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Abstract

Despite technological advancements in computing, executing simulations for large and in-
tricate systems remains time and energy-intensive. Computational optimization approaches
are widely applied across diverse fields to achieve enhanced solutions for various problems.
These optimizations strive to minimize adverse effects, reduce costs and computation time,
and improve efficiency and reliability. In environmental sciences, simulations play a cru-
cial role in understanding complex natural systems, often demanding substantial computing
resources due to their high spatio-temporal resolution. This thesis explores the challenges
of compute-intensive environmental simulations and proposes approximation and optimiza-
tion approaches aimed at augmenting their efficiency. The aim is to develop a computation-
ally efficient approximation method using machine learning that yields useful outputs for
domain scientists.

To achieve this goal, my proposed approach integrates unsupervisedmachine learning into
simulations to identify similarities in their properties, reducingmodel redundancies and com-
putation complexities. Specifically, this approach involves applying clustering methods to
group functionally similar model units. The simulation is then executed only on a small yet
representative subset of each cluster, scaling their outputs to the remaining cluster members.
The study focuses on balancing the uncertainty of the simulation output resulting from sim-
ulating representativemodel units and output scaling with the computational effort involved.
This research introduces an evolutionary approach that dynamically clusters and selects the
representatives based on the dynamics enforced to themodel units during the simulation. Re-
sults of application of this approach to a hydrological simulation indicate notable speed-up
with low deviations from original simulations. Additionally, the criteria for applying this ap-
proach to various environmental simulations are discussed.

For simulations unsuited to the integrated evolutionary approach in original simulations
using unsupervised machine learning, supervised machine learning is explored, introducing
a neural network-based surrogate model to replace compute-intensive simulations with fore-
casts generated by a trained model. Supervised machine learning methods and specially deep
learning can provide an accelerated approximation of simulations while requiring fewer com-
puting resources compared to the original one. The training and test datasets are generated by
execution of an atmospheric chemistry simulation. Applying the trained model to forecast a
test dataset results in a good fit of the forecast values to the target dataset.

An extensive evaluation shows that both unsupervised and supervised approaches can ap-
proximate the environmental simulationswith acceptable output for domain scientists. More
importantly, the evaluation reveals that the approximation reduces the computational com-
plexity of simulations, thereby reducing their computing resources.
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This thesis introduces a universal evaluation method based on information theory con-
cepts, applicable across domains. Thiswork pursues two distinct yet interrelated goals. Firstly,
it proposes a practical method for measuring computational complexity using a general sys-
tem call tracer, which counts the total number of memory visits during the execution of a
model. Secondly, it introduces an evaluation approach that combines measuring computa-
tional complexity with assessing model performance through information loss relative to ob-
servations, both unified within a single unit of bits.
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Zusammenfassung

Trotz des technologischen Fortschritts in der Datenverarbeitung ist die Durchführung von
Simulationen für große und komplexe Systeme nach wie vor zeit- und energieaufwändig.
ComputergestützteAnsätze zurOptimierung vonBerechnungenwerden in vielen verschiede-
nen Bereichen eingesetzt, um bessere Lösungen für verschiedene Probleme zu finden. Diese
Optimierungen zielen darauf ab, unerwünschte Effekte zu minimieren, Kosten und Rechen-
zeit zu reduzieren und die Effizienz und Zuverlässigkeit zu verbessern. In den Umweltwissen-
schaften spielen Simulationen eine entscheidendeRolle für das Verständnis komplexer natür-
licher Systeme und erfordern aufgrund ihrer hohen räumlichen und zeitlichen Auflösung oft
erhebliche Rechenressourcen. Diese Arbeit untersucht die Herausforderungen recheninten-
siver Umweltsimulationen und schlägt Näherungs- und Optimierungsansätze vor, um deren
Effizienz zu verbessern. Das Ziel ist es, unter Verwendung von maschinellem Lernen, eine
rechnerisch effiziente Annäherungsmethode zu entwickeln, die verwertbare Ergebnisse für
Fachwissenschaftler liefert.

Um dieses Ziel zu erreichen, wird in dem vonmir vorgeschlagenen Ansatz unüberwachtes
maschinelles Lernen in Simulationen integriert, umÄhnlichkeiten in ihren Eigenschaften zu
identifizieren und so Modellredundanzen und die Berechnungskomplexität zu reduzieren.
Konkret beinhaltet dieser Ansatz die Anwendung von Clustering-Methoden, um funktional
ähnliche Modelleinheiten zu gruppieren. Die Simulation wird dann nur auf einer kleinen,
aber repräsentativen Teilmenge jedes Clusters ausgeführt, wobei die Ergebnisse auf die übri-
genMitglieder desClusters skaliertwerden. Die Studie konzentriert sich darauf, dieUnsicher-
heit der Simulationsergebnisse, die sich aus der Simulation repräsentativer Modelleinheiten
und der Skalierung der Ergebnisse ergibt, mit dem damit verbundenen Rechenaufwand
abzuwägen. Diese Forschungsarbeit führt einen evolutionären Ansatz ein, der dynamisch
Cluster bildet und die Repräsentanten auf der Grundlage der Einflüsse, die während der
Simulation auf dieModelleinheiten wirken, auswählt. Die Ergebnisse der Anwendung dieses
Ansatzes auf eine hydrologische Simulation zeigen eine merkliche Beschleunigung bei einer
geringen Abweichung von der ursprünglichen Simulation. Außerdem werden die Kriterien
für die Anwendung dieses Ansatzes auf andere Umweltsimulationen diskutiert.

Für Simulationen, die für den integrierten evolutionären Ansatz mit unüberwachtem
maschinellemLernen ungeeignet sind, wird die Verwendung von überwachtemmaschinellen
Lernenuntersucht. Dabeiwird ein auf einemneuronalenNetzwerkbasierendesErsatzmodell
eingeführt, um rechenintensive Simulationen durch Vorhersagen zu ersetzen, die von einem
trainierten Modell erzeugt werden. Methoden des überwachten maschinellen Lernens, und
insbesondere des Deep Learnings, können eine beschleunigte Annäherung an die Simulatio-
nen bieten und benötigen dabei weniger Rechenressourcen als die ursprüngliche Simulation.
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Die Trainings- und Testdatensätze werden durch das Ausführen einer Simulation der At-
mosphärenchemie erzeugt. Die Anwendung des trainierten Modells zur Vorhersage eines
Testdatensatzes resultiert in einer guten Annäherung der Vorhersagewerte an den Zieldaten-
satz.

Eine umfassende Bewertung zeigt, dass sowohl unüberwachte als auch überwachte An-
sätze die Umweltsimulationen mit akzeptablen Ergebnissen für Fachwissenschaftler approx-
imieren können. Noch wichtiger ist, dass die Auswertung zeigt, dass die Annäherung die
Rechenkomplexität der Simulationen reduziert und damit die Rechenressourcen schont.

In dieser Arbeit wird eine universelle Bewertungsmethode vorgestellt, die auf Konzepten
der Informationstheorie basiert und Domänenübergreifend anwendbar ist. Diese Arbeit
verfolgt zwei unterschiedliche, aber miteinander verknüpfte Ziele. Erstens wird eine prak-
tikable Methode zur Messung der Rechenkomplexität mithilfe einer gängigen Software zur
Überwachung von Systemaufrufen vorgeschlagen, welche die Gesamtzahl der Speicherzu-
griffe während der Ausführung eines Modells zählt. Zweitens wird ein Bewertungsansatz
vorgestellt, der die Messung der Rechenkomplexität mit der Bewertung der Leistung des
Modells durch den Informationsverlust imVergleich zu den Beobachtungen kombiniert und
in der Einheit bits vereinigt.

x



Acknowledgments

This thesis owes its completion to the invaluable help of several individuals, to whom I
would like to give my sincere thanks and appreciation.

Firstly, I would like to express my heartfelt gratitude to Prof. Achim Streit for granting me
the opportunity to pursue my doctoral degree under his guidance, for his support and valu-
able feedback during this journey, and especially for providing an environment where I could
explore every aspect of research. Additionally, I would like to sincerely thank Prof. Erwin
Zehe for agreeing to be my co-supervisor, engaging in valuable discussions about challenges
in hydrological simulations to guide my research focus, and providing me with research ma-
terials and datasets that greatly enhanced my work.

I am particularly thankful to JörgMeyer for all the time, energy, and patience he devoted to
supervisingmywork. He consistently providedmewith the right perspective and an open ear
from the outset that I came to SCCuntil the final submission of this thesis. Besides aidingme
in scientificdiscussions, his support has been invaluable indiscussions spanning various topics
on multiple levels. In addition to reviewing my work, I appreciate his continuous support,
constructive discussions and his ability to look at the big picture, which helpedme to discover
and shape the topic of this thesis.

An exceptional thank goes to Marcus Strobl, whose contribution to successfully finish-
ing this work cannot be overstated. From the start of my work in the V-FOR-WaTer project,
countless bike rides to work, German speaking and writing corrections, coaching me at boul-
dering sessions to being a friendly office mate and tango partner, he made the doctorate pur-
suit less lonely. I am especially grateful for his invaluable support and patience in reading and
correcting my papers, proofreading this thesis, editing plots and references, and moral sup-
port during the thesis writing, which helped me stay sane and successfully reach the finish
line.

I would like to express my gratitude to Uwe Ehret for his invaluable help in finding an in-
teresting topic, engaging in profound discussions about hydrological simulations, providing
neat and organized board writings and instructions, and for his valuable co-authorship onmy
papers. I also want to thank him for introducing me to Rik van Pruijssen, with whom I col-
laborated to optimize theCAOS simulation. Additionally, my thanks go toRik van Pruijssen
for his patience during our long discussions about the simulation.

I owe many thanks to Uǧur Çayoǧlu for constructive discussions at each level of my work,
supporting me in tackling Python and LATEXproblems, proofreading this thesis, and for his
sense of humor and moral support throughout the thesis writing process.

I would like to sendmy great thanks to Eileen Kühn for constructive discussions andmeet-
ings, proofreading this thesis, and sharing our common interest in plants, toMarkusGötz for

xi



the invaluable neural networks sessions and constructive discussions on their application in
my work, and to Isabella Bierenbaum for patiently proofreading the entire thesis.

I would like to specially thankMichaelWeimer for his support in integrating my approach
into the ICON-ART simulation, engaging in extensive discussions to understand the simu-
lation, and co-authoring the related paper. Furthermore, I am grateful to Stefan Versick, for
providing the benchmark code of the ICON-ART simulation and his support in its compi-
lation, to Ole Kirner for interpreting the forecasting results, to Roland Ruhnke that made
the ICON-ART model and its related data files available, to Björn-Martin Sinnhuber for in-
sightful discussions about the utilization of neural networks to accelerate the computation
of chemicals, and to connecting me to Helmholtz AI consultants for Earth and environment
from German climate computing center (DKRZ), to whom I would also like to thank for
discussions about AI in climate simulations.

I am specially thankful toMarenHattebuhr for being a patient and enthusiastic swimming
couch for me, as well as our joyful time we shared during and outside of work. I would also
like to thank our swimming team: Marcus Strobl, Michael Weimer, Marco Berghoff, Bas-
tian Härer, Haykuhi Musheghyan, Melvin Strobl, Christof Wendenius, Isabella Bierenbaum
and Diana Gudu. Additionally, I extend my thanks to our bouldering team: Marcus Strobl,
Melvin Strobl, Marco Berghoff, Mehmet Soysal andMaren Hattebuhr. A special thank goes
to Mehmet Soysal for biking together on the way to work, socializing and helping me with
HPC jobs management.

Furthermore, I would like to thank my current and former colleagues, friends and doc-
toral researchers for organizing helps, pleasant project meetings, delicious cakes, countless
enjoyments, lunch and coffee break discussions, all of which created a warm and inspiring
atmosphere. Also thank you: Parinaz Ameri, Sibylle Haßler, Mirko Mälike, Diana Gudu,
Peter Krauß, Benjamin Ertl, Max Fischer, Manuel Giffels, René Caspart, Matthias Schnepf,
Valentin Kozlov, Daniel Coquelin, Oscar Taubert, Anis Farshian Abbasi, Arvid Weyrauch,
Juan Pedro Gutiérrez Hermosillo Muriedas, Samuel Braun, Holger Obermaier, Lisana
Berberi, Khadijeh Alibabaei, Gholamali Hoshyaripour, Jos vanWesel, Uros Stevanovic, Anja
Müller and everyone else I forgot to mention. I have had a wonderful time with you, from
social evenings to sports activities.
A very Special thanks to my parents and my family, Raheleh, Rasoul and Ramin, for their

unwavering love and support on this extensive journey, from the moment I chose to pursue
my scientific passion in Germany. I would not have reached this point without their support.
Saǧolun!

Elnaz Azmi
Karlsruhe, December 2023

xii



Contents

1 Introduction 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Code and Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 13
2.1 Environmental Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Hydrological Model CAOS . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Hydrological Model SHM . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Atmospheric Model ICON-ART . . . . . . . . . . . . . . . . . 18

2.2 Model Evaluation Facets andMetrics . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Unsupervised LearningMethods . . . . . . . . . . . . . . . . . . 26
2.3.2 Supervised LearningMethods . . . . . . . . . . . . . . . . . . . 29

2.4 Approximation and Optimization of Simulations . . . . . . . . . . . . . . 33
2.4.1 Reduced-Order Models . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 Surrogate Models . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 RelatedWork 37
3.1 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Reduced-Order Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Surrogate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Identification of Similarities . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Evaluation of Simulations on Performance and Computational
Complexity 47
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Evaluation Approach . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Model Performance Measure . . . . . . . . . . . . . . . . . . . . 53

xiii



4.2.4 Model Computational Complexity Measure . . . . . . . . . . . . 55
4.2.5 Models’ Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Simulation vs. Experimental Observation . . . . . . . . . . . . . 59
4.3.2 Performance vs. Computational Complexity . . . . . . . . . . . . 60

4.4 Implementation Environment . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Approximation of Simulations using Unsupervised Machine Learn-
ingMethods 67
5.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Evolutionary Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.1 Simple Hydrological Use Case . . . . . . . . . . . . . . . . . . . 92
5.3.2 Meteorological Use Case . . . . . . . . . . . . . . . . . . . . . . 93
5.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Approximation of Simulations using Supervised Machine Learning
Methods 97
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.1.3 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.1.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 Implementation Environment . . . . . . . . . . . . . . . . . . . . . . . 114
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Conclusion 117
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendix A RMSE and KGE Tables 121

xiv



Appendix B Global RMSEMaps 123

References 126

xv





List of Figures

2.1 Simplified hierarchy of the CAOSmodel units. . . . . . . . . . . . . . . . 15
2.2 The abstracted hierarchical network model from the CAOSmodel. . . . . 16
2.3 Digital elevation model of the Attert and theWollefsbach catchments. . . . 17
2.4 Illustration of the SHMmodel and its structural elements. . . . . . . . . . 18
2.5 Schematic illustration of global triangular grids as used by ICON-ART. . . 19
2.6 Schematic illustration of vertical model levels in ICON-ART. . . . . . . . 20

4.1 Key aspects of model evaluation. . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Digital elevation model of the Dornbirnerach catchment. . . . . . . . . . . 51
4.3 Model evaluation approach. . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Schematic illustration of Model-02 andModel-03. . . . . . . . . . . . . . 59
4.5 Simulation vs. experimental observation. . . . . . . . . . . . . . . . . . . 60
4.6 Model performance vs. model computational complexity. . . . . . . . . . 61

5.1 Time series of Total Storage (water volume) of HSLs. . . . . . . . . . . . . 70
5.2 Time series of Active Storage of HSLs. . . . . . . . . . . . . . . . . . . . 71
5.3 PCC values for each pair of the features. . . . . . . . . . . . . . . . . . . . 72
5.4 Application of the elbowmethod to the input feature set. . . . . . . . . . . 73
5.5 Application of the rmse-ctimemethod to the input feature set. . . . . . . . 74
5.6 RMSE and computation time of representatives employing K-means. . . . 75
5.7 Spatial distribution of K-means clustering applied toWollefsbach catchment. 76
5.8 RMSE and computation time of representatives employing K-medoids. . . 77
5.9 RMSE and computation time of representatives employing DBSCAN. . . 78
5.10 RMSE and computation time of all analyses. . . . . . . . . . . . . . . . . 80
5.11 Histograms and the kernel density estimate fits of the initial feature set. . . 81
5.12 Simulation workflow including the original and evolutionary approach. . . 82
5.13 Output of the original simulation with different random seeds. . . . . . . . 84
5.14 Simulation output of the tests with different random seeds for K-means. . . 85
5.15 Simulation output of the Constant-K tests. . . . . . . . . . . . . . . . . . 86
5.16 Simulation output of the Variable-K tests. . . . . . . . . . . . . . . . . . . 88
5.17 Simulation output of the Auto-K tests. . . . . . . . . . . . . . . . . . . . 89
5.18 Histogram of the selectedK values by K-determiner. . . . . . . . . . . . . 90
5.19 Simulation run time speed-up andRMSE of all tests. . . . . . . . . . . . . 91
5.20 SHM simulation run time speed-up andRMSE of all tests. . . . . . . . . . 93

xvii



6.1 ICONETworkflow illustrating development of the surrogate model. . . . 99
6.2 Splitting schema for simulation data files. . . . . . . . . . . . . . . . . . . 100
6.3 Feature set distribution of an exemplary grid cell. . . . . . . . . . . . . . . 101
6.4 Training and validation loss per epoch. . . . . . . . . . . . . . . . . . . . 103
6.5 Mean VMR ofN for all grid cells relative to ground truth. . . . . . . . . . 105
6.6 ICON-ART simulation output and ICONET forecast in one day. . . . . . 107
6.7 N2O5 VMR for all grid cells in an arbitrary time step. . . . . . . . . . . . . 108
6.8 RMSE distributions for all grid cells of the test case. . . . . . . . . . . . . 109
6.9 KGE Distributions for all grid cells of the test case. . . . . . . . . . . . . . 110
6.10 ICONET and persistence model forecasts vs. ground truth. . . . . . . . . 111
6.11 Evolution of meanRMSE value of all grid cells in one week. . . . . . . . . 112
6.12 ICON-ART simulation output and ICONET forecast in one week. . . . . 112

B.1 RMSE between ground truth and ICONET forecast (part 1). . . . . . . . 124
B.2 RMSE between ground truth and ICONET forecast (part 2). . . . . . . . 125

xviii



List of Tables

2.1 Study area properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Models used in the study and their characteristics. . . . . . . . . . . . . . 56

5.1 Parameters and achievements of different clustering methods. . . . . . . . 79
5.2 Evaluation results of the original simulation with different random seeds. . 84
5.3 Evaluation results of the tests with different random seeds. . . . . . . . . . 85
5.4 Evaluation results of the Constant-K tests. . . . . . . . . . . . . . . . . . 86
5.5 Evaluation results of the Variable-K tests. . . . . . . . . . . . . . . . . . . 88
5.6 Evaluation results of the Auto-K tests. . . . . . . . . . . . . . . . . . . . 89
5.7 Evaluation results of the Auto-K tests. . . . . . . . . . . . . . . . . . . . 90
5.8 Evaluation results of test cases from SHM simulation. . . . . . . . . . . . 93

6.1 Hyperparameters of ICONET training. . . . . . . . . . . . . . . . . . . . 104

A.1 RMSE Distributions for all grid cells of the test case. . . . . . . . . . . . . 122
A.2 KGE Distributions for all grid cells of the test case. . . . . . . . . . . . . . 122

xix





List of Abbreviations

AIT Algorithmic Information Theory. . . . . . . . . . . . . . . . . . . . . 24
ANN Artificial Neuronal Network. . . . . . . . . . . . . . . . . . . . . . . 58
ART Aerosols and Reactive Trace gases. . . . . . . . . . . . . . . . . . . . . 18
AS Active Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
CAOS Catchments as Organised Systems. . . . . . . . . . . . . . . . . . . . . 14
CMIP CoupledModel Intercomparison Project. . . . . . . . . . . . . . . . . 42
CNNs Convolution Neural Networks. . . . . . . . . . . . . . . . . . . . . . 32
cos SZA cosine of the solar zenith angle. . . . . . . . . . . . . . . . . . . . . . 20
D difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DWD Deutscher Wetterdienst, en. GermanWeather Service. . . . . . . . . . 18
ECMWF European Centre for Medium-RangeWeather Forecasts. . . . . . . . . 42
EFU Elementary Functional Unit. . . . . . . . . . . . . . . . . . . . . . . 14
EMAC ECHAM/MESSy Atmospheric Chemistry. . . . . . . . . . . . . . . . 42
Eps radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
ERA ECMWFRe-Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
FCM fuzzy C-mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
FNNs Feedforward Neural Networks. . . . . . . . . . . . . . . . . . . . . . 31
GCM General CirculationModel. . . . . . . . . . . . . . . . . . . . . . . . 41
HPC high-performance computing. . . . . . . . . . . . . . . . . . . . . . . . 2
HSL Hillslope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
ICON ICOsahedral Nonhydrostatic modeling framework. . . . . . . . . . . . 18
ICONET ICONNeural Network-based approach. . . . . . . . . . . . . . . . . 98
K number of clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
K-AEL Auto-K tests using K-determiner with the elbowmethod. . . . . . . . . 88
K-ARC Auto-K tests using K-determiner with the rmse-ctime method. . . . . . 88
KGE Kling-Gupta Efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . 22
LSTM Long Short-TermMemory. . . . . . . . . . . . . . . . . . . . . . . . . 8
MinPts minimum number of points. . . . . . . . . . . . . . . . . . . . . . . 28
MLPs multilayer perceptrons. . . . . . . . . . . . . . . . . . . . . . . . . . 31
MOR Model Order Reduction. . . . . . . . . . . . . . . . . . . . . . . . . 34
MPI-M Max Planck Institute for Meteorology. . . . . . . . . . . . . . . . . . . 18
MSE Mean Squared Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
NSE Nash-Sutcliffe Efficiency. . . . . . . . . . . . . . . . . . . . . . . . . 39
NWP numerical weather prediction. . . . . . . . . . . . . . . . . . . . . . . 43
PBIAS percent bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
PCA Principal Component Analysis. . . . . . . . . . . . . . . . . . . . . . 29

xxi



PCC Pearson Correlation Coefficient. . . . . . . . . . . . . . . . . . . . . . 23
POD Proper Orthogonal Decomposition. . . . . . . . . . . . . . . . . . . . 35
RE relative error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Resnet residual convolutional neural network. . . . . . . . . . . . . . . . . . 42
RIV River element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
RMSE Root Mean Squared Error. . . . . . . . . . . . . . . . . . . . . . . . 22
rmse-ctime RMSE-Computation-Time. . . . . . . . . . . . . . . . . . . . . . . . 72
RNNs Recurrent Neural Networks. . . . . . . . . . . . . . . . . . . . . . . 32
RSR RMSE-Standard deviation Ratio. . . . . . . . . . . . . . . . . . . . . 40
SHM Simple Hydrological Model. . . . . . . . . . . . . . . . . . . . . . . . 17
SSE Sum of Squared Errors. . . . . . . . . . . . . . . . . . . . . . . . . . 27
SVMs Support Vector Machines. . . . . . . . . . . . . . . . . . . . . . . . . 30
t-SNE t-Distributed Stochastic Neighbor Embedding. . . . . . . . . . . . . . 29
TE Time to Equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . 70
VC Vapnik-Chervonenkis. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
VMR volume mixing ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
WF with forcing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
WOF without forcing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xxii



The important thing in science is not so much to obtain new
facts as to discover new ways of thinking about them.

Sir William Bragg

1
Introduction

Computational optimization approaches are used inmany research fields, such as engineering
disciplines, economics, energy systems, environmental science, and data science, to achieve
the optimal solution for a given problem (Alonso et al., 2020, Herzel et al., 2021). The ulti-
mate objectives of these optimizations are minimizing undesirable effects, reducing costs and
computation time, providing useful solutions with enhanced efficiency and reliability, and
increasing profits corresponding to various criteria or constraints (Merrill et al., 2008). Com-
putational optimization methods can be applied to the solutions for handling various issues
such as large-dimensional problems, search and big data handling problems, feature extrac-
tion and computationally expensive simulations. Computer-basedmodeling and simulations
arewidely used techniques in scientific research to analyze and understand real-world systems,
as well as to design and develop high-performing products (Yin &McKay, 2018). However,
the execution of simulations for large and complex systems consumes a significant amount of
time and energy. Considering the perspective of energy saving, and despite the availability of
modern and powerful computing technologies, there is a need “to address issues such as the
complexity and scale of the systems that need to be modeled today” (Fujimoto et al., 2017).
Environmental science is a multidisciplinary domain that focuses on the study of the natu-

ral world and the complex interactions between humans and the environment. Environmen-
tal scientists engage in researching and evaluating environmental conditions, investigating the
origins and consequences of environmental challenges such as pollution, climate change, and
habitat loss, and developing policies to alleviate or resolve these issues. Environmental sim-
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ulations play a crucial role in this context. However, conducting these simulations can be
compute-intensive, depending on factors such as simulation complexity, required level of de-
tail, and the scale of the simulated area or system. Contributing to theV-FOR-WaTer1 project,
I was involved in working with spatio-temporal data and the related simulations in environ-
mental science. The objective of this project is to create a virtual research environment specif-
ically designed for storing and analyzing hydrological data (Azmi et al., 2017, Meyer et al.,
2019, Strobl et al., 2021, 2023). Engaging in this project led me to delve into environmental
simulations and gain insights into the current challenges in this domain.

Environmental simulations in high spatio-temporal resolution, which consist of large-scale
dynamic systems, are computationally intensive. At first glance, parallelization, and the usage
of high-performance computing (HPC) resources could tackle this issue. The growthofHPC
resources over the last few decades has made it possible to increase the resolution of environ-
mental simulation models. This allows for the direct resolving of more and more processes,
rather than relying solely on their effects through parametrization (Weimer et al., 2021). How-
ever, there are still several issues associated with computation of environmental simulations
on HPC resources in parallel, which I will discuss in the following.

Problem 1
Parallelization of existing sequential simulations.

Parallelization of sequential simulations may necessitate significant design modifications or
code reprogramming in a modern language, demanding specialized software, advanced com-
putational resources andprogramming expertise fromdomain scientists. Modelers often tend
to avoid parallelization due to its complexity, emphasizing the need for seamless parallel com-
puting tools. Moreover, system-level design often requires collaboration among experts from
various scientific and application domains (Pfaffe, 2020, Suslov et al., 2020).

Problem 2
Efficient parallelization of heterogeneous simulations.

Heterogeneous simulations often require exchanging data among various model units (levels
of model details representing entities or phenomena), or dealing with dependent variables,
which pose challenges in parallelization regarding data consistency and synchronization (Bi-
eniusa et al., 2018). Efficient parallelization of these simulations is challenging due to their

1Virtual research environment for water and terrestrial environmental research – https://vforwater.de
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heterogeneous nature and the need for partially sequential execution of the model units (Lin-
ford & Sandu, 2011, Álvarez-Farré et al., 2021). Inefficient parallelization or high communi-
cation overhead among processors can limit the benefits of parallel processing in these simu-
lations (Meyer, 2014, Fujimoto, 2016, Fitzgerald et al., 2019).

Problem 3
Parallelized simulations are still compute-intensive.

While parallelization can significantly accelerate simulations, they can still be compute-
intensive depending on the complexity and scale of the simulation, the size of the problem
domain, and the available computing resources. For instance, solving differential equations
for each individual model unit in a meteorological simulation, despite parallelization using
spatial decomposition, encompasses a significant portion of the computation time. This
challenge becomes even more pronounced as the resolution increases further.

Problem 4
Limited availability of HPC resources.

The availability of HPC resources can be restricted due to physical, technological, and opera-
tional constraints as well as high expenses. Moreover, there is an intense competition and high
demand for the finite amount of resources available. HPC facilities are frequently utilized by
multiple research groups or institutions, leading to extended resource queues for individual
projects or researchers. This is a common challenge in computational science and research.
Due to the limited number of available resources, various resource allocation strategies are
developed to manage limited resources among competing applications (Qureshi et al., 2020).

Problem 5
HPC resources are energy-consuming.

HPC systems show immense computational capabilities to perform complex calculations
and simulations, yet they exhibit a rapidly increasing energy consumption (Dorier et al.,
2016, Morán et al., 2020). The processors and GPUs at the heart of these systems consume
vast amounts of electricity. This issue not only translates into significant energy expenses
but also raises environmental concerns due to the resultant increased carbon emissions and
climate warming.
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In this work, I focused on research, development, and application of computational opti-
mization approaches in environmental simulations. In this context, I proposed several ap-
proaches to tackle the aforementioned challenges by leveraging the similarities or patterns
found in the properties of simulation models and applying machine learning methods to
reduce redundancies within the models. Ultimately, these approaches aid in reducing the
computational complexity of the simulation, including the utilization of computational re-
sources such as time, processing power, memory, and storage. In the following, I will discuss
the research questions related to the previously mentioned challenges and outline my corre-
sponding contributions. Throughout the remainder of this chapter, the term “simulations”
will refer to large-scale and compute-intensive environmental simulations.

1.1 research questions
During my doctoral research, I studied how machine learning methods can be used to ap-
proximate and optimize compute-intensive environmental simulations. I conducted all of
my work in the context of real-world use cases from environmental sciences. Throughout my
study, I addressed several key research questions related to the challenges concerning paral-
lelization of compute-intensive simulations and the need for programming expertise, efficient
parallelization of heterogeneous simulations, solving time-consuming differential equations,
and limited availability ofHPC resources as well as their high energy consumption. Themain
question underlying this thesis is:

How to develop an effective and computationally efficient approximation of simulations using
machine learning methods that yields outputs acceptable for domain scientists?

To address all the aforementioned challenges, this question can be broken down into five dis-
tinct research questions.

Research Question 1
Is there a universally applicable approach for evaluating simulations?

Simulation models can vary widely in their purpose, complexity, and the domain for which
they are used. This heterogeneity increases the need for a general approach to compare and
evaluate the simulation models. To address this issue, general principles can be employed to
assess the quality and validity of simulations across various contexts. Thus, it is necessary
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to investigate these principles and develop a universally applicable approach for evaluating
simulations.

Research Question 2
How to effectively identify and leverage similarities within simulation model units to

approximate simulations?

Domain knowledge can help to understand the structure of simulation models and identify
existing redundant functions throughout the simulation processes. An extensive analysis is
required to identify similarities in simulationmodel units andutilize themtooptimize the sim-
ulations. The existing approaches may need to be adapted, or unsupervisedmachine learning
methods could be applied to discover the similarities.

Research Question 3
How can unsupervised machine learning methods be used to approximate and optimize

simulations?

An investigation is necessary on how unsupervised machine learning methods can approx-
imate simulations to reduce their computational complexity. Further analysis is needed to
consider external simulation dynamics in the approximation approach.

Research Question 4
What are the necessary criteria for simulations to be met in order to be approximated using

unsupervised machine learning methods?

To answer this question, it is essential to employ the approximation approach across various
scenarios to demonstrate its versatility. These analyses will help to establish criteria for iden-
tifying appropriate compute-intensive simulations where the developed approximation ap-
proach can be effectively utilized.

Research Question 5
How can supervised machine learning methods be used to approximate and optimize

simulations?

It is conceivable that certain simulations may not meet the criteria of the developed approx-
imation approach through unsupervised machine learning. Thus, a comprehensive analysis
becomes necessary to identify appropriate and useful existing supervised machine learning
methods. Existing approachesneed tobe adapted to themodeledproblem, ornewapproaches
need to be developed.
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1.2 scientific contributions
Overall, my research integrates the fields of simulation, computational optimization, andma-
chine learning. By combining these areas of expertise, I aim to advance the state of the art in
simulation techniques,making themmore efficient, and applicable to a broader range of prob-
lems. My contributions as a doctoral researcher can be divided into three main parts, namely:
i) A general simulation evaluation method on computational complexity and performance,
ii) Approximation and optimization of simulations using unsupervised-, and iii) supervised
machine learning methods. In the following, I will discuss each contribution in more detail.

Contribution 1
A practical and general approach to evaluate simulations based on their computational

complexity and performance.

One of the main goals of environmental modeling scientists is the development of well-
performing yet parsimonious models for natural systems. Measuring the performance and
parsimony (complexity) of simulation models is theoretically key and practically challeng-
ing for environmental science. To address this issue, I introduced a practical and general
method, applicable to simulation models from any domain, leveraging information theory
for evaluation of environmental models. In this approach, I used two evaluation measures:
1. performance: this refers to the agreement of a simulation model with a real-world system
as well as the model’s ability to reduce predictive uncertainty about an object of interest, and
2. computational complexity: this refers to the simulation’s resource consumption in terms
of run time or resource usage to provide the desired output. It is crucial to note that this
complexity measure is distinct from the algorithm’s time or space complexity. I quantified
performance bymeasuring information loss relative to observations, and computational com-
plexity by tracing the size of read and write system calls using a Linux system call tracer, both
in the unit of bits. The evaluation is sensitive to model characteristics in terms of the size of a
model and its input data, as well as the model’s numerical scheme (explicit and iterative) and
temporal resolution. Additionally, I presented an application of the method to watershed
models, representing a wide diversity of modeling strategies such as simple, and advanced
process-based methods, autoregressive, and neural network models (Chapter 4). This contri-
bution was published in Azmi et al. (2021), and addresses Research Question 1.
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Contribution 2
A study of using unsupervised machine learning methods for approximation and optimization

of simulations.

In this part of my work, I contributed to approximating large-scale and compute-intensive
environmental simulations, aiming to reduce their computational complexity by leveraging
unsupervised machine learning methods. My primary focus is on efficiently simulating ac-
curate, reduced models that approximate the underlying high-resolution simulations. In the
proposed approach, I used unsupervised machine learning methods to cluster functionally
similar model units and simulated a representative model unit for each cluster. This reduced
the number of similar computations and, consequently, the computational complexity of
the simulation. The underlying principle is that simulation dynamics depend on the static
properties, current state, and meteorological forcing of model units. Based on this, it is as-
sumed that similar model unit settings lead to similar simulation dynamics. Applying this
principle in the use case of a hydrological simulation, namely CAOS (Zehe et al., 2014), I
clustered similarmodel units, ran the simulationmodel on a small yet representative subset of
each cluster, and scaled the simulation output of the cluster representatives to the remaining
cluster members. In my analyses, I investigated the performance of three clustering methods
namely, K-means (MacQueen, 1967), K-medoids (Kaufman & Rousseeuw, 1987), and DB-
SCAN (Ester et al., 1996) on the CAOS simulation without considering any meteorological
forcing on model units (Chapter 5). This contribution addresses Research Question 2, and
was published in Azmi (2018b) and Azmi et al. (2019).

Contribution 3
An evolutionary approach of clustering for approximation and optimization of simulations.

This contribution extends the best performed clustering method from Contribution 2, con-
sidering additionally ameteorological forcing onmodel units in the use case of theCAOS sim-
ulation. In this approach, I introduced a method tomake use of the static properties, current
state, as well as meteorological forcing of model units to reduce computational complexity
in the simulation. The approach consists of several steps, mainly employing an evolutionary
approach of clustering, and scaling of the simulation output of the cluster representatives to
the remaining cluster members. The clustering process includes utilizing K-means clustering
together with a K-determiner that automatically defines a suitable number of clusters (Chap-
ter 5). This contribution assists in answeringResearchQuestion3, andwaspublished inAzmi
et al. (2020).
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Contribution 4
A study of the application generality of the evolutionary approach.

To identify the essential conditions to generalize the evolutionary approach, I investigated its
applicability to two other use case simulations. The first simulation is within the hydrological
domain, called SHM (Ehret et al., 2020), and the second one is the atmospheric chemistry
model from the ICON-ART simulation (Rieger et al., 2015) in meteorology. The results
of the experiments on the ICON-ART simulation showed that the optimization approach
itself introduced a significant computational overhead, which hindered the speedup of the
simulation. A trade-off between the accuracy of the result and computational complexity
was also observed. Through this analysis, several key criteria have been revealed regarding
the approach’s suitability and broader applicability (Chapter5). This contribution answers
Research Question 4.

Contribution 5
A supervised machine learning approach for approximation and optimization of simulations.

In Contribution 4, I observed that the initially introduced approximation approach might
not be appropriate for certain simulations (e.g., ICON-ART). Thus, to address this con-
straint, I proposed an alternative approximation approach using supervisedmachine learning
methods, focusing on deep neural networks. I developed a neural network-based approach
(ICONET) consisting of amulti-feature Long Short-TermMemory (LSTM)model (Hochre-
iter & Schmidhuber, 1997) for forecasting atmospheric chemistry. This approach replaces
the compute-intensive chemistry simulation of about two million atmospheric cells with a
trained neural network model to forecast the concentration of trace gases at each cell and
to reduce the computation complexity of the simulation (Chapter 6). This contribution
addresses Research Question 5, and was published in Azmi et al. (2023).

1.3 list of publications
The contributions in this thesis except Contribution 4 have already been published in peer-
reviewed conference proceedings and journals. Own publications relevant to the content pre-
sented in this thesis are listed in the following.
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• Elnaz Azmi. On Using Clustering for the Optimization of Hydrological Simulations.
2018 IEEE InternationalConference onDataMiningWorkshops (ICDMW), Sentosa,
Singapore, 17-20 Nov 2018, pages 1495–1496, IEEE, 2018.
doi:10.1109/ICDMW.2018.00215

• Elnaz Azmi, Uwe Ehret, Jörg Meyer, Rik van Pruijssen, Achim Streit, and Marcus
Strobl. Clustering as Approximation Method to Optimize Hydrological Simulations.
European Conference on Parallel Processing (Euro-Par), Göttingen, Germany, 26-30
Aug 2019, pages 256–269, Springer, 2019.
doi:10.1007/978-3-030-29400-7_19

• Elnaz Azmi, Marcus Strobl, Rik van Pruijssen, Uwe Ehret, Jörg Meyer, and Achim
Streit. Evolutionary Approach of Clustering to Optimize Hydrological Simulations. In-
ternational Conference onComputational Science and Its Applications (ICCSA),On-
line, 1-4 Jul 2020, pages 617–633, Springer, 2020. [best paper award]
doi:10.1007/978-3-030-58799-4_45

• Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin
Zehe. Adaptive clustering: reducing the computational costs of distributed (hydrological)
modelling by exploiting time-variable similarity amongmodel elements. Hydrology and
Earth System Sciences (HESS), volume 24, pages 4389–4411, Copernicus, 2020.
doi:10.5194/hess-24-4389-2020

• Elnaz Azmi, Uwe Ehret, StevenV.Weijs, Benjamin L.Ruddell, andRuiA. P. Perdigão.
Technical note: “Bit by bit”: a practical and general approach for evaluating model com-
putational complexity vs. model performance. Hydrology and Earth System Sciences
(HESS), volume 25, pages 1103–1115, Copernicus, 2021.
doi:10.5194/hess-25-1103-2021

• Elnaz Azmi, JörgMeyer, Marcus Strobl, Michael Weimer, and Achim Streit. Approxi-
mation andOptimization ofGlobal Environmental Simulations withNeuralNetworks.
Platform forAdvancedScientificComputingConference (PASC),Davos, Switzerland,
26-28 Jun 2023, ACM, 2023.
doi:10.1145/3592979.3593418

• Elnaz Azmi, Uwe Ehret, Jörg Meyer, Rik van Pruijssen, Achim Streit, and Marcus
Strobl. The optimization of hydrological simulations using dynamic clustering. EGU
General Assembly, Geophysical Research Abstracts volume 20, Vienna, Austria, 8–13
Apr 2018, EGU2018-10596, 2018.
https://meetingorganizer.copernicus.org/EGU2018/EGU2018-10596.pdf

• Rik van Pruijssen, Elnaz Azmi, Erwin Zehe, and Uwe Ehret. Representative computa-
tion: How to make use of hydrological similarity? EGUGeneral Assembly, Geophysical
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Research Abstracts volume 20, Vienna, Austria, 8–13 Apr 2018, EGU2018-10210,
2018.
https://meetingorganizer.copernicus.org/EGU2018/EGU2018-10210.pdf

• Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin
Zehe. Dynamical clustering: A new approach to make distributed (hydrological) mod-
eling more efficient by dynamically detecting and removing redundant computations.
EGUGeneral Assembly, Online, 4–8May 2020, EGU2020-4772, 2020.
doi:10.5194/egusphere-egu2020-4772

• Elnaz Azmi, Jörg Meyer, Marcus Strobl, Michael Weimer, and Achim Streit. Approx-
imation and Optimization of Atmospheric Simulations in High Spatio-Temporal Res-
olution with Neural Networks. EGU General Assembly, Vienna, Austria, 24–28 Apr
2023, EGU23-6287, 2023.
doi:10.5194/egusphere-egu23-6287

1.4 code and data availability
The implementations and some example data of own methods introduced in this thesis and
previously listed papers are available under the MIT license at the following addresses:

• https://github.com/elnazazmi/hyda (Azmi, 2018a, 2020)

• https://github.com/KIT-HYD/model-evaluation (Azmi & Ehret, 2021)

• https://github.com/elnazazmi/iconet (Azmi, 2023)

1.5 thesis outline
The remainder of this thesis is organized as follows:

In Chapter 2, the relevant background to the research in this thesis is presented. I intro-
duce the fundamentals of environmental simulations, outline their use in real-world applica-
tions, and lay out the challenges related to high spatio-temporal and compute-intensive sim-
ulations. Additionally, the use case simulations from the following chapters are described in
detail. Next, I present the simulation evaluation concepts and the generality of the existing
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evaluation techniques. The chapter ends with an introduction to different machine learning
algorithms and their role in approximation and optimization of environmental simulations.

Chapter 3 presents related works on key principles for evaluating environmental models,
simulation approximation and optimization approaches, as well as the application of differ-
ent machine learning methods in optimization of the environmental simulations. As some
approximationmethods benefit from similarities in the simulationmodel units, I present the
related work on the identification of such similarities.
In Chapter 4, I investigate the evaluation of the simulations based on their performance

and computational complexity.
In Chapter 5, I investigate how unsupervised machine learning methods can be used to

approximate and optimize compute-intensive environmental simulations. Furthermore, I
propose an evolutionary approach using clustering to tackle variable meteorological forcing
during the simulation time steps.

Chapter 6 presents how supervisedmachine learningmethods can be used to approximate
and optimize compute-intensive environmental simulations.

Chapter 7 summarizes the research done in this thesis, focusing onmy contributions. I con-
clude with an overview of open questions and sketch possible directions for future research.
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A theory is the more impressive the greater the simplicity of
its premises is, the more different kinds of things it relates,
and the more extended its area of applicability.

Albert Einstein

2
Background

In this chapter, the relevant background and principles to understand the research described
in this thesis are presented. Section 2.1 gives a brief overviewof environmental simulations, in-
troducing the general concepts and technical terms of the simulations utilized in the following
chapters. Section 2.2 defines the key aspects of model evaluation and proceeds with the intro-
duction of severalmodel evaluationmethods andmetrics. Section 2.3 provides an overviewof
the basic concepts of the machine learning algorithms used in this thesis. Finally, Section 2.4
presents approaches to approximate complex simulations, thereby optimizing them in terms
of their computational complexity. The background provided in this chapter has been partly
published in Azmi (2018b), Azmi et al. (2019, 2020, 2021, 2023), and Ehret et al. (2020).

2.1 environmental simulations
Modeling and simulation involve creating physical, mathematical, or logical representations
of systems, phenomenons, or processes (Trenholme, 1994, Hestenes, 1997). These repre-
sentations are used across various fields to understand, analyze, and forecast the behavior of
complex systems. Models and simulations offer a means to explore real-world systems within
controlled environments, enabling experimentation with infeasible or impractical scenarios.
Computer-based simulations involve the process of mathematical modeling performed on a
computer, utilizing various models, such as physics-based or data-driven models (Winsberg,
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2022). Additionally, they support iterative design and optimization, along with the genera-
tion of substantial synthetic data for training machine learning models or conducting statis-
tical analyses (Bărbulescu, 2016). One application of computer-based simulations is in the
realm of environmental science (Anderson et al., 2015). In this context, computational mod-
els are employed to investigate and forecast physical phenomena or the functionality of en-
vironmental systems. Environmental simulations rely on a broad range of scientific, mathe-
matical, computational, and engineering expertise and techniques. They find practical use in
various environmental fields such as hydrology, oceanography, and meteorology, among oth-
ers (Bennett et al., 2010). In the following, I will provide the principles and concepts behind
the environmental simulations utilized in this thesis.

2.1.1 hydrological model caos
The Catchments as Organised Systems (CAOS) model (Zehe et al., 2014) is one of the hy-
drological models used in this work. This model simulates water related dynamics at the
lower meso-scale (10 − 200 km2). The CAOS model provides a high-resolution and dis-
tributed process-based simulation of water- and energy fluxes in the near surface atmosphere,
the Earth’s surface, and subsurface. Hydrological simulations, such asCAOS, are generally ap-
plicable in various fields of hydrological research, including agricultural water demand estima-
tion, erosion protection, flood forecasting, and assessment of the impact of land use changes
or climate variations on water availability and quality.

The term “catchment”, in hydrology also known as a watershed or drainage basin, refers
to the area where all precipitation within its boundaries flows into a single point or outlet
along a river (Roper, 1979). This outlet represents the lowest elevation within the catchment,
demonstrating how water naturally moves from higher elevated regions to lower ones. Hy-
drologists identify and delineate natural catchment areas based on the physical landscape and
hydrological characteristics.

In the CAOS model, the functioning of catchments is controlled by a hierarchy of three
main model units, namely Elementary Functional Unit (EFU), Hillslope (HSL), and River
element (RIV) (Figure 2.1). The smallest main model units are soil columns, referred to as
EFUs. Each EFU is composed of several components such as soil surface, soil layers, and vege-
tation. In an EFU, all vertical watermovements (e.g, vertical soil water flow, and evapotranspi-
ration) are modeled. The next higher level of the hierarchy consists of HSLs containing and
connecting all EFUs along the downhill path from a ridge line which is a natural barrier, guid-
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Figure 2.1: Simplified hierarchy of the CAOS model units. Left: A catchment is an area that collects and drains water to a
common outlet (gray triangle at the bottom of the catchment). Middle: Each catchment is divided into HSLs, where water
flows into a RIV (blue line on the bottomof theHSL). Right: EachHSL consists of laterally connected EFUswith components
such as soil surface, soil layers, and vegetation, wherein water flows. Modified after Zehe et al. (2014).

ing water into a RIV depending on the slope and the surrounding topography. In anHSL, all
lateral downhill flow processes (surface flow and groundwater flow) are modeled in network-
like flow structures on the surface and within the subsurface (blue lines in Figure 2.1, middle
and right sketch). The thirdmainmodel units, RIVs, are linear elements along the lower edge
on the surface of an HSL. They are parts of a river, connected sequentially to each other and
transport the water of a catchment to the lowermost point, the catchment outlet. Before exe-
cuting theCAOS simulation, each catchment is divided intoHSLs based on the flownetwork
derived from a digital elevation model.

HSLs act completely independent of each other, and they are subdivided into laterally con-
nected EFUs. EFUs within the same HSL may interact due to the backwater effect, which
refers to the phenomenon where water is obstructed or delayed in its typical flow, deviating
from its regular or natural course (Langbein & Iseri, 1960). The hierarchy of model units is
represented as a network model, including various objects and their interactions, for better
understanding of the dependencies among the model units (Figure 2.2).

The structure of the CAOS model is specified based on domain knowledge. The result-
ing simulation dynamics depend on three main factors: 1. model unit properties (static), 2.
model unit state (current discharge), and 3. meteorological forcing (rainfall or radiation). The
underlying principle of the model is that similar properties, states andmeteorological forcing
of the model units lead to similar simulation dynamics (Zehe et al., 2014). Exploiting this
concept, it might be possible to reduce computational complexity of the CAOS model by
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Figure 2.2: The abstracted hierarchical network model from the CAOS model. Modified after Azmi (2018b).

eliminating these redundancies from the computation process. To explore this hypothesis, I
developed an optimization approach and tested it on the CAOSmodel.

The study area used to develop and test the hydrological model is the Attert catchment,
located in the Grand Duchy of Luxembourg. Since the computation of the CAOS model is
time-consuming, a representative subset of theAttert catchment (Figure 2.3), theWollefsbach
catchment, was used for the development of my proposed approach presented in Chapter 5.
The CAOS simulation is implemented in MATLAB. To establish a benchmark for the sim-
ulation time, I executed the CAOS model for the Wollefsbach catchment for January 2014
at a five-minute resolution (Section 5.1.2). The Wollefsbach catchment holds 1.8 % of the
area, and 2.4% of the number of HSLs of the Attert catchment, with an execution time of
50.6 hours (Table 2.1). The simulation execution time of the entire Attert catchment could
be estimated at 3.5 months, but has not been determined yet. Access to the model and the
required dataset was granted by the CAOS project1.

Table 2.1: Study area properties. Taken from Azmi et al. (2019).

Catchment Area [km2] # HSLs Run Time [h]

Attert 247.0 9716 –
Wollefsbach 4.5 232 50.6

1Catchments as Organised Systems – https://caos-project.de
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Figure 2.3: Digital elevation model of the Attert catchment (study area, brown line) and the Wollefsbach catchment (use
case, red dashed line). Taken from Azmi et al. (2019).

2.1.2 hydrological model shm

The SimpleHydrologicalModel (SHM) (Ehret et al., 2020) is closely related to established hy-
drological models, such as the HBV hydrology model from the Swedish Meteorological and
Hydrological Institute (Bergström, 1976). The SHMmodel contains a simple structure, con-
ceptual, yet distributed architecture tailored to the structure and hydrological function of the
Attert catchment. In this model, the catchment is divided into subcatchments and river ele-
ments using a digital elevation model. The water stocks and fluxes in each subcatchment are
represented in a conceptualized manner by a set of linked linear reservoirs (Figure 2.4). The
choice of the type, number, and linkage of reservoirs is based on the insights about the hydro-
logical functioning of the Attert catchment and suitable conceptualizations reported by Feni-
cia et al. (2014, 2016). In the schematic illustration of the SHMmodel, the first storage (top
left in Figure 2.4) represents the unsaturated zone reservoir of a subcatchment. Precipitation
falling onto a subcatchment (su) is divided into direct runoff (qu,out) and soil moisture replen-
ishment as a nonlinear function of current soil moisture. Evapotranspiration draws water
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Figure 2.4: Illustration of the SHM model consists of the structural elements, state variables (black), and fluxes (red). Mod‐
ified after Ehret et al. (2020).

from the unsaturated zone storage. Direct runoff is split by a constant factor and replenishes
two linear reservoirs, with one representing interflow (si) and the other representing base flow
(sb). Runoff from the interflow and base flow reservoirs (qcat,out) are merged and then enters
the river system. The river system is represented by a linear reservoir cascade (bottom right in
Figure 2.4), where each unit represents a river stretch of about one km. The SHMmodel is
implemented in MATLAB. The numerical scheme is non-iterative forward in time, and the
time stepping is hourly.

2.1.3 atmospheric model icon-art
The meteorological simulation use case of this work is ICON-ART, the ICOsahedral Non-
hydrostatic modeling framework (ICON) (Zängl et al., 2015) with its extension for Aerosols
andReactiveTrace gases (ART) (Rieger et al., 2015,Weimer et al., 2017, Schröter et al., 2018).
The ICONmodel has been jointly developed by the GermanWeather Service (dt. Deutscher
Wetterdienst, DWD) and the Max Planck Institute for Meteorology (MPI-M). It is a unified
global numerical weather prediction and climatemodeling system, encompassing all time and
spatial scales that are relevant for the atmosphere. Since 2015, the ICONmodel has been used
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Figure 2.5: Schematic illustration of global horizontal triangular grids and a grid cell with its vertical model levels as used by
ICON‐ART. The input and output features are from the studied atmospheric chemistry simulation of ICON‐ART. The various
line styles and colors of grid cells (triangles) on the globe show the grids in different resolutions. Provided by courtesy of
Marcus Strobl.

for operational weather forecasting at the GermanWeather Service (Zängl et al., 2015).

The ICON–ART model incorporates the interactions of atmospheric trace substances
(gases and particles) and the state of the atmosphere within a numerical weather prediction
model from the global to regional scale (Rieger et al., 2015). The chemistry and photolysis
rates in ICON-ART are calculated using the box model CAABA/MECCA and CLoudJ for
each grid cell (Sander et al., 2011, Prather, 2015, Schröter et al., 2018). In other words, the
differential equations for the chemical reactions in ICON-ART are solved separately in each
grid cell (Figure 2.5). As the atmospheric chemistry simulation is a compute-intensive compo-
nent in the ICON-ARTmodel, it serves as a suitable use case for this work. In this simulation,
the chemistry is calculated separately for each grid cell, independently of the neighboring grid
cells. Tominimize the influenceof other components in the ICON-ARTsimulationon the at-
mospheric chemistry model, the simulation is executed without transportation of trace gases.
This preserves a closed system within the model, eliminating interactions with neighboring
grid cells.
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Figure 2.6: Schematic illustration of vertical model levels in ICON‐ART. Height of the lowest 46 ICON model layers at
33◦ N in the configuration with 90 total model layers. Taken fromWeimer et al. (2017).

In this study, I use ICON-ART version 2.1 of the operational setup at DWD, which incor-
porates 90 vertical model levels (Figure 2.6) from near ground (level 90) up to 75 km (level 1),
and a horizontal resolution of about 160 km. This configuration results in approximately
1.8 million grid cells (Zängl et al., 2015). The studied simulation scenario focuses on a chem-
ical mechanism for ozone in the stratosphere, spanning from vertical model level 45 to 30
(16 levels) (Reinert et al., 2021). This simulation employs a subset of 23 reactions for oxygen-
and nitrogen-related species (Schröter et al., 2018). From the fourteen gases involved in these
reactions,N2 andO2 are no trace gases as they are present in excess. Therefore, they are treated
as constants and are not included in this study. Consequently, each output data file of the sim-
ulation contains the volumemixing ratio (VMR) of twelve trace gases and the values of three
physical features for all grid cells. The twelve trace gases are HNO3, HO2, H2O, NO, NO2,
NO3,N2O,N2O5, OH, O3, O(1D), and O(3P). The physical features comprise temperature,
pressure, and the cosine of the solar zenith angle (cos SZA). The solar zenith angle refers to the
angle between the surface normal (an upright line extending vertically from the Earth’s center
above the surface) and the Sun’s direction (Jacobson, 1999). These features are provided at
a six-minute resolution over the course of one day. The studied simulation covers the data
from the years 2013 and 2014. The ICON-ART simulation is implemented in FORTRAN.
The computation environment is defined in Section 6.4.

20



2.2 model evaluation facets and metrics
One of the goals of natural sciences is to create models that are both efficient and effective in
describing natural phenomena and systems. The evaluation of these models involves consid-
ering two key aspects, namely performance and complexity. In terms of performance, these
models should be able to produce results that align with real-world observations, demon-
strating high levels of accuracy and overall correctness (Kirchner, 2006). From the complex-
ity aspect, the models should be concise, explainable, comprehensible, compact, and energy-
efficient (Solomonoff, 1964). This section introduces the main concepts of model evaluation
and commonly used metrics that are utilized in this thesis.

2.2.1 performance
Performance refers to a model’s ability to reduce predictive uncertainty about an object of
interest. In other words, it pertains to the extent of agreement or disagreement between the
model’s prediction with the observations of the related real-world system (commonly known
as ground truth). Since the aim of this thesis is to approximate and optimize environmental
simulations, the term “ground truth” refers to the original use case simulation and its output
data that serves as a reference point for evaluating the approximated and optimized simula-
tions.

Different evaluation measures are used for each type of predictive model, depending on
whether it is a classificationmodel (for nominal or binary data) or a regressionmodel (for con-
tinuous data). As the models used in this work belong to regression models, I will describe
several common techniques and metrics to measure the performance of these models. These
techniques and metrics could be used individually or in combination. Selecting an appropri-
ate quality metric for forecasting models is challenging due to the various aspects that need
to be considered when assessing a model’s performance. In this discussion, I will present the
advantages and disadvantages of relevant metrics.

One of the basic evaluation metrics is the differenceD (James et al., 2023) (Equation 2.1)
between the forecast Ŷ and the ground truth Y values, as follows:

D(Y, Ŷ) = Ŷ− Y . (2.1)

This metric directly indicates the extent to which the forecast values deviate from the ground
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truth, and it shares the same unit as the calculated values. However, it has a limitation, as it
does not allow for a fair comparison between the deviations of variables on different scales.

An alternativemetric is the relative errorRE (Abramowitz& Stegun, 1972) (Equation 2.2),
which measures the absolute difference between the forecast Ŷ and the ground truth Y values
divided by the ground truth value. The relative error is mathematically presented as:

RE(Y, Ŷ) =
| Ŷ− Y |

Y
. (2.2)

While this metric can handle variables on different scales, it is not defined for Y = 0.
TheMean Squared ErrorMSE (Bennett et al., 2013) (Equation 2.3) is a regression metric

that measures the mean squared difference between the forecast Ŷ and the ground truth Y
values. This metric is highly sensitive to outliers. MSE assigns greater significance to large
errors compared to smaller ones. For a vector of n forecast values derived from a sample of n
data points,MSE is formally expressed as:

MSE(Y, Ŷ) =
1
n

n∑
i=1

(Ŷi − Yi)
2 . (2.3)

Another commonmetric is theRootMean Squared ErrorRMSE (Barnston, 1992) (Equa-
tion 2.4), which is obtained by taking the square root of MSE, see Equation 2.3. RMSE
reduces the impact of larger deviations in comparison toMSE. This metric is commonly pre-
ferred due to its interpretability, since it expresses the error in the same unit as the target value.
RMSE values range from zero to positive infinity, where values closer to zero indicate a more
accurate estimation. RMSE is the standard deviation of the forecast errors, formally defined
as:

RMSE(Y, Ŷ) =
√

MSE(Y, Ŷ) . (2.4)

AlthoughRMSE effectivelymeasures the distance between two curves, it does notmeasure
how accurately the forecast follows the trend of the ground truth curves. Thus, I choose an
appropriate metric for this, which is the Kling-Gupta Efficiency KGE (Gupta et al., 2009)
(Equation 2.5). This widely used measure in hydrological modeling evaluates the goodness-
of-fit. KGE values range from negative infinity to one, and the values closer to one indicate a
better fit. The mathematical representation ofKGE is as follows:

KGE(Y, Ŷ) = 1−
√

(ρ− 1)2 + (α− 1)2 + (β− 1)2 , (2.5)
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with:

ρ =
COV(Y, Ŷ)
σY · σŶ

, α =
σŶ
σY

, β =
μŶ
μY

, (2.6)

where COV(Y, Ŷ) is the covariance between the forecast and the ground truth values, σ is the
standard deviation, and μ is the mean. In other words, ρ is the Pearson Correlation Coeffi-
cient PCC (Pearson, 1896) between the forecast and the ground truth values, α is a measure
of variability in the data values, and β is equal to themean of the forecast values over themean
of the ground truth values.

PCC (ρ in Equation 2.6) is a linear model used to test the individual effect of each of many
regressors, and it serves as a scoring function commonly employed in feature selection proce-
dures. Generally, it is a common practice to calculate PCC as a standardized measure of the
predictive accuracy of a model (Daetwyler et al., 2008). It is the ratio between the covariance
of two variables and the product of their standard deviations. Thus, it is a normalizedmeasure
of the covariance, yielding a valuewithin [−1, 1], where 1 defines the highly positive linear cor-
relation, 0 is the non-linear correlation and−1 is for a highly negative linear correlation. PCC
does not provide any information about the difference between dependent and independent
variables, nor about the slope of the curves. Its primary function is to determine whether a
relationship exists between the variables.

In information theory, the entropy state function quantifies the amount of required infor-
mation in the system to fully specify the microstate of the system. Information theory is a
unified field of mathematics and computer science that focuses on the quantification, stor-
age, communication, and processing of information (Shannon, 1948, Reza, 1961, MacKay,
2003). The principles of information theory are utilized in machine learning for tasks such
as model evaluation, feature selection, and clustering. It provides a framework for measuring
and understanding the fundamental properties of information, where entropy emerges as
a key measure. In the context of performance evaluation of classification models, entropy
serves as a metric to assess the diversity of class predictions. In the context of communication,
entropy is the measure of the amount of missing information before reception. Information
entropy, often called Shannon entropy, was originally devised by Shannon (1948) to study
the size of information of a transmitted message. Formally, information is defined as the
negative logarithm of the probability of an event p(x). Information entropy H(X) is defined
as the expected or average value of information (Equation 2.7) of a specific value of a data set
X = {x1, x2, ..., xn}.
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H(X) = −
∑
x∈X

p(x) log2 p(x) , (2.7)

where the base of the logarithm determines the units, e.g., the binary logarithm corresponds
to bits (units of information). The entropymeasured in bits yields a value within [0,∞]. The
minimum entropy of zero bits indicates that an event is certain and carries no uncertainty. The
fundamental concept behind information theory is that, learning the occurrence of an im-
probable event is more informative than learning the occurrence of a probable event (Balian,
2004). In otherwords, high entropyor high information implies high uncertainty or low event
probability.

2.2.2 complexity
In the hydrological sciences, complexity is widely employed in a sense of its dictionary defini-
tion (see the Oxford Learner’s Dictionaries definition of complexity2) to refer to “the state of
being formed of many parts; the state of being difficult to understand” (see also Gell-Mann
(1995) on various interpretations of complexity). Complexity in the context of mathematics
and computer science comprises two aspects, namely descriptive complexity and computa-
tional complexity:

1. Descriptive complexity is related to inference quality, generality, and the size of the
model. In the framework of Algorithmic Information Theory (AIT), descriptive complexity
of a model is measured by its size expressed in bits (binary digits), when stored as instructions
for a computer (Solomonoff, 1964, Chaitin, 1966, Kolmogorov, 1968, Solomonoff, 1978).
It is therefore a formalization of Occam’s razor3. This philosophical razor, a bedrock princi-
ple of science, argues that the least descriptively complex model is preferable, at a given level
of predictive performance that is adequate to the question or application at hand. Further-
more, the same concept of descriptive complexity can also be directly applied to data. The
complexity of data is formalized as its shortest description length, and the best model for the
data is that shortest description: the shortest computer program that has the data as an out-
put (Solomonoff, 1964, Wallace & Boulton, 1968, Rissanen, 1978, MacKay, 2003). In all
these approaches that employOccam’s razor, an emphasis is placed on descriptive complexity
and performance, but is completely independent of any practical considerations such as lim-

2https://www.oxfordlearnersdictionaries.com/definition/english/complexity
3Commonly attributed to the fourteenth-century scholastic philosopher William of Ockham, but empha-

sized about twenty years before Ockham by John Duns Scotus (Li & Vitányi, 2008)
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ited storage space or computing power, in other words, it ignores computational complexity.
So while Occam’s razor promotes models that achieve effective compression of experimental
data, compression for the sake of meeting constraints in a storage-limited world is not the
primary goal. Instead, the reverse is true: finding the shortest description is the process of
inference, achieved by distilling patterns from data in order to find general predictive laws.

2. Computational complexity is the model’s effort to provide output, and is often a prac-
tical and economic concern for limited computing resources. It provides an abstract under-
standing of how an algorithm’s performance scales with input size. The efficiency at which
models generate their output is subject to the discipline of Analysis of Algorithms (Aho et al.,
1975, Sedgewick&Flajolet, 2013). In this framework, computational complexity can bemea-
sured in terms of two finite resources that are required for a computation: time and/or space.
Time complexity describes the amount of time a computer needs to run an algorithm as a
function of the input size. It can be measured in terms of clock cycles, number of floating
point operations or steps of a Turing machine, and often it is the scaling with the input size
that is of interest. Space complexity is related to the amount of space or memory used by an
algorithm to run as a function of the input size. Computational complexity can also be mea-
sured in terms of the run time of an algorithm. Run time is a concrete measure, referring to
the actual time taken by an algorithm to complete on a particular input, considering the avail-
able computational resources. It is important to note that, run time depends on the actual
hardware and software environment in which the algorithm is executed. In model evalua-
tion, speed-up serves as a metric to evaluate the enhancement in computational complexity,
run time or processing speed achieved by a particular optimization method in comparison to
a reference implementation. The speed-up is calculated as follows:

Speed-up =
Reference run time
Optimized run time

. (2.8)

It measures howmany times faster one algorithm is compared to another, either for a specific
input instance or across different hardware configurations.
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2.3 machine learning algorithms
Machine learning refers to the utilization of algorithms that automatically analyze data, with
the aim of detecting the underlying patterns in order to predict future data or make decisions
based on the discoveredpatterns. Generally,machine learning canbe classified into threemain
categories, distinguished by the learning method and training approach: 1. unsupervised (de-
scriptive), 2. supervised (predictive), and 3. reinforcement learning (Silvestrini & Lavagna,
2022). In the following, I will provide an overview of the first two categories considered in
this thesis.

2.3.1 unsupervised learning methods
Unsupervised learning algorithms use the properties of data points, such as distance- or den-
sity distribution, to identify clusters of similar data points based on the provided similarity
measurement. Due to the lack of labeled data (ground truth values), validating the output
of unsupervised learning algorithms is commonly difficult, and heuristic arguments are of-
ten used to judge the quality of the results (Hastie et al., 2009). There are several methods
within unsupervised learning, including density estimation, clustering, dimensionality reduc-
tion, generative models, and anomaly detection. In the following, I will describe two of these
methods in detail: clustering and dimensionality reduction, which are used in this thesis.

clustering

Clustering is one of the main machine learning methods, categorized as unsupervised learn-
ing (Hastie et al., 2009,Dubes& Jain, 1976). Thismethod learns to detect similar data points
that can be grouped together. Based on the type of input data, clustering can be divided into
similarity-based and feature-based clustering. The similarity-based clustering takes a dissimi-
larity or distance matrix as input, while the input of the feature-based clustering is a feature
or designmatrix (Murphy, 2012). Clusteringmethods can also be categorized regarding their
output types. Partitional clustering produces a set of clusters, while hierarchical clustering
generates anested tree of clusters (Kaufman&Rousseeuw, 2009). Thesewidely studiedmajor
categories of clustering can be further divided into sub-categories like distance-based, density-
based, grid-based and model-based clustering (Aggarwal & Reddy, 2013). In the following,
the clustering methods used in this work are described.

26



K-meansClustering is oneof themostwidelyusedpartitional clustering algorithms (Ag-
garwal & Reddy, 2013, Hastie et al., 2009, Ding & He, 2004). It is categorized as distance-
based clustering method. K-means aims to create clusters of similar data points, with each
cluster represented by a central point called centroid. The algorithm starts with the initial-
ization of K centroids uniformly at random or using a specific initialization method, such as
K-means++ (Arthur&Vassilvitskii, 2007). K-means++ selects one initial centroid uniformly
at random and the next K − 1 centroids with the probability defined by Equation2.9, as
follows:

p(x ′) =
D(x ′)2∑
x∈XD(x)2

, (2.9)

whereD(x) represents the shortest distance from a data point x to the closest centroid, and x ′

is the next centroid selected froma set of data pointsX. TheK-means++ initializationmethod
improves the convergence, speed, and accuracy of K-means, therefore I used it in this study.
In the next step of the K-means algorithm, each data point in the dataset is assigned to its
closest centroid. Subsequently, the centroids are recomputed for each cluster by calculating
the mean value of the data points assigned to those centroids. The process is repeated until
the convergence criterion is met, indicating that the centroids no longer change (Aggarwal &
Reddy, 2013, Arthur&Vassilvitskii, 2007). The goal of the algorithm is tominimize the Sum
of Squared Errors (SSE) of the centroids. The K-means algorithm requires the number of
clusters, denoted asK, as an input parameter. However, determining the optimal number of
clusters poses a challenge. Approaches introduced by Kassambara (2017), such as the elbow,
average silhoutte (Rousseeuw, 1987), and gap statistic (Tibshirani et al., 2001) methods, aim
to determine the optimal value ofK.

K-medoids Clustering is a variation of the K-means algorithm that is more robust to
noise and outliers in the dataset, as medoids correspond to real data points and are less influ-
enced by extreme values (Aggarwal & Reddy, 2013). Unlike K-means, it selects actual data
points as centroids and aims to minimize the absolute error rather than the SSE (Aggarwal
& Reddy, 2013, Hastie et al., 2009). K-medoids receives the number of clusters, denoted
as K, and the distance matrix of points as input parameters. The other steps of the algo-
rithm are similar to K-means. It is important to note that K-medoids might demand higher
computational resources than K-means, particularly when dealing with large datasets, due
to the need of computing distances between all data points andmedoids during each iteration.
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DBSCAN Clustering is classified as density-based partitional clustering method. This
widely used clustering algorithm aims to create clusters of data points that exhibit close prox-
imity in a high-dimensional space. DBSCAN is particularly advantageous when dealing with
complex shapes and noise, finding its utility in domains such as spatial data analysis and
anomaly detection. Unlike K-means and K-medoids, which require a predefined number of
clusters, DBSCAN determines the number of clusters automatically based on the underly-
ing data distribution. The algorithm starts by selecting a random data point and counting
the number of neighboring data points relative to a core point within a given radius (Eps).
The points within this radius are considered to be part of the same cluster. If the density of
the neighboring points is greater than or equal to the specified minimum number of points
(MinPts) required to form a dense region, a cluster is formed (Ester et al., 1996). The points
that do not belong to any cluster are considered as noise (Aggarwal & Reddy, 2013). The
algorithm continues to explore data points iteratively until all points are either assigned to
clusters or labeled as noise. Selecting appropriate values for Eps andMinPts requires domain
knowledge or experimentation. Furthermore, DBSCAN is sensitive to the density variations
in the dataset, facing challenges when dealing with clusters of varying densities or those sep-
arated by less dense regions. This sensitivity can lead to fragmented clusters or failure to
identify certain clusters.

Clustering Evaluation Metrics or clustering indices are used to compare different
clustering solutions and measure how well the data points are grouped into clusters. These
metrics can be classified in two categories: external and internal indices. External indices are
used to evaluate howwell each cluster matches the ground truth clusters provided by human
experts. Some of these measurements include cluster purity, Cluster Separation Measure,
Fowlkes-Mallows Index, F-measure, Normalized Mutual Information and Entropy (Zhang
et al., 2006, Han et al., 2012). However, internal indices measure the similarity of objects
within each cluster using features and cohesion in the dataset. These indices typically con-
sider factors like the compactness of clusters and the separation between clusters within the
dataset. Examples of internal indices are SSE, Silhouette Coefficient, RMSE, Dunn Index
and Root Mean Square Standard Deviation (Han et al., 2012, Aghabozorgi et al., 2015).

dimensionality reduction

Dimensionality reduction techniques are one of the commonly used unsupervised learning
methods. They aim to decrease the number of features within a dataset while retaining as
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much relevant information as possible. This is often used to mitigate the challenges posed
by high dimensionality and enhance the efficiency of subsequent analyses. Principal Com-
ponent Analysis (PCA) (Vidal et al., 2016), t-Distributed Stochastic Neighbor Embedding
(t-SNE) (Van der Maaten &Hinton, 2008), and PCC (Pearson, 1896) are widely used meth-
ods for achieving dimensionality reduction.

PCA is a commonly usedmethod in unsupervised learning (Saul &Roweis, 2003, Ghodsi,
2006) that effectively reduces the dimensionality of data by transforming it into anew set of or-
thogonal (uncorrelated) variables knownas principal components. PCAserves thepurpose of
retaining essential data insights while minimizing interference from irrelevant data and reduc-
ing computational complexity. PCA can be perceived as a feature extraction method, where
the principal components serve as new features for further analysis.

2.3.2 supervised learning methods
The supervised learning methods are algorithms trained on labeled datasets, where each data
point in the dataset is associated with the correct target or output. The goal of supervised
learning is to learn a mapping from inputs to outputs, enabling accurate predictions or clas-
sifications on new, unseen (test) data. In supervised learning, tasks are divided into two main
categories determined by the nature of their outputs: classification and regression (Nasteski,
2017,Gupta et al., 2022, Silvestrini&Lavagna, 2022). In classification tasks, the objective is to
assign input data points into predefined categories or classes. The output consists of discrete
labels denoting the corresponding class for the given input. Tasks such as image recognition
and email spam detection are examples of classification tasks. In regression tasks, the focus is
on forecasting a continuous numeric output value, representing a quantity or measurement,
using input data. Examples of regression tasks include weather forecasting and predicting
stock prices.

Regression models are a type of supervised learning, encompassing a range of statistical
approaches utilized for forecasting a continuous target variable by considering one or more
input features. These techniques serve the purpose of both prediction and uncovering asso-
ciations among variables. The primary objective of regression analysis is to construct a model
that characterizes the relationship between the input features and the target variable, thereby
enabling forecasts on new data. For instance, polynomial regression is a common method to
estimate and model complex relationships between variables by incorporating higher-order
terms in the regression equation. It fits a nonlinear relationship between the value of an inde-
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pendent variable and the expected value of a dependent variable (Stigler, 1974,Magee, 1998).
Support Vector Machines (SVMs) (Cortes & Vapnik, 1995) are used for classification and

regression tasks, where the algorithm learns from labeled data. They are commonly employed
in binary classification scenarios, with the aim of categorizing data points into one of two
classes. Nonetheless, they can also be expanded to address tasks involving the classification of
data into multiple classes. SVMs utilize polynomial input transformations to map the input
vectors to a high-dimensional feature space. A linear decision surface is created in the feature
space to enable the machine learning classification and prediction of data.

Generally, supervised learning involves the following steps:

1. Data collection involves gathering a dataset containing input features and their corre-
sponding correct output labels.

2. Data preprocessing is the process of cleaning, transforming, and structuring the data
to ensure their suitability for training.

3. Feature extraction is the selectionof relevant features fromthe inputdata or extracting
new features to effectively represent the data.

4. Model selection involves selecting an appropriate machine learning model based on
factors, such as data type (e.g., numerical, categorical), problem complexity, and the
availability of computing resources.

5. Training is the process of feeding the labeled features to the selected model and en-
abling it to learn the underlying patterns and connections between inputs and outputs.

6. Validation evaluates the model’s performance using a validation dataset (a subset of
the training dataset not used during training). This helps in hyperparameters tuning
and preventing overfitting, where the model performs well on the training dataset but
falters on an unseen dataset.

7. Testing is the final evaluation of the trained model on a separate test dataset (previ-
ously unseen by the model). This step provides an estimate of the model’s ability to
generalize.

8. Forecasting is the last step in which the trained model is utilized to forecast or classify
new, unseen data.

The selection of a supervised learning method relies on several factors, including the type
of data, the complexity of the tasks, and the targeted performance. Commonly used super-
vised learning algorithms include linear regression, decision trees, support vector machines,
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and neural networks. Given that the use case data in this study consists of large datasets of
time series, and the pursued task is time series forecasting, I conducted an investigation into
appropriate supervised learning methods applicable to this scenario. Time series forecasting
is the process of predicting future values by leveraging domain knowledge and previously ob-
served data (Hyndman&Athanasopoulos, 2018). The forementioned factors ledme to select
neural networks as a promising supervised learning method for my use case.

neural networks

Neural networks are among themostwidely usedmethods in supervised learning, holding the
potential to achieve remarkable performance in various applications, including image recogni-
tion (Krizhevsky et al., 2012), natural language processing, recommendation systems (Good-
fellow et al., 2016), as well as time series analysis and forecasting (Sønderby et al., 2020). Neu-
ral networks are inspired by the structure and functioning of the human brain’s neural net-
works, enabling them to identify patterns and correlations within data. A neural network
consists of layers of interconnected nodes, referred to as neurons, which process and trans-
form input data to produce output.

Neural networks are constructed frombasic components, including an input layer, hidden
layers, weights and biases, activation functions and an output layer. Algorithmically, the in-
put layer feeds the raw data into the network, where each node in the input layer corresponds
to a feature or attribute of the input data. Then, each neuron in a hidden layer performs a
computation involving weighted inputs, followed by the application of an activation func-
tion, to model complex relationships within data. Common activation functions include
Sigmoid, Tanh, and ReLU. The weights and biases associated with the connections between
neurons determine the strength of the links and the influence of a neuron on the neurons in
the following layer. The neural network learns these weights and biases from training data,
aiming to enhance its performance in a particular task. Finally, the output layer produces the
final result or desired prediction. Based on their network type, neural networks are classified
into several main categories, such as Feedforward and Recurrent Neural Networks, as well
as Transformers. These architectures and their usage in this work are described briefly in the
following.

Feedforward Neural Networks (FNNs), also often called multilayer perceptrons
(MLPs), stand as a fundamental variant of neural networks (Silvestrini & Lavagna, 2022).
FNN arranges the layers sequentially, allowing information to flow in only one direction,
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starting from the input layer, passing through the hidden layers, and reaching the output
layer (Goodfellow et al., 2016). FNNs are powerful models capable of approximating com-
plex functions and learning intricate patterns in data. However, they face challenges in han-
dling sequential and temporal data due to their lack of memory. Convolution Neural Net-
works (CNNs) are a specialized kind of FNNs that learn and extract relevant features auto-
matically from input data using convolutional kernels or filters (Silvestrini & Lavagna, 2022).
CNNs leverage a specialized layer called convolutional layer, which performs a mathematical
dot product between the convolution kernel and the layer’s input matrix. As the convolu-
tion kernel slides along the input matrix of the layer, the convolution operation generates a
feature map. This feature map contributes to the input of the next layer. The kernels cap-
ture different visual patterns, such as edges, textures, and more complex structures. Follow-
ing the traversal through several convolutional and pooling (dimensionality reduction) layers,
the final feature maps are flattened and fed into fully connected layers. CNNs are specifically
designed to analyze structured grid-like data, such as images, videos, and map data.

Recurrent Neural Networks (RNNs) and Long Short-Term Memory networks
(LSTMs) are widely used for analyzing sequences and time series data (Agarwal et al., 2021,
VanHoudt et al., 2020, Lara-Benitez et al., 2021). RNNs are networks with loops that utilize
information learned from previous inputs to generate outputs. LSTM is an extension of
RNNs, employing additional gates and cell states to learn long-term dependencies (Hochre-
iter & Schmidhuber, 1997, Hochreiter, 1991). LSTMs consist of memory cells that contain
gates using Sigmoid and Tanh activation functions. These functions change the cell’s state
and determinewhich information to retain for forecasts. In the LSTMmodel, the last hidden
state (short-termmemory) and cell state (long-termmemory) are passed to the next step of the
sequence, thereby retaining the information from previously observed data and utilizing it to
forecast future data (Hochreiter & Schmidhuber, 1997). LSTMs are particularly appropriate
for tasks that involve sequential data, such as natural language processing, speech recogni-
tion, and time series forecasting. However, the fundamental sequential nature of RNNs and
LSTMs prevent parallel processingwithin training examples. This limitation becomes critical
when dealing with longer sequence lengths, since memory restrictions hinder batching across
examples (Vaswani et al., 2017).

Transformers are a modern type of neural networks (Vaswani et al., 2017) that rely en-
tirely on a self-attention mechanism to compute representations of its input and output. In
the self-attentionmechanism, each word (token) in the input sequence is associated with rep-

32



resentations obtained from the token’s input embedding. Subsequently, attention scores are
calculated for each token in relation to all other tokens present in the sequence. These scores
indicate the level of emphasis each token should receive. This mechanism empowers trans-
formers to effectively capture long-term dependencies and contextual information, enabling
parallel processing and scaling to large datasets, and requiring less training time compared to
RNNS or CNNs. They have achieved superior results on several natural language processing
tasks, including machine translation, question answering, and text generation. Although
transformers offer utility in time series forecasting, they might not consistently outperform
conventional time series forecasting methods, especially for smaller datasets or simpler pat-
terns. Furthermore, discussions regarding the effectiveness of transformers in time series
forecasting are ongoing. This uncertainty arises because self-attention, a fundamental aspect
of transformers, does not inherently consider sequence order, which is an important feature
in time series forecasting. Despite the inclusion of positional and temporal embeddings, exist-
ing transformers still face the challenge of preserving temporal information (Zeng et al., 2023).

Selecting the most appropriate neural network architecture is challenging and depends on
factors, such as time series characteristics, data volume, seasonal patterns, the complexity of
patterns, and the availability of computing resources. It is often a good practice to start the
process with straightforward and proven methods and gradually progress to more complex
models like transformers, if necessary. Additionally, it is essential to engage in empirical trials
of different techniques and compare their performance on a validation dataset to find the best
approach for a specific forecasting task. In this study, I employed the LSTM model within
the approach introduced in Section 6, that is a reliable and appropriate choice for time series
forecasting.

2.4 approximation and optimization of
simulations

Simulation refers to the representation of the behavior of a real-world system as it evolves
over time. Advances inmodeling techniques and the availability of computing resources have
enabled scientists to conduct large-scale and high-resolution simulations. However, the exe-
cution of such simulations might be expensive in terms of time and resources. Consequently,
tasks such as engineering design optimization, design space exploration, sensitivity analysis,
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conducting hypothetical assessments, and performing ensemble runs become unfeasible due
to the need for thousands or even millions of simulation runs. Therefore, there is a need
to limit the number of simulations executed when searching for optimal parameters (Ama-
ran et al., 2016). This is where the concept of optimization becomes relevant. Optimization
involves modifying the algorithms, parameters, or settings of a simulation to enhance its effi-
ciency or tailor it for a specific purpose.

Simulationoptimization is a termused todescribe computational techniques or algorithms
utilized to optimize stochastic simulations that involve randomness or uncertainty (Amaran
et al., 2016). It involves the usage of simulations to identify the best input variable values
among all possibilities, without explicitly evaluating each one. Simulation optimization aims
to achieve an optimal balance between resource utilization and information acquisition dur-
ing a simulationprocess. Simulationoptimizationmethods are categorized into several classes,
such as gradient-based search, heuristic and statistical methods, as well as stochastic optimiza-
tion (Carson &Maria, 1997).

Considering the definition of simulation optimization, the work presented in this thesis
does not primarily focus on defining any simulation optimization method. Instead, this re-
search introduces approaches to approximate complex and compute-intensive simulations,
thereby optimizing them in terms of their computational complexity. The process of approx-
imating simulations generally involves finding simplermodels or techniques capable of deliver-
ing similar results as the full simulation, butwith reduced computational complexity. Numer-
ous approaches exist for simulation approximation, such as reduced-order models, surrogate
models, adaptivemesh refinement (Berger&Colella, 1989), time stepping strategies (Demirel
et al., 2015), multiscale modeling, and parallelization (Kiesling, 2005). The choice of an ap-
proximation method depends on the specific goals of the simulation, the accuracy required,
available computational resources, and the nature of the system being simulated. In the fol-
lowing, I will focus on two widely used categories of simulation approximation approaches:
reduced-order models and surrogate models, both of which are used in this thesis.

2.4.1 reduced-order models
Reduced-order models are approximated models that use Model Order Reduction (MOR)
techniques (Benner & Faßbender, 2013) to reduce the computational complexity of simula-
tions while retaining their necessary functionalities. These techniques significantly reduce
the run time and memory usage of large-scale simulations. MOR aims to automatically sim-
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plify dynamicalmodels that consist of numerous equations and variables, capturing the essen-
tial properties and dominant dynamics of the original model in a more compact approxima-
tion (Schilders et al., 2008). The applications of MOR include various fields such as design,
simulation, optimization, and real-time dynamic systems. MOR techniques can be catego-
rized into several classes based on different approaches, such as time domain, frequency do-
main, time-frequency domain, optimization techniques and artificial intelligence, and data-
driven methods (Kumar & Ezhilarasi, 2023).

The Proper Orthogonal Decomposition (POD) method, which is conceptually similar to
Principal Component Analysis (PCA), is a powerful and effective MORmethod in the time
domain. Its objective is to extract the most important components from a high-dimensional
complex system by using a few proper orthogonal modes (Lu et al., 2021). In this statistical
method, the POD reduction function is derived by solving the eigenvectors of the autocorre-
lation matrix, constructed from snapshot signals obtained through numerical simulations or
experimental data from the original system. While PODmodes effectively capture dominant
features of the data, decoding and interpretation of their physical meaningmight be challeng-
ing, especially in complex systems. Additionally, POD-based models are constructed based
on the available data and might not generalize well to new or unseen scenarios.

While MOR techniques accelerate complex simulations, it is important to consider the
trade-off between performance and computational complexity, the necessity of understand-
ing the details of the simulation code, and the limitations in applicability and generalizability
of the reduced order models.

2.4.2 surrogate models
Another approach to approximate complex and compute-intensive simulations involves the
utilization of surrogate models or emulators. These models are constructed using statistical,
data-driven or machine learning approaches and serve as efficient replacements for compu-
tationally expensive simulations, while providing reasonably accurate predictions of the out-
puts of the original simulation model. Surrogate models offer a benefit over reduced-order
models by not requiring knowledge or comprehension of the precise mechanisms within the
simulation code. Instead, their focus lies solely on capturing the input-output relationship.
Surrogate models use data generated from the original or high-fidelity simulation models to
provide rapid approximations (Queipo et al., 2005). These data consist of input parameters
and correspondingoutput values from the simulation runs. Various techniques canbeused to
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create surrogate models, including polynomial regression, Gaussian process regression, Sup-
port Vector Machines (SVMs), decision trees, and neural networks. These models essentially
learn the underlying relationships between inputs and outputs of the simulation by utilizing
supervised learning methods.

Environmental simulations and forecasting models are usually compute-intensive, partic-
ularly when considering ensemble simulations at high spatio-temporal resolution. With the
growing capabilities of HPC systems containing GPU resources, there is a potential of bene-
fiting from forecasting methods based on machine learning, especially neural network mod-
els (Dueben & Bauer, 2018, Scher, 2018, Rasp & Thuerey, 2021, Van Houdt et al., 2020,
Lara-Benitez et al., 2021). Once such a model is trained on an HPC system, it can be reused
multiple times for forecasting. Consequently, the overall process is faster and computationally
less expensive than simulating physical models. Additionally, there is potential for forecasting
at time scales and in locationswhere physicalmodels performpoorly. However, this is the case
when the network is trained with observational data.

Incorporating physical principles, governing laws and domain knowledge into machine
learning models, or physics-informed machine learning (Karniadakis et al., 2021), aims
to create physically consistent and scientifically sound predictive models. This serves to
accelerate the model training process, to improve the generalizability of models in making
reliable predictions for unseen scenarios, and to enhance transparency and interpretability,
thereby making the models more trustworthy. A widely used method for including physics
and domain knowledge in surrogate models is through regularization with custom loss
functions. The relative weights of the physics-based losses are adjustable hyperparame-
ters (Kashinath et al., 2021).

The evaluation of surrogate models involves a trade-off between their performance and
computational complexity. As these models serve as representations of original simulations,
there might be some loss of accuracy in exchange for faster computation. The degree of accu-
racy depends on factors, such as the choice of surrogatemodel technique, the size, and quality
of the training dataset, and the complexity of the underlying simulation model. The surro-
gatemodel’s accuracy candeteriorate outside the range of the trainingdata or if theunderlying
simulationmodel undergoes significant changes. Regular updates and validations against the
original simulation model are necessary to ensure the surrogate model’s reliability.
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Research is to see what everybody else has seen, and to think
what nobody else has thought.

Albert Szent-Györgyi

3
RelatedWork

Following the presentation of the relevant background in Chapter 2, this chapter features an
overview of related scientific work connected to the research conducted in this thesis. The
provided overview is not intended to be all-encompassing. The related work about key princi-
ples for evaluating environmental models are presented in Section 3.1, presenting the utilized
measures for accuracy and efficiency of the models. Section 3.2 provides the related work
and approaches using reduced-order models that have been employed for the approximation
and optimization of environmental simulations. The related work on the application of su-
pervised learning in the context of surrogate models is presented in Section 3.3. As certain
approximationmethods leverage the similarities between simulationmodel units, Section 3.4
introduces the strategies and unsupervised learning methods used for identifying similarities
in the simulation structures. The description of the related work provided in this chapter has
been partly published in Azmi (2018b) and Azmi et al. (2019, 2020, 2021, 2023)

3.1 model evaluation
Evaluation of environmental models is an essential principal step involved in modeling to
measure the accuracy, reliability, and efficiency of the models in replicating and forecasting
environmental processes and phenomena (Aral, 2010, Bennett et al., 2010). Assessment of
a model’s performance and its ability to accurately represent the system being studied has re-
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sulted in various approaches and debates about the suitability of these techniques. The most
suitable approach depends on factors such as the model type, available data, modeling objec-
tives, and, in some cases, a combination of methods might be necessary to achieve the most
comprehensive understanding and effective decision support Bennett et al. (2010). Many ap-
proaches exist to guidemodel development, and they differ by theway they handle and the em-
phasis they put on each of the two key aspects, namely performance and complexity (Schoups
et al., 2008), discussed in Section 2.2.

Model selection has also been done by applying complexity penalization measures. Com-
plexity penalization measures, such as the Akaike Information Criterion (Akaike, 1974) or
the Bayesian Information Criterion (Schwarz, 1978), are a formalization of the principle of
parsimony which can be applied to make models of varying complexity comparable in terms
of performance. Many discipline- and purpose-specific variants for complexity penalization
exist to build parsimonious models. Hydrological systems have been described and analyzed
in terms of their complexity by Jenerette et al. (2012), Jovanovic et al. (2017), Ossola et al.
(2015), and Bras (2015). Similarly, hydrological time series complexity was investigated by En-
gelhardt et al. (2009).

Complexity measures have been used for classification of hydrological systems by Pande
& Moayeri (2018), who used the Vapnik-Chervonenkis (VC) dimension (Vapnik & Cher-
vonenkis, 1979) from statistical learning theory (Cherkassky & Mulier, 2007) and machine
learning. The VC dimensionmeasures the capacity or complexity of a set of functions or clas-
sifiers that can be learned by a statistical binary classification algorithm. This is yet another
view on model complexity as its flexibility to classify arbitrary data.

Other complexity-based classification was done by Sivakumar et al. (2007) and Sivakumar
& Singh (2012). In this context, many complexity measures have been proposed based on
information entropy (Zhou et al., 2012, Castillo et al., 2015), wavelets (Sang et al., 2011), cor-
relation dimension of system output (Sivakumar & Singh, 2012), and dynamic source analy-
sis (Perdigão, 2018, Perdigão et al., 2019).

In hydrological modeling, model complexity most often refers to the number of processes,
variables, or parameters a model comprises, and many authors have investigated the relation
of model complexity and predictive performance (Gan et al., 1997, Schoups et al., 2008,
Arkesteijn & Pande, 2013, Förster et al., 2014, Finger et al., 2015, Orth et al., 2015) and
proposed ways to build or select models of minimally adequate complexity or parsimonious
models (Atkinson et al., 2002, Sivapalan, 2003,McDonnell et al., 2007, Schöniger et al., 2015,
Höge et al., 2018).
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Weijs & Ruddell (2020) call Occam’s parsimony a “weak parsimony”, because it identifies
a set of parsimonious models rather than a single most parsimonious model. They further
argue that a single, “strongly parsimonious” model could be identified by considering, in ad-
dition to model descriptive complexity, also model performance, and to express them in the
language of Algorithmic InformationTheory (AIT) as two additive terms which together are
the description length of the data in bits. Thus, Performance becomes part of parsimony by
collapsing them into the single dimension of description length. A strongly parsimonious
model in the terms ofWeijs & Ruddell (2020) perfectly or losslessly reproduces experimental
observations in the smallest number of bits, after adding together the compressed size of the
model and the compressed corrections needed to adjust the model’s predictions to equal the
observations. Such a model balances minimum model size and minimum information loss,
and maximum generalizability outside the observed datasets used to construct and test the
model. The latter claim is based on insights from AIT, where shorter descriptions have been
shown to be more likely to be generalizable. This is expressed through the concept of algo-
rithmic probability, assigning higher prior probability to simple models, and convergence of
induction systems based on this formalization was shown in Solomonoff (1978). An alter-
native perspective on this concept is to utilize all structure within the data, while finding the
minimum description length. This was used by Kolmogorov (1968) to define randomness as
absence of structure and therefore as incompressibility.

The approach proposed by Weijs & Ruddell (2020), drawing on the minimum descrip-
tion length principle (Rissanen et al., 2007, Grünwald, 2007), not only has the advantage
of favoring models with a good trade-off between descriptive complexity and performance.
Application of a single measure, expressed in bits, to quantify both of these aspects also of-
fers the advantage of rigor and generality over more contextually defined performance mea-
sures (Bennett et al., 2013), such as RMSE, KGE, Nash-Sutcliffe Efficiency (NSE) (Nash &
Sutcliffe, 1970). This more generalized strategy helps to guide model preference, especially in
automated environments for learning models from data, starting with the widest class of all
computable models, and making very few prior assumptions on structure. At the same time,
the lack of prior assumptions is also a weakness of this framework in contexts where consider-
able prior information is available. In hydrology, this is typically the case, therefore, practical
application of this framework is still an open challenge.

Moriasi et al. (2007) produced guidelines for systematic model evaluation, including a list
of recommended evaluation methods and performance metrics based on a thorough review
of relevant literature. For model evaluation, they recommended three quantitative statistics,
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NSE, percent bias (PBIAS), and the RMSE-Standard deviation Ratio (RSR), in addition to
graphical techniques.

Validation set approaches are a standard procedure in hydrological model development.
Among a set of competing models, the model is preferred that performs best on the unseen
data during model parameter estimation. The fact that model performance is evaluated on a
validation set promotes general models, i.e, models that have captured the essential workings
of the natural system they represent, and demotes models overfitted to the calibration data,
which are likely to be models with unnecessarily high descriptive complexity. It is therefore
an implicit form of model complexity control.

My research contributes to the large existing body of complexity studies in environmen-
tal science, by expressing the key aspects of computer-based models, namely performance,
descriptive complexity and computational complexity in the single general unit, facilitating
comprehensive model evaluation and optimization (Chapter 4).

3.2 reduced-order models
In the context of reduced-order models, Sun et al. (2020) introduced a method based on
Proper Orthogonal Decomposition (POD) to predict flow and heat transfer of oil and water
using numerical reservoir simulations. They generated a reduced set of POD basis functions
from offline full-order simulations and predicted new physical fields online without directly
solving the full-order governing equations. The proposed reduced-order model is dozens of
times faster than that of the finite difference method in online calculation speed, with a rela-
tive error of less than 1.3% and 1.5% for water saturation and temperature fields, respectively.

In a numerical simulation of wind and pollutants, the calculation of flow in large-scale
urban areas is time-consuming. The reduced-order model proposed by Ding & Yang (2021),
which is based on POD and radial basis function interpolation, resulted in a 99% reduction
in CPU time at the cost of 0.1% information loss, compared to the traditional approach of
computational fluid dynamics.

While reduced-order models provide fast and efficient simulations, they might suffer from
a high accuracy loss compared to the full-order model or original simulation. Numerical sim-
ulations for computational fluid dynamics require millions of degrees of freedom and several
days of computing resources. In their work, Lassila et al. (2014) presented challenges and
perspectives of model reduction methods for incompressible fluid dynamics, contributing to
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the understanding of the types of reduced-order models that may be best suited for particular
fluid dynamics applications. Difficulties arise when attempting to reduce the model order of
unsteady flows, especially when accurately predicting long-term transient behavior and con-
sidering more complex features like turbulence or multi-physics phenomena.

A general framework for projection-based model order reduction assisted by deep neural
networks is proposed by Daniel et al. (2020). They introduced a concept, in which a suitable
local reduced-order model is recommended from a dictionary through deep neural networks.
The dictionary of local reduced-order models is constructed through clustering of simplified
simulations, enabling the identification of the subspaces in which the solutions evolve for dif-
ferent input tensors. It has been shown that direct clustering of the input space may result
in clusters that cannot be exploited to define local reduced-order models. This issue can be
circumvented by defining a reduced-order model oriented dissimilarity based on the results
of simplified numerical simulations. Online cluster assignment can be performed using a clas-
sifier based on deep neural networks to bypass the need for numerical simulations, thereby
reducing the computation time by a factor of 60.

Thoughmost of theModel Order Reduction (MOR) techniques capture the essential fea-
tures and dynamics of the full-order simulations, I introduced a hybrid approach based on
MOR and unsupervised machine learning, that preserves representative simulation model
units within discrete clusters of similarly functional model units (Chapter 5).

3.3 surrogate models
Surrogatemodels are utilized to provide faster forecasts instead of running compute-intensive
simulations. Regression models can approximate the behavior of the original model using its
input-output data. In their work, Chang et al. (2010) proposed amethod for efficiently train-
ing and testing SVM for low-degree polynomial data mappings. They successfully applied
the proposed method to a natural language processing application by improving the testing
accuracy under some training/testing speed requirements. While polynomial regression can
capture complex relationships, high-degree polynomial termsmight lead to overfitting so that
the models fit the training data extremely well but might not generalize to new data.

Scher (2018) used a deep convolutional neural network to emulate the complete physics
and dynamics of the General Circulation Model (GCM), typically employed in weather pre-
diction and climate science. The network learns from the dynamics of the GCM and fore-
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casts the weather for multiple time steps ahead (up to 14 days). The neural network forecast
demonstrated a reducedRMSE compared to both the persistence and climatological forecasts
when assessing its accuracy against the true state of the GCM. The study indicated that the
neural network learns the time evolution and dynamics of a simple GCM principally, but
the studies need to be continued for more complex models, including the incorporation of
meteorological forcing.

A fully connected multi-layer neural network model for forecasting of the atmosphere’s
global weather was developed by Dueben & Bauer (2018). They showed that the model out-
performs a simple persistence model in terms of forecasting and produces competitive fore-
casts compared to coarse-resolution (6◦ ≈ 668 km) atmosphere models of similar complexity,
at least for short lead times. However, the forecasts exhibit instability and deterioration after
a few days. According to the authors, a close collaboration is required between computer sci-
entists and meteorologists to include the physical knowledge and deep understanding of the
Earth system into the neural network model.

For medium-range weather forecasting, Rasp & Thuerey (2021) defined a data-driven
method that uses a deep residual convolutional neural network (Resnet). They trained mod-
els to forecast geopotential, temperature, and precipitation at 5.625◦ ≈ 626 km resolution
up to five days ahead. When compared to physical models, Resnet achieves comparable scores
to a physical model at a similar resolution. They used a dataset spanning 150 years from the
CoupledModel Intercomparison Project (CMIP) (Eyring et al., 2016) to pretrain the model,
which was then fine-tuned using the ERA data. ERA (ECMWF Re-Analysis) refers to a
series of climate reanalysis datasets produced at the European Centre for Medium-Range
Weather Forecasts. Given that the current CMIP models run at around 100 km resolution,
this model cannot be used effectively for forecasts at higher resolutions. The goal of this work
is to explore the feasibility of data-driven approaches in weather forecasting.

In order to overcome the high computational costs while attaining comparable quality in
their results, Albrecht et al. (2021) presented a fully connected neural network. They used
a dataset generated from the global numerical ECHAM/MESSy Atmospheric Chemistry
(EMAC) model to make predictions of chemical tendencies. This work showed a proof of
concept that neural networks can predict atmospheric chemistry tendencies. However, hy-
perparameter tuning is required to overcomemodeling problems arising from seasonal trends
in the data. This challenge is associated with using a neural network model in comparison to
the use of physical models.

Schultz et al. (2021) presented a review and discussion of the opportunities provided by
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deep learning approaches in the field of weather prediction. They focused on the possibility
to replace numerical forecastmodels and presentedmodels that are limited to short-term fore-
casting of less than 24 hours. The authors acknowledge the potential of using deep learning
for weather forecasting, but emphasize the importance of overcoming challenges, particularly
in terms of accuracy and reliability, before replacing traditional numerical models. These
challenges arise from the characteristics of meteorological data, including varying probabil-
ity distributions, dynamic behavior on various spatio-temporal scales, rapid feature changes,
extreme events, and the complexity of atmospheric interactions.

The execution of current physics-based numerical weather prediction (NWP) at high res-
olution is compute-intensive. Kurth et al. (2023) presented FourCastNet, a data-driven deep
learning Earth system emulator capable of predicting global weather and generating medium-
range forecasts, approximately five orders of magnitude faster than traditional NWP simula-
tions, while maintaining high accuracy. They trained the deep learning model on the ERA5
(ERA fifth generation) dataset at the native resolution of 0.25◦ ≈ 25 km, covering the years
1979−2017. The input tensor has dimensions (20×720×1440), representing 20 prognostic
variables supposed to have the greatest impact on near-surface winds and temperatures. The
model produces a six-hour single time step forecast with the same dimensions. FourCastNet
scales efficiently only on three HPC systems utilizing the NVIDIA A100 GPUs. FourCast-
Net produces accurate instantaneous weather predictions for up to a week in advance and
enables the generation of extensive ensembles that could significantly improve predictions of
rare weather extremes.

The use of customized loss functions in physics-informed machine learning models has
been employed by Daw et al. (2022), where they modeled the temperature of water in a lake
at varying depths and times. This framework combines physics-based simulations and obser-
vational features in a hybrid model, leveraging neural networks to generate predictions. This
approach not only reduces errors in the training set but also ensures the consistency of predic-
tions with the known laws of physics in both training and unlabeled data.

Since surrogate models serve as efficient replacements for computationally expensive sim-
ulations, I utilized this concept in my method, which replaces a compute-intensive global at-
mospheric chemistry simulation with an LSTMmodel to forecast the volumemixing ratio of
twelve trace gases (Chapter 6).
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3.4 identification of similarities
In environmental science, especially in hydrology, the identification of similarities plays a key
role in detecting patterns in the environment, extracting correlations and improving the fore-
cast of future events (Corzo & Solomatine, 2007, Sawicz et al., 2011, Ali et al., 2012, Ehret
et al., 2014, Zehe et al., 2014). To define hydrologic similarity, Wagener et al. (2007) sug-
gested a framework that is both descriptive and predictive. Their metrics for defining hydro-
logic similarity or dissimilarity between catchments include static characteristics and dynamic
responses of catchments to their meteorological forcing. They discussed the demand for a
catchment classification systembased on the structure andhydro-climatic conditions of catch-
ments, as well as their functional response to the precipitation input. Following this, Sawicz
et al. (2011) derived signatures fromprecipitation, temperature, and streamflowdata to apply
a Bayesian clustering and to identify groups of similar catchments. In my approach (Chap-
ter 5), I incorporated such similarity features of model units to represent their properties.

Classification and clustering are the most commonly used methods in environmental sci-
ence for detecting patterns in datasets, making decisions, and extracting the required informa-
tion using similarity measurements (Türkeş & Tatlı, 2011, Zarnani et al., 2014, Arroyo et al.,
2015, Netzel & Stepinski, 2016). These twomethods identify groups of similar objects using
already labeled data or object neighborhood properties such as distance or density (Murphy,
2012, Kassambara, 2017).
K-means, Clara, HClust and Fuzzy clustering algorithms were studied by Zarnani et al.

(2014) to analyze the uncertainty of weather situations. The proposed method led to a de-
crease in the RMSE of point forecasts by up to 10%. To predict theminimum andmaximum
weather-basedmeteorological data, Shobha&Asha (2017) compared the application of theK-
means and hierarchical clustering using internal validation measures. Türkeş & Tatlı (2011)
used the spectral clustering to determine the coherent precipitation regime regions. They
could obtain spatial patterns of the precipitation regions, offering new hydro-climatological
insights for a deeper understanding of hydrological systems.

Time series are one of the main types of input data in environmental science (Bărbulescu,
2016), and dealing with these data requires additional preprocessing steps. There are four
main steps involved in time series clustering: dimensionality reduction or representation
method, distance measurement, clustering algorithm and evaluation (Aghabozorgi et al.,
2015). When considering time series as discrete objects, several approaches are applied to do
the time series preprocessing for clustering. One such method involves converting time series
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data to make them compatible with the conventional clustering algorithms. The feature-
based method converts time series into equal-length feature vectors, which are then used as
input data for the clustering algorithm (Liao, 2005, Hautamaki et al., 2008). This approach
serves as a dimensionality reduction technique, aiming to reduce memory requirements and
computation complexities (Keogh & Pazzani, 2000). An alternative approach for the trans-
formation of time series data is known as the model-based method. It fits a parametric model
to each time series to calculate a model-model distance for clustering (Liao, 2005, Hauta-
maki et al., 2008). An additional strategy, referred to as the shape-based method, focuses on
matching the shape of time series through non-linearly stretching and contracting the time
axes (Hautamaki et al., 2008, Aghabozorgi et al., 2015). Feature selection techniques also be-
long to dimensionality reduction approaches that filter the redundant or irrelevant features.
Measures such as correlation (Hall, 1999), mutual information (Battiti, 1994), incremental
orthogonal centroid (Yan et al., 2006) and structural similarity (Mitra et al., 2012) select a
proper subset of the original features to reduce the dimensionality. After representing time
series, one of the clustering methods is applied based on the requirements of the study case.
In the last step of the clustering process, the accuracy of the extracted clusters is evaluated,
which is a challenging issue without having a labeled data set or ground truth.

Classificationmethods provide efficient pattern detection and help in a deeper understand-
ing of hydrological systems (Ley et al., 2011, Sawicz et al., 2014). However, they require la-
beled data to classify unseen data. Due to the lack of labeled data, I used clusteringmethods to
identify similar hydrological model units in the CAOS simulation model (Chapter 5). Thus,
I do not go through the classification methods. The selection of an appropriate clustering
method depends on various parameters, such as the type of input data and clustering output,
scalability and robustness, thus it is use case dependent. Kar et al. (2012) compared the hi-
erarchical clustering fuzzy C-mean (FCM) and K-means to analyze regional flood frequency
and the underlying distribution. The results of both clustering methods for their application
were nearly identical. Therefore, they concluded that the choice of the best clusteringmethod
depends on the specific use case. Netzel & Stepinski (2016) presented a clustering-based clas-
sification of climate data that resulted in internally more homogeneous and externally more
distinct climate types compared to the types in the rule-based Köppen-Geiger classification,
which is the de facto standard in global climate classification. Zhang et al. (2016) successfully
defined regions with clear boundaries of homogeneous precipitation regions with highly var-
ied spatio-temporal patterns using K-means on a gridded dataset for automatic delineation.
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The greatest enemy of knowledge is not ignorance; it is the
illusion of knowledge.

Stephen Hawking

4
Evaluation of Simulations on Performance

and Computational Complexity

This chapter addresses Research Question 1, defined in Section 1.1. Namely, I investigate
general principles that can be employed to assess the quality and efficiency of simulations,
aiming to develop a universally applicable approach for their evaluation. Section 4.1 presents
key aspects of model evaluation and provides a guideline for model development. Section 4.2
describes an evaluation approach based onmeasuringmodel performance and computational
complexity, and its application to various test models in a real-world study area. This is fol-
lowed by the demonstration of the models’ evaluation results and discussions of the key in-
sights derived from the evaluation approach in Section 4.3. The implementation environ-
ment of the tests is described in Section 4.4. Finally, Section 4.5 summarizes the chapter. The
presented approach in this chapter has been published in Azmi et al. (2021).

4.1 motivation
The main goal of environmental sciences is to acquire a deeper understanding of the natu-
ral world and its governingmechanisms. Scientists investigate phenomena, make predictions,
and advance theories that can be validated by comparison to observations (Kerr & Goethel,
2014). Models and simulations, for example, provide tools for understanding, analyzing, and
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predicting complex systems, while enabling the examination of diverse scenarios and the as-
sessment of potential results of various choices. Their significance becomes especially appar-
ent when addressing situations that involve conducting time-consuming, expensive, or im-
practical real-world experiments or observations. It is important to ensure that the models
representing natural phenomena and systems are both concise and effective in accurately cap-
turing their essence.

These models, on the one hand, should align with observations of real-world systems,
performing well regarding the level of accuracy, precision, and overall correctness (Kirch-
ner, 2006). Evaluating such models involves considering their complexity. On the other
hand, these models should be concise, elegant, explainable, understandable, communicable,
teachable, and compact (Solomonoff, 1964). An ideal model, exemplified by mathematical
analytical models like Newton’s laws, achieves a balance between performance (exhibiting
high accuracy and precision when compared to a wide range of experimental observations)
and appropriate complexity (displaying elegance, brevity, and communicability). Efficiency
in producing output is another crucial aspect of model complexity, particularly for large
models employed in operational settings where computational effort or computation times
are significant factors. These essential components of model evaluation are labeled as “per-
formance”, “descriptive complexity”, and “computational complexity” (Figure 4.1).
Occam’s razor offers a guideline to promote models that effectively describe patterns in

data and to distil laws that allow effective compression of experimental data. Additionally,
it serves as a guideline for inference, which refers to the process of drawing conclusions or
makingpredictions based on the information contained in a set of data or observations. When
applying Occam’s razor, the parsimonious among the well-performing models are identified.
However, for model selection, this principle alone does not allow for comparisons between
models of different complexities.

Occam’s razor and the AIT-based extension proposed by Weijs & Ruddell (2020) are de-
signed with a focus on inference, specifically distilling small and universal laws from experi-
mental data, while validation set approaches primarily emphasize performance. Neither of
these approaches directly considers the effort required by a model to make its predictions.
However, this effort can be an important quality of a model in settings where computing re-
sources are limited. In earth science modeling, considering this effort is more the rule than
the exception for the following reasons: i) the scales of earth systems cannot be separated eas-
ily, and in some cases, not at all, hence it might be necessary to simulate large systems in high
spatio-temporal resolution, even for local questions, ii) calibration of model parameters from
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Science

Models

Key aspects

Performance Complexity

Computational
complexity

Measured e.g. by:
- Accuracy, Precision, RMSE, NSE

In Information Theory (IT), by:
- Information loss or gain [bits]
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Discipline: Analysis of 
Algorithms (AOA)
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- Computation time [s]
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Discipline: Algorithmic
Information Theory (AIT)
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- Description length [bits]

Description
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Figure 4.1: Key aspects of model evaluation. In the framework of AIT, the sum of a model’s performance and descriptive
complexity can be expressed as its description length (yellow area). Modified after Azmi et al. (2021).

data requires many repeated model runs for parameter identification, and iii) models used in
optimal decision-making require repeated use to identify the optimal alternative.

4.2 methodology
In the context of the guidelines formodel development discussed in Section 2.2, this work has
two distinct but related goals. The first goal is to propose a practical method for measuring
computational complexity by counting the total number of memory visits during the execu-
tion of a model. This measurement is sensitive to all aspects of a model, including its size, the
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input data it processes, its numerical scheme and time stepping, and runtime environment.
The second goal is to demonstrate how the measurement of computational complexity can
be combinedwith the performancemeasurement by information loss relative to observations.
This approach allows for the joint evaluation of all key aspects of amodel, specifically, descrip-
tive complexity, computational complexity, and performance.

In the proposed method, I employ a validation set approach inspired by Weijs & Ruddell
(2020) to quantify model performance in terms of information loss in bits. Therefore, the
evaluation approach consists of explicitly evaluating a model in terms of computational com-
plexity and performance, with both metrics quantified in bits. Descriptive complexity is im-
plicitly consideredwithin the framework of the validation set approach. Measuring computa-
tional complexity using amonitoring and profiling tool is a general practice, applicable to any
model executed on a computer. Likewise, the evaluation approach is universal, as it measures
two key aspects of a model within the single unit of bits.

For the demonstration of this method, I run hydrological models of various types (simple
and advanced process-based, both approximate and exact restatements of experimental obser-
vations, autoregressive, and neural network models), all of which aim to perform the same
task of predicting discharge at the outlet of a watershed. Similar to Weijs & Ruddell (2020),
I examine possible trade-offs between computational complexity and information loss. It is
important to note that the primary purpose of the model comparison here is not to identify
the best among the different modeling approaches, but rather, it serves as a demonstration of
how themeasuring process is sensitive to all facets of a model, and how differences among the
models can be explained by their setup, aligning with expectations.

4.2.1 study area
The real-world system I seek to represent with the hydrological models is the Dornbirner-
ach catchment in western Austria (Figure 4.2). This catchment, located upstream of river
gauge Hoher Steg (Q_Host), the target of the models’ predictions, covers 113 km2. The
catchment’s rainfall-runoff dynamics reflect its Alpine setting, including winter snow accu-
mulation, spring snowmelt, high and intensive summer rainfall, and rapid rainfall-runoff re-
sponse due to the steep terrain. The meteorological dynamics of the system are represented
by precipitation observations at a single rain gauge, Ebnit (P_Ebnit), locatedwithin the catch-
ment. Time series data ofQ_Host and P_Ebnit are available in hourly resolution for ten years
(1 January 1996 – 31December 2005). No additional dynamical or structural data were used
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Figure 4.2: Digital elevation model of the Dornbirnerach catchment (study area, brown line). Provided by courtesy of
Marcus Strobl.

in the model set-up. Although this dataset might be considered data-scarce for building the
best possible hydrologicalmodel, it is sufficient for demonstration of the evaluation approach.

4.2.2 evaluation approach
In thiswork, I use the term “complexity” in a specificway to refer to different characteristics of
amodel. I have adopted the term “descriptive complexity” fromAIT to express the parsimony
of amodel by its size in bits when stored on a computer. Additionally, I use the term “compu-
tational complexity” from Analysis of Algorithms to express the efficiency at which a model
generates its output by the number of memory visits during program execution. All models
are evaluated in terms of the two criteria described in Section 2.2: “performance” referring
to the model’s ability to reduce predictive uncertainty about the target, and “computational
complexity” representing the effort required to make the model generate a prediction about
the target. Similar toWeijs &Ruddell (2020), I express both quantities in bits. This approach
allows for an investigation into whether direct comparison or combining both quantities in a
single measure aids in the interpretation of the values.
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Figure 4.3: Model evaluation approach in terms of performance and computational complexity. The points A, B and C are
dummy model measurements. Provided by courtesy of Uwe Ehret.

In the evaluation space (Figure 4.3), different models can be compared based on their po-
sitions in the diagram. The horizontal axis represents the computational complexity of the
models during their simulation, including the computer memory used to read and process
the input data, as well as write the output data. The vertical axis indicates the uncertainty
of the model output, which is the amount of missing information needed to obtain output
values that match the observations. The maximum information loss corresponds to the loss
of the entire original data. As the position of a dummy model measurement moves relative
to the original data and shifts horizontally to the left in the diagram, the invested data are
compressed. This indicates that the model needs a smaller amount of data than the original
data (Figure 4.3). However, data compressibility is limited by its entropy, and data cannot be
compressed to zero computational complexity. Therefore, nomodel can be positioned in the
bottom-left corner of the diagram.

To facilitate the understanding of the evaluation approach, three dummy model points,
namely A, B and C are included for comparison in this diagram (Figure 4.3). Model B out-
performs modelC because it contains more information while requiring the same amount of
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data or memory visits (computational complexity). The comparison between models A and
B indicates that, model A is more efficient than model B because of its lower data demand,
while containing the same amount of information (performance).

4.2.3 model performance measure
I express model performance in terms of information loss, as described in Weijs & Ruddell
(2020). In information theory, entropy is a measure of the uncertainty about the outcome of
a random draw from a distribution before it is revealed. All that is known a priori is the data
distribution. If the outcome is known beforehand, then the a priori known data distribution
reduces to a Dirac function (Dirac & Fowler, 1927) with p = 1 for the outcome and p = 0
everywhere else. The entropy of such a distribution, and thus the uncertainty, is zero. In
model performance evaluation, one could use this “perfect prediction” case as a benchmark to
compareother states of prior knowledge against in termsof addeduncertainty (or information
loss). In the case described above, where all that is known a priori is the data distribution, the
information loss compared to the benchmark case equals the entropy of the distribution. In
other cases, onemight have useful side information e.g., predictions of amodel, which reduces
information loss. In such a case, information loss can be quantified by conditional entropy
(Equation 4.1), where X represents the targets, Y the model predictions (predictor), x and y
are a particular target and prediction, andH(X|Y) is the conditional entropy in bits.

H(X|Y) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log2 p(x|y) . (4.1)

Note that for models providing single-valued (deterministic) predictions, in order to con-
struct a predictive distribution for which an entropy could be calculated, one has to assume
that the state of knowledge for each prediction is given by the subset of observations jointly oc-
curring with the particular prediction, i.e., the conditional distribution ofX for a particular y.
If the models were to provide probabilistic predictions, one could employ a relative entropy
measure such as Kullback-Leibler divergence (Kullback & Leibler, 1951, Cover & Thomas,
2006), which would lead to fairer assessments of information loss (Weijs et al., 2010). How-
ever, it is worth noting that models providing probabilistic predictions are not yet a standard
practice in hydrology.

Alternatively, instead of measuring information losses of model predictions compared to
an upper benchmark (observations), as described above, it is also possible to measure infor-
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mation gains compared to a lower benchmark (entropy of a uniform distribution), which
expresses the minimum prior knowledge. In the work by Weijs & Ruddell (2020), to which
I refer throughout the text, information losses were used because they directly translate to a
description length. For the sake of comparability, I applied the same concept here.

To avoid fitting theoretical functions to the empirical data distributions, I calculated the
conditional entropy of discrete (binned) distributions, i.e., normalized empirical histograms.
The choice of the binning scheme has important implications for the values of the informa-
tion measures derived from the binned distributions. While the lower bound for entropy
(H = 0 for a Dirac distribution) is independent of the number of bins n, the upper bound
(H = log2(n) for themaximum-entropy uniformdistribution) is a function of n. The choice
of n is typically guided by the objective of balancing resolution and sufficiently populated
bins, and different strategies that have been proposed by Knuth (2019), Gong et al. (2014)
and Pechlivanidis et al. (2016). In this context, several estimators for discrete distributions
based on limited samples have been proposed that both converge asymptotically towards the
true distribution and at the same time provide uncertainty bounds as a function of sample size
and binning choice. For instance, Darscheid et al. (2018) presented both a Bayesian approach
and aMaximum-Likelihood approach to estimate discrete distributions from samples.

I applied uniform binning as it introduces minimal prior information (Knuth, 2019), and
it is simple and computationally efficient (Ruddell & Kumar, 2009). I uniformly split the
value range of (0 − 150 m3/s), which covers all observed and simulated values of Q_Host
(0.05 − 137 m3/s) into 150 bins, each with a width of 1 m3/s. Compared to the typical
error associated with discharge measurements in small Alpine rivers, which may be as high as
10%, this is an adequate resolution which neither averages away the data-intrinsic variability
nor fine grains to resolutions potentially dominated by random errors. When calculated in
this manner, a lower bound and two upper benchmarks for the values of conditional entropy
can be stated as follows. If the model predicts perfectly the true target value, the conditional
entropy will be zero. Non-zero values of conditional entropy precisely quantify the informa-
tion loss when using an imperfect prediction. If predictor and target are independent, the
conditional entropy will be equal to the unconditional entropy of the target, which in this
case, is H(Q_Host) = 3.46 bits. In the worst-case scenario, where no paired data of target
and predictors are available for model calibration, and the only known a priori information
is the physically feasible range of the target data, the most honest guess about the target value
would be a uniform (maximum entropy) distribution. For the 150 bins I used, the entropy of
a uniform distribution isHuniform = log2(150) = 7.23 bits.
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4.2.4 model computational complexity measure
I quantify computational complexity by tracking the total number ofmemory read andwrite
operations (in bits) during the execution of a model. In the context of Information Theory,
both these bit counts and the bits representing the model’s performance measured through
conditional entropy in the previous section, can be interpreted as the number of binary
Yes/No questions that were either already asked and answered during the model run (perfor-
mance) or still need to be asked (computational complexity) in order to fully reproduce the
data. Counting memory visits while running a computer program can be conveniently done
by using a troubleshooting and monitoring utility such as Strace (Kranenburg et al., 2018).
Strace is a Linux system call tracer to diagnose, debug and trace interactions between pro-
cesses and the Linux kernel. It is executable alongside codes written in many programming
languages such as Python, C++ orR. Strace serves as an example tracer tool, and the proposed
method can be utilized on any alternative operating system equipped with a compatible sys-
tem call tracer.

I used Strace tomonitor the testmodels written in Python by counting the total number of
bits read during the model execution from a file stored in the file system into a buffer, and the
total number of bits written from a buffer into a file stored in the file system. These counts re-
flect the entire effort of themodel to produce the desired output. This includes reading input
files, writing output files, reading the program itself and all system functions called during its
execution, as well as the computations involved in numerical iterations within the program
and the efforts to read and write state variables during runtime. Therefore, Strace penalizes
models that require large amounts ofmeteorological forcing data, run at high-resolution time
stepping or spatial resolution, or employ unnecessarily high-iterative numerical schemes. In
short, Strace evaluates all memory-related components of a model in the broadest sense.

To evaluate the reproducibility of the measurements, I repeated each model execution 100
times, clearing the memory cache between individual runs. Since the measurements of these
executions were similar to each other, I calculated the average of all runs as a single value rep-
resenting the model’s computational complexity. In the application of Strace, I traced the
“read()” and “write()” system calls of the models while executing their code in Python and
wrote them into a log file running the following command in the Linux command line:

strace -o target.log -e trace=read python model.py

In this command, Strace is the system call tracer, “-o target. log” is the option to set the log
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file path, “-e trace= read” traces the “read()” system calls that returns the number of bits read
from the required files during the model execution into the system buffer, “python” is the
path to the Python interpreter and “model.py” is the path to the model code. Additionally,
I used “-e trace= write” to trace the “write()” system calls that returns the number of bits
written from the system buffer into the output file. The total number of bits, representing
the computational complexity of the model, is obtained by summing all the read and write
operations collected in the target log file.

4.2.5 models’ setup
I selected altogether eight modeling approaches with the aim of covering a wide range of
model characteristics such as type (ignorant, perfect, conceptual-hydrological and data-
driven), structure (single and double linear reservoir), numerical scheme (explicit and iter-
ative) and precision (double and integer). The models are listed and described in Table 4.1,
with additional information provided in Figure 4.4. I trained/calibrated each model on a
five-year calibration period (1 January 1996 – 31 December 2000) and validated them over
the subsequent five-year validation period (1 January 2001 – 31 December 2005).

Table 4.1: Models used in the study and their characteristics. Time stepping of the models is one hour, except for Model‐
02b, which is one minute. Variable precision of the models is double, except for Model‐02c, which is integer. Modified
after Azmi et al. (2021).

Name Description Scheme Training Input

Model-00 An (almost) ignorant model, which
predicts for each time step the ob-
served time series mean (4.86m3/s).

− Q_Host −

Model-01 A perfect model representing full
prior knowledge contained in the
experimental observations. For each
time step, the observed value of
Q_Host is read as input and provided
as output.

− Q_Host Q_Host(t)
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Name Description Scheme Training Input

Model-02 A simple conceptual hydrological
model (Figure 4.3(a)), representing
the catchment’s rainfall-runoff by a
single linear reservoir (single-bucket)
with a constant K = 64 h found by
calibration, and a state variable S.

explicit Q_Host
P_Ebnit

P_Ebnit (t)

Model-02a Same as Model-02, but K = 120 h is
an uncalibrated initial value.

explicit Q_Host
P_Ebnit

P_Ebnit (t)

Model-02b Same as Model-02, but time stepping
is one minute.

explicit Q_Host
P_Ebnit

P_Ebnit(t)

Model-02c Same asModel-02, but all variables are
in integer precision.

explicit Q_Host
P_Ebnit

int(P_Ebnit(t))

Model-02d Same as Model-02, but the numerical
scheme is iterative.

iterative Q_Host
P_Ebnit

P_Ebnit(t)

Model-03 A more advanced conceptual model
(Figure 4.3(b)). Precipitation input is
split by an intensity threshold T =

3.5 mm/h, and enters into double
linear reservoirs (double-bucket) with
K1 = 10 h and K2 = 80 h found by
calibration.

explicit Q_Host
P_Ebnit

P_Ebnit(t)

Model-04 AnLSTMmodel with a single hidden
layer of five neurons and rolling win-
dow of size 20 along the time axis, us-
ing P_Ebnit(t) to predict Q_Host(t).
In the learning, it uses the “Adam” op-
timizer.

− Q_Host
P_Ebnit

P_Ebnit(t)
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Name Description Scheme Training Input

Model-05 A simple third-order autoregressive
model, which predicts Q_Host(t)
by a linear combination of pre-
vious observations in the form
Q(t) = c0 + c1Q(t − 1) + c2Q(t −
2) + c3Q(t − 3). All coefficients
were discovered by calibration
(c0 = 0.0536, c1 = 1.9916, c2 = −
1.3130, c3 = 0.3104).Testingmodels
of various order, I found that adding
observations beyond lag-3 improved
predictive power only marginally.

− Q_Host Q_Host(t-3)
Q_Host(t-2)
Q_Host(t-1)

Model-06 An Artificial Neuronal Network
(ANN) model with a single hidden
layer of five neurons, using Q_Host(t-
1, t-2, t-3) to predict Q_Host(t). In
the learning, it uses the “RMSprop”
optimizer.

− Q_Host Q_Host(t-3)
Q_Host(t-2)
Q_Host(t-1)

4.3 results and discussion
As mentioned earlier, the primary purpose of the model comparison presented here it is not
to identify the best among a set of competing models for a particular purpose. Instead, it
serves as a demonstration and proof of concept, illustrating how sensitive a system call tracer
is to various facets of a model. Furthermore, it demonstrates how applicable the evaluation
approach is to a wide range of modeling approaches, and how it might be used to guide
model optimization and model selection. This presentation is carried out across six use cases
described in Section 4.3.2, each representing different steps along the iterative process of
model building and evaluation, as described in Gupta et al. (2008).
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Figure 4.4: (a) Schematic illustration of Model‐02, a single‐bucket model with state variable S and constant K found by
calibration. The reservoir is replenished by precipitation P and drained by discharge Q. (b) Schematic illustration of Model‐
03, a double‐bucket model. Precipitation input is split by intensity threshold T. Taken from Azmi et al. (2021).

4.3.1 simulation vs. experimental observation
In this section, I provide a short and exemplary visualization of the model predictions to illus-
trate their general behavior. The observed precipitation (P_Ebnit) is shown in Figure 4.5(a),
and the observed and simulated discharge time series of all models (Q_Host) are depicted
in Figure 4.5(b). These data correspond to a rainfall-runoff event in June 2002, which falls
within the validation period. The observed hydrograph (Figure 4.5(b) Observation) shows
a flood peak of 71 m3/s due to a 14-hour rainfall event. The ignorant Model-00 (orange) is
unable to reproduce these dynamics and remains at its constantmean value prediction. As ex-
pected, Model-01 (olive) perfectly matches the observations, and likewise, the autoregressive
Model-05 (green dashdotted) and the ANNModel-06 (red) show almost perfect agreement.
The single-bucket Model-02 (purple) reproduces the observed rise and decline of discharge
overall but fails in the details. The rise is too slow and too small, as is the decline. Apparently,
a single-bucket model cannot adequately represent the catchment’s hydrological behavior, ir-
respective of the time stepping and the numerical scheme. Discharge simulations by the high-
resolution Model-02b (pink dashed) and the iterative Model-02d (pink dotted) are almost

59



0

5

10

Pr
ec

ip
ita

�o
n 

[m
m

/h
]

Precipita�on

Jun-6 00:00 Jun-7 00:00 Jun-8 00:00
0

10

20

30

40

50

60

70

80

Di
sc

ha
rg

e 
[m

3 /
s]

(a)

(b)

12:00 12:00 12:00

Observa�on
Model-00
Model-01
Model-02
Model-02a
Model-02b
Model-02c
Model-02d
Model-03
Model-04
Model-05
Model-06

Date Time

Figure 4.5: (a) Observed precipitation (P_Ebnit). (b) Observed discharge (Q_Host) and simulations thereof by Model‐00 to
Model‐06 for a rainfall‐runoff event in June 2002. Modified after Azmi et al. (2021).

identical to that of Model-02. Model calibration and data precision, however, do play a role.
The uncalibratedModel-02a (pink solid) shows clearly worse performance than its calibrated
counterpart Model-02. The same applies to Model-02c (pink dashdotted), which is identical
toModel-02, except for a switch from double to integer precision for all variables. ForModel-
02c, the hydrograph is only coarsely reproduced by a two-step series. Among all the bucket
models, the double-bucket Model-03 (brown dashed) performs best, correctly reproducing
the overall course of the event. The LSTMModel-04 (cyan) also provides a good representa-
tion of the event’s rise, recession, and peak dischargemagnitude but shows a delayed response
with a lag of about three hours.

4.3.2 performance vs. computational complexity
As described in Section 4.2.3, model performance is expressed as the remaining uncertainty,
at each time step, about the observed data D given the related model simulationM by con-
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Figure 4.6: Model performance vs. model computational complexity. Model performance is expressed by its inverse,
information loss per time step, measured by conditional entropy in bits. Model computational complexity is measured by
the average number of memory visits per time step in bits. Modified after Azmi et al. (2021).

ditional entropy H(D|M). Model computational complexity is expressed as the total num-
ber of memory read and write operations during model execution, as counted by Strace. For
easier interpretation, I have shown the average computational complexity per time step by
dividing the total number of visits by the length of the validation period (43802 time steps).
Figure 4.6 shows the computational complexity and performance of all models. The theoret-
ical optimum, which represents zero information loss despite zero modeling effort, lies in the
lower-left corner. There, the black square indicates a loose upper bound on the descriptive
complexity of a single recording of the target discharge series (Q_Host). The value of 18.8 bits
was calculated by dividing the size of the Q_Host validation dataset by the number of time
steps, representing the raw size of a single data point in the series without any compression.
In a use case, one can compare it to the computational effort of generating a single data point
by any of the models. Clearly, the descriptive complexity is much smaller than the computa-
tional complexity. In the following, I will discuss six use cases for hydrologically meaningful
interpretation of model comparisons.
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Use Case 1: the comparison of the single-bucket Model-02 to benchmark Model-00 and
Model-01, providing a perspective on the range of possible performance results. In terms
of computational complexity, the models differ only slightly (Model-00: 1776 bits, Model-
02: 1797 bits, and Model-01: 1808 bits). The main difference lies in model performance. As
expected, Model-01, which accurately reproduces the observations, exhibits perfect model
performance with zero information loss. The mean Model-00 shows the worst performance
among all the models. Taken together, these two models provide a reference against which
the performance of other models can be evaluated. For instance, the single-bucket Model-02
(standard model) demonstrates better performance compared to the mean Model-00, but it
still falls short of perfection.

Use Case 2: the comparison of two versions of the single-bucket model. Model-02 is cali-
brated with K = 64 h, where Model-02a is uncalibrated initiating with a reasonable default
K = 120 h (Table 4.1). This use case corresponds to a situation during model calibration,
where the conceptual model is fixed, and optimal parameters are determined by parameter
variation. Both models are equal in terms of computational complexity, but their perfor-
mance difference (2.8 bits for the former and 2.88 bits for the latter) reveals the benefit of
calibration. This shows that model performance, expressed by information loss, can be used
as an objective function during model calibration in a validation set approach.

Use Case 3: the comparison of the single-bucket Model-02 to its variations in terms of
time stepping (Model-02b), variable precision (Model-02c), and numerical scheme (Model-
02d). This use case corresponds to a situationwhere an adequate numerical model for a given
conceptual and symbolic model is sought. Increasing the temporal resolution (Model-02b)
only leads to higher computational complexity (from 1797 bits to 4217 bits) without any im-
provement in performance. Obviously, for the given system and data, hourly time stepping is
sufficient. The precision of variables is crucial for performance. Model-02c, which uses inte-
ger precision variables, performsnoticeablyworse thanModel-02 and evenunderperforms the
uncalibratedModel-02a. The corresponding computational complexities 1755 bits forModel-
02c differs slightly from 1797 bits for Model-02. Despite the expectations, implementation
of an iterative numerical scheme (Model-02d) has almost no effect on both performance and
computational complexity. Investigation of the iterative model during runtime revealed that,
for hourly time stepping, results were usually stable on the first try, such that on average, only
1.8 iterations per time step were required, increasing computational complexity slightly from
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1797 bits (Model-02) to 1798 bits (Model-02d). The reason lies in the pronounced autocor-
relation of the hydrological system response, such that in just a few cases, mainly at the on-
set of floods, iterations were actually needed to satisfy the chosen iteration precision limit of
0.001. For the models included in this use case, the effect of the numerical solver on com-
putational complexity is small. However, for other systems and models, this can be more
significant. Overall, this use case demonstrates how different numerical implementations of
the same model can be evaluated with the evaluation approach, which can be helpful when
both performance and computational effort of a model are crucial, such as in the context of
global-scale and high-resolution weather models.

Use Case 4: the comparison of the single-bucket Model-02 to the more advanced double-
bucket Model-03. This corresponds to a scenario where a modeler compares competing
process hypotheses formulated within the samemodeling approach (conceptual hydrological
models). The double-bucket model performs slightly better (2.76 bits instead of 2.80 bits),
at the cost of an increase in computational complexity from 1797 bits to 1798 bits. Given this
minimal additional computational cost, users would likely prefer the conceptually advanced
Model-03 in this context.

Use Case 5: the comparison of two competing modeling approaches, the single-bucket
Model-02 and the LSTMModel-04. Both models take the same input (precipitation) to as-
sure comparability. Interestingly, the bucket model not only outperforms the LSTMmodel
(2.80 bits instead of 3.03 bits), but also is significantly more efficient. The computational
complexity of the LSTM model is almost three times higher than that of the bucket model
(1797 bits instead of 6083 bits). In this context, the obvious choice for amodeler is the bucket
Model-02.

Use Case 6: the comparison of two competing modeling approaches, the autoregressive
Model-05 and the ANNModel-06. Both models use previously observed discharge as input
and effectively leverage the high information content in this data, resulting in performance
measurements of 0.67 bits for Model-05 and 0.68 bits for Model-06. Their performance is
significantly better than those of all other models, except for the perfect Model-01. However,
they differ in computational complexity. The autoregressiveModel-05 only requires 1817 bits,
while the ANN Model-06 uses 5971 bits. As the autoregressive Model-05 performs slightly
better and operates more efficiently, modelers would likely prefer it over the ANNModel-06.
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4.4 implementation environment
All the test models have been executed using Python 3.6 with packages, including Numpy,
Pandas, Scipy, Keras and H5py. The experiments were conducted on a 16-core Intel(R)
Xeon(R) CPU E5-2640 v2 @ 2.00 GHz processor with Red Hat Enterprise Linux Server
release 7.4. All the scripts and relevant data for the test models are available under the MIT
license at https://github.com/KIT-HYD/model-evaluation (Azmi & Ehret, 2021).

4.5 summary
This chapter started by stating one of the main objectives of the environmental sciences, i.e.,
the development of well-performing yet parsimonious models for natural phenomena and
systems. For evaluation of these models, three key aspects need to be considered: descrip-
tive complexity, computational complexity, and performance. Further, I described several
paradigms to guide model development. Occam’s razor emphasizes descriptive complexity,
considers performance as a threshold filter, but it ignores computational complexity. Weijs &
Ruddell (2020) express both model performance and descriptive complexity in bits and, by
adding the two, obtain a single measure for what they call “strong parsimony”. Validation set
approaches focus on performance, and indirectly promote general and parsimonious models
by evaluatingmodels on unseen data during calibration. Neither of these approaches directly
incorporates computational complexity. I suggested closing this gap by applying a system call
tracer like Strace, which measures computational complexity by the total number of memory
visits during the execution of a model. Furthermore, I proposed an evaluation approach that
combinesmeasuring computational complexity by Strace, andmeasuringmodel performance
by information loss relative to observations, all in bits, similar to Weijs & Ruddell (2020).

For a proof of concept, I applied the evaluation method in combination with a validation
set approach to consider descriptive complexity indirectly. I used various watershed models,
including simple and advanced process-basedmodels with various numerical schemes, as well
as autoregressive and neural networkmodels. Among themodels tested, a third-order autore-
gressive model demonstrated the best trade-off between computational complexity and per-
formance, while the LSTM and a conceptual model operating in high temporal resolution
showed very high computational complexity. For all models, computational complexity ex-
ceeded the model performance by approximately three orders of magnitude. Additionally, I
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compared a simple upper bound of descriptive complexity of the target data set tomodel com-
putational complexity and found that the latter was approximately two orders of magnitude
higher.

In addition to the mentioned results, the proposed approach has the following main out-
comes: i)measuring computational complexity using a systemcall tracer is a general technique
that can be applied to any model executed on a computer, ii) this approach is sensitive to all
aspects of a model, including its size, the input data it processes, its numerical scheme and
time stepping, and iii) the evaluation approach is general in the sense that it measures two
key aspects of a model in a single unit of bits, allowing them to be used together for guiding
model analysis and optimization in a Pareto trade-off manner, particularly in the context of
incremental learning. It can be useful, especially in operational settings where the speed of
information processing is critical.

Unlike approaches that estimate computational complexity basedonmodel execution time,
measuring memory visits using a system call tracer remains unaffected by other ongoing pro-
cesses that compete for CPU time. In general, this approach increases the reproducibility and
clarity of the results. However, different operating systems may have slightly different behav-
iors or parameter requirements to handle the system calls, hence the behavior of the system
calls might vary marginally. The evaluation approach can help to promote better model code
in two ways: computational complexity highlights inefficient coding, while performance re-
veals issues with erroneous coding. This is particularly relevant as computer models in the
earth sciences have become increasingly complex recently. Thus, efficient, modular, and error-
free code is a prerequisite for further progress (Hutton et al., 2016).

Although descriptive and computational complexity describe distinct characteristics of a
model, they are interconnected, as the evaluation approach quantifies both the size of a pro-
gram and the computational effort required to execute it. Similar to performance measured
by information loss, the descriptive complexity of a model is typically orders of magnitude
smaller than its computational complexity. This makes a simple additive combination of the
two into a single, overall measure of model quality impractical. Nevertheless, I propose that
combining the approach outlined byWeijs & Ruddell (2020) with the measurement of com-
putational complexity using a system call tracer is worthwhile for future exploration. It has
the potential to offer a comprehensive and multi-faceted method for model evaluation appli-
cable across the earth sciences, where all key aspects of a model can be expressed in a single
unit of bits.
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You don’t understand anything until you learn it more
than one way.

MarvinMinsky

5
Approximation of Simulations using

UnsupervisedMachine LearningMethods

This chapter mainly addresses Research Questions 2, 3 and 4, defined in Section 1.1, namely
the investigation of the structure of environmental simulationmodels, the exploitation of the
potential similarities in functionality of simulation model units to reduce the computational
complexity of the simulation utilizing unsupervisedmachine learningmethods, and the estab-
lishment of criteria for identifying appropriate compute-intensive simulations where the de-
veloped approximation approach can be effectively utilized. Section 5.1 presents the analysis
of different unsupervisedmachine learningmethods applied to a use case simulation and their
evaluation using various test cases. Section 5.2 describes the utilization of the best proposed
approach from the previous section in the sameuse case, and the development of an evolution-
ary approach to approximate the simulation. Section 5.3 demonstrates the generalizability of
the unsupervised machine learning approach and the necessary criteria for simulations to be
met in order to be approximated using this approach. The contributions presented in this
chapter include a study of the balance between the uncertainty of the simulation output of
the approximatedmodel and its computational complexity. The presentedmethods and their
evaluation have been published in Azmi (2018b) and Azmi et al. (2019, 2020).
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5.1 analysis
Physics-based and highly detailed models of hydrological processes are employed to enhance
our understanding of the nature of hydrological systems (Schulz et al., 2006). These mod-
els are spatially heterogeneous and consist of a hierarchy of units (Grayson & Blöschl, 2001,
Zehe et al., 2014). Thus, the simulation of these models at a high spatio-temporal resolu-
tion is compute-intensive. One of the most widely used approaches to address this challenge
involves leveraging HPC and parallel processing of hydrological model units (Jones &Wood-
ward, 2001, Kollet et al., 2010, Maxwell et al., 2015). However, parallelization of these mod-
els is challenging because of their heterogeneous nature and a demand for partially sequential
execution of the model units. The tight interconnections between the model units and the
necessary communication of the units per time step complicate the efficient process of paral-
lelization. Furthermore, parallelization may require significant design modifications or code
reprogramming in a modern language, demanding specialized software, advanced computa-
tional resources and programming expertise from domain scientists.

In the following, I provide a simple parallelization approach as a reference to speed up a
sequential hydrological simulation, namely CAOS (Section 2.1.1). This approach involves
the parallelization of independent model units (HSLs) and the execution of the simulation
on multicore processors. The simulation is conducted for the Wollefsbach catchment (Fig-
ure 2.3), over the course of one month (January 2014). Temporal resolution of the HSLs’
outputs (discharge) was set to five minutes. To implement this approach, I distributed the
execution of HSLs on multicore processors. Porting the sequential code to a parallel version,
which only executes independent steps in parallel, requires less implementation effort than
introducing communication between computational parts, such as using the Message Pass-
ing Interface. Since the original simulation code was implemented by domain scientists in
MATLAB, I used its parfor1 functionality for parallelization. The simulation is initially exe-
cuted sequentially without any parallelization on a computing system (Section 5.1.2), with an
average execution time of 50.6 hours. The average execution time of the parallel simulation,
under the same computing environment using all 16 cores of the processor, was 5.4 hours.
This exhibits a 9.4 times speed-up compared to the sequential execution, leveraging more
computing resources. I will not delve into the details of the aforementioned parallelization
approach, which might require significant HPC resources. In the remaining of this chapter,

1https://de.mathworks.com/help/parallel-computing/parfor.html
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I will present the development and evaluation of a computationally efficient approximation
of simulations, which is applicable on a single core processor.

5.1.1 methodology
The main objective of this study is to develop an effective and computationally efficient ap-
proximation of environmental simulations, thereby reducing the utilization of computing
resources. To accomplish this goal, I introduce an approach, referred to as the evolutionary
approach. It can be categorized asModel Order Reduction techniques (Section 2.4.1). These
techniques aim to reduce the computational costs by dimensionality reduction and compu-
tation of an approximation of the original model.

I leverage hydrological similarity (Ehret et al., 2014) to reduce the model complexity and
computational efforts. Principally, the similarities in simulation structure and dynamics lead
to redundancies stemming from the natural behavior of the model units and the simplifica-
tions resulting from themodel choice. The underlying concept of this approach is that similar
model units function similarly when they possess similar static properties and current states,
being exposed to similar meteorological forcing. Throughout the remainder of this chapter,
the term “forcing” will refer to the meteorological forcing of the use case simulations.

To investigate the underlying concept of the evolutionary approach, I apply clustering al-
gorithms to create clusters of functionally similar model units (HSLs in this use case). Subse-
quently, I select only one representative from each cluster, and demonstrate how the uncer-
tainty of the approximatedmodel can be controlled by adjusting the number of clusters while
considering the corresponding computation time. In the following, I will provide a detailed
explanation of how this concept is utilized in the evolutionary approach.

preprocessing

The first step of this approach is data preparation for clustering. These data should accurately
represent the properties and functionalities of the HSLs. The configuration and initializa-
tion of the CAOS simulation consists of various input data, constants, and initial states of
variables. These settings describe different types of model units’ static properties and the cor-
responding applied forcing. To define a representation of the static properties of the HSLs,
such as structure, size, slope, soil profile and drainage, I conducted a drainage test and gener-
ated discharge time series for each HSL (Figure 5.1). These time series represent hydrological
characteristics that provide an insight into the functionality of the HSLs.
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Figure 5.1: Time series of Total Storage (water volume) of HSLs, obtained from drainage test. The time stepping is five
minutes. Each line represents a single HSL, and its color enhances the distinction. Taken from Azmi et al. (2019).

In the drainage test, the simulation model is executed for all the HSLs initiated with full
storage of water (maximum capacity) and drained over time. During the test, no forcing is
applied. The test is conducted on the Wollefsbach catchment (Figure 2.3), starting from an
arbitrary time (January) and continuing until the drainage of all the HSLs reaches their equi-
librium. This time duration is referred as Time to Equilibrium (TE) of the HSLs. The time
series of Total Storage obtained from the drainage test (Figure 5.1) serve as integral signatures
of HSL size, slope, soil (HSL structure), and drainage properties, which are further expressed
by two key features: TE and Active Storage (AS). The second feature (AS) is extracted from
the Active Storage time series, which are calculated from the Total Storage time series. Active
Storage time series (Figure 5.2) represent the accumulated volume of water flowing out of an
HSL at each time step (initial Total Storage−current Total Storage), normalized to the initial
Total Storage of that HSL.AS is the Active Storage at the equilibrium time step, displayed as
the last data point of each line in Figure 5.2.

Feature Extraction From theActive Storage time series (Figure 5.2), I extracted a total
of seven features as input data for the clustering approach. The three hydrologically meaning-
ful features are TE, AS, and the gradient of the first time step of the time series, referred to as
1st Gradient. The third feature is valuable as the speed of drainage, especially at the first steps
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Figure 5.2: Time series of Active Storage of HSLs, calculated from the Total Storage time series. The time stepping is five
minutes. Each line represents a single HSL, and its color enhances the distinction. Taken from Azmi et al. (2019).

of the test, characterizes the HSLs. The other features describing the Active Storage time se-
ries are the mathematical moments that express the shape of the distribution. Specifically, I
extracted four moments: Mean,Variance, Skewness andKurtosis.

Feature Scaling Following the extraction of features, all values of the features are trans-
formed to a consistent scale within the dataset to ensure that all features contribute equally
to the model. This is a necessary preprocessing step when working with datasets that contain
features of varying ranges, units of measurement, or orders of magnitudes. For this feature
set, I use the standardization scaling method (Equation 5.1), where the values are centered
around the mean with a unit standard deviation, formally expressed as:

X ′ =
X− μ
σ

, (5.1)

where X ′ is the standardized feature set, μ is the mean and σ is the standard deviation of the
feature set X.

Dimensionality Reduction An important method for reducing the computational
complexity of clustering is dimensionality reduction of the feature set. Therefore, I filter out
the highly correlated features, in other words, redundant ones since they carry similar infor-
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Figure 5.3: PCC values for each pair of the features in the feature set. Taken from Azmi et al. (2019).

mation. To perform this, thePCC (Section 2.2.1) was calculated for each pair of the extracted
features (Figure 5.3). The results indicate that the extracted features are mostly non or posi-
tively correlated, and there are no pairs of features with a highly negative correlation. SinceAS
andTE are the hydrological key features, I filter out the features that are highly correlatedwith
these two with a filtering threshold of 0.95. Regarding Figure 5.3, Mean and Variance fall
into the exclusion criteria. Therefore, the final feature set consists of five dimensions: Skew-
ness,Kurtosis, 1st Gradient, AS and TE.

clustering

Following the generation and preprocessing of the feature set as input data, I apply conven-
tional clusteringmethods (Section 2.3.1 underClustering), namely K-means, K-medoids and
DBSCAN to these input data and evaluate the methods using various test cases.

The only required parameter for the K-means and K-medoids clustering is the number of
clusters (K). Conventional methods, such as elbow (Satopaa et al., 2011), and silhouette (Zaki
et al., 2014) methods are used to determine an appropriate value for K based solely on the
distribution of the data points to be clustered. However, considering an additional constraint
led me to introduce another approach, referred to asRMSE-Computation-Time (rmse-ctime)
method (Azmi et al., 2019), for determining an appropriate value forK.
In this work, I use the term “K-determiner” to refer to the process of selecting an appropri-
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Figure 5.4: Application of the elbow method to the input feature set. The appropriate number of clusters (Elbow) is deter‐
mined at K = 26. Taken from Azmi et al. (2020).

ate K. The following section describes how the K-determiner uses the elbow and rmse-ctime
methods with K-means clustering, for instance.

elbow method The elbow method applies K-means clustering to a given dataset for a
range of K values, and for each value of K, calculates the average distance from data points
to the centroid of each cluster. As K increases, the average distance to the centroid decreases
rapidly until the elbow or maximum curvature of the calculated curve, which is the optimal
K (Figure 5.4). The K-determiner defines the elbow by using the point with the maximum
distance from the straight line connecting the end-points of the curve (Satopaa et al., 2011).
To reduce its run time, the K-determiner executes the clustering for a range of K values in
a predefined interval between the minimum and maximum potential number of clusters for
the given dataset. Then, it interpolates the resulting average distance to the centroid values
into all potential number of clusters and calculates the Elbow point among them (Figure 5.4).

rmse-ctime method The rmse-ctime method is a customized elbowmethod that allows
scientists to decidewhichK to use, based on an additional constraint. It considers the balance
betweenK,RMSE of each cluster member and a selected representative of that cluster, along
with the computation time of representatives (Figure 5.5). Here, I demonstrate how the rmse-
ctimemethod determines the optimal number ofK for the feature set obtained from the use
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Figure 5.5: Application of the rmse‐ctimemethod to the input feature set. The appropriate number of clusters is determined
at K = 33. Taken from Azmi et al. (2020).

case simulation. The method applies K-means clustering to the preprocessed feature set with
variable K values. For each variation of K, the RMSE is calculated within each cluster be-
tween the cluster members and a selected representative of that cluster. I define the cluster
representative as theMedoid data point, which is the point with the minimal average dissimi-
larity to the other points of the cluster (Kaufman&Rousseeuw, 1987). Formally, theMedoid
of a cluster X = {x1, x2, ..., xn} is defined as:

xmedoid = argminy∈X
n∑
i=1

d(y, xi) , (5.2)

where d(y, xi) is the distance between y and xi. According to this, the RMSE measure was
calculated between the Active Storage time series of the cluster members and their represen-
tative. Thus, there is one RMSE measurement per HSL for each K variation. Finally, the
total-RMSE measure of all HSLs corresponding to the number of data points in the feature
set (n) is calculated using Equation 5.3:

σtotal−RMSE =

√√√√ n∑
i=1

(RMSEi)2 . (5.3)
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Figure 5.6: RMSE and computation time of representatives employing K‐means clustering with variable K. The gray markers
show the original values, and the curves in red and green represent their smoothed trend. Taken from Azmi et al. (2019).

The K-determiner applies this method to a range of K values in a predefined interval, span-
ning from one cluster to one third of all potential number of clusters, and interpolates the
resultingRMSE values into the remaining potential number of clusters (Figure 5.5). This ap-
proach reduces the run time of the K-determiner through interpolation instead of clustering
and calculatingRMSE for all potential number of clusters. The K-determiner calculates the
intersection point of the curves, which is a balance of RMSE and computation time, as the
appropriateK.

5.1.2 evaluation

In this section, I detail the experimental studies to evaluate the proposed method on the
CAOS simulation. For each clustering method, I illustrate the relationship between the per-
formance of the approximated model and its computational complexity. For these evalua-
tions, I performed the CAOS simulation and measured the computation time of each HLS.
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Figure 5.7: (a) Wollefsbach catchment is divided into HSLs of variable shape and size, delineated in black. Each HSL has
an edge connected to a RIV in blue. Taken from Azmi et al. (2020). (b) Spatial distribution of K‐means clusters at K = 37
applied to Wollefsbach catchment. Each color indicates a cluster. The 17 single member clusters are shown in blue. Taken
from Azmi et al. (2019).

application of k-means clustering

The results of application of the rmse-ctimemethod using K-means clustering to the prepro-
cessed feature set of CAOS are shown in Figure 5.6, where the horizontal axis represents K
values and the vertical axes represent the RMSE measurement and sum of the computation
timeof representativeHSLs of each cluster normalizedbyMin-Max. Evidently, asK increases,
the corresponding RMSE decreases while the computation time increases (Figure 5.6). The
main goal of the approach is to achieve the best trade-off between computation time and sim-
ulation uncertainty. In Figure 5.6, a range of the intended compromise between RMSE and
computation time is recognizable where the curves intersect. As K-means places the initial
centroids randomly, the output of its executions with the same number of K differs slightly.
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Figure 5.8: RMSE and computation time of representatives employing K‐medoids clustering with variable K. The gray mark‐
ers show the original values, and the curves in red and green represent the smoothed trend. Taken from Azmi et al. (2019).

Thus, the intended compromise occurs where K ranges from 32 to 42, the corresponding
RMSE values range from 0.14 to 0.12 of the maximum RMSE (39.2 percentage points) and
the computation time ranges from 0.10 to 0.16 of total computation time (31.8 days). As
an example, the spatial distribution of the K-means clustering atK = 37 which corresponds
to the best compromise betweenRMSE and computation time inWollefsbach catchment is
shown in Figure 5.7. All the single member clusters are theHSLs that do not fit into any clus-
ter. According to domain scientists, this map demonstrates a plausible clustering of HSLs,
considering the hydrological parameters like the structure, size, and location.

application of k-medoids clustering

Another variant of K-means is the K-medoids algorithm that uses the actual data points as
cluster centers. It takes K and the distance matrix of points as input parameters. The algo-
rithm was executed for various values of K, and the results are demonstrated in Figure 5.8.
The trend in the results is similar to K-means clustering, as K increases, the corresponding
RMSE decreases while the computation time increases. However, the diagram indicates that
the intended compromise range between RMSE and computation time occurs in a signifi-
cantly higher K values ranging from 58 to 78, the corresponding RMSE values range from
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Figure 5.9: RMSE and computation time of representatives employing DBSCAN clustering with variable Eps and MinPts.
Some DBSCAN parameter sets generate the same number of clusters (# clusters = 57). Taken from Azmi et al. (2019).

0.35 to 0.17 of the maximum RMSE (31.8 percentage points) and the related computation
time is between 0.23 and 0.34 of the maximum computation time (31.8 days). ForK values
between 5 and 30, the RMSE values exhibit minimal decrease, indicating slight changes in
the resulted clusters and their selected representatives.

application of dbscan clustering

DBSCAN clustering requires two parameters as input, namely radius (Eps) and minimum
number of points (MinPts). To find a set of optimal parameters, a grid search is conducted
by applying DBSCAN clustering with variable values of Eps and MinPts. As in previous
clustering methods, the same approach is employed to determine and visualizeRMSE along
with the computation time when using DBSCAN clustering. For each set of parameters, the
number of created clusters is calculated. Noise clusters are considered as one cluster. The
results shown in Figure 5.9 indicate that the intended compromise range betweenRMSE and
computation time is achieved where the number of clusters ranges from 51 to 62, Eps values
are from 0.3 to 0.7,MinPts values are from 1 to 21, the corresponding RMSE values range
from0.31 to 0.15 of themaximumRMSE (38.6 percentage points) and the computation time
falls within the range of 0.18 and 0.23 of the maximum computation time (31.8 days). The
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Table 5.1: Parameters and achievements of different clustering methods. Taken from Azmi et al. (2019)

Parameters K-means K-medoids DBSCAN

K (# clusters) 32− 42 58− 78 51− 62
Eps − − 0.3− 0.7
MinPts − − 1− 21
RMSE [normalized] 0.14− 0.12 0.35− 0.17 0.31− 0.15
MaxRMSE [percentage points] 39.2 31.8 38.6
Computation Time [normalized] 0.10− 0.16 0.23− 0.34 0.18− 0.23
Max Computation Time [day] 31.8 31.8 31.8

optimal range of clusters in DBSCAN clustering yields lower RMSE values compared to K-
medoids clustering and higher values than those resulting from K-means clustering. For the
number of clusters between 15 and 45, theRMSE values exhibitminimal decrease, indicating
slight changes in the resulted clusters and their selected representatives.

conclusions

In this study, I applied clustering algorithms to identify groups of functionally similar model
units in the CAOS simulation. By simulating only one representative from each cluster, I
demonstrated how the uncertainty of the approximatedmodel can be controlled by adjusting
the number of clusters while considering the corresponding computation time. The direct
comparison of the three applied clustering methods is illustrated in Figure 5.10, clearly indi-
cating thatK-means clustering outperforms the others in the studied case, featuring the lowest
RMSE for computations spanning up to 18 days.

As presented in the summary of all results in Table 5.1, K-means clustering achieves the
intended compromise betweenRMSE and computation timeof the representatives in smaller
number of clusters, and consequently, less computation time for representatives compared to
the other studied clusteringmethods. K-medoids clustering exhibits the poorest performance.
DBSCAN clustering yields promising results but falls short of the performance achieved by
K-means clustering. The main challenge in the application of DBSCAN is to find the right
balance between the Eps andMinPts parameters.
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Figure 5.10: Comparison of the RMSE and computation time of all analyses. Taken from Azmi et al. (2019).

implementation environment

All the analysis methods are implemented in Python and executed on a four-core 64-bit
Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz processor with Ubuntu 16.04.4 LTS run-
ning the Linux kernel 4.4.0-127-generic. The benchmarking of simulation model paral-
lelization was conducted on a 16-core Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz pro-
cessor with Red Hat Enterprise Linux Server release 7.4 running the Linux kernel 3.10.0-
693.11.6.el7.x86_64. The K-medoids source code is taken from Alspaugh (2018). All
the scripts and related data for the analyses are available under the MIT license at https:
//github.com/elnazazmi/hyda (Azmi, 2018a).

5.2 evolutionary approach
In Section 5.1, I presented a proof of concept for reducing the computational complexity of a
hydrological simulation using clustering, and generating a performant approximated model.
In that analysis, I simplified the simulation and removed any forcing during the simulation.
In the following, I extend the analysis to develop an evolutionary approach to approximate
and speed up the use case simulation CAOS, using the best-performing clustering method
from the previous section, i.e, K-means clustering.

80

https://github.com/elnazazmi/hyda
https://github.com/elnazazmi/hyda


5.2.1 methodology

The concept behind the evolutionary approach is to reduce the computational costs by reduc-
ing redundant computations and approximating the original model dynamics closely. The
steps of this approach are integrated into the original simulation and executed together. The
preprocessing of the initial feature set is as described in Section 5.1.1. During the feature set
preprocessing, I identified some outliers in theMean,Kurtosis, 1st Gradient, and Active Stor-
age features (see arrows in Figure 5.11). I excluded these outliers from the clustering process
and treated them as individual clusters to speed up the clustering.

The evolutionary approach starts with the identification of similarities in static features of
the HSLs by clustering of the initial feature set (Section 5.1.1 under Preprocessing). Subse-
quently, I select a representativeHSL of each cluster and execute the simulation only on these
representatives. The next step involves mapping the output of the representatives to the re-
maining cluster members. This approach helps in avoiding the need to run the simulation for
all model units, thereby reducing computation time. The degree of simulation output fluctu-
ation can be controlled by the number of clusters and the clustering frequency. In the subse-
quent stages of the simulation, I update the initial feature set by adding two features, namely
current state (discharge) and forcing. Forcing is defined as the volume of rainfall enforced to
HSLs within a specific time frame. Consequently, I continually update the representatives
through redoing the clustering with an updated feature set during the ongoing simulation.
Finally, the calculated output is saved, and the simulation is completed. Further, I compare
the results obtained from the evolutionary approach with those from the original simulation,
in terms of performance and speed-up.

The entire approach is outlined step by step in Figure 5.12. The original simulation com-
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Figure 5.11: Histograms and the kernel density estimate fits of the initial feature set. The arrows show the outliers in each
feature. Taken from Azmi et al. (2020).
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Figure 5.12: Simulation workflow including the original and evolutionary approach. The evolutionary approach integrated
in the original simulation is shown in the highlighted boxes. Modified from Azmi et al. (2020).

prises the major steps shown in the white boxes: 1. loading the catchment structure and cre-
ating a list of processes or interactions between themodel units, 2. starting the simulation for
a predefined number of time steps (n), 3. executing the simulation based on the processes list,
and 4. saving the output and finalizing the simulation.

The steps of the evolutionary approach shown in the highlighted boxes are as follows:

i) Determine the initial value ofK using the K-determiner (Section 5.1.1 under Cluster-
ing), and perform clustering on the initial feature set.

ii) Select a representative HSL (Medoid) of each cluster, and keep only these representa-
tives in the process list to simulate the first time step.

iii) Perform the output mapping and scaling (as described in the following section), and
update the status of all HSLs.

iv) If there is no forcing in the next time steps, continue the simulation using the already
defined representatives.
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v) At the beginning and end of a forcing time block (a time frame with active forcing),
rerun the K-determiner with the updated feature set and redo the clustering. Because
the feature set values change significantly with variable forcing over time, avoid using
the K-determiner at each time step within the forcing time block to reduce overhead.

vi) Update the process list based on the new representatives and continue the simulation.

Mapping and Scaling The application of clustering to the initial feature set is followed
by the selection of a representative member (HSL) for each cluster. I select the Medoid data
point of each cluster as its representative, whose average dissimilarity to other data points in
the cluster is minimal. At each time step of the simulation, only the representative HSLs are
simulated. The next step of the evolutionary approach is the mapping and scaling of the out-
put of the representativeHSL to thememberHSLs of the same cluster. The scaling accounts
for different areas of theHSLswithin a cluster. Therefore, the discharge (output) of the repre-
sentativeHSL, already computed in the simulation, is used to calculate the discharge of other
HSLs using Equation 5.4. In the applied use case simulation, the outputs and the area are
measured in m3

s and,m2 respectively.

Clustermember output = Representative output× Clustermemeber area
Representative area

. (5.4)

5.2.2 evaluation
In this section, I present the results of the proposed approach applied to the study case
Wollefsbach. I use three metrics, either individually or in combination, to demonstrate the
quality of the evolutionary approach, specifically, how closely the outputs align with the
original simulation. These metrics are RMSE, PCC and KGE (Section 2.2.1). In addition
to the quality metrics, I present the computational complexity of the evolutionary approach
as the speed-up in the approximated model’s simulation run time compared to the original
model’s simulation run time. All evaluation results are shown in tables 5.2 - 5.7, sorted in
ascending order based on RMSE. Additionally, as simulation of time blocks with forcing is
more compute-intensive, I provide the RMSE for time blocks with forcing as RMSE-WF
and without forcing asRMSE-WOF separately.
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Table 5.2: Evaluation results of the original simulation with different random seeds. The best value for each metric is
highlighted. Taken from Azmi et al. (2020).

Tests RMSE RMSE-WOF RMSE-WF PCC KGE

Test-1 0.001 55 0.001 36 0.002 14 0.990 0.960
Test-3 0.001 63 0.001 43 0.002 21 0.988 0.983
Test-2 0.002 13 0.001 91 0.002 81 0.984 0.954
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Figure 5.13: Output of the original simulation with different random seeds. The gray band shows the minimum and maxi‐
mum of all tests. Taken from Azmi et al. (2020).

influence of random seed

The original simulation executes processes of the model units in random order to keep the
model close to the natural behavior of a hydrological system. Changing the random seed in
the original simulation results in slightly different curves. I conducted the original simula-
tion four times with different random seeds to estimate the systematic error resulting from
the choice of a random seed. As it is illustrated in Figure 5.13, the horizontal axis shows the
simulation time of one week (1st to 7th of January). The left vertical axis shows the discharge
at the catchment outlet, and the right vertical axis from top to bottom the amount of rainfall
during the simulation. The gray band shows the minimum and maximum of the three test
executions. The line labeled as “Original” is used as ground truth for all following tests, hence
all evaluation results (Table 5.2 - 5.7) are relative to this line. Table 5.2 presents the evaluation
of the three tests relative to the ground truth.
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Table 5.3: Evaluation results of the tests with different random seeds. The best value for each metric is highlighted. Taken
from Azmi et al. (2020).

Tests RMSE RMSE-WOF RMSE-WF PCC KGE

Test-6 0.0045 0.0044 0.0050 0.920 0.765
Test-4 0.0056 0.0050 0.0073 0.891 0.776
Test-3 0.0056 0.0054 0.0064 0.868 0.729
Test-1 0.0078 0.0075 0.0087 0.907 0.803
Test-5 0.0096 0.0091 0.0110 0.858 0.748
Test-2 0.0097 0.0091 0.0117 0.814 0.713
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Figure 5.14: Simulation output of the tests with different random seeds for K‐means. The gray band shows the minimum
and maximum of all tests. Taken from Azmi et al. (2020).

In addition to the randomness of the original simulation, the evolutionary approach uses
the K-means clustering that generates its initial centroids randomly. To evaluate the influence
of a variable random seed of the clustering on the simulation output, I conducted six simula-
tions with the same random seed for the original simulation and using different random seeds
for K-means clustering (Figure 5.14). The clustering was performed once using the initial fea-
ture set with K = 9 without any further clustering. All tests, represented by the gray band,
exhibit a similar trend to the original simulation and achieve an acceptable KGE value from
a hydrological perspective (Table 5.3). To make K-means clustering deterministic and retain
reproducible test results in the next sections, I use a fixed random seed for both the original
simulation and clustering.
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Table 5.4: Evaluation results of the Constant‐K tests. The best value for each metric is highlighted. Taken from Azmi et al.
(2020).

Tests RMSE RMSE-WOF RMSE-WF PCC KGE Speed-up

K-42 0.0037 0.0035 0.0042 0.954 0.818 2
K-50 0.0039 0.0039 0.0040 0.943 0.794 1.9
K-9 0.0045 0.0044 0.0050 0.920 0.765 3.2
K-34 0.0066 0.0061 0.0081 0.909 0.775 2.3
K-17 0.0070 0.0070 0.0068 0.927 0.806 2.8
K-25 0.0092 0.0088 0.0103 0.923 0.792 2.4
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Figure 5.15: Simulation output of the Constant‐K tests. Taken from Azmi et al. (2020).

The following sections describe detailed tests to evaluate the evolutionary approach.

constant-k

In order to reveal the similarities in the static model unit properties of the hydrological model,
I designed a test that applies clustering once to the initial feature set at the first time step of
the simulation without any further clustering. The simulation continues using the same rep-
resentatives of the initial feature set clustering. The catchment outlet discharge is calculated as
the output for each time step (Figure 5.15), and the evaluation results are shown in Table 5.4.
I have repeated the approach for a range ofK values defined as a percentage of total HSLs (5
- 30%, corresponding to K = 9 - 50) to test the effect of the parameterK on the simulation
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output. The curves follow the trend of the original simulation (Figure 5.15). Evaluation of
the results reveals that the qualitymeasures have no strong correlationwithK, and theRMSE
order does not fit one by one to the KGE metric (Table 5.4). This means that the test with a
lower RMSE is not always the more efficient one. However, the smaller the value of K, the
higher the speed-up. To further increase the speed-upwhile keeping theRMSE value low and
the PCC as well asKGE values high, I designed the following Variable-K tests.

variable-k

In the Constant-K tests, I demonstrated clustering of the initial feature set based on the static
properties of the model units. Subsequently, I incorporated the current state (discharge) and
forcing of themodel units into the feature set and applied the clustering to theupdated feature
set. To determine the frequency of redoing the clustering during the simulation, I considered
the intensity of the occurring dynamics. As dynamic processes become more pronounced
during the simulation of forcing, I split the simulation time into “with forcing (WF)” and
“without forcing (WOF)” time blocks and redo the clustering exclusively during the forcing
time blocks. Table 5.4 presents a trend of improved results for higher K value, at the cost of
longer run times.

Leveraging the findings from the Constant-K tests, I designed the Variable-K tests that ex-
ecute the simulation using updated representatives resulting from redoing the clustering. To
achieve high-quality results during high dynamics combinedwith a short run time, I adjusted
the value ofK during the simulation, according to the on- and offset of forcing (Figure 5.16).
This means that I divided the simulation run into two parts: i) using a high K value atWF
time blocks, and ii) using a low K value atWOF time blocks. I paired higher K values and
lower RMSE values for WF time blocks and lower K values and lower RMSE values for
WOF time blocks according to the results of the Constant-K tests (Table 5.4). The simula-
tion is startedwith the clustering of the initial feature set using the bestK ofWOF time block.
Then according to the forcing, the simulation continues with a low K atWOF time blocks,
and with a higher K at WF time blocks (Figure 5.16). Clustering is only performed when
switching betweenWF andWOF time blocks and vice versa, because of the overhead of clus-
tering. The trend of the curves for Variable-K is difficult to interpret, but the tests indicate a
tendency toward higherRMSE and lower PCC as well asKGE compared to the Constant-K
tests (Table 5.5).

87



Table 5.5: Evaluation results of the Variable‐K tests. The best value for each metric is highlighted. Taken from Azmi et al.
(2020)

Tests RMSE RMSE-WOF RMSE-WF PCC KGE Speed-up

K-17-50 0.0061 0.0058 0.0071 0.823 0.719 1.9
K-17-42 0.0079 0.0076 0.0090 0.720 0.714 2
K-9-42 0.0101 0.0095 0.0122 0.693 0.591 2.1
K-9-50 0.0121 0.0123 0.0113 0.509 0.462 2.1
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Figure 5.16: Simulation output of the Variable‐K tests. Taken from Azmi et al. (2020).

auto-k

The Variable-K tests revealed significant variation of the simulation output when changing
K during the simulation. As a solution, I applied the K-determiner during the simulation in
Auto-K tests to automatically select an appropriateK value and reduce the high fluctuations.
The Auto-K tests share the same settings as Variable-K tests, with the difference that the K
value is not setmanually. Instead, theK-determiner is employedonce at thebeginning and end
of each forcing time block to automatically determine an appropriateK value. This process is
based on the evolving feature set generated from the dynamics occurred during the simulation.
In the Auto-K tests, the K-determiner applies the elbow (K-AEL) and rmse-ctime (K-ARC)
methods, respectively. The trends of their curves fit well with the original simulation. The
gray band, representing six tests for K-ARCwith different random seeds, narrows during the
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Table 5.6: Evaluation results of the Auto‐K tests. The best value for each metric is highlighted. Taken from Azmi et al.
(2020).

Tests RMSE RMSE-WOF RMSE-WF PCC KGE Speed-up

K-ARC 0.0049 0.0046 0.0059 0.894 0.80 1.8
K-AEL 0.0061 0.0061 0.0058 0.828 0.72 2
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Figure 5.17: Simulation output of the Auto‐K tests. The gray band shows theminimum andmaximum of six tests for K‐ARC
with different random seeds. Taken from Azmi et al. (2020).

forcing time blocks, demonstrating a reproducible peak discharge (Figure 5.17). TheRMSE
for both tests, K-ARC and K-AEL, is acceptably low. Although K-ARC results in a lower
RMSE and higher PCC as well as KGE compared to K-AEL, its speed-up is lower than K-
AEL since K-ARC employs higherK values (Table 5.6).

Additionally, to test the variability of the best K, I executed the Auto-K tests with K-
determiner at all time steps of the simulation and obtained a narrow frequency distribution
of the selected best K values. The K values ranged between 17 and 30, with the most fre-
quent K = 25, when using the elbowmethod (Figure 5.18(a)) and between 30 and 38, with
the most frequent K = 34, when using the rmse-ctime method (Figure 5.18(b)). Using
the K-determiner at each time step, rather than only once at the beginning and end of each
forcing time block, resulted in slightly better performance. However, it comes with a higher
computational complexity, which increases the total simulation run time compared to the
original simulation (Table 5.7).
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Table 5.7: Evaluation results of the Auto‐K tests when the K‐determiner is applied at all time steps of the simulation. The
best value for each metric is highlighted. Taken from Azmi et al. (2020).

Tests RMSE RMSE-WOF RMSE-WF PCC KGE Speed-up

K-AEL 0.0051 0.005 0.0055 0.950 0.825 0.6
K-ARC 0.0053 0.005 0.0060 0.954 0.843 0.6
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Figure 5.18: Histogram of the selected K values by K‐determiner using (a) elbow and (b) rmse‐ctime methods when it is
applied at all time steps of the simulation. Taken from Azmi et al. (2020).

conclusions

In this study, I demonstrated an evolutionary approach consisting of several main steps: clus-
tering the feature set obtained from the static properties of model units, simulating a repre-
sentative of each cluster, mapping and scaling the outputs to the remaining cluster members,
and dynamically clustering the updated feature set based on the enforced forcing during the
simulation. I integrated the evolutionary approach into the original CAOS simulation and
presented its evaluation through several tests. I applied three different test settings (Constant-
K,Variable-K andAuto-K) to accelerate the simulationwithK-means clustering. Themetrics
indicate minor differences between the Auto-K andConstant-K tests, considering several test
runs with different random seeds for the K-means clustering (Table 5.3, 5.4 and 5.6).

The results of Auto-K, which clusters at every time step of each forcing time block, show
lower fluctuations, resulting in a more reliable output at these time blocks compared to the
Constant-K tests (Figure 5.14 and 5.17). TheAuto-K tests utilize theK-determiner to dynam-
ically determine the appropriateK based on the given feature set and automatically configure
the clustering parameters during the simulation. The additional clustering steps of the Auto-
K tests yield better values for RMSE, PCC and KGE metrics, along with a lower speed-up.
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from Azmi et al. (2020).

Since K-ARC frequently selects K = 34 as the appropriate K, its comparison with the K-34
test from the Constant-K tests confirms this observation (Table 5.4 and 5.6).

The direct comparison of all tests is illustrated in Figure 5.19, indicating the overall effi-
ciency and effectiveness of the evolutionary approach. Constant-K tests (on the right side of
the diagram) presented a higher speed-up, although the ideal choice for achieving a high speed-
up together with a lowRMSE appears to be unpredictable. This means that, although K-42
fromConstant-K tests has the lowestRMSE value among all tests and two times of speed-up,
prediction of such a favorableK without running tests for a particular use case is not possible.
Therefore, I conclude that the evolutionary approach using a K-determiner (Auto-K) is the
best compromise between the performance and computational complexity of the simulation.

implementation environment

The CAOS simulation’s original scripts are implemented in MATLAB R2019a. The evolu-
tionary approach is implemented in Python. All tests are executed on a Red Hat Enterprise
Linux Server release 7.4 on a 16-core Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00 GHz pro-
cessor. All the scripts and related data for the analyses are available under the MIT license at
https://github.com/elnazazmi/hyda (Azmi, 2020).
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5.3 generalization
Todemonstrate the generality of the evolutionary approach and to establish the requirements
and criteria for any applicable environmental simulation, I applied the approach to two fur-
ther use cases. It cannot be guaranteed that the approach is suitable for all compute-intensive
environmental simulations, but these use case simulations assisted in delineating some general
requirements to narrow the simulation choices down. In the following, I provide an overview
of the application of the evolutionary approach to these use cases and the conclusions drawn.

5.3.1 simple hydrological use case
The hydrological simulation SHM (Section 2.1.2) simulates the discharge of various catch-
ments over a specific time. For this simulation, I generated a feature set based on the drainage
test results as described in Section 5.1.1. Following the preprocessing of this feature set, I
applied the evolutionary approach to the SHM simulation, and designed several test cases as
follows:

i) K-9 to K-25: Constant-K tests with various predefinedK values ranging from 9 to 25.

ii) K-E-16: Constant-K test employing the K-determiner once using the elbow method,
which determinedK = 16.

iii) K-AEL: Auto-K test employing the K-determiner using the elbowmethod.

iv) Adaptive clustering: A simulation approximationmethod using similarities in states of
the model units.

Adaptive clustering is another simulation approximation method that clusters similarly
functioning model units based on normalized and binned transformations of the states and
fluxes of model units. This method simulates a few representatives per cluster and maps the
updated states to the cluster members (Ehret et al., 2020).

The evaluations of the test cases presented in Table 5.8 exhibit significantly lower RMSE
and higher PCC, as well as KGE values for Constant-K and Auto-K tests when compared to
theAdaptive clustering. The speed-upofK-25with thebestRMSE andKGE values is slightly
higher than that of the Adaptive clustering (Figure 5.20). Although the K-AEL test exhibits a
lowRMSE value, it requiresmore computation time compared to the original simulation. In
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Table 5.8: Evaluation results of test cases from SHM simulation. The best value for each metric is highlighted.

Tests RMSE PCC KGE Speed-up

K-25 0.0 1.0 1.0 3.5
K-17 16.27 1.0 0.999 4.9
K-13 228.28 1.0 0.993 6.1
K-E-16 230.56 1.0 0.991 5.4
K-9 244.50 1.0 0.995 8.7
K-AEL 333.89 1.0 0.996 0.5
Adaptive clustering 2515.16 0.987 0.929 3.1
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Figure 5.20: SHM simulation run time speed‐up and RMSE of all tests.

such a simple simulation with low computational complexity, the overhead of frequent clus-
tering hinders a speed-up. Nevertheless, the evolutionary approach outperforms the adaptive
clustering.

5.3.2 meteorological use case
Themeteorological simulation ICON-ART (Section 2.1.3) was employed in this experiment.
The core concept of the evolutionary approach is to detect independentmodel units with sim-
ilar properties and functionalities. In the use case of ICON-ART atmospheric chemistry, the
atmosphere is divided into triangular grid cells and height levels. The simulation inputs the
physical properties and the initial volumemixing ratio (VMR) of trace gases into each cell and
provides the current VMRof the trace gases as output. Thus, I have used these input parame-
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ters as the feature set for the evolutionary approach. I applied the approach in several test cases
utilizing variously preprocessed feature sets, such as application of PCA and autoencoder for
dimensionality reduction of the feature set. The results of these tests indicated a longer sim-
ulation run time compared to the original simulation. The computational complexity of K-
means clustering, integrated into the evolutionary approach, increases exponentially based on
the number of clusters and the dimensionality of the feature set. Consequently, even when
running the simulation solely on a small, representative subset of the grid cells, the overhead
of executing the evolutionary approach on a feature set of approximately 1.8million grid cells
during the simulation hinders any speed-up. While the performance of the approximated
model improves as the number of clusters increases, employing the approach in this use case
becomes futile when a plausible outcome is only achieved without any speed-up.

5.3.3 conclusions
Application of the evolutionary approach to different use cases has helped in establishing
certain criteria for selecting appropriate simulations for this approach. First, the simulation
model units shouldbe capable of parallel processingwithout interactingwith eachother in the
original simulation. Second, the simulationmodel units should exhibit similarities in proper-
ties or functionality based on domain knowledge. Finally, individual model units should be
compute-intensive, ensuring that the simulation execution time of the representative model
units, when combined with the overhead of the evolutionary approach, is shorter than that
of the original simulation.

5.4 summary
In this chapter, I introduced an evolutionary approach to leverage static properties and dy-
namics of environmentalmodels to reduce the computational complexity of their simulations.
To explore and identify similarities in the static properties of model units within a use case
simulation in hydrology (CAOS), I applied three conventional clustering methods, namely
K-means, K-medoids and DBSCAN to a feature set extracted from a drainage test time se-
ries conducted using the CAOS simulation. According to the analysis, K-means clustering
outperforms the other applied clustering methods in terms of both performance and compu-
tational complexity.
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The evolutionary approach consists of several steps, primarily clustering and scaling of the
simulation output of the cluster representatives to the remaining cluster members. I em-
ployed K-means clustering in conjunction with the K-determiner, which automatically de-
termines a suitable number of clusters using the elbow or rmse-ctimemethods. The results of
the tests demonstrated that the K-ARC approach has a promising RMSE of 0.0049, a PCC
of 0.89 and a KGE efficiency of 0.8 which closely approximates the original simulation out-
put. Additionally, K-ARC has a simulation run time speed-up of 1.8 which is approximately
half of the original simulation run time.

To demonstrate the generality of the evolutionary approach, I applied it to two further
use cases, namely a simple hydrological model (SHM) and a meteorological model for atmo-
spheric chemistry (ICON-ART). The approach approximates and optimizes the SHM sim-
ulation when clustering is not applied frequently during the simulation. It outperforms a
similar approximationmethod in terms of qualitymetrics. In the case of the ICON-ART sim-
ulation, the approximated model exhibits no speed-up compared to the original simulation.
This overhead is caused by clustering of millions of grid cells during the simulation. Based on
these investigations, I established certain criteria for selecting appropriate simulations for the
evolutionary approach.
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The best way to predict the future is to invent it.

Alan Kay

6
Approximation of Simulations using

SupervisedMachine LearningMethods

Numerical environmental simulations, especially those conducted at high spatio-temporal
resolutions and involving large-scale dynamical systems, are compute-intensive and demand
HPC resources. Atmospheric chemistry modeling, for example, requires solving a system of
hundreds of coupled ordinary partial differential equations that describe the concentration
changes of atmospheric trace gases due to chemical reactions in the atmosphere (Sander et al.,
2011, Emmons et al., 2010). Generally, the growth ofHPC resources over the last fewdecades
hasmade it possible to increase the resolutions (i.e., number of grid cells) of atmosphericmod-
els. This allows resolving more and more processes numerically, rather than accounting only
for their effect with so-called parametrizations (Weimer et al., 2021). However, solving the
system of chemical differential equations for each grid cell constitutes a significant portion
of the computation time in atmospheric chemistry models, which is a challenge as resolution
increases.

InChapter 5, I showed an approximationof compute-intensive environmental simulations
using unsupervised machine learning methods, specifically clustering. However, the discus-
sion in Section 5.3 revealed that for certain environmental simulations applied to millions
of model units, the approach yields implausible results without overall acceleration in the
simulation. This led to determining specific criteria to be fulfilled to efficiently utilize the
evolutionary approach.
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This chapter addresses the Research Question 5, defined in Section 1.1, namely I propose
an approach to reduce the computational complexity and high demand for computing re-
sources in environmental simulations by approximating themusing supervisedmachine learn-
ingmethods, with a focus on neural networks. The goal of this study is to investigate the feasi-
bility, opportunities but also challenges and pitfalls of replacing a compute-intensive simula-
tion like the ICON-ART atmospheric chemistry model (Section 2.1.3) with a trained neural
network model to reduce the computational complexity of the simulation. Section 6.1 de-
scribes the approach that creates a surrogate model (Section 2.4.2) using a dataset of past sim-
ulations to forecast volume mixing ratio (VMR) of atmospheric chemicals iteratively in the
future. Section 6.2 presents an evaluation of the surrogatemodel compared to the original nu-
merical simulation. Section 6.3 demonstrates the generalizability of the supervised machine
learning approach and the necessary criteria for simulations to be met in order to be approx-
imated using this approach. The implementation environment of the approach is described
in Section 6.4. Finally, Section 6.5 summarizes the chapter. The approach and its evaluations
presented in this chapter have been published in Azmi et al. (2023).

6.1 methodology
In the following, I present the development of a surrogate model (Section 2.4.2), referred
to as the ICON Neural Network-based approach (ICONET). Surrogate models aim to re-
place compute-intensive simulations through computing an approximation of the original
model by using data-driven models and supervised machine learning methods. The use case
simulation targeted for evaluation of the ICONET is a meteorological simulation of the at-
mospheric chemistry from ICON-ART (Section 2.1.3). Within ICONET, a multi-feature
LSTM model (Section 2.3.2 under Recurrent Neural Networks) is employed to forecast fu-
ture values based on its input features. The core process of ICONET learns a function that
maps a sequence of values from previous time steps to the subsequent time step. By utilizing
output data fromprior simulations, ICONET forecasts future valueswithout computing dif-
ferential equations for individual grid cells. The data-driven nature of ICONETmakes it ap-
plicable to environmental simulations, independent of their spatio-temporal resolution. Fig-
ure 6.1 illustrates the ICONET workflow divided into four main steps: preprocessing (red),
training (yellow), forecasting (blue) and post-processing (green). The following sections de-
scribe each step of the ICONETworkflow in detail.
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Figure 6.1: ICONET workflow illustrating development of the surrogate model. Taken from Azmi et al. (2023).

6.1.1 preprocessing
I generated the input data for training, validating, and testing of ICONET from ICON-ART
simulation outputs. Every data file consists of four dimensions: vertical model levels, grid cell
locations, time steps, and features. Each file contains 90 vertical model levels, 20480 grid cell
locations in six-minute resolution during one day (240 time steps), encompassing the VMR
of twelve gases (chemical features) and three physical features (in total 15 features). To handle
training of these large data files, selecting a good representation (sample) of the entire dataset
is required. For efficient data sampling and loading during the training of ICONET, I split
every daily data file of∼ 27GiB into 256files, each∼ 94MiB in size (Figure 6.2). I shuffled all
grid cell locations and randomly distributed them among the generated subfiles to potentially
cover data from all spatial regions. I utilized two of these subfiles for training and one for
validation. Given the significance of the temporal dependency in the simulation, I preserved
the original temporal dimension.

feature resolution unification

The twelve trace gases1 used for the atmospheric chemistry simulation scenario are HNO3,
HO2,H2O,NO,NO2,NO3,N2O,N2O5, OH, O3, O(1D), and O(3P). The physical features

1All the gases listed are trace gases, except for H2O. For simplicity, I will use the term “trace gas” for all
chemical features mentioned in the remainder of this chapter.
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Figure 6.2: Splitting schema for simulation data files. Taken from Azmi et al. (2023).

comprise temperature, pressure, and the cosine of the solar zenith angle (cos SZA). All these
features are available in the same temporal resolution, except for cos SZA. To improve the
accuracy of ICONET, I interpolated this feature linearly to the six-minute resolution, aligning
it with the other features.

feature dimensionality adaptation

LSTM layers are designed for processing of three-dimensional data structured as: i) samples,
referred to as sequences (or batch size in mini-batch learning), ii) time steps, representing the
length of the sequences, and iii) features. As the four-dimensional simulation data are not
suitable for the input layer of LSTM, I adapted their dimensionality by excluding the first
two dimensions, vertical model levels and grid cell locations. The vertical model levels are
determinedbypressure values that are already included as a physical feature. Since I exclusively
focus on replacing the atmospheric chemistry, in which the grid cells have no interactionwith
each other, their locations lack significance in this use case. Therefore, the final feature set
consists of two dimensions (time steps and features) for each grid cell. The creation of the
first dimension (batch size) will be described in the section of Labeled Sequence Extraction.

feature scaling

Equally scaled input data are important for the learning performance in machine learning
algorithms (Bishop, 1995). Among several feature scaling techniques, such as normalization
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Figure 6.3: Feature set distribution of an exemplary grid cell located above the Indian Ocean from 12 September 2013. The
physical features are shown on the left side of the dotted line. Taken from Azmi et al. (2023).

and standardization, I conducted experiments by training a model using differently scaled
feature sets. As a result, I selected the standardization scaling (Equation5.1), which resulted in
the best performance. Figure 6.3 displays the value range and distribution of all features from
an example grid cell located above the Indian Ocean on 12 September 2013. It demonstrates
how the features vary in severalmagnitudes before scaling. In the following, I refer to this grid
cell as an exemplary grid cell.

labeled sequence extraction

The final preprocessing step is to extract sequences and labels (ground truth) from the feature
set. For this purpose, I employed the rolling window technique to create sequences of fixed
length and their respective labels from all one-day feature sets. For labelling, I use the subse-
quent time step after each sequence. To determine the rollingwindow size (sequence length =
n time steps), I conducted experiments by training amodel using a rolling window of variable
length over all one-day feature sets, and consequently assigned the corresponding subsequent
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time step of each sequence ((n+ 1)th time step) as the respective label. The best performing
model is achieved for a sequence length of 10 time steps, resulting in 230 sequences (batch
size), for every one-day feature set. Batch size and sequence length are directly dependent on
each other and add up to 240 time steps per day, due to the six-minute resolution. These
sequences define the first dimension of the feature set for the input layer of the LSTMmodel.

6.1.2 training
The network structure and training configuration of neural network models are defined as
hyperparameters that must be set before training. The training of a neural network model
(Section 2.3.2) begins with the random initialization of its weights and hyperparameters. Nat-
urally, this initial configuration is unlikely to yield satisfactory results. By adjusting these hy-
perparameters, which are variables that determine both the structure of the network (e.g.,
number of hidden states) and how the network is trained (e.g., learning rate), the objective
is to obtain optimal weights for the model, leading to improved forecasts. Throughout the
training process, the underperforming neural network is transformed into a highly accurate
one by optimizing the loss function and minimizing the loss between the target and forecast
values by the end of the training. This optimization is achieved by iteratively adjusting the
network’s weights, effectively modifying its function.

lstm model

ICONET includes an LSTM model with one input layer, one hidden layer that consists of
15 hidden states representing 15 chemical and physical input features, and one output layer.
During the training, ICONET reads an input sequence into the LSTM model and gets the
final hidden state of the last time step in the input sequence as an output or forecast value.
This output is then compared with the labels in the loss function. This process is iterated
over epochs to learn a plausible model.

optimization over epochs

Following the preprocessing steps, the input data are prepared for training of ICONET. To
load the input sequences into the training step, I employed the Pytorch LightningDataloader
with four workers (subprocesses) per GPU. Increasing the number of workers enables asyn-
chronous data loading, facilitating overlap between training and data loading, which opti-
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Figure 6.4: Training and validation loss per epoch. Taken from Azmi et al. (2023).

mizes the training performance. While the Dataloader loads the next sequences and labels
into the training step, the multi-feature LSTM of ICONET generates an output Ŷ (Equa-
tion 6.2). The loss is calculated between the ground truth Y and the model output Ŷ using
MSE. The loss value is minimized in several iterations (Epochs) of adjusting the weights and
biases of the model.

To avoid overfitting, I employed early stopping, a regularization strategy that determines
the optimal point to stop training, ensuring the model’s ability to generalize to larger or un-
seen feature sets (Patterson&Gibson, 2017). Figure 6.4 displays the epoch loss (MSE) during
the model’s training on both the training and validation feature sets. In the zoomed-in por-
tion of Figure 6.4, it becomes evident that the gap between the training and the validation fit
curves begins towiden around epoch 3500, indicating that themodel is not learning anymore.

hyperparameter tuning

I conducted a greedy search over a range of values to find a suitable combination of hyperpa-
rameter values for achieving an accurate forecast. For instance, I varied the number of LSTM
layers between one and four. While more layers perform better in reproducing the trend of
the curves compared to a single layer, they produce a higher oscillation around the ground
truth (not smoothed curves), without significant performance and efficiency improvements.
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Table 6.1: Hyperparameters of ICONET training.

Hyperparameter Search range Final selection

Learning rate 1× 10−3 − 1× 10−2 3× 10−3

Batch size 239− 210 230 (samples)
Sequence length 1− 30 10 time steps (1 hour)
# Epochs 500− 14000 3500
# LSTM hidden layers 1− 4 1
# LSTM hidden states 10− 40 15
# Features in loss function 12, 15 15 (all chemical and physical fea-

tures)
λ for mass conservation 0.5− 1.0 1

Feature scaling Normalization,
Standardization

Standardization

Feature resolution unification yes, no yes
Spatial subset (# grid cells) 15− 180 126 for training, 54 for validation
Temporal subset 24, 365 24 days (2 days per month in 1

year)

Furthermore, the training and forecasting execution times increase notably compared tousing
only one layer. The search range and final hyperparameters are listed in Table 6.1.

One of themain objectives during the development of the ICONsimulationwas to achieve
improved mass conservation compared to other meteorological models (Zängl et al., 2022).
Mass conservation should be given for every closed system in chemistry, which in this use
case, refers to a single grid cell without the transportation of trace gases. Any surrogate model
or simulationmodification should preserve the quantities that are essential for themodel accu-
racy. In this use case, from all considered trace gases, only the VMR of Nitrogen (N) remains
constant and is conserved throughout the simulation period (Figure 6.5). The VMR of Hy-
drogen (H) and Oxygen (O) are not conserved because there is no closed system available for
H2O, which influences the VMR ofH andO. I calculate the VMR ofN using Equation 6.1.

CN =
∑12

g=1 ng · Cg, (6.1)

whereCN is the VMRofN in mol
mol , ng is the number ofN atoms in eachmolecule of a trace gas

andCg is theVMRof trace gas g in mol
mol . To assess the quality ofmass conservation in ICONET

forecast, I calculated the VMR ofN in the forecast values generated by a trained model with
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a variable λ in the loss function, formally expressed as follows:

Loss(Y, Ŷ) = λ ·MSE(Y, Ŷ) + (1− λ) ·MSE(CN, ĈN), (6.2)

where Y is the ground truth, Ŷ is the forecast, CN is the VMR ofN in mol
mol calculated from the

ground truth, ĈN is the VMR of N in mol
mol calculated from the forecast, λ is a hyperparame-

ter for penalizing the deviation from mass conservation andMSE is the mean squared error
(Equation 2.3). The loss function consists of two parts, the loss of the forecast and of the
mass conservation. I varied λ in the range of 0.5 to 1.0 and evaluated the test results from two
aspects. First, I assessed the stability of the VMR of N, and second, I examined the quality
of the forecast. Figure 6.5 demonstrates that the conservation ofN in the forecast, using the
loss function with λ = 0.5, closely aligns with the ground truth for the first 100 time steps,
in contrast to the forecast using λ = 1.0. However, the forecast of trace gases using the loss
function with λ = 0.5 exhibits higher RMSE values compared to those of the loss function
with λ = 1.0. The VMR ofN for λ = 1.0 raises directly at the beginning of the forecast, but
it remains stable during the test day. Analyzing the test results with different λ values revealed
that the VMR of N varies during the test day when using λ values except 1.0. Therefore, I
concluded to set λ to 1.0 and, thereby, removed the second part of the loss function.

I trained and validated ICONET using a subset of 180 randomly located grid cells in total.
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I used 70% of this subset for training and the remaining 30% for validation. The temporal
subset for training and validation contains in total 24 days distributed over one year at 15-day
intervals. Finally, I saved the trainedmodel at the epoch 3500where the validation epoch loss
starts to converge.

6.1.3 forecasting
After training the model on a small subset of the stratospheric grid cells, it can be used to
forecast all twelve trace gases for all grid cells of any stratospheric vertical model level on any
date of a year. To test its performance, I utilized the trained model to forecast all twelve trace
gases for all grid cells of one vertical model level in the middle stratosphere on 12. September
2014, hence one year after the training feature set. This is an exemplary spatio-temporal case
for testing, referred to as the test case. The three physical features serve as input features for the
atmospheric chemistry simulation, and therefore, they are not included in the forecast values.
The preprocessing of the test case follows the same procedures as for the training feature set.
In the forecasting step, I input all features of ten time steps (sequence length) to ICONET
and forecast only the trace gases for the next time step. Afterward, I use the forecast values as
input, thereby the next time step is forecasted. In the remainder of this chapter, I use the term
“forecast” for this iterative forecast.

6.1.4 post-processing
In the post-processing step, I transform the standardized output of the neural network back
to the physical units by undoing the standardization (Equation 5.1) applied during the pre-
processing. Forecasts with very small values compared to the distribution of the training data
might get transformed back to negative values. Since VMR values must be positive numbers,
I set these negative nearly zero values to zero.

6.2 evaluation
In the following, I present the forecasts resulting from the applicationof the trained ICONET
to the test case and evaluate them in terms of performance and computational complexity.
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6.2.1 metrics
ICONET is a regression model which outputs continuous variables. Therefore, I employ
an evaluation metric appropriate to assess regression models. Considering the sensitivity to
outliers and other disadvantages of the metrics discussed in Section 2.2.1, I use two metrics,
alone and in combination, to evaluate the performance of the model. Both metrics measure
how closely the forecast values align with the simulation outputs (ground truth). The first
metric is RMSE (better when closer to zero) and the second one isKGE (better when closer
to one). I present theRMSE values in both the original and standardized scales. TheRMSE
values in the original scale aids interpretation for domain scientists, whereas the standardized
values allow comparison across different variables on a unified scale.

In addition to the performance metrics, the computational complexity of ICONET is
demonstrated by its run time speed-up compared to the run time of the atmospheric chem-
istry simulation of ICON-ART, both using the same computing resources.

6.2.2 results and discussion
In the following, I present the results of forecasting the test case and its evaluation. Figure 6.6
exhibits the standardized VMR of all trace gases in the exemplary grid cell during the test day.
All trace gases in the forecast show a plausible fit to the ground truth values. Additionally, the
shapes of the forecast curves appear smoothed compared to the ground truth.

To illustrate the deviation of the test results from the ground truth across all grid cells, I
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depict N2O5 values as an example in Figure 6.7. The values represent the VMR of N2O5

at each grid cell in an arbitrary time step of the test day. The difference map demonstrated
in Figure 6.7(c) exhibits numerous grid cells where the difference is nearly zero (less than
± 10−11 mol

mol ) displayed inwhite, while the highest differences (in red) primarily appear in polar
regions. The points on Figure 6.7(c) highlight the locations, and their colors denote various
vertical model levels of the trained grid cells. As depicted, I trained a subset of randomly dis-
tributed grid cells from different stratospheric vertical model levels.

I present and interpret theRMSE values from twoperspectives. First, I evaluate theRMSE
distribution of all grid cells for each trace gas during the test day in one diagram (Figure 6.8).
Second, I analyze these RMSE values, which are illustrated in a map view for each trace gas
during the test day presented in Appendix B.

From the first perspective, I compared the performance of ICONET forecast between dif-
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ferent trace gases (Figure 6.8). In this diagram,N2O5 exhibits the highest meanRMSE value
(0.15), while O(1D) has the lowest value (2.8 × 10−5) among the others (Appendix A, Ta-
ble A.1). The RMSE values of O(3P) are very low but widely distributed, indicating the
instability of the model forecast spatio-temporally (Figure 6.8). Furthermore, RMSE values
for O(1D) display some outliers, concluding that the model fails to forecast this trace gas ac-
curately in some grid cells.

From the second perspective, I compared the performance of ICONET forecast globally.
The maps in Appendix B visualize theRMSE between the ground truth and ICONET fore-
cast for VMR of all trace gases of the test case. These indicate mostly higher RMSE in polar
regions. HNO3, N2O5, O3 and O(3P) show a similar spatial distribution of RMSE values.
This demonstrates that themodel exhibits varying performance across distinct spatial regions.

Another metric that I used in the performance evaluation isKGE. Figure 6.9 shows a sim-
ilar diagram as Figure 6.8, illustrating KGE values. Among these values, described in Ta-
ble A.2 from Appendix A, NO2 shows the best mean KGE value (0.71), whereas O(3P) ex-
hibits the lowest mean value (−3213.45). Furthermore, I compared the KGE and RMSE
results and their relation with each other. Both metrics present a plausible forecast forHO2,
NO, NO2, and NO3 with high KGE and low RMSE values (Appendix A), which demon-
strates the model’s ability to learn well and forecast plausibly for these trace gases. Despite
very low RMSE values, OH, O(1D), and O(3P) exhibit low KGE values. Although the re-
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Trace gas
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Figure 6.9: KGEDistributions for all grid cells of the test case. The horizontal lines depict theminimum, mean, andmaximum
values. Each shaded area corresponds with the approximate frequency of values. Some outliers smaller than−5000 are
removed from the diagram for better visualization of the values close to one. Taken from Azmi et al. (2023).

sults show an overall low RMSE and plausible fit for most of the trace gases, there are excep-
tions. For instance,N2O shows plausibleRMSE values but lowKGE values with numerous
outliers, indicating insufficient model learning for this trace gas. N2O5 demonstrates plausi-
ble KGE values in contrast to its high RMSE values. Additionally, O(3P) though a very low
meanRMSE (9.6× 10−5), shows very low and highly scatteredKGE values, concluding the
model’s inability to learn the trend of this variable.

During the evaluation of ICONET, I compared the model’s forecasts with a simple persis-
tence model as a reference. The persistence model forecasts the future value of a time series
under the assumption that nothing changes between the current and the forecast time (Hong
& Pula, 2020). This means that the values at time step t + 1 (forecast) are identical to those
at the current time step t. As the persistence model forecasts account for the next time step
only, I generated a comparable ICONET forecast for one time stepwithout iteration, referred
to as ICONET one-ts forecast. This forecast ensures a fair comparison with the persistence
model. Figure 6.10 illustrates the ground truth values together with the forecast values of the
ICONET and the persistencemodel. These values are the VMRof two trace gasesN2O5 and
N2O from the exemplary grid cell on the test day. ForN2O5, Figure 6.10(a) shows that both
ICONET forecasts are as good as or better than the persistence model. Figure 6.10(b) shows
that ICONET one-ts forecast has a very close results to the persistence model for N2O, but
ICONET iterative forecast does not align well with the other models.
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Figure 6.10: ICONET and persistence model forecasts vs. ground truth of two exemplary trace gases. Taken from Azmi
et al. (2023).

In addition to the evaluation of ICONET in terms of performance, I quantify the compu-
tational complexity of themodel with its run time speed-up over the ICON-ART simulation
run time. I executed the atmospheric chemistry simulation of ICON-ART on one compute
node without any parallelization, for forecasting of the same test case as for ICONET’s fore-
casts. The test of forecasting all grid cells of one verticalmodel level during one day, resulted in
the simulation run time of∼ 106 s, where the ICONET run timewas∼ 34 s. In comparison,
ICONET forecast showed 3.1 times speed-up over the simulation run time.

For evaluation of the stability of ICONET, I executed the ICONET forecast over one
week (1670 time steps) in September 2014 and calculated the RMSE of all grid cells from
the test case for each day separately. The daily mean of these RMSE values are presented in
Figure 6.11. The presented RMSE values are calculated between the ground truth and fore-
cast values on a standardized scale to facilitate a fair comparison between trace gases. To get
an impression of the error on the physical units, I selectedN2O5, which exhibited the highest
RMSE value, as a reference for comparison. By comparing the ground truth values ofN2O5

in a single time step on the test day depicted in Figure 6.7(a) and themeanRMSE value of the
same day in physical units, as illustrated in Figure B.2(b) in Appendix B, it reveals an approxi-
mate error of 10%. This indicates themodel’s overall effectiveness. Figure 6.11 illustrates that
theRMSE values ofmost trace gases remain roughly constant after the third day. This means
that ICONET forecast remains stable for eight of twelve tested trace gases. However,RMSE
values of NO2, N2O, N2O5, and O3 increase linearly until the third day, followed by a grad-
ual slowing down of the values’ growth toward stability. For instance, Figure 6.12 depicts an
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Figure 6.11: Evolution of mean RMSE value of all grid cells from the test case for all trace gases during one week. Taken
from Azmi et al. (2023).

ICONET forecast over one week for the exemplary grid cell from the test case. The diagram
shows a plausible fit and stable forecast of ICONET for most trace gases.
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Figure 6.12: (a) ICON‐ART simulation output (ground truth) and (b) ICONET forecast for VMR of all trace gases in the
exemplary grid cell in one week. The vertical dotted line in (b) indicates the start time step of forecasting. Taken from Azmi
et al. (2023).
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6.3 generalization

Neural networks offer immense potential for addressing a wide range of problems, however
they may not always be the optimal choice for every use case. Particularly, they excel in ar-
eas like image and speech recognition, natural language processing, and pattern recognition,
finding successful applications across various domains, including computer vision, finance,
healthcare, climate research and more. Although neural networks offer versatile applications,
establishing certain criteria is essential to determine the suitability of neural networks for a
specific use case. It is important to evaluate various factors, including data availability, inter-
pretability of the results, availability of computational resources, and the problem complexity.
Keeping this in mind, I will discuss the generality of ICONET.

The first criterion to consider the applicability of ICONET in other use cases is data avail-
ability and their preprocessing. The data need to be in sequence format, such as time series.
As the LSTMmodel used in the approach works with three-dimensional data, the intended
use case data must have three dimensions or should be reasonably reshaped into the required
dimensions. An advantage of this approach is that there is no need to label data manually
or use any prepared feature set to train the model, instead the labels are extracted from the
simulation data during the preprocessing steps.

The availability of computing resources is another factor to consider, before replacing an
environmental simulation with a surrogate model. Training the model with more and vari-
ous data helps to get more precise forecast results, necessitating more computing resources.
However, the advantage of using ICONET is that HPC resources are required solely to train
the model, and the forecasts could be executed without HPC resources.

The final important criterion is the problem complexity. While neural networks can ad-
dress intricate problems, there are particular use cases where alternative methods are simpler
andmore suitable. As an instance, the ICON-ART chemistry simulation operates as a closed
system without dynamics between grid cell, making the ICONET simply applicable to it.
However, for environmental simulations with complex interaction between the model units,
ICONETmight need to be adjusted, e.g., the LSTMmodel should be replaced with another
model such as convolutional LSTM to handle the units’ neighborhood information. Ad-
ditionally, the inherent complexity of the original model could make it challenging to fully
capture all its details using a surrogate model. Consequently, ICONET might not perform
as effectively in these situations.
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6.4 implementation environment
I implemented ICONET inPython,mainly usingPyTorch. In the implementationofLSTM,
I used theRNNmodule in PyTorch (Paszke et al., 2019) wrapped by PyTorch Lightning (Fal-
con &The PyTorch Lightning team, 2019). This work was performed on the HoreKa super-
computer funded by the Ministry of Science, Research and the Arts Baden-Württemberg
and by the Federal Ministry of Education and Research. It is also supported partially by the
Helmholtz Association Initiative and Networking Fund on the HAICORE@KIT partition.
For ICONET training, I used two Intel Xeon Platinum 8368 processors, 512 GB of main
memory, four NVIDIA A100-40 GPUs of 40 GB memory with Red Hat Enterprise Linux
(RHEL) 8.x. operating system. All the scripts and related data are available under the MIT
license at https://github.com/elnazazmi/iconet (Azmi, 2023).

6.5 summary
High-resolution environmental simulations are compute-intensive and require a large amount
ofHPC resources. To approximate such simulations and reduce the computational complex-
ity, and the resource demand, I developed a neural network-based approach (ICONET). This
multi-feature LSTM model was developed on a use case for forecasting atmospheric chem-
istry. The model is applicable to simulations in any spatio-temporal resolution. ICONET
consists of several steps namely, preprocessing, training, forecasting and post-processing.

The evaluation of ICONET, applied to a dataset generated from a meteorological simu-
lation (ICON-ART), demonstrates an acceptable approximation of environmental simula-
tions, enabling an accelerated forecasting. The forecasts of the use case exhibit low RMSE
values and partially a plausible fit (high KGE) with the ground truth. The ICONET one-
ts forecast displays improvements over the persistence model for certain trace gases. While
the ICONET iterative forecast results in a plausible fit with the ground truth, it is naturally
incomparable with the persistence model. Over a one-week forecast period, ICONETmain-
tained an overall stability in the mean RMSE values, with the highest deviation of the first
day by approximately 10%. Despite the iterative forecast causing cumulative deviations in the
subsequent days, the short-lived trace gases consistently maintained stableRMSE values over
the span of one week. This implies a plausible performance by ICONET.

In addition to the performance of the ICONET forecast, I evaluated the computational
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complexity of ICONET as its run time speed-up in comparison to the run time of the ICON-
ART simulation. ICONET forecast showed a 3.1 times speed-up over the run time of the
ICON-ART atmospheric chemistry simulation. Considering the need of ensemble simula-
tions, even a small speed-up over the original simulation is a significant achievement.

It should be considered that significant modifications in the input feature set and the use
case require redoing the training steps and tuning of the hyperparameters. Additionally, there
is a potential for programmatically optimizing the preprocessing and training of ICONET,
to be able to train a larger subset of grid cells and improve the accuracy of the forecast. The
relative mass conservation error seems reasonable in the presented test case, but for longtime
simulations, a more in-depth study should be done. This work is a proof of concept, and it
has not been tested yet in an operational system.
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The whole of science is nothing more than a refinement of
everyday thinking.

Albert Einstein

7
Conclusion

This chapter summarizes the achievements of this thesis and its contributions to science, along
with outlining a few directions of possible future research.

7.1 summary
The primary goal of this thesis was to develop an effective and computationally efficient ap-
proximation of large-scale and compute-intensive environmental simulations using machine
learning methods that yields outputs acceptable for domain scientists.

Despite the availability of powerful computing resources and technologies, challenges per-
sist as the resolution of the simulations and the number of observed features increase. The cur-
rent favored approach, upscaling of these simulations through parallelization, faces its own set
of hurdles. These include efficient parallelization of heterogeneous simulations, limitations in
the availability of HPC resources, economical considerations, and notably, the rising energy
consumption that raises environmental concerns.
This research integrates simulation, computational optimization, and machine learning

to enhance the efficiency of simulations and facilitate compute-intensive simulations in high
spatio-temporal resolutions. To address the forementioned challenges regarding compute-
intensive environmental simulations in real-world scenarios, I proposed utilizing machine
learningmethods to identify patterns and similarities withinmodel units of simulations, aim-
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ing to simplify the computational complexity of simulations, thereby reducing their resource
demand.

Diverse objectives and intricacies of simulations underscore the need to establish a universal
approach for evaluating them. I developed a general approach to evaluate simulations based
on their performance and computational complexity, which can be applied across various do-
mains. This approach evaluates the simulation’s agreement with observations from related
real-world systems or other simulations, and its resource consumption in terms of bits, em-
ploying principles from information theory.

To develop an approximation of compute-intensive simulations, firstly I investigated the
application of unsupervised machine learning methods to identify similarities within simula-
tion model units. By employing clustering methods on static properties of model units and
simulating only representative model units of each cluster, the computational complexity of
simulations is significantly reduced. Furthermore, based on the requirements of scientists,
the extent of this approximation and optimization is adjustable by the number of clusters ap-
plied, and the corresponding computation time required for the selected representative from
each cluster. This study led to the development of a K-determiner, which selects an appropri-
ate number of clusters automatically. This method utilizes the balance betweenK,RMSE of
each clustermember and a selected representative of that cluster, alongwith the computation
time of representatives.

Secondly, I introduced an approximation approach, referred to as evolutionary approach,
which is integrated into the original simulation. It utilizesK-means clustering to group similar
model units and subsequently simulates the selected representatives from each cluster, scaling
their output to the remaining cluster members. Throughout the simulation, these represen-
tatives are adjusted in accordance with the updated clusters, which are determined through
redoing the clustering based on the dynamics imposed on the model units. Application of
the evolutionary approach to a hydrological simulation resulted in achieving speed-up while
maintaining low deviations from the original simulation.

To investigate the generality of the evolutionary approach across other environmental sim-
ulations, I applied it to a further hydrological and ameteorological simulation of atmospheric
chemistry. In the evaluated hydrological scenario, the approach exhibits ample performance
and speed-up when employing the clustering once with an appropriate number of clusters.
However, in the atmospheric chemistry simulation, the clustering of millions of model units
during the simulation hinders its optimization. Finally, this study revealed key criteria for de-
termining appropriate simulations to employ the evolutionary approach efficiently. The sim-
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ulation model units to be clustered should function individually without interacting with
each other and exhibit similarities in properties or functionality. Furthermore, individual
model units should be compute-intensive, ensuring that the simulation execution time of the
representative model units, when combined with the overhead of the evolutionary approach,
is shorter than that of the original simulation.

For simulations that do not meet the criteria for the evolutionary approach, I explored the
use of supervised machine learning methods to approximate and optimize. I introduced a
surrogate neural network model to replace compute-intensive simulations with forecasts gen-
erated by a trained model, utilizing the output data from a numerical simulation for train-
ing. The application of this approach to the atmospheric chemistry simulation resulted in
achieving a speed-up while deviations from the original simulation were low and acceptable
for domain scientists.

In conclusion, in this thesis, I demonstrated that utilizing similarities of model units to
approximate complex simulations can be used reliably in practice through the proposed ma-
chine learning approaches. The proposed methods reduce the usage of computing resources,
yielding overall acceptable results.

7.2 outlook
I think that the work presented in this thesis can provide a strong foundation for future re-
search in several directions.
Utilizing the similarities within simulation units or properties has the potential to achieve

a plausible approximation and optimize resource consumption. Introducing approximation
approaches to find an approximate solution, rather than an exact one, can significantly re-
duce computational complexity while maintaining reasonable accuracy. Efficient clustering
algorithms could be developed, or existing algorithms could be extended to reduce the com-
putational complexity of clustering. Enhancing the computational efficiency of clustering
algorithms without relying solely on parallelization is an active area of research for enabling
efficient data processing, especially when parallel computing resources might not be readily
available or applicable to the problem at hand. Within the evolutionary approach, this could
help to reduce the overhead of clustering alongside simulations, resulting in a significant re-
duction in computational complexity of simulations.
There is extensive research potential in developing surrogate models to replace compute-
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intensive simulations. Future research should explore the utilization of other neural network
models such as transformers, physics-informed and graph-based models, for approximation
and optimization of similar simulations. Transformers have shown promise in capturing in-
tricate relationships within data across various domains. Their attention mechanism holds
potential for performant forecasting in time series through effective training of complex re-
lationships in environmental simulations. Physics-informed neural networks incorporate es-
tablished physical laws into the model architecture, thereby enhancing accuracy through im-
posing constraints derived fromunderlying physics principles. Graph-basedmodels are adept
at handling interconnected data by representing relationships between various components
in a simulation, which makes them suitable for addressing problems involving complex inter-
actions or networks.

The proposed approaches can be applied to various simulation scenarios and larger feature
sets to create a robust forecasting approach. Expanding the training dataset allows for a more
comprehensive evaluation of the approach’s adaptability and accuracy across various condi-
tions.

Finally, although theproposed approximation approachusing supervisedmachine learning
has proven promising results, it is not in operational use. Further comprehensive research and
development is required to integrate the approach in an operational implementation. This
could involve refining the model, training it with more diverse and representative data, im-
proving its accuracy and reliability, and ensuring itmeets the necessary performance standards
for real-world application.
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A
RMSE and KGE Tables
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Table A.1: RMSE Distributions for all grid cells of the test case. The good values are highlighted.

Feature Mean Standard
deviation

Min Lower
quartile

Median Upper
quartile

Max

HNO3 0.045 0.032 0.003 0.022 0.038 0.061 0.339
HO2 0.004 0.002 0.000 0.002 0.003 0.005 0.013
H2O 0.000 0.000 0.000 0.000 0.000 0.001 0.001
NO 0.011 0.006 0.000 0.006 0.009 0.014 0.038
NO2 0.014 0.005 0.006 0.011 0.013 0.015 0.049
NO3 0.007 0.005 0.002 0.004 0.005 0.008 0.032
N2O 0.008 0.005 0.000 0.004 0.009 0.012 0.034
N2O5 0.151 0.127 0.016 0.082 0.117 0.162 1.121
OH 0.000 0.000 0.000 0.000 0.000 0.000 0.000
O3 0.018 0.012 0.001 0.010 0.015 0.023 0.107
O(1D) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
O(3P) 0.000 0.000 0.000 0.000 0.000 0.000 0.001

Table A.2: KGE Distributions for all grid cells of the test case. The best values are highlighted.

Feature Mean Standard
deviation

Min Lower
quartile

Median Upper
quartile

Max

HNO3 −21.66 46.79 −2539.39 −24.27 −14.41 −8.33 0.30
HO2 0.23 3.90 −216.94 0.16 0.44 0.65 1.00
H2O −51.15 116.50 −3619.31 −49.60 −19.50 −7.50 0.88
NO 0.68 6.90 −474.50 0.76 0.85 0.91 0.99
NO2 0.71 3.45 −271.70 0.76 0.85 0.91 0.98
NO3 0.34 5.15 −266.79 0.48 0.71 0.82 0.95
N2O −395.56 551.02 −21 079.60 −431.87 −253.19 −171.98 −25.45
N2O5 −1.32 21.57 −1202.03 0.01 0.50 0.73 1.00
OH −1.60 27.67 −1508.20 −1.00 −0.33 0.05 0.86
O3 −187.52 2165.97 −121 549.99 −125.73 −69.37 −43.48 −6.10
O(1D) −6.32 8.42 −213.70 −7.93 −4.38 −2.98 0.48
O(3P) −3213.45 6181.22 −515 777.22 −3740.63 −2528.71 −1689.24 0.37
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Global RMSEMaps
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(a) HNO3 (b) HO2

(c) H2O (d) NO

(e) NO2 (f) NO3

Figure B.1: RMSE between ground truth and ICONET forecast for VMR of trace gases in the test case (part 1).
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(a) N2O (b) N2O5

(c) OH (d) O3

(e) O(1D) (f) O(3P)

Figure B.2: RMSE between ground truth and ICONET forecast for VMR of trace gases in the test case (part 2).
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