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ABSTRACT

Physical simulations that accurately model reality are crucial for many engineer-
ing disciplines such as mechanical engineering and robotic motion planning. In
recent years, learned Graph Network Simulators produced accurate mesh-based
simulations while requiring only a fraction of the computational cost of traditional
simulators. Yet, the resulting predictors are confined to learning from data gener-
ated by existing mesh-based simulators and thus cannot include real world sensory
information such as point cloud data. As these predictors have to simulate complex
physical systems from only an initial state, they exhibit a high error accumulation
for long-term predictions. In this work, we integrate sensory information to ground
Graph Network Simulators on real world observations. In particular, we predict the
mesh state of deformable objects by utilizing point cloud data. The resulting model
allows for accurate predictions over longer time horizons, even under uncertainties
in the simulation, such as unknown material properties. Since point clouds are
usually not available for every time step, especially in online settings, we employ
an imputation-based model. The model can make use of such additional infor-
mation only when provided, and resorts to a standard Graph Network Simulator,
otherwise. We experimentally validate our approach on a suite of prediction tasks
for mesh-based interactions between soft and rigid bodies. Our method results
in utilization of additional point cloud information to accurately predict stable
simulations where existing Graph Network Simulators fail.

1 INTRODUCTION

Mesh-based simulation of complex physical systems lies at the heart of many fields in numerical sci-
ence and engineering (Liu et al., 2022; Reddy, 2019; Rao, 2017; Sabat & Kundu, 2021). Applications
include structural mechanics (Zienkiewicz & Taylor, 2005; Stanova et al., 2015), electromagnet-
ics (Jin, 2015; Xiao et al., 2022; Coggon, 1971), fluid dynamics (Chung, 1978; Zawawi et al., 2018;
Long et al., 2021) and biomedical engineering (Van Staden et al., 2006; Soro et al., 2018), most of
which traditionally depend on highly specialized task-dependent simulators. Recent advancements
in deep learning brought rise to more general learned dynamic models such as Graph Network
Simulators (GNSs) (Sanchez-Gonzalez et al., 2018; 2020; Pfaff et al., 2021). GNSs learn to predict
the dynamics of a system from data by encoding the system state as a graph and then iteratively
computing the dynamics for every node in the graph with a Graph Neural Network (GNN) (Scarselli
et al., 2009; Battaglia et al., 2018; Wu et al., 2020b). Recent extensions include long-term fluid flow
predictions (Han et al., 2022) and dynamics on different scales (Fortunato et al., 2022). Yet, these
approaches assume full knowledge of the initial system state, making them ill-suited for applications
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Figure 1: A robot’s end-effector (grey, red) grasps a 3-dimensional deformable cavity. The robot
maintains an internal simulated prediction of the cavity (orange) for two consecutive simulation
steps (left, right). This prediction can deviate from the true state of the cavity over time due to an
accumulation of error. However, the true cavity state can infrequently be observed from point cloud
data (blue), which the model can use to correct its prediction. Here, the point cloud is used to contract
the simulated cavity at the bottom and extend it at the top, causing the points to better align with the
mesh surface. We repeat the point cloud from the earlier simulation step in both images for clarity.

like model-predictive control (Camacho & Alba, 2013; Schwenzer et al., 2021) and model-based
Reinforcement Learning (Polydoros & Nalpantidis, 2017; Moerland et al., 2020) where accurate
predictions must be made based on partial initial states and observations.

In this work, we present Grounding Graph Network Simulators (GGNSs), a new class of GNS that
can process sensory information as input to ground predictions in the scene observations. More
precisely, we extend the graph of the current system state with point cloud data before predicting
the system dynamics from it. Since point clouds do not provide correspondences over time, it is
difficult to learn dynamics from point clouds alone. Thus, we use mesh-based data to learn the general
system dynamics and utilize point clouds to correct the predictions. As the sensory data is not always
available, particularly not for future predictions, our architecture is trained with imputed point clouds,
i.e., for each time step the model receives point clouds only with a certain probability. This training
scheme allows the model to efficiently integrate the additional information whenever provided.
During inference, the model iteratively predicts the next system state, using point clouds whenever
available to greatly improve the simulation quality, especially for simulations with incomplete initial
state information. Furthermore, our architecture addresses a critical research topic for GNSs by
alleviating common challenges such as drift and error accumulation during long-term predictions.

As a practical example, consider a robot grasping a deformable object. For optimal planning of the
grasp, the robot needs to model the state of the deformable object over time and predict the influence
of interactions between object and gripper. This prediction not only depends on the initial shape of
the object, but also on the forces the robot applies, the kind of material to grasp and external factors
such as the temperature, making it difficult to accurately predict how the material will deform over
time. However, once the robot starts deforming the object, it may easily observe the deformations in
the form of e.g., point clouds. These observations can then be integrated into the state prediction, i.e.,
they can ground the simulation whenever new information becomes available. An example is given
in Figure 1. Such observation-aided prediction is similar in nature to e.g., Kalman Filters (Kalman,
1960; Jazwinski, 1970; Becker et al., 2019) as the belief of the system state is updated based on partial
observations about the system. However, while Kalman Filters explicitly integrate novel information
into the belief in a mathematical fashion, we instead simply provide this information to a learned
model as additional unstructured sensor input.

We evaluate GGNS on a suite of 2d and 3d deformation prediction tasks created in the Simulation
Open Framework Architecture (SOFA) (Faure et al., 2012). Comparing our approach to an existing
GNS (Pfaff et al., 2021), we find that adding sensory information in the form of point clouds to our
model improves the simulation quality for all tasks. We investigate this behavior through extensive
ablation studies, showing the importance of different parameter choices and design decisions. Code
and data can be found under https://github.com/jlinki/GGNS.

Our list of contributions is as follows: (I) We extend the GNS framework to include sensory infor-
mation to ground predicted simulations in observations of the system state, allowing for accurate
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predictions of the full simulation. (II) We propose a simple but effective imputation training scheme
that naturally integrates sensory information to GNSs whenever available without substantially
increasing training cost or model complexity. (III) We construct and experiment on different defor-
mation prediction tasks and find that the inclusion of sensory information improves performance in
all settings, and that it is particularly crucial when the initial system state is not fully known.

2 RELATED WORK

Learned Physics Simulation. In recent years there has been a steady increase in research concerning
deep learning for physical simulations. Early work in physical reasoning aims at teaching systems
to understand physical relations on N-body systems (Battaglia et al., 2016) and deformable ob-
jects (Mrowca et al., 2018). A more direct approach is to instead train a learnable simulator from data
provided by some existing ground truth simulator. Here, Convoluational Neural Networks (CNNs)
have been extensively studied for fluid flow simulation (Tompson et al., 2017; Chu & Thuerey, 2017;
Ummenhofer et al., 2020; Kim et al., 2019; Xie et al., 2018) and aerodynamic flow fields (Guo et al.,
2016; Zhang et al., 2018; Bhatnagar et al., 2019). Further approaches use standard neural networks for
liquid splash simulations (Um et al., 2018) and latent space physics simulation (Wiewel et al., 2019).
Such learned physics simulators are considerably faster than their ground-truth counterparts, and that
they are usually fully differentiable. Thus, they have been applied to model-based Reinforcement
Learning (Mora et al., 2021) and for Inverse Design problems (Baqué et al., 2018; Durasov et al.,
2021; Allen et al., 2022b) .

Graph Network Simulators. Graph Network Simulators (GNS) (Sanchez-Gonzalez et al., 2020) are
a special case of learned physics simulators that utilize GNNs (Scarselli et al., 2009) to efficiently
encode the graph-like structure of many physical problems. They have found wide-spread application
in calculating atomic forces (Hu et al., 2021), particle-based simulations (Li et al., 2019; Sanchez-
Gonzalez et al., 2020) and mesh-based simulations (Pfaff et al., 2021; Weng et al., 2021; Han et al.,
2022; Fortunato et al., 2022; Allen et al., 2022a). Other works in this field directly solve partial
differential equations (Alet et al., 2019), and integrates explicit domain knowledge into the learned
simulator to improve the predictions (de Avila Belbute-Peres et al., 2020; Li & Farimani, 2021;
2022). Similarly, CNNs have been used to predict particle masses from images to subsequently
simulate physical systems with a GNN (Li et al., 2020) via visual grounding. This approach assumes
access to a series of images to predict particles and their behavior, whereas GGNS integrates sensor
observations into an existing mesh-based simulation. The work most closely related to our research
is MeshGraphNet (MGN) (Pfaff et al., 2021), which combines a graph-based encoding of the system
state with the next-step prediction of dynamic quantities to produce realistic predictions of mesh-based
simulations.

Simulation from Observation. Another variant of learned physics simulation is simulation from
observation. Learning directly from observations instead of a ground truth simulator requires less
expert knowledge for the design of the simulator and is more applicable to real-world scenarios.
Different approaches exist for this type of simulation, including Physical reasoning (Li et al., 2020)
and particle-based simulation (Martinkus et al., 2021). Point clouds have been used in CNN-based
simulation (Watters et al., 2017; Wang et al., 2019), and combined with PointNet (Charles et al.,
2017; Qi et al., 2017) to predict object deformations purely from observational data (Park et al., 2021).
Further approaches make use of GNNs to predict object relations (Fetaya et al., 2018) and future
frames in a point cloud sequence (Gomes et al., 2021).

Simulation of Deformable Objects. Simulating deformable objects is crucial for many applications
such as robotic manipulation tasks (Sanchez et al., 2018). Yet, recent approaches do not take explicit
deformation into account (Matas et al., 2018), or only consider highly simplified geometries such as
ropes (Sundaresan et al., 2020) or a square piece of cloth (Wu et al., 2020a; Lin et al., 2020; 2022).
One reason for this is the high computational cost of existing simulators, which may be alleviated by
fast and accurate learned simulators (Pfaff et al., 2021; Weng et al., 2021). Another recent work trains
the parameters of a differentiable simulator to align its simulations with real-world observations of
deformable objects based on point cloud information (Sundaresan et al., 2022). In this work, we
instead utilize point cloud information to improve upon existing mesh-based GNSs in settings where
additional point cloud data is available.
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3 FOUNDATIONS

3.1 MESSAGE PASSING NETWORK

Let G = (V,E,XV,XE) be a directed graph with nodes V, edges E ⊆ V × V, node features
XV : V→ RdV of dimension dV and edge features XE : E→ RdE of dimension dE. A Message
Passing Network (MPN) (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021) is a GNN consisting of L
Message Passing Blocks that receives the graph G as input and outputs a learned representation for
each node V and edge E. Each block l computes updated features for all nodes v ∈ V and edges
e ∈ E as

xl+1
e = f lE(x

l
v, x

l
u, x

l
e), with e = (u, v) and xl+1

v = f lV(xl
v,

⊕
{e=(v,u)∈E}

xl+1
e ),

where x0v and x0
e are embeddings of the initial node and edge features of G and ⊕ is a permutation-

invariant aggregation such as a sum, max, or mean operator. Furthermore, each f l· is a learned
function that is generally parameterized as a simple Multilayer Perceptron (MLP).

3.2 GRAPH NETWORK SIMULATOR

GNSs simulate a system’s dynamics by repeatedly applying the following three steps. First, they
encode the system state S in a graph G. If the system state is given as e.g., a triangular or tetrahedral
meshM of the underlying entities, this graph is naturally constructed by using the nodes ofM as
nodes of the graph, and the connection between these nodes as edges. The node and edge features
XV,XE can be constructed based on the concrete simulation. In general, encoding purely relative
properties such as relative distances and velocities per edge rather than absolute positions per node
have been shown to greatly improve training speed and generalization (Sanchez-Gonzalez et al.,
2020). Next, the encoded graph G is used as input for a learned MPN, which computes final latent
representations xLv for each node v ∈ V. These latent representations are interpreted as (potentially
higher-order) derivatives of dynamic quantities, which are used by a simple forward-Euler integrator
to derive an updated system state S ′. Note that for some tasks, only a fraction of mesh nodes need to
be predicted, as the others are either fixed or belong to a known entity such as a gripper or collider. In
this case, only the latent representations of the nodes with otherwise unknown dynamics are used.

GNSs are trained on a node-wise next-step Mean Squared Error (MSE) objective, i.e., they minimize
the 1-step prediction error of the next system state to that of a given ground truth trajectory. During
inference, simulations over potentially hundreds of steps can be generated by iteratively repeating
the above-mentioned steps, using the updated dynamics of one step as the input for the next. We
note that the model does not predict the movement of fixed entities such as e.g., a collider, which is
instead assumed to be known and combined with the model’s prediction about the unknown parts
of the system. Due to this iterative dependence on previous outputs, the model is prone to error
accumulation. A common strategy to tackle this limitation is to apply additional noise to the dynamic
variables of the system for each training step (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021).
Intuitively, adding training noise acts as a form of data augmentation that allows the learned model
to compensate for small prediction errors over time. This kind of error-compensating next-step
prediction leads to plausible and visually realistic predictions. However, the resulting predictions
can be arbitrarily inaccurate with respect to the true dynamics of the system, since the model has no
reference for its simulation other than some potentially incomplete initial state S0.

4 GROUNDING GRAPH NETWORK SIMULATOR

Our approach combines recent advances in graph-based learned physics simulation with additional
partial observations of the system state to generate highly accurate simulations from incomplete
initial states. To this end, we extend the existing GNS framework to naturally and efficiently integrate
auxiliary point cloud data whenever available. This auxiliary information grounds the predictions of
the model in an observation of the true system state, guiding it towards predictions that not only look
realistic but also closely match the actual dynamics of the system. Figure 2 illustrates an overview of
our approach. A more detailed description of the GNN-part of the method is found in Appendix A.
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Figure 2: Schematic of GGNS . Given a system state St (red) and optional point cloud observations
(dashed box), a GNN (orange) predicts how the system St+1 will look like at the next step (blue).
For object deformation tasks, the state can include boundary conditions (gray) such as colliders or
walls. When provided, the point cloud (green) is transformed into a neighborhood graph (yellow) in
the same coordinate system as the mesh, connecting each point in the point cloud to the nearest mesh
nodes. The model is trained to predict the next system state based on a true state (purple) provided by
a ground truth simulator. During inference, the model iteratively predicts updates from a potentially
incomplete initial system state (purple), using additional point cloud observations when available.

4.1 POINT CLOUDS AND NEIGHBORHOOD GRAPHS

In order to utilize point-based data in addition to meshes we first have to transfer both into a
common graph. Following previous work (Sanchez-Gonzalez et al., 2018), we do this by creating a
neighborhood graph based on spatial proximity. Given a graph G = (V,E,XV,XE) that encodes a
predicted system state and a point cloud observation P = {p1, . . . , pN}, pj ∈ Rd of the true system
state, we set V′ = V ∪ P and

E′ = E ∪ {(pi, pj) ∈ P2|d(pi, pj) ≤ rP} ∪ {(v, p), (p, v)|v ∈ V, p ∈ P, d(p, v) ≤ rS}.
Here, d is some distance measure, usually the euclidean distance, and rP and rS are task-specific
neighborhood radii. The corresponding features XV′ , XE′ of the added nodes and edges in V′ and
E′ depend on the concrete task. The different node and edge types are one-hot encoded into their
respective features to allow the model to differentiate between them. Similar to the original features,
information can be encoded in a relative fashion in the form of edge features to aid generalization.
More concretely, we encode relative distances in world space along all edges, additionally adding
mesh-space distances for edges between two mesh nodes. This connectivity is slightly different from
MGN (Pfaff et al., 2021), which make use of additional world edges between mesh-nodes by creating
a similar radius-based neighborhood graph for the mesh nodes in world space.

4.2 IMPUTATION-BASED TRAINING AND INFERENCE

For most realistic applications, point clouds are typically not available at each time step during
inference. For example, we may have access to observed point clouds from the previous k time steps
and want to use them to infer the state of the system in the future. We adapt our model to this constraint
by employing an imputation-based training scheme. Our model still uses a single GNN, but we now
randomly replace the graph G of S with the corresponding extended graph G′ = (V′,E′,XV′ ,XE′)
with equal probability during training. In both cases, the model is only trained to predict the system
dynamics for the original nodes V. Intuitively, this allows each system node v ∈ V to utilize the
additional information of close-by points of a point cloud when available, while at the same time
forcing it to also make sensible predictions when there is no additional information. During inference,
we construct G′ from the (predicted) system state S and a corresponding observed point cloud P of
the true object whenever available and use G otherwise. This enables the model to reason about the
true system state that is observed via P , adapting its prediction to the otherwise unknown behavior
of the system. This grounding of the prediction also alleviates common errors of GNS such as drift
and more generally error accumulation. An example can be seen in Figure 1. Here, the system state
consists of a predicted mesh and a gripper, and the point cloud consists of points sampled from the
true object. The mismatch between point cloud and predicted mesh indicates the prediction error, and
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Figure 3: Final simulated meshes (t = 50) for GGNS (k = 5) (left), the ground truth simulation
(middle) and MGN (right) for 2 test rollouts with different material properties for the Deformable
Plate task. Our model closely matches the ground truth simulations for both materials, while MGN
predicts the same material every time.

the model uses this additional information to correct the current state estimate. Similar figures for the
other two tasks can be found in Appendix C.

We compare this simple imputation-based method to another training scheme in our experiments,
which we call GGNS+LSTM. Here we use an LSTM (Hochreiter & Schmidhuber, 1997) layer on the
node output features of the GNN to explicitly include recurrency into the model. This modification
allows information such as the material properties to be inferred and propagated over time, which
can be utilized to improve the predictions in time steps without point clouds. The resulting model
is trained on the same 1-step prediction loss and also uses training noise to generate stable rollouts
during inference. However, it is significantly more costly to train, as it makes use of backpropagation
in time to compute the gradients for the recurrency. We find experimentally that this recurrent model
performs worse than the imputation-based method. An explanation for this is that the potential
benefit of propagating information over time is offset by the additional training and model complexity,
especially with respect to the next-step prediction objective. For this reason, GGNS relies on this
simple but effective imputation-based approach.

5 EXPERIMENTS

We evaluate GGNS on complex 2d and 3d mesh-based object deformation prediction tasks modelled
in the Simulation Open Framework Architecture (SOFA) (Faure et al., 2012). For each task, the
true system state is given by a tetrahedral FEM mesh of a deformable object with rigid boundary
conditions combined with a triangular surface mesh of a rigid collider. The point clouds are generated
by raycasting using one virtual camera for 2d and up to five cameras for 3d tasks arranged around the
scene. More details on the generation of the point clouds are presented in Appendix B. Additional
environment-specific details, including node and edge features and dataset properties can also be found
in Appendix B. We assume that, while the initial mesh of the object is known, its material properties
are not. We model these unknown properties via the Poisson’s ratio (Lim, 2015) −1 < ν < 0.5,
which is a scalar value describing the ratio of contraction (ν < 0) or expansion (ν > 0) under
compression (Mazaev et al., 2020). For all datasets, we randomly assign Poisson’s ratios from
ν ∈ {−0.9, 0.0, 0.49} equally to all rollouts.

We train all models on all tasks using the Adam optimizer (Kingma & Ba, 2015) with a learning rate
of 5× 10−4 and a batch size of 32, using early stopping on a held-out validation set to save the best
model iteration for each setting. The models use a LeakyReLU activation function, five message
passing blocks with 1-layer MLPs and a latent dimension of 128 for node and edge updates. We use
a mean aggregation for the edge features and a training noise of 0.01. All tasks use a normalized task
space of [−1, 1]d. An overview of the network hyperparameters can be found in Appendix E.

Evaluation Metrics. We evaluate the performance of all trained models on 10 different seeds per
experiment. We report the means and standard deviations of the different runs, where, for each run,
we average the results over all available steps of a trajectory and over all trajectories in the test set of
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Figure 4: Visualization for a test trajectory at time step t = 70 for GGNS (left), the ground truth
simulation (middle) and MGN (right). While MGN accumulates a large prediction error over time,
GGNS is able to utilize the additional point cloud information to stay close to the ground truth for the
full length of the simulation. Different angles of this visualization can be found in Appendix C.

the respective data set. For all experiments, we report the full rollout loss, where the model starts with
the initial state S0 and predicts the states up to a final state ST . Here, we provide a point cloud to the
model every k ≥ 1 steps and resort to mesh-only prediction otherwise. This corresponds to a setting
in which the deformation of an object is tracked with both high-frequency sensors and low-frequency
cameras which provide the position of the rigid collider and point-cloud information respectively.

We also consider an application where a robot observes an object’s deformation up to some point in
time and then reasons about future deformations without additional point-cloud information. For this
setting, the initial system state S0 is provided to the model, followed by m point clouds for its next
m predictions. Then, 10 more steps are predicted without point clouds to predict a state Sm+10 and
and compute the corresponding 10-step prediction loss. The reported losses are the average MSE
over every step along the trajectory averaged over all possible rollouts. This metric reduces to the
average loss for a m+ 10-step prediction for methods that cannot make use of point cloud data, as
the state Sm+10 needs to be predicted from the initial S0.

Baselines. We compare to MGN, a state-of-the-art GNS, which utilizes additional world edges
between close-by mesh nodes, but does not incorporate point cloud observations. Comparing these
world edges to Section 4.1, MGN assumes an edge partition E = E1∪̇E2 and separate edge update
functions f lE1

and f lE2
. The edge-aggregation for the node update is then computed by aggregating

the latent features of both types of edges separately and concatenating the result. We adopt this
explicit representation of edge types for the MGN baseline and experiment with it for GGNS in
Appendix D. As it does not provide any significant advantages for our model, GGNS instead resorts
to a simple one-hot encoding of the type of input edge for the remaining experiments.

Additionally, we evaluate a variant of MGN that has additional access to the underlying Poisson’s
ratio v as a node feature, called MGN (M). This additional information leads to a deterministic ground
truth simulation w.r.t. the initial system state, and upper bounds the performance of MGN. We also
compare to GGNS+LSTM, which integrates recurrency into our imputation technique. Here, we
investigate whether this recurrency helps the model predicting e.g., material properties over time.

As a point cloud based baseline, we use a non-learned method to directly generate a mesh from the
point cloud of each time step. We voxel-subsample the point cloud so that we observe approximately
the same number of points as nodes in the ground truth mesh and then use Alpha Shapes (Akkiraju
et al., 1995) to create a (potentially non-convex) mesh for this time step. This baseline shows how
much information can be directly inferred from just the point cloud information.

Deformable Plate. We consider a family of 2-dimensional trapezoids that are deformed by a circular
collider with constant velocity. Besides the trapezoidal shapes, diversity in the dataset is introduced
by varying the size and starting positions of the collider. For this task, we additionally consider the
Intersection over Union (IoU) between the predicted and the ground truth mesh as an evaluation metric.
We find that this metric is less sensitive to individual mesh nodes and that it instead measures how
well the predicted object shape matches that of the real system state. We use a total of 675/135/135
trajectories for our training, validation and test sets. Each trajectory consist of T = 50 timesteps.

Tissue Manipulation. An important application for the prediction of deformable objects is medical
robotics. We simulate a robot-assisted surgery scenario where a piece of tissue is deformed by a
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Figure 5: Rollout Mean Squared Error of GGNS and MGN baselines evaluated on the test set of the
three datasets. We report the results for GGNS using point clouds in every k-th time step. MGN(M)
indicates the baseline method of MGN that uses the ground truth material as input feature. GGNS
outperforms the MGN baseline in all settings and in most cases even if it has access to the complete
initial state. For the Deformable Plate task we additionally report the errors for GGNS+LSTM, which
perform worse than GGNS for all k but still outperforming the MGN baseline.

solid gripper. Varying the direction of the gripper’s motion and its gripping position on the tissue
results in additional diversity. Here, 600/120/120 trajectories are used, each of which is rolled out
for T = 100 timesteps. This task is visualized in Figure 4.

Cavity Grasping. Robotic manipulation of deformable objects is an important application of
deformable physics simulation. Here, a simulated Panda 1 robot gripper grasps and deforms a cavity.
For this purpose, we randomly generate cone-shaped cavities with different radii, which are deformed
by a gripper from different positions. An example simulation step by GGNS for this task is illustrated
in Figure 1. We use the same amount of samples and data split as in the Tissue Manipulation task.

6 RESULTS

Main Results. We test our method on the three deformation prediction tasks described in Section 5
and compare it to MGN with and without material information. We find that GGNS can use the
point cloud information to produce high quality rollouts that closely match the true system states. An
example is shown in Figure 3, which visualizes the final simulated meshes for our method and the
ground truth simulation. Additionally, GGNS outperforms the baselines even when they have access
to the complete initial state, which our model has not. Figure 4 shows the qualitative differences
between GGNS and MGN on the Tissue Manipulation task. Additional visualizations for all tasks
and both methods can be found in Appendix C. The evaluations for full rollouts are given in Figure 5.
Table 1 shows results for the m+ 10-step evaluation. Appendix D shows the performance of GGNS
for different model hyperparameters. Similar to Pfaff et al. (2021), we find that GGNS is robust to
most parameter choices, and that a modest amount of training noise is crucial for long-term rollouts.
To show the applicability of our method for more realistic point cloud data, we provide additional
ablations on noisy and partial observable point clouds in Appendix D. We find that our model is quite
robust to the quality of the point clouds and can still reliably use their information to ground the
simulation. On the Deformable Plate dataset, we additionally evaluate the mean Intersection over
Union (IoU) during the rollouts to emphasize the compliance with the overall shape of the object
rather than that of individual mesh nodes. The results are illustrated in Figure 6a.

Recurrent Imputation Model. For the 2d data of the Deformable Plate task, we additionally
compare our imputation model to the GGNS+LSTM approach, which can use the recurrence of
LSTMs to pass information over time. Figure 5a shows that GGNS outperforms this alternative
approach for each k. We find that our simple architecture outperforms the recurrent one while
requiring significantly less time to train, likely due to the additional complexity of training the
recurrent model. The qualitative results in Appendix C confirm these findings.

Initial Mesh Generation. Using the IoU metric, we can compare objects across different mesh
representations. The results in Figure 6b show that GGNS produces accurate rollouts even if the
initial mesh is generated directly from the initial point cloud. For this, we compute a mesh with
similar resolution to the training meshes from the convex hull of the initial point cloud, avoiding

1FRANKA EMIKA GmbH, Munich, Germany
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Approach m+ 10-step MSE ×10−5
Plate Tissue Cavity

GGNS 2.907± 0.172 0.514± 0.052 0.923± 0.040
MGN (M) 10.663± 1.063 5.027± 1.489 6.294± 0.668
MGN 282.684± 18.112 5.885± 0.723 11.528± 0.747

Table 1: Evaluation on the m+ 10-step prediction setting on the test set for all three tasks. GGNS
clearly outperforms the baselines on all tasks even if they have access to the full initial simulation
state.
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Figure 6: (a) Rollout IoU for the Deformable Plate dataset for GGNS and the MGN baseline. The
main findings here are similiar to the MSE results but enable to compare against the values in (b),
where the initial mesh is created from initial the point cloud. The achieved IoUs are lower compared
to using the ground truth mesh, but GGNS (k ≤ 2) still outperforms all baselines including the Alpha
Shapes in this setting. (c) Normalized benefit of using a point cloud in every k-th timestep, where
k = 1 means a point cloud is available in every time step.

the dependence on any simulation data. This procedure marks an important step towards using
these models on real world data. The results indicate that generating the initial mesh from point
cloud information results in a degradation of the performance compared to an evaluation that uses a
provided mesh. Yet, it still allows for a high-quality prediction of the deformation. The comparison
to Alpha Shapes shows that combining infrequent point cloud information (k = 5) with a simulator
leads to better and more consistent results than directly creating the mesh from the point cloud in
each time step. Additionally, our model naturally tracks the correspondences of mesh nodes over
time, whereas Alpha Shapes cannot observe the evolution of individual particles in the system. As
such, GGNS allows for a more thorough understanding of the modeled process.

Grounding Frequency. Figure 6c shows the normalized performance of GGNS for grounding
frequencies k ∈ {1..10} across tasks. Here, a value of 1.0 corresponds to the performance for k = 1,
and 0.0 to the performance MGN. For all tasks there is a clear advantage in utilizing the point cloud
information, and the performance increases with the frequency of available point clouds.

7 CONCLUSION

We propose Grounding Graph Network Simulator (GGNS), an extension of the popular Graph
Network Simulator framework that can utilize auxiliary observations to accurately simulate complex
dynamics from incomplete initial system states. Utilizing a neighborhood graph computed from
point cloud information and an imputation-based training scheme, our model is able to ground its
prediction in an observation of the true system state. We show experimentally that this leads to
high-quality simulations in challenging 2d and 3d object deformation tasks, outperforming existing
approaches even when these are provided with full information about the system.

In future work, we will extend GGNSs to explicitly model uncertainty and maintain a belief over the
latent variables of the system, e.g., by employing a Kalman filter in a learned latent space (Becker
et al., 2019). Another promising direction is to adapt the current next-step prediction loss to instead
predict a trajectory over a small period of time to increase the long-term consistency of the model.
Finally, we will employ our model for model-predictive control and model-based Reinforcement
Learning in both simulation and on a real robot.
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Figure 7: A detailed view of the GNN part of GGNS . Given a graph G′, the node and edge features
XV′ and XE′ are linearly embedded into a latent space and then updated with L Message Passing
Blocks. The resulting predictions are interpreted as dynamic quantities that are used to update the
system.

A MODEL DETAILS

The Message Passing Network employed by GGNS is displayed in 7. As node-wise predictions we
use velocities, which are Euler-integrated once to update the positions of the mesh of the deformable
object.

B ENVIRONMENT DETAILS

Here, we describe all key aspects, which are valid for all three environments. All datasets are
simulated using SOFA and include different material properties. Therefore, we choose discrete
Poisson’s ratios from ν ∈ {−0.9, 0.0, 0.49} for one-third of all simulated trajectories each. Other
material parameters are kept constant, e.g., for the mass we choose large values for the solid object
and smaller values for the deformable to ensure sufficient deformation. The chosen parameters do
not represent the full reality, as there are other material parameters that could be varied. However, as
we want to showcase the capabilities of our method, we selected these parameters as they displayed
the biggest impact on the deformation behavior.

B.1 POINT CLOUD GENERATION

The required point clouds are not directly available in SOFA, but instead rendered from the scene of
the meshes using Raycasting from Open3D (Zhou et al., 2018). We therefore place virtual cameras
around and on top of the scene to generate partial point clouds from different directions. For the
Deformable Plate dataset one camera is sufficient, while the other two tasks rely on four cameras
around and one camera on top of the scene. This results in a good, but not complete coverage of the
entire surface with points of the point cloud. Even though there are five cameras around the scene,
there are areas that are not covered: For the tissue, the parts that are occluded by the red liver, and
for the cavity, parts of the inner surface depending on how the upper and lower radii deviates from
one another. Also, as there can be no camera from below, there are naturally no points on the lower
surface for both datasets. In Appendix D we additionally provide results for less cameras on the
cavity dataset, leading to only partially observable point clouds. If more than one point cloud camera
is used, the resulting point clouds are fused and subsampled accordingly to achieve a processable
number of points. We voxel subsample in world space, so the points do not belong to any specific
part of the mesh, but can rather be seen as some “interpolation” between mesh vertexes. The main
challenge is that there are no point correspondences and that the model needs to figure out which
point of the point cloud belongs to which vertex in the mesh to do the correction of the mesh nodes
for grounding the simulation. Still, voxel subsampling leads to the most structured results compared
to other subsampling techniques, which helps the model to account for correspondences between
points over time.
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B.2 INPUT FEATURES

In addition to encoding the node or edge type as one-hot features, we add an encoding to static nodes
and encode the velocity of the collider in its node features. We encode the positions in space as
relative features in the edges instead of absolute encodings in the node features following previous
work (Sanchez-Gonzalez et al., 2020). All edges thus receive their relative world coordinates, while
mesh edges additionally contain relative coordinates in mesh space.

B.3 COLLISION HANDLING

SOFA as the ground truth simulator handles collision between objects using triangular surface meshes
of all objects involved to detect collisions. The detection is implemented using the LocalMinDistance
method and detected collisions are included in the constraints of the system. Using Lagrangian
multipliers, the constraints are then processed together with the other forces from the deformation to
solve the complete FEM system (Faure et al., 2012). In contrast to that, GGNS uses one-hot encoded
edges between the rigid and the soft body that are used by the model to compute the dynamics.
There is no explicit handling of collisions, the network learns to avoid them and adapts the mesh
accordingly.

B.4 DEFORMABLE PLATE

For this environment, we simulate a family of 2-dimensional trapezoids deformed by a circular
collider with constant velocity. We vary the size of the collider by sampling from a triangular
distribution between 15 and 60 % of the edge length of the deformable object. For the collider start
position we sample from a uniform distribution between the left and right corner of deformable object.
We record 50 time steps per trajectory and 945 trajectories in total, which are split in 675/135/135
trajectories per train, evaluation and test set. A single data sample contains approx. 700 nodes: 57
nodes for the collider, 81 nodes for the mesh oft the deformable object and around 600 points in the
subsampled point cloud. The mesh itself consists of 416 edges, the total number of edges is about 3
K depending on the deformation in the according time step. In contrast to the Poisson’s ratio, the
other adjustable material parameter in SOFA, the Young’s modulus is kept constant for all samples
at E = 5000Pa. It describes the compressive stiffness when a force is applied lengthwise. The
different material properties together with the different trapezoidal shapes introduce uncertainty in
the form of multi-modality into the data. The reason for this is that different deformations result
in states that cannot be clearly assigned to a single trapez-material combination. We construct this
dataset because it comes with lower computational cost due to the restriction to 2d, but already allows
for more general statements due to the non-trivial deformations and the multi-modality. Therefore, it
is especially suitable as a proof-of-concept and for ablations.

B.5 TISSUE MANIPULATION

Here, a piece of tissue is deformed by a rigid gripper which could be part of a robot-assisted surgery
scenario. To generate diversity, we generate random motions in a 2d plane and sample a random
gripping point from the 19 top mesh points. We record 100 time steps per trajectory and 840
trajectories in total, which we split in 600/120/120 trajectories per train, evaluation and test set. A
single data sample consists of approx. 1 200 nodes: 361 for the mesh, one for the gripper and about
850 for the point cloud. The mesh consists of 2 154 edges, which leads to a total number of about
3 800 edges depending on the time step. To ensure physically plausible deformation, each Poisson’s
ratio is assigned its specific Young’s modulus from E ∈ {10 000, 80 000, 30 000}Pa. If instead it
were kept the same for each Poisson’s ratio, the gripper could penetrate the deformable object or pull
it without touching it. The uncertainty in this dataset is mainly in the initial state, which can result in
different deformations depending on the material from the same initial state.

B.6 CAVITY GRASPING

We randomly generate cone-shaped cavities with radii between 87.5% and 50% of the maximum
possible gripping width. The cone shape helps to increase uncertainty in the form of multi-modality
in the data, because the states resulting from deformation cannot be clearly assigned to a single
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cone-material combination. The deformable cavities are deformed by a gripper located at random
positions in space. The positions are sampled form a hexahedron around the geometrical center of
the cavity ensuring collision free starting positions. For the grasping, the gripper moves as quickly as
it is allowed to the gripping position and then closes its fingers with constant velocity. We record 100
time steps per trajectory and 840 trajectories in total, which are split in 600/120/120 trajectories per
train, evaluation and test set. A single data sample consists of approx. 2.4 K nodes: 750 for the mesh,
636 for the gripper and about 1 K for the point cloud. The mesh consists of 4 500 edges, the overall
number of edges in the graph is about 8.5 K depending on the exact time step. The motivation for the
creation of this environment is that a successful use of our method in this setting is an important step
on the way to a real-world application.
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Figure 8: Visualization of a test trajectory in the Tissue Manipulation dataset from three different
viewing angles (rows) at time step t = 70 for GGNS (left), the ground truth simulation (middle) and
MGN (right).

C QUALITATIVE RESULTS

In addition to the qualitative illustrations in the main paper, we also provide further views and
examples here: Figure 8 shows the same trajectory as Figure 4 but from three additional viewing
angles. Figure 9 and Figure 10 show an overlay of the point cloud on the deformable object during
the time step where the simulation is grounded by the point cloud. This representation is comparable
to Figure 1 for the Cavity Grasping dataset. Furthermore, we provide example visualizations for a
test rollout over time for the Deformable Plate task in Figure 11, for the Tissue Manipulation task in
Figure 12, and for the Cavity Grasping in Figure 13. Throughout all tasks, GGNS closely matches the
ground truth simulation for the complete rollout, achieving close to optimal results when provided
with frequent point cloud information (k = 2). Opposed to this, MGN sometimes fails to predict the
correct material, leading to poor predictions over time and large mismatches in the final system states.
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Figure 9: Overlay of the point cloud and the predicted mesh for two consecutive time steps t = [10, 11]
in the Deformable Plate dataset. We repeat the point cloud from the earlier simulation step in both
images for clarity. The illustration shows the correction behavior of GGNS by including the point
cloud to ground the mesh based simulation in this time step. This can be observed particularly well
in the upper left and right corners of the plate.

Figure 10: Overlay of the point cloud and the predicted mesh for two consecutive time steps
t = [70, 71] in the Tissue Manipulation dataset. We repeat the point cloud from the earlier simulation
step in both images for clarity. The illustration shows the correction behavior of GGNS by including
the point cloud to ground the mesh based simulation in the time step.
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Figure 11: Test rollout visualization for the Deformable Plate task. The last column depicts a close-up
of the final time step, which is shown in full in the previous column. Here, we additionally show
qualitative results for the GGNS+LSTM model. We can see that for k = 2 it matches the ground
truth quite well, while for k = 5 a large error occurs due to a prediction of the wrong material.
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Figure 12: Test rollout visualization for the Tissue Manipulation task. The last column depicts a
close-up of the final time step, which is shown in full in the previous column.

Figure 13: Test rollout visualization for the Cavity Grasping task. The last column depicts a close-up
of the final time step, which is shown in full in the previous column.
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Figure 14: Performance for different changes in hyperparameter choices (grey) on the Deformable
Plate dataset in comparison to our default model (blue) with k = 1. Error bars indicate one standard
deviation. The top row shows the error for the next-step prediction, the bottom row that of full rollouts.
We find that a suitable noise scale is crucial for stable rollouts, and that more information in the
form of additional edges between the different types of graph nodes generally improves performance.
Given enough Message Passing (MP) blocks, further increases in model capacity only lead to modest
improvements.

D ABLATIONS

D.1 HYPERPARAMETER CHOICES

Figure 14 compares the performance of GGNS for different hyperparameter choices. We find that the
most importance parameters are the number of Message Passing (MP) blocks and the scale of the
noise used in training. Both are crucial to achieve a good performance over multi-step rollouts. In
terms of training noise, there is a 1-step/multi-step loss trade-off. Other than that, our approach is
robust to variations of the different hyperparameters. In terms of graph connectivity, it can be seen
that all settings achieve similar performance. Additional information in the form of more local edges
helps slightly, while larger connectivity radii do not do much. A detailed listing of the used edge radii
is display in Table 2. In particular, the use of significantly more edges in the Equal Radii setting does
not provide a significant advantage, which is why we use weaker connectivity Full Graph that saves
computation time. The results for the Reduced Graph settings show that edges within the point cloud
are not mandatory. For this reason, we omit these edges in the more complex 3d tasks in favor of
shorter computation time.

D.2 NOISY POINT CLOUDS

Besides the ablations on our hyperparameter choices, we present further ablations on more realistic
point cloud data. For this purpose, we use point clouds with additional noise and only partial
observability to get closer to real world point clouds. Figure 15 shows the results for additional
ablations on different scales of noise on the point cloud data of the Deformable Plate dataset. We
add noise to the point cloud positions during training, evaluation and testing. This makes it more
difficult to infer the correct behavior from the point cloud, but provides a more realistic scenario for,
because real world point clouds often exhibit large noise. The results show the robustness of our
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Figure 15: Additional ablations for more realistic point cloud data on two datasets. Here, four
different noise levels on the point cloud are evaluated on the Deformable Plate datset. Different
grounding frequencies of k = 1 in (a), k = 2 in (b) and k = 5 in (c). GGNS performs better than the
baseline even when noise in the scale of the training noise of σ = 0.01 is applied to the point cloud.

method: Even when a noise level of σ = 0.01 is applied to the point cloud during testing, it clearly
outperforms the baseline. This noise level corresponds to the amount of noise used on the mesh
during training.

D.3 PARTIAL OBSERVABLE POINT CLOUDS

For the ablations on the partial observability, we use the Cavity Grasping dataset. We generate the
partial point clouds by using only one, two or five virtual point cloud cameras when using raycasting.
The resulting point clouds are visualized for better clarity in Figure 17 for an example test trajectory
at time step t = 0. One camera results in a coverage from only one half of the outer surface of the
cavity and two cameras cover almost the complete outer hull but not the inner surface. With five
cameras, the point cloud covers almost the entire mesh completely, except for the inside and bottom.
The resulting point clouds have a very different number of points: About 400 for one camera, about
600 for two cameras, and about 1000 for five cameras compared to 750 mesh nodes for the cavity.
The results in Figure 16 show that even with these much less complete point clouds, GGNS still
outperforms the baseline. For k ≤ 5 this is the case even if the baseline has access to the full initial
state, which GGNS has not.
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Figure 16: Additional ablations for more realistic point cloud data on the Cavity Grasping dataset. For
this purpose, different numbers of cameras are used when generating the point cloud using raycasting.
Comparison for three different grounding frequencies:k = 2 in (a), k = 5 in (b) and k = 10 in (c).
GGNS outperforms the baseline for all camera settings and grounding frequencies k.

Figure 17: Visualization of the point clouds using one, two or five cameras for the raycasting and the
corresponding mesh for reference. It is clearly visible how better coverage of the object is achieved
as the number of cameras increases.

Table 2: Edge radii for the connectivities between point clouds P and meshes M on the 2D
Deformable Plate Dataset.

Setting P − P M−P World

Full Graph 0.1 0.08 -
Equal Radii 0.2 0.2 -
Reduced Graph 0.0 0.08 -
MGN 0.0 0.0 0.35
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Figure 18: (a) Comparison of our model to the baseline results on the Plate cataset using the m+ 10-
step Evaluation routine. (b) Results when using an initial mesh generated from the point cloud.
GGNS outperforms the MGN baseline even if it has access to the initial ground truth mesh.
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Figure 19: Exemplary learning curves for the Cavity Grasping task. The light shaded area indicates
one standard deviation. Both GGNS and the baselines learn the task pretty similarly in terms of
1-step predictions. Our model is only evaluated for the k = 2 and k = 5 variant during full rollout
evaluation. Here, we can clearly see the advantage of using the point cloud information.
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Figure 20: Comparison of the MGN baseline with a version using the one-hot encoded edge types
instead of an explicit edge type partitioning indicated by MGN (1H). Both are compared for all
three tasks and no significant advantage of the explicit edges partitioning could be found. For this
reason, GGNS uses the one-hot encoding, because it is both conceptually simpler and requires less
computational power. The MGN baseline still uses explicit edge type partitioning throughout this
work, following Pfaff et al. (2021).
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Table 3: Configuration of the hyperparameters and key information of the training of our model for
all experiments.

Parameter Value

Batch Size 32
Optimizer Adam
Learning Rate 5× 10−4

Activation Function LeakyReLU
Aggregation Function Mean
Encoder Linear Layer
MP-Blocks 5
MLP Layers 1
Latent Dimension 128
Decoder 1-layer MLP
Residuals Connections Around each MP block
Training Noise Std 0.01

Table 4: Task specific configuration and hyperparameters for our experiments. We vary the graph
connectivity and the number of training epochs for different tasks to control the total training time of
our method.

Parameter Plate Tissue Cavity

Connectivity Setting Full Graph Reduced Reduced
Number of Epochs 1000 800 400
Approx. Training Time 21 : 00 h 40 : 00 h 38 : 00 h

E HYPERPARAMETERS

Table 3 gives an overview of hyperparameters shared across tasks. Since GNS are generally robust
to the choice of hyperparameters (c.f. D), we use the same hyperparameters for all task and for
both, GGNS and MGN for simplicity. The only hyperparameters that vary over tasks are the graph
connectivity and the number of training epochs, as shown in Table 4. We adapt these parameters to
control for the total training time on a single GPU.
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