps are chosen to be within the two defined periods, where irregular pulses

are either identical to the regular pulse or equal to zero. In these periods, the substitution

of irregular basis fields with regular counterparts does not change the value of the total

field of the pulse. This can be useful in practical applications because the spherical Bessel

functions in regular fields exhibit better numerical behavior than the spherical Hankel

functions [38, App. B]. The distinct separation illustrated in Fig. 4.2 does not happen for

monochromatic fields. In such beams of infinite duration, the regular field at each point in

time and space contains contributions from both incoming and outgoing components.

In general, the relation between regular and irregular fields that is depicted in Fig. 4.2

exists in regions of space-time when the field is known to contain only an incoming or

only an outgoing part.

Now consider a general situation: given a wave function 𝑓 𝑗𝑚𝜆 (𝑘) with a finite norm

⟨𝑓 |𝑓 ⟩, then its combination with regular basis fields 𝑹 represents a freely propagating

physical field. When these coefficients are used in combination with outgoing basis fields

𝑺out, they characterize an emitted electromagnetic field that has zero values before the

start of its emission and corresponds precisely with the regular field after the process

responsible for emission ends. Analogously, when 𝑓 𝑗𝑚𝜆 (𝑘) is combined with incoming

basis fields 𝑺 in, the resulting electromagnetic field will be the field to be absorbed in a

certain time span. This field will coincide with the field generated by the same coefficients

that are combined with a regular multipolar basis. After the absorption ends, the field

is zero everywhere. This connection between regular and irregular fields allows one to

use the scalar product Eqs. (3.31), (4.8) for emitted and absorbed fields, while initially it

was defined only for regular fields. In particular, this allows computations of emitted or

absorbed quantities such as energy, momentum, angular momentum, etc.

While using bra and ket notation, one should differentiate between incoming and

outgoing field types sharing the same coefficients 𝑓 𝑗𝑚𝜆 (𝑘) by using superscripts |𝑓 ⟩in or
|𝑓 ⟩out, as opposed to the regular type |𝑓 ⟩. Scalar product values are computed via the same

formulas Eqs. (3.31), (4.8), i.e. ⟨𝑓 |𝑔⟩ = ⟨𝑓 |𝑔⟩in in = ⟨𝑓 |𝑔⟩out out

for any coefficient functions

𝑓 and 𝑔. It should be emphasized that this unified formalism is universally applicable for

regular, incoming, and outgoing fields due to the additional factor of 1/2 in the proposed

definition of 𝑺 in/out. This motivates the deviation from the conventional ways of defining

irregular basis fields like in [39].

4.2.4 Practical way of computing scalar product between irregular fields in
finite space domain

The scalar product is defined in terms of the decomposition coefficients of electromagnetic

fields, which can be obtained through experiments or numerical simulations. The step of

decomposing the fields into wave functions can be bypassed by employing the formula

proven in [40]:

⟨𝑓 |𝑔⟩ = −𝑖𝜖0

ℏ𝑐

∑︁
𝜆=±1

∫
𝑑𝑘

𝑘

∫
𝜕𝑉

𝑑𝒔 (𝒓) ·
[
𝑭𝜆 (𝑘, 𝒓)∗ × 𝑮𝜆 (𝑘, 𝒓)

]
, (4.77)
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4 Electromagnetic fields: wave function and Hilbert space formalism in the angular
momentum basis

where it is important to note that both fields are irregular. Here, 𝑭𝜆 and 𝑮𝜆 represent the
Riemann-Silberstein components of the fields, as defined in Eq. (3.12). The integration

domain is the surface of a volume enclosing the sources or absorbers. The shape of this

integration surface can be arbitrarily chosen, even in proximity to the radiating object,

which may be particularly advantageous in simulations using software like COMSOL.

4.2.5 On the convergence regions of irregular fields

In the preceding sections, the irregular fields were generated as linear combinations of

coefficient functions and irregular basis fields. Such linear combinations do not converge

in the whole space. Particularly for irregular multipolar fields, the convergence region of

physical fields excludes a sphere near the origin, whose radius is defined by the concrete

physical situation. For example, if electromagnetic scattering is considered, then the

expansion of the scattered field into the outgoing basis fields is valid outside of the sphere

that encloses the scatterer [39]. Another example is the translated multipolar field of

irregular type. There, the transformed field can be expanded in the irregular basis fields

in the reduced region, which consists of points outside of the sphere with a radius larger

by the length of the translation. One should use different expansions to describe fields

inside the excluded regions. In the case of the translation of irregular fields, there is

another branch of the expansion that features regular fields [41, Eq.(47ab)]. In the case

of scattering, the values of the fields at points between the object and its circumscribing

sphere can be evaluated with more complicated expansions [4, 5, 6, 7, 8, 9, 10]. Similarly,

the Lorentz-boosted irregular electromagnetic field in Eq. (4.64) will not converge for all

the (𝒓, 𝑡) outside of the far-field branch.

Despite the occasional need for expansions with additional branches, it is crucial to note

that far fields provide sufficient information to determine the field everywhere outside

material objects [42, Theorems 6.9 and 6.10]. Since the wave function and the far field are

bijectively connected, the knowledge of the former contains the complete information as

well. It should also be noted that for a large class of physical problems, consideration of

the problematic branches is not required (such as for computation of transfer of quantities

between field and matter), and the far-field branch can be directly used for the solution of

the problem.
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4.2 Irregular fields

Figure 4.2: Comparison of Gaussian pulses, each with a center wavelength
2𝜋
𝑘0

= 400 nm

and a Gaussian width of Δ−1 = 360 nm, constructed as spectral superpositions

with the same coefficients of basis fields of different types: regular 𝑹 𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡)
(top), incoming 𝑺 in

𝑗𝑚𝜆
(𝑘, 𝒓, 𝑡) (middle) and outgoing 𝑺out

𝑗𝑚𝜆
(𝑘, 𝒓, 𝑡) (bottom), for

quantum numbers 𝑗 = 1, 𝑚 = 1, and helicity 𝜆 = 1. The figures show the

absolute values of the electric field in the 𝑧𝑥-plane (𝑧-axis points horizontally

to the right, 𝑥-axis — vertically to the top) at different points in time. The

incoming pulse is computed to be identically zero after the end of its absorption

in the origin, and its values are equal to the corresponding regular field for times

before the start of its absorption. Conversely, the outgoing pulse is computed

to be zero before the start of its emission from the origin and is equal to the

corresponding regular field for times following the end of its emission.
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5 Polychromatic T-matrix and S-matrix

All the essential components are now established to define the polychromatic T-matrix.

Subsequently, the polychromatic S-matrix will be introduced. Both operators contain

identical information and are bijectively linked, yet they connect distinct parts of the

overall electromagnetic field. The T-matrix connects the regular illumination field, referred

to as the incident field, to the irregular outgoing field, referred to as the scattered field.

Conversely, the S-matrix connects irregular incoming fields to irregular outgoing fields.

5.1 Polychromatic T-matrix

The usual definition of the monochromatic T-matrix [39, Sec. 5.1] is based on the fact

that the total electromagnetic field outside of the sphere that encloses the scatterer can be

written as a sum of the regular and outgoing multipoles. For time-harmonic fields, this is

formulated as

𝑬 (𝑘, 𝒓, 𝑡) = 𝑒−𝑖𝑘𝑐𝑡
∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑎 𝑗𝑚 𝑵 𝑗𝑚 (𝑘𝑟, 𝒓) + 𝑏 𝑗𝑚 𝑴 𝑗𝑚 (𝑘𝑟, 𝒓)

+ 𝑒−𝑖𝑘𝑐𝑡
∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑝 𝑗𝑚 𝑵 out

𝑗𝑚 (𝑘𝑟, 𝒓) + 𝑞 𝑗𝑚 𝑴out

𝑗𝑚 (𝑘𝑟, 𝒓), (5.1)

where the convergence region for the second part of the equation consists of points outside

of the smallest sphere enclosing the object. The first, regular part of Eq. (5.1) is called the

incident field and the second, irregular outgoing part is called the scattered field.

In the case of a monochromatic field, the usual monochromatic T-matrix is defined

as the matrix that linearly connects the coefficients of the incident and the scattered

electromagnetic fields: (
®𝑝
®𝑞

)
= 𝑇u

(®𝑎
®𝑏

)
. (5.2)

Coefficients with arrows stand for ordered sequences {𝑎 𝑗𝑚}, while bold letters signify

vectors in 3D space. The most general linear scattering scenario, however, involves the

interaction of a polychromatic field with an object. In this situation, the total field is the
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5 Polychromatic T-matrix and S-matrix

spectral superposition of monochromatic fields:

𝑬 (𝑘, 𝒓, 𝑡) =
∫ ∞

0

𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡
∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑎 𝑗𝑚 (𝑘) 𝑵 𝑗𝑚 (𝑘𝑟, 𝒓) + 𝑏 𝑗𝑚 (𝑘)𝑴 𝑗𝑚 (𝑘𝑟, 𝒓)

+
∫ ∞

0

𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡
∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑝 𝑗𝑚 (𝑘) 𝑵 out

𝑗𝑚 (𝑘𝑟, 𝒓) + 𝑞 𝑗𝑚 (𝑘)𝑴out

𝑗𝑚 (𝑘𝑟, 𝒓). (5.3)

The fundamental distinction from the monochromatic perspective lies in the ability of a

general linear operator that connects the incident and the scattered fields to describe the

coupling of different frequencies. An example of such coupling is scattering by moving

scatterers: a monochromatic beam striking an object in motion will generate a scattered

field with components of different frequencies. This can be seen, for example, by switching

to the frame of reference of the moving object, computing the scattered field, and then

boosting back to the laboratory frame using Eq. (6.37).

Continuing along the path suggested by representation theory, one can connect electric

field to the wave function formulation in terms of the basis fields 𝑹 𝑗𝑚𝜆 (𝑘) and 𝑺out
𝑗𝑚𝜆

(𝑘):

𝑬 (𝒓, 𝑡) =
∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑓 𝑗𝑚𝜆 (𝑘) 𝑹 𝑗𝑚𝜆 (𝑘, 𝒓 , 𝑡)

+
∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑔 𝑗𝑚𝜆 (𝑘) 𝑺out𝑗𝑚𝜆
(𝑘, 𝒓 , 𝑡), (5.4)

or, equivalently

|𝑓 ⟩ + |𝑔⟩out =
∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑓 𝑗𝑚𝜆 (𝑘) |𝑘 𝑗𝑚𝜆⟩

+
∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑔 𝑗𝑚𝜆 (𝑘) |𝑘 𝑗𝑚𝜆⟩out .

(5.5)

(5.6)

The coefficients 𝑓 and 𝑔 are connected to 𝑎 and 𝑏 via relations

𝑓 𝑗𝑚𝜆 (𝑘) = −
√︂
𝜋𝜖0

2𝑐ℏ

(−𝑖) 𝑗
𝑘2

(
𝑎 𝑗𝑚 (𝑘) + 𝜆𝑏 𝑗𝑚 (𝑘)

)
𝑔 𝑗𝑚𝜆 (𝑘) = −

√︂
2𝜋𝜖0

𝑐ℏ

(−𝑖) 𝑗
𝑘2

(
𝑝 𝑗𝑚 (𝑘) + 𝜆𝑞 𝑗𝑚 (𝑘)

)
,

(5.7)

(5.8)

which follow from Eqs. (5.4), (4.16) and (4.63). The asymmetry in relations is due to the

difference in the definition of outgoing basis fields (see Sec. (4.2.1))

The crucial benefit of using 𝑓 and 𝑔 is the compatibility with the scalar product Eq. (4.8).

In linear light-matter interactions, the coefficients of the scattered field 𝑔 𝑗𝑚𝜆 (𝑘) are related
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5.2 Monochromatic T-matrix as a special case of the polychromatic T-matrix

to the coefficients of the incident field 𝑓 𝑗𝑚𝜆 (𝑘). The polychromatic T-matrix is defined as

the linear operator mapping the regular incident field to the outgoing scattered field via

|𝑔⟩out = 𝑇 |𝑓 ⟩ , (5.9)

which implies for the coefficients [21]:

𝑔 𝑗𝑚𝜆 (𝑘) =
∫ ∞

0

𝑑𝑘′ 𝑘′
∑︁
𝜆′=±1

∞∑︁
𝑗 ′=1

𝑗 ′∑︁
𝑚′=− 𝑗 ′

𝑇
𝑗𝑚𝜆

𝑗 ′𝑚′𝜆′ (𝑘, 𝑘
′) 𝑓 𝑗 ′𝑚′𝜆′ (𝑘′), (5.10)

where

𝑇
𝑗𝑚𝜆

𝑗 ′𝑚′𝜆′ (𝑘, 𝑘
′) = ⟨𝑘 𝑗𝑚𝜆 |𝑇 |𝑘′ 𝑗 ′𝑚′𝜆′⟩out . (5.11)

The emergence of the factor 𝑘 in the measure

∫ ∞
0
𝑑𝑘 𝑘 is dictated by the scalar product in

Eq. (4.8). Also, although the integration in 𝑘 is defined on the unbounded domain, this

does not pose any computational limitations: physical scatterers typically only interact

within specific bounded frequency ranges. Therefore, truncation of the integration domain

is possible when computing the scattered field.

5.2 Monochromatic T-matrix as a special case of the
polychromatic T-matrix

A significant portion of scattering processes falls into the category of frequency-preserving

scattering when the frequency of the electromagnetic waves does not change throughout

the light-matter interaction. Such processes can be described by polychromatic T-matrices

that are diagonal in frequency. Here, it is demonstrated how T-matrices that do not mix

frequencies are described as a special case of the polychromatic T-matrix. An additional

focus is made on constructing the polychromatic T-matrix that is diagonal in frequency

from conventional monochromatic T-matrices defined in [39].

Consider the scattering of an incident field

𝑬inc(𝒓, 𝑡) =
∫ ∞

0

𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡
∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑵 𝑗𝑚 (𝑘𝑟, 𝒓) 𝑎 𝑗𝑚 (𝑘) +𝑴 𝑗𝑚 (𝑘𝑟, 𝒓) 𝑏 𝑗𝑚 (𝑘) (5.12)

to a scattered field

𝑬sc(𝒓, 𝑡) =
∫ ∞

0

𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡
∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑵 out

𝑗𝑚 (𝑘𝑟, 𝒓) 𝑝 𝑗𝑚 (𝑘) +𝑴out

𝑗𝑚 (𝑘𝑟, 𝒓) 𝑞 𝑗𝑚 (𝑘), (5.13)

where the incident coefficients at each frequency 𝜔 = 𝑘𝑐 are connected to the scattered

coefficients of the same frequency via the usual monochromatic T-matrices(
®𝑝 (𝑘)
®𝑞(𝑘)

)
= 𝑇𝑢 (𝑘)

(®𝑎(𝑘)
®𝑏 (𝑘)

)
=

(
𝑇𝑁𝑁𝑢 (𝑘) 𝑇𝑁𝑀𝑢 (𝑘)
𝑇𝑀𝑁𝑢 (𝑘) 𝑇𝑀𝑀𝑢 (𝑘)

) (®𝑎(𝑘)
®𝑏 (𝑘)

)
. (5.14)
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5 Polychromatic T-matrix and S-matrix

In accordance with Eq. (5.10), the same scattering is realized by the following polychromatic

T-matrix (written in helicity basis):

𝑇
𝑗𝑚𝜆

𝑗 ′𝑚′𝜆′ (𝑘, 𝑘
′) =

1

𝑘′
𝛿 (𝑘 − 𝑘)

(
𝑇𝑁𝑁𝑢 (𝑘′) 𝑗𝑚

𝑗 ′𝑚′ + 𝜆𝑇𝑀𝑁𝑢 (𝑘′) 𝑗𝑚
𝑗 ′𝑚′ + 𝜆′𝑇𝑁𝑀𝑢 (𝑘′) 𝑗𝑚

𝑗 ′𝑚′ + 𝜆𝜆′𝑇𝑀𝑀𝑢 (𝑘′) 𝑗𝑚
𝑗 ′𝑚′

)
, (5.15)

where theDirac delta𝛿 is responsible for the diagonal behavior of the operator. Equation (5.15)

follows from Eqs. (5.12-5.13), Eq. (5.8), and accounts for the extra factor of 2 that comes

from the modified definition of the outgoing basis fields.

5.3 Polychromatic S-matrix

The S-matrix method provides a description of scattering which is equivalent to the T-

matrix formalism. It is based on the decomposition of the total electromagnetic field around

the scatterer into the incoming and outgoing parts [39, Eq. (5.47)]. Here, similarly to the

previous section, the generalization of the usual monochromatic approach is presented.

Expressing the total field as the spectral superposition of monochromatic fields

𝑬 (𝒓, 𝑡) =
∫ ∞

0

𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡
∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑎 𝑗𝑚 (𝑘) 𝑵 in

𝑗𝑚 (𝑘𝑟, 𝒓) + 𝑏 𝑗𝑚 (𝑘)𝑴 in

𝑗𝑚 (𝑘𝑟, 𝒓)

+
∫ ∞

0

𝑑𝑘 𝑒−𝑖𝑘𝑐𝑡
∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑝 𝑗𝑚 (𝑘) 𝑵 out

𝑗𝑚 (𝑘𝑟, 𝒓) + 𝑞 𝑗𝑚 (𝑘)𝑴out

𝑗𝑚 (𝑘𝑟, 𝒓), (5.16)

one can proceed by writing the total field Eq. (5.16) in terms of 𝑺 in/out
𝑗𝑚𝜆

:

𝑬 (𝒓, 𝑡) =
∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑓 𝑗𝑚𝜆 (𝑘) 𝑺 in𝑗𝑚𝜆 (𝑘, 𝒓, 𝑡)

+
∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

ℎ 𝑗𝑚𝜆 (𝑘) 𝑺out𝑗𝑚𝜆
(𝑘, 𝒓, 𝑡), (5.17)

or equivalently

|𝑓 ⟩in + |ℎ⟩out =
∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

𝑓 𝑗𝑚𝜆 (𝑘) |𝑘 𝑗𝑚𝜆⟩in

+
∫ ∞

0

𝑑𝑘 𝑘
∑︁
𝜆=±1

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

ℎ 𝑗𝑚𝜆 (𝑘) |𝑘 𝑗𝑚𝜆⟩out .

(5.18)

(5.19)
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5.3 Polychromatic S-matrix

The relation between coefficients follows from Eq. (5.16) and Eq. (4.63)

𝑓 𝑗𝑚𝜆 (𝑘) = −
√︂

2𝜋𝜖0

𝑐ℏ

(−𝑖) 𝑗
𝑘2

(
𝑎 𝑗𝑚 (𝑘) + 𝜆𝑏 𝑗𝑚 (𝑘)

)
ℎ 𝑗𝑚𝜆 (𝑘) = −

√︂
2𝜋𝜖0

𝑐ℏ

(−𝑖) 𝑗
𝑘2

(
𝑝 𝑗𝑚 (𝑘) + 𝜆𝑞 𝑗𝑚 (𝑘)

)
.

(5.20)

(5.21)

(5.22)

The coefficients 𝑓 and ℎ are the wavefunctions compatible with the scalar product in

Eq. (4.8).

In linear light-matter interactions, the outgoing field is linearly related to the incoming

field. The polychromatic S-matrix is defined as a linear operator mapping the coefficients

of the incoming field to the coefficients of the outgoing field via

|ℎ⟩out = 𝑆 |𝑓 ⟩in , (5.23)

which implies

ℎ 𝑗𝑚𝜆 (𝑘) =
∫ ∞

0

𝑑𝑘′ 𝑘′
∑︁
𝜆′=±1

∞∑︁
𝑗 ′=1

𝑗 ′∑︁
𝑚′=− 𝑗 ′

𝑆
𝑗𝑚𝜆

𝑗 ′𝑚′𝜆′ (𝑘, 𝑘
′) 𝑓 𝑗 ′𝑚′𝜆′ (𝑘′) (5.24)

with

𝑆
𝑗𝑚𝜆

𝑗 ′𝑚′𝜆′ (𝑘, 𝑘
′) = ⟨𝑘 𝑗𝑚𝜆 |𝑆 |𝑘′ 𝑗 ′𝑚′𝜆′⟩out in. (5.25)

The relation between the polychromatic T-matrix and S-matrix formalisms follows from

decompositions of the total field Eq. (5.4) and Eq. (5.17). The T-matrix decomposition of

the total field into the incident and the scattered parts can be divided into the incoming

and outgoing parts as

|𝑓 ⟩ + |𝑔⟩out = |𝑓 ⟩in + |𝑓 ⟩out + |𝑔⟩out . (5.26)

This allows one to use the definition of the S-matrix:

𝑆 |𝑓 ⟩in = |𝑓 ⟩out + |𝑔⟩out =: |ℎ⟩out , (5.27)

while the T-matrix maps the fields as

𝑇 |𝑓 ⟩ = |𝑔⟩out . (5.28)

In the new convention, the wave functions of the incident and of the incoming fields

are equal, namely 𝑓 𝑗𝑚𝜆 (𝑘), and the wave function of the outgoing field is related to the

wave functions of the incident and of the scattered fields via

ℎ 𝑗𝑚𝜆 (𝑘) = 𝑓 𝑗𝑚𝜆 (𝑘) + 𝑔 𝑗𝑚𝜆 (𝑘). (5.29)
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5 Polychromatic T-matrix and S-matrix

Eqs. (5.27-5.28) determine the relation between the T-matrix and the S-matrix to be

𝑆 |𝑓 ⟩in = |𝑓 ⟩out +𝑇 |𝑓 ⟩ (5.30)

for arbitrary coefficients 𝑓 𝑗𝑚𝜆 (𝑘). Numerically, when the elements of the T-matrix are

known, the elements of the S-matrix may be computed straightforwardly using the simple

relation

𝑆 = 1 +𝑇, (5.31)

as the distinction between incident, incoming, and outgoing fields becomes relevant only

when combining coefficients with corresponding basis elements to build the physical field

𝑬 (𝒓, 𝑡).
Eq. (5.31) also allows to straightforwardly obtain results identical to Sec. 5.2 for the

S-matrix which is diagonal in frequency.

Note that Eq. (5.31) deviates from a more common formula

𝑆u = 1 + 2𝑇u, (5.32)

where the subscript ’u’ denotes the usual way of defining basis states. The distinction

arises from the new definition of outgoing basis fields 𝑺out
𝑗𝑚𝜆

with additional division by 2

compared to the regular basis fields 𝑹 𝑗𝑚𝜆 .

40



6 Transfer of fundamental quantities
between light and matter

6.1 Transfer of momentum and energy between a light pulse
and an object

The first application example of the proposed theory concerns the interaction of electromagnetic

pulses and matter at rest. In particular, the amount of energy and linear momentum

transferred between a light pulse and a silicon sphere. The latter is represented with a

frequency-diagonal polychromatic T-matrix defined by Eq. (5.15).

The quantities will be computed with the help of a scalar product defined by Eq. (3.31)

and Eq. (4.8). The amount of fundamental physical quantities carried by the field |𝑓 ⟩ can
be written as

⟨Γ⟩ = ⟨𝑓 |Γ |𝑓 ⟩ . (6.1)

Here Γ is the Hermitian operator that corresponds to the physical quantity: generator of

time translations 𝑐𝑃0 = 𝐻 for energy, generators for spatial translations 𝑃𝛼 (𝛼 = 𝑥,𝑦, 𝑧) for

linear momentum, and generators of rotations 𝐽𝛼 (𝛼 = 𝑥,𝑦, 𝑧) for angular momentum. The

core idea lies in computing the difference between the quantities contained in incoming

and outgoing fields. This difference is equal to the amount of the quantity received or

extracted from the object, due to the corresponding conservation law. Using the S-matrix

formalism, this difference can be written as follows.

For the incoming field |𝑓 ⟩in and the outgoing field |ℎ⟩out = 𝑆 |𝑓 ⟩in, the transferred

amount ⟨ΔΓ⟩ is [19, Eq. (3)]:
⟨ΔΓ⟩ = ⟨𝑓 |Γ |𝑓 ⟩in in − ⟨ℎ |Γ |ℎ⟩out out

(6.2)

= ⟨𝑓 |Γ − 𝑆†Γ𝑆 |𝑓 ⟩in in

. (6.3)

Alternatively, in terms of the T-matrix, from Eq. (5.30):

⟨ΔΓ⟩ = − ⟨𝑓 |Γ𝑇 |𝑓 ⟩out −⟨𝑓 |𝑇 †Γ |𝑓 ⟩out −⟨𝑓 |𝑇 †Γ𝑇 |𝑓 ⟩. (6.4)

The superscripts describe the correct types of the fields, however, as explained in Sec. (4.2.3),

the values of the scalar products are independent of field types.

To illustrate the transfer of quantities one illuminates the sphere with a left-handed

(𝜆 = +1) circularly polarized pulse that has a Gaussian spectral profile. It is described by

the wave function at positive cos𝜃 as

𝑓+(𝒌) = 𝐴𝑒𝑖𝜙 cos𝜃 (1 + cos𝜃 ) 𝑒−(𝑘−𝑘0)2Δ2

𝑡 𝑐
2/2 𝑒−𝑘

2 (1−cos
2 𝜃 )Δ2

𝜌/2, (6.5)

𝑓−(𝒌) = 0, (6.6)
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6 Transfer of fundamental quantities between light and matter

while set 𝑓𝜆 (𝒌) = 0 for cos𝜃 < 0. The angles 𝜃 , 𝜙 are the polar and azimuthal angles of

𝒌 . The time width of the pulse is chosen to be Δ𝑡 = 15 fs, spacial parameter Δ𝜌 = 1 µm,

and the central wavelength is
2𝜋
𝑘0

= 400 nm. The constructed pulse is focused along the

z-direction, such that the values of the coefficients that correspond to polar angles with

cos𝜃 < 0.975 are vanishingly small. This will be used for more efficient discretization of

the integrals in the plane wave basis.

The normalization constant 𝐴 = 1.77 × 10
11

nm is set to fix the energy of the pulse to

5 mJ via Eq. (6.1):

⟨𝑓 |𝐻 |𝑓 ⟩ =
∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
|𝑓𝜆 (𝒌) |2𝑐ℏ𝑘 = 5.00 × 10

−3
J, (6.7)

Here and in the following, the integration over 𝑘 is truncated outside of the region

14.9 𝜇m
−1 ≤ 𝑘 ≤ 16.6 𝜇m

−1
. At points excluded from this region, the values of the

pulse are negligible (see green part of Fig. (6.2a)). The integration over wavenumber 𝑘 is

conducted via a Riemann sum with 𝑁𝑘 = 150 points placed equidistantly. The integration

over angles of the wave function is truncated to the region

∫
2𝜋

0
𝑑𝜙

∫
1

0.975
𝑑 (cos𝜃 ) with

discretization parameters 𝑁𝜙 = 200 and 𝑁cos𝜃 = 300. The maximal multipolar order of

the sum over 𝑗 is set to 𝑗max = 2, above which the T-matrix elements are negligible in the

relevant wave number band, see Fig. (6.1).

Figure 6.1: Interaction cross-section of a silicon sphere with a radius 100 nm at different

wave numbers. The interaction cross-section is computed as the Frobenius

norm of the monochromatic T-matrix at different truncation orders 𝑗max. The

multipole orders higher than 𝑗max = 2 do not contribute to the precision

significantly.
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6.1 Transfer of momentum and energy between a light pulse and an object

Similarly, the momentum in 𝑧-direction that is carried by the field is

⟨𝑓 |𝑃𝑧 |𝑓 ⟩ =
∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
|𝑓𝜆 (𝒌) |2ℏ𝑘 cos𝜃 = 1.66 × 10

−11
kg m s

−1. (6.8)

Now consider a silicon sphere of radius 100 nm that is put in the origin of the reference

frame. The optical parameters of silicon [43] are depicted in Fig. (6.2a), together with the

photon density per frequency 𝜔 = 𝑘𝑐 of the illumination pulse:

𝑁 (𝜔) :=
𝜔

𝑐2

∑︁
𝜆=±1

∫
2𝜋

0

𝑑𝜙

∫
1

−1

𝑑 (cos𝜃 ) |𝑓𝜆 (𝒌) |2. (6.9)

To compute the transfer of the energy and of the momentum in the |𝑘 𝑗𝑚𝜆⟩-basis, one
requires the generators of the transformation laws Eqs. (4.45-4.46), which read

𝐻 𝑓 𝑗𝑚𝜆 (𝑘) = ℏ𝑐𝑘 𝑓 𝑗𝑚𝜆 (𝑘) (6.10)

𝑃𝑧 𝑓 𝑗𝑚𝜆 (𝑘) =

ℏ𝑘
√︁

2 𝑗 + 1(−1)𝑚−𝜆
𝑗+1∑︁

𝑗 ′= 𝑗−1

√︁
2 𝑗 ′ + 1

(
𝑗 𝑗 ′ 1

−𝑚 𝑚 0

) (
𝑗 𝑗 ′ 1

−𝜆 𝜆 0

)
𝑓 𝑗 ′𝑚𝜆 (𝑘) . (6.11)

Here

(
𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

)
are the Wigner 3-j symbols. The monochromatic T-matrices of the

sphere are generated for different wavenumbers for 𝑗max = 8 with the treams python

package [44, 45], which is publicly available at https://github.com/tfp-photonics/

treams, and use Eq. (6.4). The transfer of energy and momentum to the object is computed

to be:

⟨Δ𝐻 ⟩ = 4.98 × 10
−5

J (6.12)

⟨Δ𝑃𝑧⟩ = 3.39 × 10
−13

kg m s
−1. (6.13)

A more detailed view on the transfer is provided in Fig (6.2b). The density with respect

to the frequency is plotted for both energy ⟨Δ𝐻 ⟩ (𝜔) and momentum ⟨Δ𝑃𝑧⟩ (𝜔) transfer.
The total transfer transfer is written in terms of these densities as

⟨Δ𝐻 ⟩ =
∫ ∞

0

𝑑𝜔 ⟨Δ𝐻 ⟩ (𝜔) (6.14)

⟨Δ𝑃𝑧⟩ =
∫ ∞

0

𝑑𝜔 ⟨Δ𝑃𝑧⟩ (𝜔). (6.15)

The presented method allows one to efficiently achieve accurate results by benefiting

from the group-theoretical principles. In particular, from the scalar product for the

wave functions Eq. (4.8), which is very easy to implement numerically using any linear

algebra package. This approach differs from the alternatives that make use of Maxwell’s

stress tensor [46, 47]. The approach used in [47] extends the Lorenz–Mie theory to the

polychromatic setting and is only applicable to spherical objects.
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6 Transfer of fundamental quantities between light and matter

(a) (b)

Figure 6.2: (a) Photon density with respect to the frequency of the incident field (green),

together with refractive index 𝑛(𝜔) and extinction coefficient 𝜅 (𝜔) of silicon
as a function of frequency (blue). (b) Transfer of energy between the pulse and

the object per frequency (blue), together with the transfer of linear momentum

in 𝑧-direction from the pulse to the object per frequency (green). The total

transferred quantities are the integrals of the corresponding functions.

The presented resultsmay be straightforwardly validated by directly using the definitions

of quantities that are contained in a localized field at a fixed time. For example, the energy

𝐸em:

𝐸em =
𝜖0

2

∫
𝑑3𝒓 |E(𝒓, 𝑡) |2 + |𝑐B(𝒓 , 𝑡) |2, (6.16)

which can be alternatively written in terms of helicity components of the field using

Eq. (3.14) and Eq. (3.4):

𝐸em = 𝜖0

∫
𝑑3𝒓 |𝑭+(𝒓 , 𝑡) + 𝑭 ∗

−(𝒓, 𝑡) |2. (6.17)

Given the wave functions of the incident 𝑓 𝑗𝑚𝜆 (𝑘) and the scattered field 𝑔 𝑗𝑚𝜆 (𝑘), the
equivalent incoming and outgoing coefficients read (see Sec. 5.3):

𝑓 in
𝑗𝑚𝜆

(𝑘) = 𝑓 𝑗𝑚𝜆 (𝑘) (6.18)

𝑓 out
𝑗𝑚𝜆

(𝑘) = 𝑓 𝑗𝑚𝜆 (𝑘) + 𝑔 𝑗𝑚𝜆 (𝑘). (6.19)

To get the required 𝑭+(𝒓, 𝑡), one combines them with the incoming and outgoing basis

fields in Eq. (4.59), and using Eq. (3.14) arrives at:

𝑭 in/out

𝜆
(𝒓, 𝑡) =

√
2

∫ ∞

0

𝑑𝑘 𝑘

∞∑︁
𝑗=1

𝑗∑︁
𝑚=− 𝑗

∑︁
𝜆=±1

𝑓 in/out
𝑗𝑚𝜆

(𝑘)𝑺 in/out
𝑗𝑚𝜆

(𝑘, 𝒓 , 𝑡). (6.20)
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6.2 Interaction of a light pulse and a relativistically moving object

Again, the integrals are truncated to the region 14.9 𝜇m
−1 ≤ 𝑘 ≤ 16.6 𝜇m

−1
. Since the

scatterer does not interact with the parts of the field with 𝑗 > 𝑗max = 4, a higher multipolar

component of the outgoing field will be the same as the corresponding components of the

incoming field. Hence, the difference of their carried energy will be zero, and they do not

contribute to the energy transfer. This allows one to focus on the transfer of energy due

to 𝑗 ≤ 𝑗max = 4 components of the field.

The energy density of the 𝑗 ≤ 4 components of the incoming and the outgoing fields at

specific times is depicted in Fig. (6.3).

Figure 6.3: Energy density of the incoming (left) and the outgoing (right) parts of the total

field for multipole order up to 𝑗max = 8, plotted in the 𝑧𝑥-plane with horizontal

𝑧-axis and vertical 𝑥-axis. The radial dimension of the plot is 55 microns, the

incoming field is plotted at time −150 fs and the outgoing field at time 150 fs.

The white circle in the middle represents the silicon sphere of radius 100 nm.

Numerical integration of Eq. (6.17) is conducted in spherical coordinates as a Riemann

sum in 𝑟 ∈ [0, 55]𝜇m, 𝜃 ∈ [0, 𝜋], and 𝜙 ∈ [0, 2𝜋], for 𝑁𝑟 = 250, 𝑁𝜃 = 500 and 𝑁𝜙 = 201

equidistant points, preceded by the integration of Eq. (6.20) over 𝑁𝑘 = 150 equidistant

points. The incoming field is considered at time 𝑡 = −150 fs and the outgoing at 𝑡 = 150 fs.

The resulting energy difference is

𝐸in
em

− 𝐸out
em

= 1.36061 × 10
−3

J − 1.31058 × 10
−4

J = 5.00277 × 10
−5

J, (6.21)

which is in very good agreement with the value given by the scalar product approach

4.9833 × 10
−5

J. The small difference can be further reduced by using finer discretization.

6.2 Interaction of a light pulse and a relativistically moving
object

The foundation of the polychromatic T-matrix formalism is tightly connected to the

symmetry group of the Minkowski space-time, the Poincaré group. This group includes

Lorentz boosts, transformations that are responsible for changing to the frame of reference

moving with constant speed. Similarly, they may be used to describe moving objects. In
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6 Transfer of fundamental quantities between light and matter

this section the focus is set on the interaction between light and a moving silicon sphere,

in particular on the difference of energy and momentum contained in light before and

after the interaction with the object. First, the interaction is computed in the reference

frame of the scatterer (the co-moving frame), and second, in the laboratory frame.

6.2.1 Co-moving frame of reference

Consider an incident field |𝑓 ⟩ present in the laboratory frame, defined by the wave function

in plane wave basis similarly to the previous section as

𝑓+(𝒌) = 𝐴𝑒𝑖𝜙 cos𝜃 (1 + cos𝜃 ) 𝑒−(𝑘−𝑘0)2Δ2

𝑡 𝑐
2/2 𝑒−𝑘

2 (1−cos
2 𝜃 )Δ2

𝜌/2, (6.22)

𝑓−(𝒌) = 0. (6.23)

The angles 𝜃 , 𝜙 are the polar and azimuthal angles of 𝒌 . The time width of the pulse is

now chosen to be Δ𝑡 = 20 fs, spacial parameter Δ𝜌 = 1 µm, and the central wavelength

2𝜋
𝑘0

= 700 nm.

Setting the normalization constant 𝐴 = 2.095 × 10
11

nm fixes the energy of the pulse to

5 mJ via

⟨𝑓 |𝐻 |𝑓 ⟩ =
∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
|𝑓𝜆 (𝒌) |2𝑐ℏ𝑘 = 5.00 × 10

−3
J. (6.24)

Consider the interaction of the pulse with a silicon sphere that moves along the z-axis

at some constant speed 𝑣 = 𝑐 tanh 𝜉 away or towards the pulse. In the co-moving frame,

the object is stationary and is described by the frequency-diagonal T-matrix. Note that

the scatterer perceives the incident field to be Lorentz boosted in the opposite direction

𝐿𝑧 (−𝜉) |𝑓 ⟩.
The numerical computations are conducted for the span of velocities −0.8 ≤ 𝑣/𝑐 ≤ 0.8

with 0.8 ≈ tanh(1.1), corresponding to the rapidity range between 𝜉max/min = ±1.1.

Positive 𝑣 corresponds to the sphere moving in the positive z-direction, and negative 𝑣 to

the movement in the negative direction. Since for each velocity, the transformed field has

significant components in different parts of the frequency spectrum, the maximal multipole

order of the T-matrix that is required for the precise scattering simulation may change as

well. This is the case when the scatterer moves toward the pulse and perceives smaller

wavelengths. If the pulse in the laboratory frame is completely described on the wave

number domain 𝑘min ≤ 𝑘 ≤ 𝑘max, then the optical properties of the object should be known

at least in the wave number region 𝑒−𝜉𝑘min ≤ 𝑘 ≤ 𝑒𝜉𝑘max. Fig. (6.4a) depicts the optical

properties of the silicon sphere on the total wave number band required for computation

in the chosen range of velocities. Fig. (6.4b) illustrates the interaction cross-section of

the T-matrix at different maximal multipole orders on the same domain, justifying the

truncation order to be 𝑗max = 6.

The transfer of energy and momentum in the 𝑧-direction between the field and the

object are computed in the same manner as in the stationary case in the previous section

but with fields boosted in the direction opposite to the movement of the object 𝐿𝑧 (−𝜉) |𝑓 ⟩.
It is important, that the wave function |𝑓 ⟩ is defined analytically in the plane wave basis
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6.2 Interaction of a light pulse and a relativistically moving object

(a) (b)

Figure 6.4: (a) Refractive index𝑛(𝑘) and extinction coefficient𝜅 (𝑘) of silicon as functions of
wavenumber on the whole domain required for the computation. (b) Interaction

cross-section of a silicon sphere with radius of 150 nm as a function of

wavenumber, computed via the Frobenius norm of the monochromatic T-matrix

at different maximal multipolar orders 𝑗max. The brown line corresponding to

𝑗max = 6 completely covers the purple line of 𝑗max = 6, bringing no additional

precision.

and has the number of significant angular momentum components which is larger than

the chosen 𝑗max. This means that the Lorentz boost should be applied before the truncation

of the maximal multipolar order in the wave function. Otherwise, significant angular

momentum components of the boosted pulse will not be accounted in the scattering.

Practically, using [14, Eq. (10.4-24)] one may boost fields in plane wave basis via

𝐿𝑧 (𝜉) 𝑓𝜆 (𝒌) = 𝑓𝜆 (𝒌′) (6.25)

with 𝒌′ = 𝐿−1

𝑧 (𝜉)𝒌 , which loses no information about the wave function. Only after

this transformation the relevant (up to 𝑗max) angular momentum components 𝑓 𝑗𝑚𝜆 (𝑘) =
⟨𝑘 𝑗𝑚𝜆 |𝐿𝜉 (𝑧) |𝑓 ⟩ should be extracted and considered for the interaction with the scatterer.

In our convention 𝑆 = 1 + 𝑇 , so the coefficients of the incoming field are equal to the

coefficients of the incident field, and the outgoing part of the field is computed as

ℎ 𝑗𝑚𝜆 (𝑘) = 𝑓 𝑗𝑚𝜆 (𝑘) + (𝑇 𝑓 ) 𝑗𝑚𝜆 (𝑘) (6.26)

= 𝑓 𝑗𝑚𝜆 (𝑘) +
∑︁
𝜆′=±1

𝑗max∑︁
𝑗 ′=1

𝑗 ′∑︁
𝑚′=− 𝑗 ′

𝑇
𝑗𝑚𝜆

𝑗 ′𝑚′𝜆′ (𝑘) 𝑓 𝑗 ′𝑚′𝜆′ (𝑘) . (6.27)

Transfer of energy and momentum to the scatterer is computed as the difference between

the quantities contained in the incoming and the outgoing parts of the field:

⟨Δ𝐻 ⟩ = ⟨𝑓 |𝐻 |𝑓 ⟩ − ⟨ℎ |𝐻 |ℎ⟩ (6.28)

⟨Δ𝑃𝑧⟩ = ⟨𝑓 |𝑃𝑧 |𝑓 ⟩ − ⟨ℎ |𝑃𝑧 |ℎ⟩ . (6.29)
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6 Transfer of fundamental quantities between light and matter

The final results for the transfer of energy and momentum are depicted in Fig. (6.5a)

and Fig. (6.5b).

(a) (b)

Figure 6.5: Transfer of (a) energy and (b) momentum in the z-direction from the

electromagnetic pulse |𝑓 ⟩ to the silicon sphere that moves at different velocities

along the z-axis. Computed in the reference frame of the sphere. The positive

sign of 𝑣/𝑐 corresponds to the movement of the sphere in the positive 𝑧-

direction, when observed in the laboratory frame.

The number of equidistant discretization points for the wave function in the plane

wave basis 𝑓𝜆 (𝒌) is chosen to be 𝑁𝑘 = 400, 𝑁𝜙 = 100, 𝑁𝜃 = 400. After the transformation

𝐿𝑧 (𝜉) 𝑓𝜆 (𝒌) via Eq. (6.25), the domain stops being equidistant in 𝑘 and 𝜃 . After extracting

the required angular momentum components of the boosted wave function, one must

make sure that the correct T-matrix is used, i.e. it corresponds to the transformed wave

number domain. This allows the computation of outgoing coefficients via Eq. (6.26). The

final result is evaluated for rapidities between 𝜉min = −1.1 and 𝜉max = 1.1 in equidistant

steps for 𝑁𝜉 = 300 points using

⟨𝑓 |𝐻 |𝑓 ⟩ =
∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
|𝑓𝜆 (𝒌) |2𝑐ℏ𝑘 (6.30)

⟨𝑓 |𝑃𝑧 |𝑓 ⟩ =
∑︁
𝜆=±1

∫
𝑑3𝒌

𝑘
|𝑓𝜆 (𝒌) |2ℏ𝑘 cos𝜃 . (6.31)

The shape of the transfer profiles in Fig. (6.5) can be explained with the help of the

interaction cross-section of the silicon sphere at rest. For each Lorentz boost parameter,

the center wavelength of the pulse 𝑘0 is shifted, making the position of the new center

wavelength depend on the rapidity (or, equivalently, on speed):

𝑘𝑝 ≈ 𝑘0(cosh(𝜉) − cos(0) sinh(𝜉))
= 𝑘0𝑒

−𝜉 = 𝑘0𝑒
− arctanh 𝑣/𝑐, (6.32)
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6.2 Interaction of a light pulse and a relativistically moving object

where the approximation holds only because the incident pulse is focused along the

positive z-axis. The pulse interacts with the sphere in the wave number domain around

the new center wavelength, which makes the interaction stronger or weaker depending

on the velocity. The interaction cross-section of the silicon sphere at each wavelength that

corresponds to the boosting velocity is shown in Fig. (6.6), the resonances of which are

clearly reflected in Fig. (6.5).

Figure 6.6: Interaction cross-section of the silicon sphere as a function of the Doppler

shifted wavenumber of the pulse’s peak. One may observe correspondence of

some local maxima of its profile to that of the transfer profiles.

6.2.2 Laboratory frame of reference

Now the transfer of quantities is computed in the laboratory frame of reference. One

may use the transformation properties of generators responsible for the corresponding

quantities: 𝐻 = 𝑐𝑃0
for energy and 𝑃𝑧 = 𝑃

3
for momentum in the 𝑧-direction. From [14,

Eq. (10.2-5)] follows

𝐿𝑧 (𝜉)𝐻𝐿−1

𝑧 (𝜉) = cosh(𝜉)𝐻 − 𝑐 sinh(𝜉)𝑃𝑧 (6.33)

𝐿𝑧 (𝜉)𝑃𝑧𝐿−1

𝑧 (𝜉) = −1

𝑐
sinh(𝜉)𝐻 + cosh(𝜉)𝑃𝑧, (6.34)

which implies the connection between the scalar product values in two frames to be

⟨Δ𝐻 ⟩lab = cosh(𝜉) ⟨Δ𝐻 ⟩obj − 𝑐 sinh(𝜉) ⟨Δ𝑃𝑧⟩obj (6.35)

⟨Δ𝑃𝑧⟩lab = −1

𝑐
sinh(𝜉) ⟨Δ𝐻 ⟩obj + cosh(𝜉) ⟨Δ𝑃𝑧⟩obj . (6.36)

The values for the interaction in the laboratory frame are shown in Fig. (6.7).

An interesting effect is observed at negative 𝑣 , where in the reference frame of the object

the electromagnetic pulse gains energy. Together with the absorption of the energy by the

object, this is accounted by the loss of the kinetic energy of the scatterer.
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6 Transfer of fundamental quantities between light and matter

(a) (b)

Figure 6.7: Loss of (a) energy and (b) momentum in the 𝑧-direction from the

electromagnetic pulse |𝑓 ⟩ caused by scattering on a silicon sphere that moves

at different velocities along the z-axis. Computed in the reference frame of the

sphere. A positive sign of 𝑣/𝑐 corresponds to the movement of the sphere in

the positive 𝑧-direction.

6.2.3 Lorentz boost of a frequency-diagonal T-matrix

The scattering in the laboratory frame of reference can also be described via the boosted

T-matrix, which acts on the unchanged incident field |𝑓 ⟩. In this section, the Lorentz

boosted T-matrix of the silicon sphere is numerically computed and used to evaluate the

change of momentum and energy of the pulse, as seen in the laboratory frame.

The matrix element of the Lorentz boost in the angular momentum basis, as derived in

Eq. (6.37), is

⟨𝑘′ 𝑗 ′𝑚′𝜆′|𝐿𝑧 (𝜉) |𝑘 𝑗𝑚𝜆⟩ =

= 𝛿𝜆′𝜆𝛿𝑚′𝑚Θ
(
|𝜉 | − |ln(𝑘′/𝑘) |

)√2 𝑗 ′ + 1

√
2 𝑗 + 1

2𝑘′𝑘 sinh( |𝜉 |) 𝑑
𝑗 ′

𝑚𝜆
(𝜃 ′)𝑑 𝑗

𝑚𝜆
(𝜃 ), (6.37)

can be used to transform a T-matrix via 𝑇 = 𝐿𝑧 (𝜉)𝑇 𝐿−1

𝑧 (𝜉):

𝑇
𝑗1𝑚1𝜆1

𝑗2𝑚2𝜆2

(𝑘1, 𝑘2) = ⟨𝑘1 𝑗1𝑚1𝜆1 |𝐿𝑧 (𝜉)𝑇 𝐿−1

𝑧 (𝜉) |𝑘2 𝑗2𝑚2𝜆2⟩ (6.38)

=

∫ ∞

0

𝑑𝑘′
1
𝑘′

1

∫ ∞

0

𝑑𝑘′
2
𝑘′

2

∞∑︁
𝑗 ′
1
=1

∞∑︁
𝑗 ′
2
=1

𝑇
𝑗 ′
1
𝑚1𝜆1

𝑗 ′
2
𝑚2𝜆2

(𝑘′
1
, 𝑘′

2
)× (6.39)

× 1

2

√︁
2 𝑗1 + 1

√︃
2 𝑗 ′

1
+ 1

Θ
(
|𝜉 | − |ln(𝑘1/𝑘′1) |

)
𝑘1𝑘

′
1
|sinh 𝜉 | 𝑑

𝑗1
𝑚1𝜆1

(𝜃1) 𝑑
𝑗 ′
1

𝑚1𝜆1

(𝜃 ′
1
) (6.40)

× 1

2

√︃
2 𝑗 ′

2
+ 1

√︁
2 𝑗2 + 1

Θ
(
|𝜉 | − |ln(𝑘′

2
/𝑘2) |

)
𝑘′

2
𝑘2 |sinh 𝜉 | 𝑑

𝑗 ′
2

𝑚2𝜆2

(𝜃 ′
2
) 𝑑 𝑗2

𝑚2𝜆2

(𝜃2). (6.41)
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Here 𝜃1,2, 𝜃
′
1,2 are defined via

cos𝜃1 =
𝑘1 cosh 𝜉 − 𝑘′

1

𝑘1 sinh 𝜉
, cos𝜃 ′

1
=
𝑘1 − 𝑘′1 cosh 𝜉

𝑘′
1

sinh 𝜉
, (6.42)

cos𝜃 ′
2
= −

𝑘′
2

cosh 𝜉 − 𝑘2

𝑘′
2

sinh 𝜉
, cos𝜃2 = −

𝑘′
2
− 𝑘2 cosh 𝜉

𝑘2 sinh 𝜉
. (6.43)

Since the T-matrix of the sphere is diagonal in frequency, this general expression can be

simplified. Using

𝑇
𝑗1𝑚1𝜆1

𝑗2𝑚2𝜆2

(𝑘1, 𝑘2) = 𝑇 𝑗1𝑚1𝜆1

𝑗2𝑚2𝜆2

(𝑘2)
1

𝑘2

𝛿 (𝑘1 − 𝑘2), (6.44)

the transformed T-matrix is written as

𝑇
𝑗1𝑚1𝜆1

𝑗2𝑚2𝜆2

(𝑘1, 𝑘2) = (6.45)

=

∫ ∞

0

𝑑𝑘′
1
𝑘′

1

∫ ∞

0

𝑑𝑘′
2
𝑘′

2

∞∑︁
𝑗 ′
1
=1

∞∑︁
𝑗 ′
2
=1

𝑇
𝑗 ′
1
𝑚1𝜆1

𝑗 ′
2
𝑚2𝜆2

(𝑘′
2
) 1

𝑘′
2

𝛿 (𝑘′
1
− 𝑘′

2
)×

× 1

2

√︁
2 𝑗1 + 1

√︃
2 𝑗 ′

1
+ 1

Θ
(
|𝜉 | − |ln(𝑘1/𝑘′1) |

)
𝑘1𝑘

′
1
|sinh 𝜉 | 𝑑

𝑗1
𝑚1𝜆1

(𝜃1) 𝑑
𝑗 ′
1

𝑚1𝜆1

(𝜃 ′
1
)

× 1

2

√︃
2 𝑗 ′

2
+ 1

√︁
2 𝑗2 + 1

Θ
(
|𝜉 | − |ln(𝑘′

2
/𝑘2) |

)
𝑘′

2
𝑘2 |sinh 𝜉 | 𝑑

𝑗 ′
2

𝑚2𝜆2

(𝜃 ′
2
) 𝑑 𝑗2

𝑚2𝜆2

(𝜃2). (6.46)

Integration over the wave number eliminates 𝑘1, and one of the Heaviside functions

truncates the integral in 𝑘2:

𝑇
𝑗1𝑚1𝜆1

𝑗2𝑚2𝜆2

(𝑘1, 𝑘2) =
∫ ∞

0

𝑑𝑘′
2
𝑘′

2

∞∑︁
𝑗 ′
1
=1

∞∑︁
𝑗 ′
2
=1

𝑇
𝑗 ′
1
𝑚1𝜆1

𝑗 ′
2
𝑚2𝜆2

(𝑘′
2
) ×

× 1

2

√︁
2 𝑗1 + 1

√︃
2 𝑗 ′

1
+ 1

Θ
(
|𝜉 | − |ln(𝑘1/𝑘′2) |

)
𝑘1𝑘

′
1
|sinh 𝜉 | 𝑑

𝑗1
𝑚1𝜆1

(𝜃 ) 𝑑 𝑗
′
1

𝑚1𝜆1

(𝜃 ′)

× 1

2

√︃
2 𝑗 ′

2
+ 1

√︁
2 𝑗2 + 1

Θ
(
|𝜉 | − |ln(𝑘′

2
/𝑘2) |

)
𝑘′

2
𝑘2 |sinh 𝜉 | 𝑑

𝑗 ′
2

𝑚2𝜆2

(𝜃 ′
2
) 𝑑 𝑗2

𝑚2𝜆2

(𝜃2)

=

∫ 𝑘1𝑒
|𝜉 |

𝑘1𝑒
−|𝜉 |

𝑑𝑘′
2
𝑘′

2

∞∑︁
𝑗 ′
1
=1

∞∑︁
𝑗 ′
2
=1

𝑇
𝑗 ′
1
𝑚1𝜆1

𝑗 ′
2
𝑚2𝜆2

(𝑘′
2
) ×

× 1

2

√︁
2 𝑗1 + 1

√︃
2 𝑗 ′

1
+ 1

1

𝑘1𝑘
′
1
|sinh 𝜉 | 𝑑

𝑗1
𝑚1𝜆1

(𝜃 ) 𝑑 𝑗
′
1

𝑚1𝜆1

(𝜃 ′)

× 1

2

√︃
2 𝑗 ′

2
+ 1

√︁
2 𝑗2 + 1

Θ
(
|𝜉 | − |ln(𝑘′

2
/𝑘2) |

)
𝑘′

2
𝑘2 |sinh 𝜉 | 𝑑

𝑗2
𝑚2𝜆2

(𝜃2) 𝑑
𝑗 ′
2

𝑚2𝜆2

(𝜃 ′
2
),

(6.47)

(6.48)
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with

cos𝜃 =
𝑘1 cosh 𝜉 − 𝑘′

2

𝑘1 sinh 𝜉
, cos𝜃 ′ =

𝑘1 − 𝑘′2 cosh 𝜉

𝑘′
2

sinh 𝜉
,

cos𝜃2 = −
𝑘′

2
− 𝑘2 cosh 𝜉

𝑘2 sinh 𝜉
, cos𝜃 ′

2
= −

𝑘′
2

cosh 𝜉 − 𝑘2

𝑘′
2

sinh 𝜉
(6.49)

One may see that the Lorentz boost of the frequency-diagonal T-matrix of the silicon

sphere makes it non-diagonal in frequency, as expected for moving objects. The element of

the boosted T-matrix with 𝑗1,2 = 1,𝑚1,2 = 1, 𝜆1,2 = 1, as a function of incident wave number

𝑘1 and scattered wave number 𝑘2, is illustrated in Fig. (6.8). The values are computed for

rapidity 𝜉 = 0.005 and 0.015.

The difference ofmomentum between the outgoing and incoming fields is found similarly

to the stationary case:

⟨Δ𝑃𝑧⟩ = ⟨𝑓 |𝑃𝑧 |𝑓 ⟩ − ⟨ℎ |𝑃𝑧 |ℎ⟩ , (6.50)

but now the computation of the outgoing field involves integration over the incident wave

number:

ℎ 𝑗𝑚𝜆 (𝑘) = 𝑓 𝑗𝑚𝜆 (𝑘) +
∫ ∞

0

𝑑𝑘′ 𝑘′
∑︁
𝜆′=±1

𝑗max∑︁
𝑗 ′=1

𝑗∑︁
𝑚′=− 𝑗 ′

𝑇
𝑗𝑚𝜆

𝑗 ′𝑚′𝜆′ (𝑘, 𝑘
′) 𝑓 𝑗 ′𝑚′𝜆′ (𝑘′). (6.51)

The integral in 𝑘′ can be truncated to the region of the significant part of the Gaussian

wave number profile of 𝑓 .

Finally, the transfer of momentum is computed for a number of rapidities 𝜉 = 0.0001,

0.005, 0.01, 0.015, and the results are depicted in Fig. (6.9), next to the reference computed

in the last section.

It should be noted that the T-matrix of the moving object has significant elements for

all values of the total angular momentum 𝑗 ∈ N, because the interaction may happen

arbitrarily far from the origin of the reference frame. Therefore, the range of the multipolar

order can not be truncated without loss of the information about the scatterer as it is often

done for the T-matrix of a stationary object. Practically, this means that the value of 𝑗max

in Eq. (6.51) is dictated by the character of the incident field. In particular, 𝑗max should

encompass a region around the origin large enough to completely account for the spacial

domain of the interaction between the field and the scatterer. For example, consider an

interaction of a localized pulse hitting a moving object when they both are near the origin

of the reference frame. A smaller 𝑗max is required in this case compared to the interaction

of the same moving object with a pulse designed to hit the object further from the origin.

Similarly, it is impossible to find a 𝑗max to completely describe the interaction of a plane

wave with a moving object, since there will be points in space where the interaction is

happening and that are arbitrarily far from the origin.

Onemust note that the computation of the boosted T-matrix Eq. (6.48) is highly expensive

from the computational point of view. The reason is that for each incident wavenumber

𝑘2 and for each scattered wavenumber 𝑘1 one must compute one integral in 𝑘 , the domain

of which changes with 𝑘2 (or, alternatively, with 𝑘1). Also, given the monochromatic
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(a) 𝜉 = 0.005

(b) 𝜉 = 0.015

Figure 6.8: Real and imaginary parts of𝑇 111

111
(𝑘1, 𝑘2) element of the polychromatic T-matrix

for the silicon sphere, boosted with (a) 𝜉 = 0.005 and (b) 𝜉 = 0.015. The higher

the velocity, the wider the spreading of the scattered wave number for a fixed

incident wave number.
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6 Transfer of fundamental quantities between light and matter

Figure 6.9: Transfer of momentum 𝑃𝑧 between the electromagnetic pulse |𝑓 ⟩ and the

moving silicon sphere in the laboratory frame, computed via the polychromatic

T-matrix (black) and via transformed quantities from the co-moving frame

(blue) as reference.

T-matrix on an initially discretized wavenumber domain, each of the mentioned integrals

demands new computation or interpolation of the T-matrix on the new set of wavenumbers.

Moreover, the higher the velocity of the object, the higher the multipolar order 𝑗max is

required to encompass the region around the origin where the interaction with the pulse

takes place, which further complicates the calculations. Since computations in the co-

moving frame lack the mentioned disadvantages, the object’s frame should be preferred

over the laboratory frame for the computation of light-matter interactions.
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7 Analysis of chiral objects

The phenomenon of chirality manifests itself in a diverse array of physical phenomena,

from the left-right asymmetry of weak interactions in particle physics to the chiral magnetic

fields of the early universe. In practice, the ability to differentiate and select specific

molecular enantiomers is crucial in fields such as pharmacology: often, chemical reactions

yield both enantiomers of a chiral molecule, yet typically only one of these isomers

possesses the desired medical properties. The ability to influence such reactions is another

practical question.

There are also a number of theoretical questions related to chirality, one of which is

the quantification of chirality. If an object is chiral, how chiral is it? And how can one

quantitatively distinguish between two versions of the chiral object?

Since the T-matrix contains the complete information about the object that is relevant

for its interaction with the electromagnetic field, it is convenient to formalize chirality

measures as functions on the set of T-matrices. The question of how chiral is a chiral

object on a scale from 0 to 1 was answered in such a manner in [26]. In the current chapter,

a further development [48] is presented, which aims to answer the question: given the

T-matrices of two enantiomers, how can one distinguish one from another? A label called

chirality signature is proposed, and its invariance under the largest group of symmetry of

Maxwell’s equations is investigated.

7.1 Electromagnetic chirality

First, it is necessary to briefly explain the method introduced in [26]. The notion of chirality

is re-formulated in the context of light-matter interactions with the help of a T-matrix. Its

parts that are responsible for mapping between fields of definite helicity

𝑇 =

(
𝑇 ++ 𝑇 +−

𝑇 −+ 𝑇 −−

)
(7.1)

are considered as operators on their own,𝑇 𝜆𝜆
′
. A scatterer is then said to be electromagnetically

achiral if

𝑇 ++ = 𝑈1𝑇
−−𝑉 †

1

𝑇 −+ = 𝑈2𝑇
+−𝑉 †

2
(7.2)

for some unitary 𝑈1,2 and 𝑉1,2. This definition may be applied to both versions of the

T-matrix, the mono- and polychromatic ones.

This definition of electromagnetic chirality (em-chirality) contains the common geometric

definition, which can be seen from the following considerations. A most general mirror
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transformation can be decomposed into parity, rotation, and possibly translation. Parity

transformation changes the eigenvalue of helicity to the opposite Eq. (4.50), while rotations

and translations do not change helicity. They all, however, are represented unitarily on

the domain of 𝑇 𝜆𝜆
′
. Hence the mirror reflection of a T-matrix can be written as

𝑇 =

(
𝑇 ++ 𝑇 +−

𝑇 −+ 𝑇 −−

)
↦→ 𝑇mirr =

(
𝑈𝑇 −−𝑈 † 𝑈𝑇 −+𝑉 †

𝑉𝑇 +−𝑈 † 𝑉𝑇 ++𝑉 †

)
(7.3)

with some unitary 𝑈 and 𝑉 , different because the action of the transformation depends

on helicity. The object defined by 𝑇 is geometrically achiral if there are rotations and

translations that can transform 𝑇 into 𝑇mirr, which can be written as(
𝑈𝑇 ++𝑈 † 𝑈𝑇 +−𝑉 †

𝑉𝑇 −+𝑈 † 𝑉𝑇 −−𝑉 †

)
=

(
𝑈𝑇 −−𝑈 † 𝑈𝑇 −+𝑉 †

𝑉𝑇 +−𝑈 † 𝑉𝑇 ++𝑉 †

)
, (7.4)

where 𝑈 and 𝑉 are compositions of the new rotation and translation in the helicity

subspaces. Onemay see that if Eq. (7.4) is satisfied, then Eqs. (7.2) are satisfied automatically,

which means that geometrically achiral objects are electromagnetically achiral.

Since the set of all unitary transformations is larger than the set of rotations and

translations, there exist electromagnetically achiral objects that are not geometrically

chiral. For example, in case of polychromatic T matrix, those that fulfill Eqs. (7.2) with

Lorentz transformations and not with rotations or translations.

The scalar measure of em-chirality 𝜒 was introduced in [26] to answer the question: to

which degree a given scatterer is electromagnetically chiral? It is defined as

𝜒 (𝑇 ) =
√︄∑︁

𝑘

(𝜎𝑘 (𝑇 ++) − 𝜎𝑘 (𝑇 −−))2 +
∑︁
𝑘

(𝜎𝑘 (𝑇 +−) − 𝜎𝑘 (𝑇 −+))2

(7.5)

=:

√︁
| ®𝜎 (𝑇 ++) − ®𝜎 (𝑇 −−) |2 + |®𝜎 (𝑇 +−) − ®𝜎 (𝑇 −+) |2. (7.6)

Here ®𝜎 (𝑇 𝜆𝜆′) denotes the sequence of singular values of 𝑇 𝜆𝜆
′
. The singular value

decomposition (SVD) of a compact operator is defined as

𝑇 𝜆𝜆
′
=

∞∑︁
𝑛=1

𝜎𝑛 (𝑇 𝜆𝜆
′) |𝜓𝑛⟩ ⟨𝜙𝑛 | ,

with a unique sequence of non-increasing singular values 𝜎𝑘 (𝑇 𝜆𝜆
′) and two non-unique

families of orthonormal vectors |𝜓𝑛⟩ and |𝜙𝑛⟩.
It is assumed that the operators in Eq. (7.6) have finite Hilbert-Schmidt norm

𝑇 𝜆𝜆′

2

HS
:=

∫
𝑑𝑘 𝑘

∫
𝑑𝑘′ 𝑘′

∑︁
𝑗𝑚

∑︁
𝑗 ′𝑚′

��𝑇 𝑗𝑚𝜆
𝑗 ′𝑚′𝜆′

��2 < ∞, (7.7)

for a polychromatic T-matrix, or

𝑇 𝜆𝜆′

2

HS
:=

∑︁
𝑗𝑚

∑︁
𝑗 ′𝑚′

��𝑇 𝑗𝑚𝜆
𝑗 ′𝑚′𝜆′ (𝑘, 𝑘

′)
��2 < ∞, (7.8)
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for a monochromatic one. This ensures the existence of singular value decomposition, and

the following equation holds:

𝑇 𝜆𝜆′

2

HS
= ®𝜎 (𝑇 𝜆𝜆′) · ®𝜎 (𝑇 𝜆𝜆′) ≔

∞∑︁
𝑛=1

𝜎𝑛 (𝑇 𝜆𝜆
′)𝜎𝑛 (𝑇 𝜆𝜆

′). (7.9)

One may normalize the definition of scalar em-chirality 𝜉 (𝑇 ) to assume values between

0 and 1 by dividing the right-hand side of Eq. (7.6) by the square root of the total interaction

cross-section

𝐶int =
∑︁
𝜆,𝜆′



𝑇 𝜆𝜆′

2

HS
(7.10)

so

𝜒 (𝑇 ) ≔ 𝜒 (𝑇 )
√
𝐶int

∈ [0, 1] . (7.11)

In [48], a new interpretation of Eq. (7.6) is given, as an exemplar from the class of

Procrustes problems [49]. Namely, that the scalar measure of em-chirality solves

𝜒 (𝑇 ) =
√︂

min

𝑈1𝑉1

∥𝑇 ++ −𝑈1𝑇
−−𝑉 †

1
∥2

HS
+ min

𝑈2𝑉2

∥𝑇 −+ −𝑈2𝑇
+−𝑉 †

2
∥2

HS
, (7.12)

where the minimization is performed with respect to all unitary𝑈1,2 and 𝑉1,2.

The proof uses von Neumann trace inequality for Hilbert-Schmidt operators [50] and

proceeds as follows. First, it is shown that for any two Hilbert-Schmidt operators 𝐴 and 𝐵

the equation holds

min

𝑈 ,𝑉
∥𝐴 −𝑈𝐵𝑉 †∥2

HS
= | ®𝜎 (𝐴) − ®𝜎 (𝐵) |2, (7.13)

where𝑈 and 𝑉 are unitary operators, ®𝜎 (𝐴) and ®𝜎 (𝐵) being non-increasing sequences of
singular values, and | ®𝜎 (𝐴) − ®𝜎 (𝐵) |2 ≔ ( ®𝜎 (𝐴) − ®𝜎 (𝐵)) · ( ®𝜎 (𝐴) − ®𝜎 (𝐵)).

Using the Hilbert-Schmidt scalar product one re-writes the left-hand side as

min

𝑈 ,𝑉
∥𝐴 −𝑈𝐵𝑉 †∥2

HS
= (7.14)

= min

𝑈 ,𝑉
⟨𝐴 −𝑈𝐵𝑉 †, 𝐴 −𝑈𝐵𝑉 †⟩ (7.15)

= min

𝑈 ,𝑉

{
⟨𝐴,𝐴⟩ + ⟨𝑈𝐵𝑉 †,𝑈 𝐵𝑉 †⟩ − ⟨𝐴,𝑈𝐵𝑉 †⟩ − ⟨𝑈𝐵𝑉 †, 𝐴⟩

}
(7.16)

= ∥𝐴∥2

HS
+ ∥𝑈𝐵𝑉 †∥2

HS
− max

𝑈 ,𝑉

{
⟨𝑈𝐵𝑉 †, 𝐴⟩ + ⟨𝐴,𝑈𝐵𝑉 †⟩

}
(7.17)

= ∥𝐴∥2

HS
+ ∥𝐵∥2

HS
− 2 max

𝑈 ,𝑉

{
Re ⟨𝐴,𝑈𝐵𝑉 †⟩

}
, (7.18)

and the problem reduces to maximizing Re ⟨𝐴,𝑈𝐵𝑉 †⟩. The von Neumann trace inequality

for Hilbert-Schmidt operators states [50] that any two Hilbert-Schmidt operators 𝑋 , 𝑌

fulfill the condition

Re ⟨𝑋,𝑌 ⟩ ≤
∞∑︁
𝑛=1

𝜎𝑛 (𝑋 )𝜎𝑛 (𝑌 ) (7.19)
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7 Analysis of chiral objects

with equality holding if and only if 𝑋 and 𝑌 share singular vectors. It is always possible to

find such unitary 𝑈 and 𝑉 that transform the singular vectors of 𝐵 onto those of 𝐴 by the

following construction. Consider singular value decompositions of 𝐴 and 𝐵:

𝐴 = 𝑈𝑎Σ𝑎𝑉
†
𝑎 (7.20)

𝐵 = 𝑈𝑏Σ𝑏𝑉
†
𝑏
. (7.21)

Then for

𝑈 := 𝑈𝑎𝑈
†
𝑏

(7.22)

𝑉 := 𝑉𝑎𝑉
†
𝑏

(7.23)

one gets

𝑈𝐵𝑉 † = 𝑈𝑎𝑈
†
𝑏
𝑈𝑏Σ𝑏𝑉

†
𝑏
(𝑉𝑎𝑉 †

𝑏
)† = 𝑈𝑎Σ𝑏𝑉 †

𝑎 , (7.24)

which according to the von Neumann trace inequality realizes the maximal value

max

𝑈 ,𝑉

{
Re ⟨𝐴,𝑈𝐵𝑉 ⟩

}
=

∞∑︁
𝑛=1

𝜎𝑛 (𝐴)𝜎𝑛 (𝐵) = ®𝜎 (𝐴) · ®𝜎 (𝐵). (7.25)

Now, using ∥𝐴∥2

HS
= ®𝜎 (𝐴) · ®𝜎 (𝐴) ≕ ®𝜎2(𝐴), and, similarly ∥𝐵∥2

HS
= ®𝜎2(𝐵), one finally

writes Eq. (7.18) as

min

𝑈 ,𝑉
∥𝐴 −𝑈𝐵𝑉 †∥2

HS
= ®𝜎2(𝐴) + ®𝜎2(𝐵) − 2 ®𝜎 (𝐴) · ®𝜎 (𝐵) (7.26)

= | ®𝜎 (𝐴) − ®𝜎 (𝐵) |2. (7.27)

Application of this formula to the definition of the scalar em-chirality (7.6) results in

𝜒2(𝑇 ) = | ®𝜎 (𝑇 ++) − ®𝜎 (𝑇 −−) |2 + |®𝜎 (𝑇 +−) − ®𝜎 (𝑇 −+) |2 (7.28)

= min

𝑈1𝑉1

∥𝑇 ++ −𝑈1𝑇
−−𝑉1∥2

HS
+ min

𝑈2𝑉2

∥𝑇 −+ −𝑈2𝑇
+−𝑉2∥2

HS
. (7.29)

This property of em-chirality in Eq. (7.29) allows straightforward formulations of T-

matrix-based scalar measures of geometrical chirality. It suffices to restrict the 𝑈𝑖/𝑉𝑖
to compositions of rotations and translations. Such an approach was studied in [51].

7.2 Chiral connectedness

Now the attention is turned towards differentiating between enantiomers. Remarkably,

one can not (in general) continuously apply labels ’left-handed’ and ’right-handed’ to all

chiral entities in a given space of objects [27, 28]. The reason is the phenomenon of chiral

connectedness: if the objects under consideration are more complicated than tetrahedrons,

then any chiral object can morph into its mirror image via a continuous transformation,

staying chiral throughout the process [52, 53]. This means that any attempt to define a
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7.2 Chiral connectedness

continuous separation rule for all chiral objects, say into objects with chirality -1 (left)

and +1 (right), will fail due to the intermediate value theorem [29]. There will be a point

in the transformation process, where the object is chiral and the handedness will suffer a

discontinuous jump.

As an example of how such an attempt can fail, consider a modification of the scalar

em-chirality, where it is multiplied by a complex factor:

𝜒𝑐 (𝑇 ) = 𝜒 (𝑇 ) exp(𝑖𝜙 (𝑇 )), (7.30)

with

𝜙 (𝑇 ) := −𝜋
2

( ∥𝑇 ++∥2 + ∥𝑇 −+∥2 − ∥𝑇 +−∥2 − ∥𝑇 −−∥2

∥𝑇 ∥2
− 1

)
(7.31)

= 𝜋
∥𝑇 +−∥2 + ∥𝑇 −−∥2

∥𝑇 ∥2
∈ [0, 𝜋] . (7.32)

Here and in the following, the Hilbert-Schmidt norm is implied.

The absolute value of the complex em-chirality is the normalized scalar em-chirality

|𝜒𝑐 (𝑇 ) | = 𝜒 (𝑇 ) and the real partℜ(𝜒𝑐) will be referred to as the handedness measure of

the scatterer.

The defining property of the phase factor consists in its behavior under arbitrary mirror

transformations. The T-matrix is transformed as(
𝑇 ++ 𝑇 +−

𝑇 −+ 𝑇 −−

)
→

(
𝑇 −− 𝑇 −+

𝑇 +− 𝑇 ++

)
, (7.33)

where the tilde indicates a reflection of a T-suboperator, which is a unitary transformation.

The permutation of suboperators is due to the change of the helicity under mirror

transformations.

The phase of the complex em-chirality𝜙 changes undermirror transformations according

to

𝜙 (𝑇 ) = 𝜋 ∥𝑇
+−∥2 + ∥𝑇 −−∥2

∥𝑇 ∥2
→ 𝜋

∥𝑇 −+∥2 + ∥𝑇 ++∥2

∥𝑇 ∥2
(7.34)

= 𝜋
∥𝑇 ∥2 − ∥𝑇 +−∥2 − ∥𝑇 −−∥2

∥𝑇 ∥2
(7.35)

= 𝜋 − 𝜙 (𝑇 ), (7.36)

so themirror transformation reflects the complex em-chiralitywith respect to the imaginary

axis

𝜒 (𝑇 ) exp(𝑖𝜙 (𝑇 )) → 𝜒 (𝑇 ) exp(𝑖 (𝜋 − 𝜙 (𝑇 ))), (7.37)

which changes the sign of handedness.

To illustrate the idea of chiral connectedness on a concrete example, consider a chiral

constellation of 7 dielectric spheres as depicted in Fig. (7.1a). The spheres have radii
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7 Analysis of chiral objects

(a) (b) (c)

Figure 7.1: Continuous transformation of a chiral configuration of seven spheres (a) to its

enantiomer (c) passing an achiral configuration (b): two spheres of the right

leg are rotated by 𝜋/2 about the y-axis. The configuration (b) is achiral since it

is mirror symmetric with respect to the plane 𝑧 +𝑥 = 0. The configuration (c) is

the mirror antipode of the configuration (a): the mirror reflection of the initial

configuration (a) with respect to the xy-plane followed by a rotation about the

y-axis by 𝜋/2 results in the final configuration (c).

𝑟 = 100 nm, relative permittivity 𝜖𝑠𝑟 = 4 and centered at points (−𝑎, 𝑎, 0), (−𝑎, 0, 0), (0, 0, 0),
(0, 0, 𝑎), (0, 𝑎, 𝑎), (𝑎, 0, 0) and (𝑎,−𝑎, 0), with 𝑎 = 500 nm.

Two transformations will be compared. In the first one, as depicted in Figs. (7.1a-7.1c),

the right leg of the configuration is continuously rotated around the 𝑦-axis in the positive

direction by 𝜋/2. The final state in Fig. (7.1c) is the enantiomer of the initial one in

Fig. (7.1a). This can be seen by reflecting the starting configuration with respect to the

𝑥𝑦-plane and then rotating the resulting object about the 𝑦-axis by 𝜋/2. The middle point

of the transformation Fig. (7.1a) is an achiral state since the system has a mirror symmetry.

The second transformation, shown in Fig. (7.2), is designed to avoid achiral arrangements

by breaking the mirror symmetry of Fig. (7.1b) while having the same starting and ending

configurations as the first transformation.

Application of complex em-chirality 𝜒𝑐 to the T-matrix of the system at all points of the

first transformation is depicted in Fig. (7.3a). The starting configuration is right-handed

ℜ(𝜒𝑐) < 0 and the final configuration is left-handedℜ(𝜒𝑐) > 0. The zero value of complex

em-chirality corresponds to the arrangement of Fig. (7.1b), which is geometrically achiral

because of its obvious mirror symmetry. As mentioned previously, geometrically achiral

objects are electromagnetically achiral, which is the reason for vanishing 𝜒𝑐 .

The trajectory of complex em-chirality 𝜒𝑐 for the second transformation process is

depicted in Fig. (7.3b). It is seen that at no point of this transformation the configuration

becomes electromagnetically achiral. The existence of such transformations is guaranteed

by the chiral connectedness property. If one tries to apply the introduced definition of

handedness to the states of this process, the so-called "false chiral zero" arises. The point at

the intersection of the trajectory with the imaginary line describes a chiral state, however

the handedness can not be assigned to it since the real part of 𝜒𝑐 is zero. In other words, a
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7.2 Chiral connectedness

(a) (b) (c)

(d) (e) (f)

Figure 7.2: Continuous transformation of the initial chiral configuration (a) to its

enantiomer (f) avoiding any intermediate achiral configurations. The

transformation is similar to that of Fig. (7.1), but the achiral state Fig. (7.1b) is

avoided as follows. First, the right leg is rotated about the y-axis by 9𝜋/40 (b).

Then, the furthest top sphere is shifted by 50nm along the negative direction

of the y-axis (c) – the transparent blue sphere depicts the position of the

sphere before the shift (also enlarged in the top right corner). Then the right

leg is rotated by an extra 2𝜋/40 (d). Afterwards, the shifted top sphere is

brought back to its initial position (e) and finally, the right leg is rotated by the

remaining 9𝜋/40 onto the final configuration. Configurations (b) and (e) are

chiral, contrary to the configuration in Fig. (7.1b). This can be clearly seen in

the corresponding insets containing zoomed-in versions of the shadows of the

right leg on the y-z plane. In (b) and (e) here, such shadow does not coincide

with the reference diagonal, breaking the mirror symmetry that can be seen in

Fig. (7.1b).
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7 Analysis of chiral objects

(a) (b)

Figure 7.3: Trajectories of complex em-chirality for (a) the continuous transformation

that passes the achiral configuration (corresponds to Fig. (7.1)) and (b) the

continuous transformation that avoids the achiral configuration (corresponds

to Fig. (7.2)). The trajectories start in the left-handed region ℜ(𝜒𝑐) < 0 and

end in the right-handed region ℜ(𝜒𝑐) > 0. The absolute value of 𝜒𝑐 equals the

scalar em-chirality and the real part is the pseudoscalar handedness measure.

mirror enantiomer to the object at this point exists, which would have the same value of

𝜒𝑐 . It means that there are pairs of enantiomers that can not be distinguished by complex

em-chirality.

In the next section, the solution to the problem of the complete description of em-

chirality is provided, which will allow one to distinguish any pair of enantiomers by

classifying objects with respect to their chirality signature.

7.3 Chirality signature

The fact that chiral unhanded states 𝜒𝑐 ≠ 0, ℜ(𝜒𝑐) = 0 exist reveals that complex em-

chirality does not contain the full information about the chiral properties of an object.

The complete picture would be described by a function 𝜒𝑠 (𝑇 ) that, for an object 𝑇 and its

mirror antipode 𝑇 , fulfills

𝜒𝑠 (𝑇 ) = −𝜒𝑠 (𝑇 ), (7.38)

𝑇 is em-achiral ⇒ 𝜒𝑠 (𝑇 ) = 0, (7.39)

𝜒𝑠 (𝑇 ) = 0 ⇒ 𝑇 is em-achiral. (7.40)

Violation of Eq. (7.40) by the handedness part of the complex em-chiralityℜ(𝜒𝑐) is the
reason why unhanded states appeared.
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7.3 Chirality signature

Now a quantity is introduced that fulfills the properties (7.38) - (7.40). Consider the

difference of the sequences of singular values

®𝜒1(𝑇 ) := ®𝜎 (𝑇 ++) − ®𝜎 (𝑇 −−) (7.41)

®𝜒2(𝑇 ) := ®𝜎 (𝑇 +−) − ®𝜎 (𝑇 −+). (7.42)

According to Eq. (7.33) and the corresponding discussion, a mirror transformation changes

the sign of each element of the sequences (7.41)-(7.42):

®𝜒1(𝑇 ) = ®𝜎 (𝑇 −−) − ®𝜎 (𝑇 ++) = − ®𝜒1(𝑇 ) (7.43)

®𝜒2(𝑇 ) = ®𝜎 (𝑇 −+) − ®𝜎 (𝑇 +−) = − ®𝜒2(𝑇 ). (7.44)

Additionally, the achirality condition (7.2) is equivalent to ®𝜒1(𝑇 ) = ®𝜒2(𝑇 ) = ®0. It follows
that the properties (7.38)-(7.40) are fulfilled by the tuple

®𝜒𝑠 (𝑇 ) := ( ®𝜒1(𝑇 ), ®𝜒2(𝑇 )), (7.45)

which is the definition of the chirality signature.
The scalar em-chirality (Eq. (7.6)) can be written as a function of ®𝜒𝑠 (𝑇 ) in the following

way:

𝜒 (𝑇 ) =
√︁
®𝜒1(𝑇 ) · ®𝜒1(𝑇 ) + ®𝜒2(𝑇 ) · ®𝜒2(𝑇 ). (7.46)

One can show that reciprocal scatterers [54, Eq. 2.22]

⟨𝒌𝜆 |𝑇 |𝒌′𝜆′⟩ = ⟨−𝒌′𝜆′|𝑇 | − 𝒌𝜆⟩ , (7.47)

fulfill ®𝜎 (𝑇 +−) − ®𝜎 (𝑇 −+) = ®0, so the second part of the tuple is zero:

®𝜒2(𝑇 ) = ®0. (7.48)

For this large class of objects, the chirality signature may be identified only with the

sequence ®𝜒1:

®𝜒𝑠 (𝑇 ) ≔ ®𝜎 (𝑇 −−) − ®𝜎 (𝑇 ++). (7.49)

Now an illustration of this definition applied to a reciprocal system is given. Consider a

system from the previous section. The values of ®𝜒𝑠 (𝑇𝑎), ®𝜒𝑠 (𝑇𝑏) and ®𝜒𝑠 (𝑇𝑐) are shown in

Fig. (7.4), where the T-matrices correspond to the configurations described in Figs. (7.1a),

(7.1b), and (7.1c).

Fig. (7.4) shows that the components of the chirality signature of enantiomeric configurations

have opposite signs

®𝜒𝑠 (𝑇𝑎) = − ®𝜒𝑠 (𝑇𝑐), (7.50)

and the chirality signature of the achiral configuration has only zero components

®𝜒𝑠 (𝑇𝑏) = ®0, (7.51)
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7 Analysis of chiral objects

Figure 7.4: First 70 components of the chirality signature for the initial 𝑇𝑎 , achiral 𝑇𝑏 , and

final 𝑇𝑐 configurations from Fig. (7.1). The mirror antipodes have components

of opposite signs ®𝜒𝑠 (𝑇𝑎) = − ®𝜒𝑠 (𝑇𝑐), and the achiral configuration has all

components equal to zero ®𝜒𝑠 (𝑇𝑏) = ®0. The square root of the sum of the

squares of the components equals the scalar em-chirality 𝜒 = 0.014.

as expected.

An important property of the chirality signature concerns the possibility of representing

it numerically. Although there is an infinite number of components for a general T-matrix,

the series of singular values can be truncated. It is well-known that for large enough values

of multipolar order, the response of spatially localized scatterers vanishes. Hence, the

matrices𝑇 𝜆𝜆
′
represent compact operators with singular values that converge to zero. This

allows the truncation of chirality signature at some point after which the contributions to

the scalar em-chirality are negligible.

Every component of ®𝜒𝑠 acts as an independent pseudoscalar handedness measure,

which changes its sign to the opposite after a mirror transformation and is zero if the

object is achiral. A single component of ®𝜒𝑠 may occasionally equal zero for a chiral state,

producing a false chiral zero. However, only when all the elements of ®𝜒𝑠 are zero, the
object is em-achiral. This provides, for the first time, a quantitative description of the

infinite-dimensional nature of chirality.

It should be emphasized that themethod of chirality signature fundamentally differs from

the conventional approach, where enantiomers are distinguished by a single pseudoscalar

such as optical rotation or circular dichroism. The values of such characteristics are

typically very small and can be zero for chiral objects. An example of such characteristics

was incorporated in the phase of complex em-chirality. As it is seen from Fig. (7.3),

the handedness part of complex em-chirality (the real part of 𝜒𝑐 ) is at least 3 orders of

magnitude smaller than the corresponding scalar em-chirality (the absolute value of 𝜒𝑐 ).

This implies that the contribution of the selected pseudoscalar property to the chirality of

the object may have very low significance for this concrete system. In fact, the handedness

part of the computed 𝜒𝑐 is smaller than the 70’th component of the chirality signature ®𝜒𝑠 .

64



7.3 Chirality signature

Figure 7.5: First 70 components of the chirality signature for the chiral unhanded

configuration 𝑇𝑢 , corresponding to the point with ℜ(𝜒𝑐) = 0 in Fig. (7.3b).

The chirality signature of its enantiomer 𝑇𝑢 has components negative to the

ones of 𝑇𝑢 . The chirality signature is able to distinguish both enantiomers,

while the complex em-chirality has the same value for them both.

The proposed chirality signature, on the other hand, provides the complete description,

as defined by Eqs. (7.38)-(7.40), and decomposes the scalar em-chirality into its pseudoscalar

components. Since the norm of chirality signature equals the scalar em-chirality, ®𝜒𝑠
provides access to the most significant pseudoscalar components. These are of the same

order of magnitude as the scalar em-chirality itself, as can be seen in Fig. (7.4). Hence,

differentiation of enantiomers using this description may be much more stable with respect

to perturbations of the geometry of the object or to uncertainties in the entries of the

T-matrix.

It should be emphasized that the chirality signature allows one to continuously distinguish

any pair of chiral enantiomers. While the conventional approach fails for the "unhanded"

state 𝑇𝑢 — the one that corresponds to the chiral unhanded stateℜ(𝜒𝑐) = 0 in Fig. (7.3b),

— chirality signature provides a satisfactory description. Since the configuration of 𝑇𝑢 is

chiral, there exists its geometric enantiomer 𝑇𝑢 , which is a different object. But both 𝑇𝑢
and 𝑇𝑢 acquire the same value of complex em-chirality

𝜒𝑐 (𝑇𝑢) = 𝜒𝑐 (𝑇𝑢), (7.52)

which means that the complex em-chirality is unable to differentiate these two enantiomers

from each other. The chirality signature, on the other hand, describes both 𝑇𝑢 and 𝑇𝑢 with

two different pseudovectors, as depicted in Fig. (7.5).
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7.4 Conformal invariance

The conformal group of transformations is the largest symmetry group that preserves

the form of Maxwell’s equations [55]. It includes the ten-parameter Poincaré group

(encompassing four space-time translations, three rotations, and three Lorentz boosts),

along with a dilation and four special conformal transformations. In this section, it is

proven that the introduced em-chirality measures, when applied to the polychromatic

T-matrix, are invariant under the whole conformal group.

The first step is to prove their Poincaré invariance. When a general Poincaré transformation

(denoted as 𝑋 ) is applied to a plane wave, the helicity 𝜆 stays unchanged [14, p. 198]:

𝑋 |𝒌 𝜆⟩ = |𝑋𝒌 𝜆⟩ 𝑒−𝑖𝛼 (𝒌,𝜆,𝑋 ), (7.53)

and the transformed plane wave acquires a complex phase with angle depending on

the initial momentum, helicity, and parameters of the transformation. Each of the four

operators 𝑇 𝜆𝜆
′
also transforms independently and without changing their singular values:

𝑇 𝜆𝜆
′
=
∑︁
𝑘

𝜎𝑘 |𝜓𝑘⟩ ⟨𝜙𝑘 | →
∑︁
𝑘

𝜎𝑘𝑋 |𝜓𝑘⟩ ⟨𝜙𝑘 |𝑋 † =
∑︁
𝑘

𝜎𝑘 |𝜓 ′
𝑘
⟩ ⟨𝜙′

𝑘
| . (7.54)

Here, |𝜓 ′
𝑘
⟩ = 𝑋 |𝜓𝑘⟩ and |𝜙′

𝑘
⟩ = 𝑋 |𝜙𝑘⟩ constitute new orthonormal vector families, which

follow from the unitarity of 𝑋 . Since the scalar em-chirality (7.6), the complex em-chirality

(7.30), and the chirality signature (7.45) are defined in terms of singular values, they are all

invariant under the Poincaré transformations.

To prove the conformal invariance, one may use a statement proven in [56]. There,

it is shown that the conformal group, when acting in the massless unitary irreducible

representation of the Poincaré group, is represented unitarily as well. Moreover, the

generators of dilation and special conformal transformations can be written in terms of

generators of the Poincaré group (the equations are reproduced from the article without

any changes):

𝐷 =
1

2

[𝑃0𝑃𝑘/𝑃2, 𝐽0𝑘]+ (7.55)

𝐾0 =
1

2

[𝑃0/𝑃2, 𝐽0𝑘 𝐽0𝑘 + Λ2 − 1/2]+ (7.56)

𝐾𝑖 =
1

2

[𝑃0/𝑃2, [𝐽0𝑘 , 𝐽𝑖𝑘]+]+ −
1

2

[𝑃𝑖/𝑃2, 𝐽0𝑘 𝐽0𝑘 + Λ2 − 1/2]+, (7.57)

where the summation over 𝑘 = 1, 2, 3 is implied, 𝑃𝜇 and 𝐽𝜇𝜈 are generators of the Poincaré

group, Λ is the helicity operator, and [·, ·]+ denotes the anti-commutator.

The helicity operator Λ commutes with all elements of the Poincaré group, and so, based

on Eqs. (7.55)-(7.57), it also commutes with all the conformal generators. This implies that

helicity remains unchanged by conformal transformations. Since the singular values of

𝑇 𝜆𝜆
′
are unchanged by the unitary conformal transformations, one concludes that all the

defined em-chirality measures are conformally invariant.

For any object and its T-matrix, the values of 𝜒 (𝑇 ), 𝜒𝑐 (𝑇 ), and ®𝜒𝑠 (𝑇 ) remain the same,

no matter how the object is transformed conformally. Essentially, each ®𝜒𝑠 (𝑇 ) corresponds
to a class of objects related through conformal transformations.
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7.4 Conformal invariance

Interestingly, a combination of this discussion with the group-theoretical representation

of electromagnetic fields suggests that electromagnetic waves maintain their polarization

handedness under conformal transformations. This insight, to the best of the author’s

knowledge, hasn’t been discussed previously in the literature.

The fact that the measures of em-chirality are conformally invariant is quite unique.

Most physical properties, such as energy, momentum, and mass (except when it’s zero),

change under conformal transformations. In contrast, the em-chirality measures are

invariant under the actions of the whole conformal group. This high level of invariance

suggests a special kind of description, that focuses only on information that is inherent to

the scatterer.
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8 A new description of scattering

Here a novel approach is presented, that describes scattering via a complex-valued function

and that is equivalent to the approaches that use operators, like T- and S-matrices.

Consider a monochromatic T-matrix 𝑇
𝑗1𝑚1𝜆1

𝑗2𝑚2𝜆2

. Its values are the matrix elements of the

operator 𝑇 (𝑘):

𝑇 (𝑘) =
∑︁
𝜆1=±1

∞∑︁
𝑗1=1

𝑗1∑︁
𝑚1=− 𝑗1

∑︁
𝜆2=±1

∞∑︁
𝑗2=1

𝑗2∑︁
𝑚2=− 𝑗2

𝑇
𝑗1𝑚1𝜆1

𝑗2𝑚2𝜆2

(𝑘) |𝑘 𝑗1𝑚1𝜆1⟩ ⟨𝑘 𝑗2𝑚2𝜆2 | . (8.1)

This operator acts in the spaces of irreducible representations of the 3D Euclidean group

[15], with representations labeled with helicity 𝜆 = ±1 and a wave number 𝑘 . Since

the Poincaré group contains the 3D Euclidean group, most of the properties of the

representations coincide. One difference between kets |𝑘 𝑗𝑚𝜆⟩ (written the same for both

groups) is that in the Poincaré group 𝑘 labels basis vectors inside a representation, while in

the Euclidean group 𝑘 labels whole representation spaces. This implies the normalization

for the Poincaré group to be

⟨𝑘 𝑗𝑚𝜆 |𝑘′ 𝑗 ′𝑚′𝜆⟩ = 1

𝑘
𝛿 (𝑘 − 𝑘′)𝛿 𝑗 𝑗 ′𝛿𝑚𝑚′, (8.2)

while the normalization of kets in the Euclidean group is

⟨𝑘 𝑗𝑚𝜆 |𝑘 𝑗 ′𝑚′𝜆⟩ = 𝛿 𝑗 𝑗 ′𝛿𝑚𝑚′ . (8.3)

Setting 𝑘 = 𝑘′ in Eq. (8.2) produces infinity 𝛿 (0) which is not present in Eq. (8.3).

Normalization from Eq. (8.3) is used throughout this chapter. The rules for translation,

rotation, parity, as well as for change between angular momentum and plane wave basis

are the same in spaces of irreducible representations for both groups.

The idea of the presented method is to decompose 𝑇 into the actions of the suitable

symmetry group. For the monochromatic T-matrix, this is the 3D Euclidean group extended

with parity, and for the polychromatic T-matrix, this would be the Poincaré group extended

with parity. Here, the monochromatic case is investigated. The decomposition inside each

irreducible representation is to be found in the following form:

𝑇 =

∫
𝑑𝑔 𝑓 (𝑔)𝑈 (𝑔), (8.4)

where𝑈 (𝑔) is the action of the group element and 𝑓 (𝑔) is the coefficient of the decomposition

and 𝑑𝑔 is the invariant measure on the group manifold. In the current case, the group is
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8 A new description of scattering

the 3D Euclidean group extended with parity. The decomposition of the monochromatic

T-matrix is searched in the form

𝑇 (𝑘) =
∑︁
𝜆=±1

∫
𝑑𝒂

∫
𝑑𝛀 𝑓 𝑘𝜆

0
(𝒂,𝛀)𝑇 (𝒂)𝑅(𝛀)

+
∑︁
𝜆=±1

∫
𝑑𝒂

∫
𝑑𝛀 𝑓 𝑘𝜆

1
(𝒂,𝛀)𝑇 (𝒂)𝑅(𝛀)𝐼𝑠, (8.5)

with translation operator 𝑇 (𝒂), where bar is used to avoid confusion with the T-matrix

𝑇 and 𝒂 is the vector of translation. 𝑅(𝛀) = 𝑅(𝛼, 𝛽,𝛾) is the rotation operator and 𝐼𝑠
is the parity operator. For notational brevity, three Euler angles are parametrized with

𝛀 = (𝛼, 𝛽,𝛾), and ∫
𝑑3
𝛀 ≔

∫
2𝜋

0

𝑑𝛼

∫
1

−1

𝑑 (cos𝜃 )
∫

2𝜋

0

𝑑𝛾 . (8.6)

The parity operator in the decomposition Eq. (8.5) is required to account for the ability of

the scatterer to change the polarization handedness of the incident field since no rotation

or translation can change it. This decomposition will be connected to the operator, written

in the form

𝑇 (𝑘) =
∑︁
𝜆=±1

∞∑︁
𝑗1=1

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=1

𝑗2∑︁
𝑚2=− 𝑗2

𝑇
𝑗1𝑚1𝜆

𝑗2𝑚2𝜆
(𝑘) |𝑘 𝑗1𝑚1𝜆⟩ ⟨𝑘 𝑗2𝑚2𝜆 | (8.7)

+
∑︁
𝜆=±1

∞∑︁
𝑗1=1

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=1

𝑗2∑︁
𝑚2=− 𝑗2

𝑇
𝑗1𝑚1𝜆

𝑗2𝑚2−𝜆 (𝑘) |𝑘 𝑗1𝑚1𝜆⟩ ⟨𝑘 𝑗2𝑚2 − 𝜆 | , (8.8)

which separates it into a part that preserves the helicity of the incident field and a part

that changes it.

The decomposition coefficients 𝑓 𝑘𝜆
0

(𝒂,𝛀), 𝑓 𝑘𝜆
0

(𝒂,𝛀) in Eq. (8.5) are called scattering

functions and it will be shown that they are bijectively connected to the matrix elements

𝑇
𝑗1𝑚1𝜆

𝑗2𝑚2𝜆
(𝑘) and 𝑇 𝑗1𝑚1𝜆

𝑗2𝑚2−𝜆 (𝑘), correspondingly. This follows from a generalization of the Peter-

Weyl theorem to the 3D Euclidean group, which is proven in the next section. It consists

of the orthogonality and completeness of irreducible functions

⟨𝑘 𝑗1𝑚1𝜆 |𝑇 (𝒂)𝑅(𝛀) |𝑘 𝑗2𝑚2𝜆⟩ ≡ [𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆

𝑘 𝑗2𝑚2𝜆
. (8.9)

Here 𝑘 and 𝜆 hold a special place since they are labels of the irreducible representations

and not of the basis vectors like 𝑗 and𝑚. The latter can be changed by the actions of the

Euclidean group, while 𝑘 and 𝜆 can not.

The orthogonality property will be proven to be

1

(2𝜋)4

∫
𝑑3𝒂

∫
𝑑3
𝛀 [𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆

𝑘 𝑗2𝑚2𝜆
[𝑇 (𝒂)𝑅(𝛀)]𝑘

′ 𝑗 ′
1
𝑚′

1
𝜆′∗

𝑘 ′ 𝑗 ′
2
𝑚′

2
𝜆′

=
1

𝑘2
𝛿 (𝑘 − 𝑘′)𝛿𝜆𝜆′𝛿 𝑗1 𝑗 ′

1

𝛿𝑚1𝑚
′
1

𝛿 𝑗2 𝑗 ′
2

𝛿𝑚2𝑚
′
2

(8.10)
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8.1 Orthogonality in 𝐸3

while the completeness statement is

∫ ∞

0

𝑑𝑘 𝑘2

∞∑︁
𝜆=−∞

∞∑︁
𝑗1=|𝜆 |

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=|𝜆 |

𝑗2∑︁
𝑚2=− 𝑗2

[𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆

𝑘 𝑗2𝑚2𝜆
[𝑇 (𝒂′)𝑅(𝛀′)]𝑘 𝑗1𝑚1𝜆∗

𝑘 𝑗2𝑚2𝜆

= (2𝜋)4𝛿 (3) (𝒂 − 𝒂′)𝛿 (3) (𝛀 − 𝛀
′). (8.11)

The statements follow from the action of the group in the irreducible representation spaces

[14]:

⟨𝑘 𝑗1𝑚1𝜆 |𝑅(𝛀) |𝑘 𝑗2𝑚2𝜆⟩ = 𝛿 𝑗1 𝑗2𝐷
𝑗2
𝑚1𝑚2

(𝛀) (8.12)

⟨𝑘 𝑗1𝑚1𝜆 |𝑇𝑧 (𝑎) |𝑘 𝑗2𝑚2𝜆⟩ = 𝛿𝑚1𝑚2

√︂
2 𝑗1 + 1

2 𝑗2 + 1

𝑗2+ 𝑗1∑︁
𝑙=| 𝑗2− 𝑗1 |

(2𝑙 + 1) (−𝑖)𝑙 𝑗𝑙 (𝑎𝑘)𝐶 𝑗2𝑚2

𝑗1𝑚2,𝑙0
𝐶
𝑗2𝜆

𝑗1𝜆,𝑙0
, (8.13)

with 𝑇 (𝒂) = 𝑅(𝒂)𝑇𝑧 (𝑎)𝑅†(𝒂).

8.1 Orthogonality in 𝐸3

The proof of orthogonality starts with integration over the Euler angles 𝛀:

1

(2𝜋)4

∫
𝑑3𝒂

∫
𝑑3
𝛀 [𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆

𝑘 𝑗2𝑚2𝜆
[𝑇 (𝒂)𝑅(𝛀)]𝑘

′ 𝑗 ′
1
𝑚′

1
𝜆′∗

𝑘 ′ 𝑗 ′
2
𝑚′

2
𝜆′

=
1

(2𝜋)4

∑︁
𝑗 𝑗 ′𝑚𝑚′

∫
𝑑3𝒂

∫
𝑑3
𝛀𝑇 (𝒂)𝑘 𝑗1𝑚1𝜆

𝑘 𝑗𝑚𝜆
𝑅(𝛀)𝑘 𝑗𝑚𝜆

𝑘 𝑗2𝑚2𝜆
𝑇 (𝒂)𝑘

′ 𝑗 ′
1
𝑚′

1
𝜆′∗

𝑘 ′ 𝑗 ′𝑚′𝜆′ 𝑅(𝛀)𝑘
′ 𝑗 ′𝑚′𝜆′∗
𝑘 ′ 𝑗 ′

2
𝑚′

2
𝜆′

=
1

(2𝜋)4

∑︁
𝑗 𝑗 ′𝑚𝑚′

∫
𝑑3𝒂

∫
𝑑3
𝛀𝑇 (𝒂)𝑘 𝑗1𝑚1𝜆

𝑘 𝑗𝑚𝜆
𝑇 (𝒂)𝑘

′ 𝑗 ′
1
𝑚′

1
𝜆′∗

𝑘 ′ 𝑗 ′𝑚′𝜆′ 𝛿 𝑗2 𝑗𝛿 𝑗
′
2
𝑗 ′𝐷

𝑗2
𝑚𝑚2

(𝛀)𝐷 𝑗 ′
2

𝑚′𝑚′
2

(𝛀)∗

=
1

(2𝜋)4

∑︁
𝑚𝑚′

∫
𝑑3𝒂𝑇 (𝒂)𝑘 𝑗1𝑚1𝜆

𝑘 𝑗2𝑚𝜆
𝑇 (𝒂)𝑘

′ 𝑗 ′
1
𝑚′

1
𝜆′∗

𝑘 ′ 𝑗 ′
2
𝑚′𝜆′

8𝜋2

2 𝑗2 + 1

𝛿 𝑗2 𝑗 ′
2

𝛿𝑚𝑚′𝛿𝑚2𝑚
′
2

=
𝛿 𝑗2 𝑗 ′

2

𝛿𝑚2𝑚
′
2

2𝜋2(2 𝑗2 + 1)
∑︁
𝑚

∫
𝑑3𝒂𝑇 (𝒂)𝑘 𝑗1𝑚1𝜆

𝑘 𝑗2𝑚𝜆
𝑇 (𝒂)𝑘

′ 𝑗 ′
1
𝑚′

1
𝜆′∗

𝑘 ′ 𝑗2𝑚𝜆′
. (8.14)

Here, the orthogonality of Wigner D-matrices was used when integrating over 𝛀. To

evaluate the remaining integral, it is most convenient to switch to the plane wave basis

for the translation operator using the connection

|𝑘 𝑗𝑚𝜆⟩ =
√︂

2 𝑗 + 1

4𝜋

∫
2𝜋

0

𝑑𝜙

∫
1

−1

𝑑 (cos𝜃 ) 𝐷 𝑗

𝑚𝜆
(𝜙, 𝜃, 0)∗ |𝒌𝜆⟩ . (8.15)
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8 A new description of scattering

The action of the translation on a plane wave is a multiplication by a complex exponent:

⟨𝑘 𝑗1𝑚1𝜆 |𝑇 (𝒂) |𝑘 𝑗2𝑚2𝜆⟩ =

=

√︂
2 𝑗1 + 1

4𝜋

√︂
2 𝑗2 + 1

4𝜋

∫
𝑑2 ˆ𝒌1

∫
𝑑2 ˆ𝒌2𝐷

𝑗1
𝑚1𝜆

( ˆ𝒌1)𝐷 𝑗2
𝑚2𝜆

( ˆ𝒌2)∗ ⟨𝒌1𝜆 |𝑇 (𝒂) |𝒌2𝜆⟩

=

√︂
2 𝑗1 + 1

4𝜋

√︂
2 𝑗2 + 1

4𝜋

∫
𝑑2 ˆ𝒌1

∫
𝑑2 ˆ𝒌2𝐷

𝑗1
𝑚1𝜆

( ˆ𝒌1)𝐷 𝑗2
𝑚2𝜆

( ˆ𝒌2)∗𝑒−𝑖𝒂·𝒌1𝛿 (2) ( ˆ𝒌1 − ˆ𝒌2)

=

√︂
2 𝑗1 + 1

4𝜋

√︂
2 𝑗2 + 1

4𝜋

∫
𝑑2 ˆ𝒌 𝐷 𝑗1

𝑚1𝜆
( ˆ𝒌)𝐷 𝑗2

𝑚2𝜆
( ˆ𝒌)∗𝑒−𝑖𝒂·𝒌 . (8.16)

The integral from Eq. (8.14) becomes, using orthogonality of complex exponentials:

∫
𝑑3𝒂𝑇 (𝒂)𝑘 𝑗1𝑚1𝜆

𝑘 𝑗2𝑚𝜆
𝑇 (𝒂)𝑘

′ 𝑗 ′
1
𝑚′

1
𝜆′∗

𝑘 ′ 𝑗2𝑚𝜆′
=

√︂
2 𝑗1 + 1

4𝜋

√︂
2 𝑗2 + 1

4𝜋

√︂
2 𝑗 ′

1
+ 1

4𝜋

√︂
2 𝑗2 + 1

4𝜋

×
∫

𝑑3𝒂

∫
𝑑2 ˆ𝒌 𝐷 𝑗1

𝑚1𝜆
( ˆ𝒌)𝐷 𝑗2

𝑚𝜆
( ˆ𝒌)∗𝑒−𝑖𝒂·𝒌

∫
𝑑2 ˆ𝒌′𝐷

𝑗 ′
1

𝑚′
1
𝜆′ ( ˆ𝒌′)∗𝐷 𝑗2

𝑚𝜆′ ( ˆ𝒌′)𝑒𝑖𝒂·𝒌′

=
2 𝑗2 + 1

4𝜋

√︂
2 𝑗1 + 1

4𝜋

√︂
2 𝑗 ′

1
+ 1

4𝜋

∫
𝑑2 ˆ𝒌 𝐷 𝑗1

𝑚1𝜆
( ˆ𝒌)𝐷 𝑗2

𝑚𝜆
( ˆ𝒌)∗

×
∫

𝑑2 ˆ𝒌′𝐷
𝑗 ′
1

𝑚′
1
𝜆′ ( ˆ𝒌′)∗𝐷 𝑗2

𝑚𝜆′ ( ˆ𝒌′) (2𝜋)3𝛿 (3) (𝒌 − 𝒌′)

=
𝜋

2𝑘2
𝛿 (𝑘 − 𝑘′) (2 𝑗2 + 1)

√︁
2 𝑗1 + 1

√︃
2 𝑗 ′

1
+ 1

∫
𝑑2 ˆ𝒌 𝐷 𝑗1

𝑚1𝜆
( ˆ𝒌)𝐷 𝑗2

𝑚𝜆
( ˆ𝒌)∗𝐷 𝑗 ′

1

𝑚′
1
𝜆′ ( ˆ𝒌)∗𝐷 𝑗2

𝑚𝜆′ ( ˆ𝒌).

(8.17)

The remaining integral of four Wigner D-functions can be computed via reduction to

the integral over three Wigner D-functions. In general,

∫
𝑑3
𝛀𝐷

𝑗1
𝑚1𝑛1

(𝛀)𝐷 𝑗2
𝑚2𝑛2

(𝛀)𝐷 𝑗3
𝑚3𝑛3

(𝛀)𝐷 𝑗4
𝑚4𝑛4

(𝛀) =

=
∑︁
𝐽

(2𝐽 + 1) (−1)−𝑚1−𝑚2−𝑛1−𝑛2

(
𝑗1 𝑗2 𝐽

𝑚1 𝑚2 −𝑚1 −𝑚2

) (
𝑗1 𝑗2 𝐽

𝑛1 𝑛2 −𝑛1 − 𝑛2

)
×
∫

𝑑3
𝛀𝐷

𝐽
𝑚1+𝑚2,𝑛1+𝑛2

(𝛀)𝐷 𝑗3
𝑚3𝑛3

(𝛀)𝐷 𝑗4
𝑚4𝑛4

(𝛀)

= 8𝜋2

∑︁
𝐽

(2𝐽 + 1) (−1)−𝑚1−𝑚2−𝑛1−𝑛2

(
𝑗1 𝑗2 𝐽

𝑚1 𝑚2 −𝑚1 −𝑚2

) (
𝑗1 𝑗2 𝐽

𝑛1 𝑛2 −𝑛1 − 𝑛2

)
×
(
𝑗3 𝑗4 𝐽

𝑚3 𝑚4 −𝑚3 −𝑚4

) (
𝑗3 𝑗4 𝐽

𝑛3 𝑛4 −𝑛3 − 𝑛4

)
. (8.18)
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Applying this idea to the integral in Eq. (8.17) gives∫
𝑑2 ˆ𝒌 𝐷 𝑗2

𝑚𝜆′ ( ˆ𝒌)𝐷 𝑗2
𝑚𝜆

( ˆ𝒌)∗𝐷 𝑗1
𝑚1𝜆

( ˆ𝒌) 𝐷 𝑗 ′
1

𝑚′
1
𝜆′ ( ˆ𝒌)∗ =

= (−1)𝑚−𝜆 (−1)𝑚′
1
−𝜆′

∫
𝑑2 ˆ𝒌 𝐷 𝑗2

𝑚𝜆′ ( ˆ𝒌)𝐷 𝑗2
−𝑚−𝜆 ( ˆ𝒌)𝐷 𝑗1

𝑚1𝜆
( ˆ𝒌)𝐷 𝑗 ′

1

−𝑚′
1
−𝜆′ ( ˆ𝒌) (8.19)

= (−1)𝑚−𝜆 (−1)𝑚′
1
−𝜆′

4𝜋
∑︁
𝐽

(2𝐽 + 1) (−1)−𝜆′+𝜆
(
𝑗2 𝑗2 𝐽

𝑚 −𝑚 0

) (
𝑗2 𝑗2 𝐽

𝜆′ −𝜆 −𝜆′ + 𝜆

)
×
(
𝑗1 𝑗 ′

1
𝐽

𝑚1 −𝑚′
1

−𝑚1 +𝑚′
1

) (
𝑗1 𝑗 ′

1
𝐽

𝜆 −𝜆′ −𝜆 + 𝜆′
)
. (8.20)

Here, the fact that the sum of all second lower indices in Eq. (8.19) vanishes, 𝜆−𝜆+𝜆′−𝜆′ =
0, allows one to apply the formula analogous to Eq. (8.18) (this can be seen by writing it in

terms of small Wigner D-matrices). Ultimately, the sum of Eq. (8.20) over𝑚 is of interest

(see Eq. (8.14)). Using ∑︁
𝑚

(−1)𝑚
(
𝑗2 𝑗2 𝐽

𝑚 −𝑚 0

)
= (−1) 𝑗2

√︁
2 𝑗2 + 1𝛿 𝐽0 (8.21)

one proceeds, taking into account selection rules for the Wigner 3j-symbols:∑︁
𝑚

∫
𝑑2 ˆ𝒌 𝐷 𝑗2

𝑚𝜆′ ( ˆ𝒌)𝐷 𝑗2
𝑚𝜆

( ˆ𝒌)∗𝐷 𝑗1
𝑚1𝜆

( ˆ𝒌) 𝐷 𝑗 ′
1

𝑚′
1
𝜆′ ( ˆ𝒌)∗ =

= 4𝜋 𝛿𝜆𝜆′𝛿 𝑗1 𝑗 ′
1

𝛿𝑚1𝑚
′
1

(−1)𝑚1 (−1) 𝑗2
√︁

2 𝑗2 + 1

(
𝑗2 𝑗2 0

𝜆 −𝜆 0

) (
𝑗1 𝑗1 0

𝑚1 −𝑚1 0

) (
𝑗1 𝑗1 0

𝜆 −𝜆 0

)
= 4𝜋 𝛿𝜆𝜆′𝛿 𝑗1 𝑗 ′

1

𝛿𝑚1𝑚
′
1

(−1)𝑚1 (−1) 𝑗2
√︁

2 𝑗2 + 1

(−1) 𝑗2−𝜆
√

2 𝑗2 + 1

(−1) 𝑗1−𝑚1

√
2 𝑗1 + 1

(−1) 𝑗1−𝜆
√

2 𝑗1 + 1

= 𝛿𝜆𝜆′𝛿 𝑗1 𝑗 ′
1

𝛿𝑚1𝑚
′
1

4𝜋

2 𝑗1 + 1

, (8.22)

where in the second step the identity(
𝑗 𝑗 0

𝑚 −𝑚 0

)
=

(−1) 𝑗−𝑚
√

2 𝑗 + 1

(8.23)

was used.

Finally, the substitution of Eq. (8.22) into Eq. (8.17) and into Eq. (8.14) gives

1

(2𝜋)4

∫
𝑑3𝒂

∫
𝑑3
𝛀 [𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆

𝑘 𝑗2𝑚2𝜆
[𝑇 (𝒂)𝑅(𝛀)]𝑘

′ 𝑗 ′
1
𝑚′

1
𝜆′∗

𝑘 ′ 𝑗 ′
2
𝑚′

2
𝜆′

=
𝛿 𝑗2 𝑗 ′

2

𝛿𝑚2𝑚
′
2

2𝜋2(2 𝑗2 + 1)
𝜋

2𝑘2
𝛿 (𝑘 − 𝑘′) (2 𝑗2 + 1)

√︁
2 𝑗1 + 1

√︃
2 𝑗 ′

1
+ 1𝛿𝜆𝜆′𝛿 𝑗1 𝑗 ′

1

𝛿𝑚1𝑚
′
1

4𝜋

2 𝑗1 + 1

=
1

𝑘2
𝛿 (𝑘 − 𝑘′)𝛿𝜆𝜆′𝛿 𝑗1 𝑗 ′

1

𝛿 𝑗2 𝑗 ′
2

𝛿𝑚1𝑚
′
1

𝛿𝑚2𝑚
′
2

(8.24)
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8 A new description of scattering

8.2 Completeness in 𝐸3

This section is devoted to the proof of the formula

∞∑︁
𝜆=−∞

∫ ∞

0

𝑑𝑘 𝑘2

∞∑︁
𝑗1=|𝜆 |

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=|𝜆 |

𝑗2∑︁
𝑚2=− 𝑗2

[𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆

𝑘 𝑗2𝑚2𝜆
[𝑇 (𝒂′)𝑅(𝛀′)]𝑘 𝑗1𝑚1𝜆∗

𝑘 𝑗2𝑚2𝜆

= (2𝜋)4𝛿 (3) (𝒂 − 𝒂′)𝛿 (3) (𝛀 − 𝛀
′). (8.25)

As in the previous section, it is convenient to use the plane wave basis

|𝑘 𝑗𝑚𝜆⟩ =
√︂

2 𝑗 + 1

4𝜋

∫
2𝜋

0

𝑑𝜙

∫
1

−1

𝑑 (cos𝜃 ) 𝐷 𝑗

𝑚𝜆
(𝜙, 𝜃, 0)∗ |𝒌𝜆⟩ , (8.26)

since the action of the translation on a plane wave is just a multiplication by an exponent:

⟨𝑘 𝑗1𝑚1𝜆 |𝑇 (𝒂)𝑅(𝛀) |𝑘 𝑗2𝑚2𝜆⟩ =
√︂

2 𝑗1 + 1

4𝜋

∫
𝑑2 ˆ𝒌1𝐷

𝑗1
𝑚1𝜆1

( ˆ𝒌1) ⟨𝒌1𝜆 |𝑇 (𝒂)𝑅(𝛀) |𝑘 𝑗2𝑚2𝜆⟩

=

√︂
2 𝑗1 + 1

4𝜋

∫
𝑑2 ˆ𝒌1𝐷

𝑗1
𝑚1𝜆1

( ˆ𝒌1) 𝑒𝑖𝒂·𝒌1 ⟨𝒌1𝜆 |𝑅(𝛀) |𝑘 𝑗2𝑚2𝜆⟩ ,

(8.27)

with |𝒌1 | = 𝑘 . The left hand side of Eq. (8.25) then becomes

∑︁
𝜆

∫ ∞

0

𝑑𝑘 𝑘2

∑︁
𝑗1𝑚1

∑︁
𝑗2𝑚2

[𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆

𝑘 𝑗2𝑚2𝜆
[𝑇 (𝒂′)𝑅(𝛀′)]𝑘 𝑗1𝑚1𝜆∗

𝑘 𝑗2𝑚2𝜆
=

=
∑︁
𝜆

∫ ∞

0

𝑑𝑘 𝑘2

∑︁
𝑗1𝑚1

∑︁
𝑗2𝑚2

2 𝑗1 + 1

4𝜋

∫
𝑑2 ˆ𝒌1𝐷

𝑗1
𝑚1𝜆1

( ˆ𝒌1)𝑒𝑖𝒂·𝒌1 ⟨𝒌1𝜆 |𝑅(𝛀) |𝑘 𝑗2𝑚2𝜆⟩

×
∫
𝑑2 ˆ𝒌′

1
𝐷
𝑗1
𝑚1𝜆1

( ˆ𝒌′
1
)∗𝑒−𝑖𝒂′·𝒌′1 ⟨𝒌′

1
𝜆 |𝑅(𝛀′) |𝑘 𝑗2𝑚2𝜆⟩∗

=
∑︁
𝜆

∫ ∞

0

𝑑𝑘 𝑘2

∑︁
𝑗2𝑚2

∫
𝑑2 ˆ𝒌1 𝑒

𝑖𝒂·𝒌1 ⟨𝒌1𝜆 |𝑅(𝛀) |𝑘 𝑗2𝑚2𝜆⟩ 𝑒−𝑖𝒂
′·𝒌1 ⟨𝒌1𝜆 |𝑅(𝛀′) |𝑘 𝑗2𝑚2𝜆⟩∗

=

∫
𝑑3𝒌1 𝑒

𝑖 (𝒂−𝒂′)·𝒌1

∑︁
𝜆

∑︁
𝑗2𝑚2

⟨𝒌1𝜆 |𝑅(𝛀) |𝑘 𝑗2𝑚2𝜆⟩ ⟨𝒌1𝜆 |𝑅(𝛀′) |𝑘 𝑗2𝑚2𝜆⟩∗ , (8.28)

where the completeness of Wigner D-matrices was used to eliminate the integration over

ˆ𝒌2. Now, the summation part is written completely in the angular momentum basis, and

74



8.3 Scattering function

the completeness of Wigner D-matrices is applied once again:∑︁
𝜆

∑︁
𝑗2𝑚2

⟨𝒌1𝜆 |𝑅(𝛀) |𝑘 𝑗2𝑚2𝜆⟩ ⟨𝒌1𝜆 |𝑅(𝛀′) |𝑘 𝑗2𝑚2𝜆⟩∗ =

=
∑︁
𝜆

∑︁
𝑗2𝑚2

∑︁
𝑗𝑚

∑︁
𝑗 ′𝑚′

2 𝑗 + 1

4𝜋
𝐷
𝑗

𝑚𝜆
( ˆ𝒌1)∗𝐷 𝑗 ′

𝑚′𝜆 ( ˆ𝒌1) ⟨𝑘 𝑗𝑚𝜆 |𝑅(𝛀) |𝑘 𝑗2𝑚2𝜆⟩ ⟨𝑘 𝑗 ′𝑚′𝜆 |𝑅(𝛀′) |𝑘 𝑗2𝑚2𝜆⟩∗

=
∑︁
𝜆

∑︁
𝑗2𝑚2

∑︁
𝑚𝑚′

2 𝑗 + 1

4𝜋
𝐷
𝑗2
𝑚𝜆

( ˆ𝒌1)∗𝐷 𝑗2
𝑚′𝜆 ( ˆ𝒌1)𝐷 𝑗2

𝑚𝑚2
(𝛀)𝐷 𝑗2

𝑚′𝑚2

(𝛀′)∗

=
∑︁
𝜆

∑︁
𝑗2𝑚2

2 𝑗 + 1

4𝜋
[𝑅−1( ˆ𝒌1)𝑅(𝛀′)] 𝑗2

𝜆𝑚2

[𝑅−1( ˆ𝒌1)𝑅(𝛀′)] 𝑗2∗
𝜆𝑚2

=
∑︁
𝜆

∑︁
𝑗2𝑚2

2 𝑗 + 1

4𝜋
𝐷
𝑗2
𝜆𝑚2

(𝚪)𝐷 𝑗2∗
𝜆𝑚2

(𝚪′) = 2𝜋 𝛿 (3) (𝚪 − 𝚪
′). (8.29)

Here, the fact was used that the composition of two rotations is another rotation:

𝑅(𝚪) ≔ 𝑅−1( ˆ𝒌1)𝑅(𝛀) (8.30)

𝑅(𝚪′) ≔ 𝑅−1( ˆ𝒌1)𝑅(𝛀′), (8.31)

Since the Dirac delta 𝛿 (3) (𝚪 − 𝚪
′) is defined with respect to the measure that is invariant

under rotations, Eq. (8.31) allows to write it as

𝛿 (3) (𝚪 − 𝚪
′) = 𝛿 (3) (𝛀 − 𝛀

′) (8.32)

Returning to Eq. (8.28) gives the final result:

∞∑︁
𝜆=−∞

∫ ∞

0

𝑑𝑘 𝑘2

∞∑︁
𝑗1=|𝜆 |

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=|𝜆 |

𝑗2∑︁
𝑚2=− 𝑗2

[𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆

𝑘 𝑗2𝑚2𝜆
[𝑇 (𝒂′)𝑅(𝛀′)]𝑘 𝑗1𝑚1𝜆∗

𝑘 𝑗2𝑚2𝜆
=

=

∫
𝑑3𝒌1 𝑒

𝑖 (𝒂−𝒂′)·𝒌1
2𝜋 𝛿 (3) (𝛀 − 𝛀

′)

= (2𝜋)4𝛿 (3) (𝒂 − 𝒂′)𝛿 (3) (𝛀 − 𝛀
′). (8.33)

8.3 Scattering function

Now, one is ready to decompose the T-matrix into the actions of the group. The proven

orthogonality and completeness relations allow to introduce the projector formula

|𝑘 𝑗1𝑚1𝜆⟩ ⟨𝑘 𝑗2𝑚2𝜆 | =
1

(2𝜋)4

∫
𝑑3𝒂

∫
𝑑3
𝛀 [𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆∗

𝑘 𝑗2𝑚2𝜆
𝑇 (𝒂)𝑅(𝛀), (8.34)
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8 A new description of scattering

which is then used to re-write the T-operator as∑︁
𝜆=±1

∞∑︁
𝑗1=1

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=1

𝑗2∑︁
𝑚2=− 𝑗2

𝑇
𝑗1𝑚1𝜆

𝑗2𝑚2𝜆
(𝑘) |𝑘 𝑗1𝑚1𝜆⟩ ⟨𝑘 𝑗2𝑚2𝜆 |

=
∑︁
𝜆=±1

∞∑︁
𝑗1=1

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=1

𝑗2∑︁
𝑚2=− 𝑗2

𝑇
𝑗1𝑚1𝜆

𝑗2𝑚2𝜆
(𝑘) 1

(2𝜋)4

∫
𝑑3𝒂

∫
𝑑3
𝛀 [𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆∗

𝑘 𝑗2𝑚2𝜆
𝑇 (𝒂)𝑅(𝛀)

=
1

(2𝜋)4

∫
𝑑3𝒂

∫
𝑑3
𝛀

∑︁
𝜆=±1

∞∑︁
𝑗1=1

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=1

𝑗2∑︁
𝑚2=− 𝑗2

𝑇
𝑗1𝑚1𝜆

𝑗2𝑚2𝜆
(𝑘) [𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆∗

𝑘 𝑗2𝑚2𝜆
𝑇 (𝒂)𝑅(𝛀)

=
∑︁
𝜆=±1

∫
𝑑3𝒂

∫
𝑑3
𝛀 𝑓 𝜆𝑘

0
(𝒂,𝛀) 𝑅(𝛀)𝑇 (𝒂), (8.35)

with

𝑓 𝜆𝑘
0

(𝒂,𝛀) = 1

(2𝜋)4

∞∑︁
𝑗1=1

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=1

𝑗2∑︁
𝑚2=− 𝑗2

𝑇
𝑗1𝑚1𝜆

𝑗2𝑚2𝜆
(𝑘) [𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆∗

𝑘 𝑗2𝑚2𝜆

=
1

(2𝜋)4
Tr

[
𝑇 𝜆𝜆 (𝑘)𝑅†(𝛀)𝑇 †(𝒂)

]
, (8.36)

where Tr stands for the trace of the matrix. Analogically, the part of the T-matrix that

changes helicity of the incident field may be decomposed as:∑︁
𝜆=±1

∞∑︁
𝑗1=1

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=1

𝑗2∑︁
𝑚2=− 𝑗2

𝑇
𝑗1𝑚1𝜆

𝑗2𝑚2−𝜆 (𝑘) |𝑘 𝑗1𝑚1𝜆⟩ ⟨𝑘 𝑗2𝑚2 − 𝜆 |

=
∑︁
𝜆=±1

∞∑︁
𝑗1=1

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=1

𝑗2∑︁
𝑚2=− 𝑗2

𝑇
𝑗1𝑚1𝜆

𝑗2𝑚2−𝜆 (𝑘) (−1) 𝑗2 |𝑘 𝑗1𝑚1𝜆⟩ ⟨𝑘 𝑗2𝑚2𝜆 | 𝐼𝑠

=
1

(2𝜋)4

∫
𝑑3𝒂

∫
𝑑3
𝛀

∑︁
𝜆=±1

∞∑︁
𝑗1=1

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=1

𝑗2∑︁
𝑚2=− 𝑗2

𝑇
𝑗1𝑚1𝜆

𝑗2𝑚2−𝜆 (𝑘) (−1) 𝑗2

× [𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆∗
𝑘 𝑗2𝑚2𝜆

𝑇 (𝒂)𝑅(𝛀)𝐼𝑠

=
∑︁
𝜆=±1

∫
𝑑3𝒂

∫
𝑑3
𝛀 𝑓 𝜆𝑘

1
(𝒂,𝛀) 𝑅(𝛀)𝑇 (𝒂)𝐼𝑠, (8.37)

with

𝑓 𝜆𝑘
1

(𝒂,𝛀) = 1

(2𝜋)4

∞∑︁
𝑗1=1

𝑗1∑︁
𝑚1=− 𝑗1

∞∑︁
𝑗2=1

𝑗2∑︁
𝑚2=− 𝑗2

𝑇
𝑗1𝑚1𝜆

𝑗2𝑚2−𝜆 (𝑘) (−1) 𝑗2 [𝑇 (𝒂)𝑅(𝛀)]𝑘 𝑗1𝑚1𝜆∗
𝑘 𝑗2𝑚2𝜆

=
1

(2𝜋)4
Tr

[
𝑇 𝜆,−𝜆 (𝑘) 𝐼𝑠 𝑅†(𝛀)𝑇 †(𝒂)

]
. (8.38)
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Completeness and orthogonality relations ensure that the T-matrix𝑇
𝑗1𝑚1𝜆1

𝑗2𝑚2𝜆2

(𝑘) is bijectively
connected to the scattering function 𝑓 𝜆𝑘𝑠 (𝛀, 𝒂). Since the T-matrix contains the complete

information that can be extracted from the object through light-matter interactions, the

scattering function contains this information as well. The fact that its domain consists of

geometrical parameters such as distances 𝒂 and angles 𝛀 may suggest an easier access to

the geometrical properties and symmetries of the object, compared to the description via

the T-matrix.

It should be noted that the scattering function of the S-matrix is almost identical to

the one computed from the T-matrix. Since both operators are connected via 𝑆 = 1 +𝑇 ,
it is enough to know the representation of the identity operator 1 in terms of the group

actions. This is a trivial question, since by definition the identity is represented via a single

point on the group manifold: the origin with 𝒂 = 0 and 𝛀 = (0, 0, 0). This means that both

versions of the scattering function, of the T- and of the S-operators, only differ in this

single point.

It is convenient to discuss the physical meaning of the scattering function within the

S-matrix formalism. In particular, Eqs. (8.35) and (8.37) suggest the following intuitive

understanding. Consider an incoming and an outgoing field in one scattering process.

If both the incoming and the outgoing fields were regular fields (with the same wave

functions), then the sums in Eqs. (8.35) and (8.37) would decompose the regularized

outgoing field as a sum of many transformed (rotated, translated and reflected) versions

of the regularized incoming field. Remarkable is, that the set of such transformations

depends only on the object and is the same for all pairs or incoming and outgoing fields.

There are enough transformations in this set to combine many transformed versions of

the incoming field, producing the correct outgoing field. Of course, this is possible due to

the fact that there are infinite ways of transforming one regular field into another one.

An illustration of the scattering function for a concrete object is given in Fig. (8.1).

The scatterer consists of three silicon spheres with radius 50 nm placed at points [0, 0, 𝑎],
[0,−𝑎, 0] and [0, 0,−𝑎], with 𝑎 = 500 nm. The scattering function 𝑓 +𝑘

0
is computed via

Eq. (8.36) from the corresponding T-matrix at wavelength 500 nm and 𝑗max = 9.

One may observe that the slice of the scattering function 𝑓 +𝑘
0

(0, 𝑦, 𝑧, 𝜋, 𝜋, 0) with 𝑘 =
2𝜋

500 nm
reflects the geometry of the cluster in the 𝑧𝑦-plane, up to the scaling by 2. Here, the

choice of the slice at 𝛼 = 𝜋 , 𝛽 = 𝜋 , 𝛾 = 0 is necessary to regain the geometric information in

the 𝑧𝑦-plane, which follows from the transformation properties of the scattering function.

To discuss the transformation properties of the scattering function, consider the transformation

of both sides of Eq. (8.4) with some group element 𝑔:

𝑈 (𝑔)𝑇𝑈 −1(𝑔) = 𝑈 (𝑔)
∫

𝑑𝑔 𝑓 (𝑔)𝑈 (𝑔)𝑈 −1(𝑔)

=

∫
𝑑𝑔 𝑓 (𝑔)𝑈 (𝑔)𝑈 (𝑔)𝑈 −1(𝑔) (8.39)

=

∫
𝑑𝑔 𝑓 (𝑔)𝑈 (𝑔𝑔𝑔−1) (8.40)

=

∫
𝑑𝑔 𝑓 (𝑔−1𝑔𝑔)𝑈 (𝑔) (8.41)
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8 A new description of scattering

Figure 8.1: Scattering function of three silicon spheres with radii 𝑟 = 50 nm. The slice of

the scattering function at specific parameters 𝑥 = 0, 𝛼 = 𝜋 , 𝛽 = 𝜋 , 𝛾 = 0 allows

to restore the geometric position of the spheres in the given plane, up to the

scaling by 2.
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where we first used the definition of 𝑈 as a representation of the group, and the fact that

𝑑𝑔 is the invariant measure of the group manifold — when substituting 𝑔−1𝑔𝑔. This leads

to the following transformation law of the scattering function under the action of the

group element 𝑔:

˜𝑓 (𝑔) = 𝑓 (𝑔−1𝑔𝑔) (8.42)

To apply this general formula to monochromatic scattering, the defining product rule

of the 3D Euclidean group is required. The product of two elements, 𝑔1 = (𝒂,Ω) and
𝑔2 = (𝒃, Γ) follows from [14, p.167]:

𝑇 (𝒂)𝑅(𝛀)𝑇 (𝒃)𝑅(𝚪) = 𝑇 (𝒂)𝑅(𝛀)𝑇 (𝒃)𝑅(𝚪) (8.43)

= 𝑇 (𝒂)𝑅(𝛀)𝑇 (𝒃)𝑅−1(𝛀)𝑅(𝛀)𝑅(𝚪) (8.44)

= 𝑇 (𝒂)𝑇 (𝑅(𝛀)𝒃)𝑅(𝛀)𝑅(𝚪) (8.45)

= 𝑇 (𝒂 + 𝑅(𝛀)𝒃)𝑅(𝚽), (8.46)

where 𝑅(Ω)𝒃 stands for the rotated vector 𝒃 in 3D space, via the well-known rotation rule

in 3D. The angles 𝚽 solve 𝑅(𝚽) = 𝑅(𝛀)𝑅(𝚪).
Now consider the product in Eq. (8.42), with pure translation of the scattering function

by 𝒙 , with 𝑔 = (𝒃, 0), while the argument of the scattering function is general 𝑔 = (𝒂,Ω).
One can show using Eq. (8.46) that

𝑓 (𝑔−1𝑔𝑔) = 𝑓 (𝒂 + 𝑅(𝛀)𝒃 − 𝒃,𝛀). (8.47)

This translation formula has a particular property: if angular arguments of the scattering

function Ω are such that 𝑅(𝛀)𝒃 − 𝒃 = −2𝒃 , then the translation of the object will be

reflected in the translation of the object’s scattering function, scaled by 2:

˜𝑓 (𝒂,𝛀) = 𝑓 (𝒂 − 2𝒃,𝛀) (8.48)

In the 𝑧𝑦-plane, the property 𝑅(𝛀)𝒃 − 𝒃 = −2𝒃 is fulfilled by angles 𝛀 = (𝜋, 𝜋, 0).
One way to understand why this specific slice of the scattering function restores the

particle’s positions is as follows: if spheres inside a cluster are sufficiently from each other,

their global T-matrix can be roughly approximated as the sum of their separate T-matrices,

disregarding their mutual interactions. Given the additivity of the scattering function in

the domain of operators, the scattering function for such a cluster can be approximated by

summing the scattering functions of individual spheres, each translated from the origin by

the corresponding displacement. Eq. (8.48) then provides the observed geometric pattern.

While this argument is relevant for clusters of distant objects, the fact that the scattering

function contains complete information about an object’s properties in light-matter

interactions suggests new potential for extracting such information from general objects as

well. At this point, two promising avenues for further explorations emerge. The first is the

application of the scattering function in imaging and inverse design. The second concerns

progress toward a deeper understanding of the Rayleigh hypothesis: the scattering function

has successfully predicted the shape of a cluster within the encompassing sphere of the

cluster, an area inaccessible to T- and S-matrix formalisms.
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9 Conclusion and outlook

Here, the main contributions are discussed, together with potential directions for further

scientific advancements that they enable.

9.1 Polychromatic T-matrix

Chapter 4 introduced a new definition for multipolar basis fields, achieved by focusing on

the unitarity behavior of their transformations under the symmetry group of 4D space-time.

This led to the unification of incoming, outgoing, and regular fields, allowing to use the

same scalar product across all three types of fields. Additionally, it was demonstrated that

incoming, outgoing, and regular fields undergo identical transformations under Lorentz

boosts. The matrix element of the Lorentz boost in the multipolar basis was derived. These

theoretical developments allowed to introduce the polychromatic T-matrix formalism

in Chapter 5. Such formalism provides a substantial extension of the well-established

monochromatic T-matrix method, now enabling the account of interactions between

electromagnetic pulses and matter, as well as the description of linear scattering scenarios

involving coupling of frequencies.

In Chapter 6, the polychromatic T-matrix method was applied to numerical simulations

of light-matter interactions involving an electromagnetic pulse and an object. The transfer

of energy and momentum between the pulse and the object was computed, considering

scenarios where the object is both at rest and in constant uniform relativistic motion. The

latter calculations were performed in both the laboratory frame and the co-moving frame

of reference, demonstrating the generality the method.

9.2 Chirality signature

In Chapter 7, a longstanding problem of chirality analysis was solved within the context of

light-matter interactions: how to continuously differentiate between any pair of enantiomers?

A concept called chirality signature was introduced, which manifests as an infinite-

dimensional pseudovector continuously defined on the set of T-matrices. It is zero if

and only if the object is electromagnetically achiral, and any two versions of a chiral object

have opposite chiral signatures. The proposed quantity provides a complete description of

electromagnetic chirality, capturing its entire infinite-dimensional nature and allowing to

consistently distinguish each member in any pair of enantiomers. It has been proven that

the chirality signature, alongside complex and scalar electromagnetic chirality measures,

remains invariant under the actions of the conformal group. Historically, exploring

concepts of invariance and symmetry has been crucial in expanding our understanding of
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9 Conclusion and outlook

physics. The chirality signature’s complete, continuous, and conformally invariant nature

makes it a unique tool for exploring chirality and its practical applications, for example in

the dynamics of chirality evolution in chemical reactions.

The practical effectiveness of the chirality signature is limited by the knowledge of

the object’s T-matrix. Nevertheless, its existence proves that there are more efficient

theoretical ways of extracting information about the chirality of objects than approaches

that utilize conventional quantities such as optical activity, which may be negligible even

for highly chiral materials.

9.3 Scattering function

In Chapter 8, a novel approach to the description of linear light-matter interactions was

proposed. It consists in representing the action of a scatterer as a sum of symmetry

transformations. The coefficient of this decomposition, named the scattering function,

is defined on the symmetry group manifold and is bijectively connected to the T-matrix.

It was shown that the values of the scattering function may reflect the positions of the

objects inside a cluster. The observation presented in that chapter opens avenues for

novel ways of extracting information from objects in light-matter interaction. Currently,

two primary directions of development emerge. The first concerns the utilization of the

scattering function in imaging and the inverse design of objects. The second promises

advances in understanding of the Rayleigh hypothesis, since the scattering function, unlike

the T-matrix, is not limited by the sphere circumscribing the object.

9.4 Applicability outside of electromagnetism

It is suitable to discuss the possible extension of all introduced methods to the scattering

with other kinds of waves: gravitational waves, and phonons. Application of the methods

to the case of gravitational waves of linearized general relativity is straightforward, since

gravitational waves are, as electromagnetic waves, massless and possess two polarization

modes [57, §35.4, §35.6]. The difference lies in the values of helicity 𝜆 = ±2, which assigns

them to the massless irreducible representations of the Poincaré group labeled with 𝜆 = ±2.

Therefore, gravitational scattering admits a similar group-theoretical treatment as the

electromagnetic case, up to the change in helicity values.

On the other hand, applying these methods in the context of chiral phonons [58, 59, 60,

61, 62] and mechanical chiral metamaterials [63, 64] is more complicated and warrants

additional research. A notable difference to the electromagnetic scattering is the presence

of both transverse and longitudinal polarizations. While transverse waves can be associated

with positive and negative helicity modes, longitudinal waves have helicity 𝜆 = 0, which is

not present in the electromagnetic case. Consequently, an extension of group-theoretical

methods in this direction offers promising avenues for future research.
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