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Abstract

Industrial heat treatment processes are usually optimized for many years
during series production, but the number of factors influencing hardness
and the high measurement noise of end-of-line hardness testing make it
increasingly difficult to further reduce costs or optimize the process. In
this work, a data mining framework for batch processes was developed
and applied to harness the rich data sources that fill up over time for two
pilot use cases, namely bainitization of 20 000 and case hardening of 7 000
batches. All necessary data sources, preprocessing, cleansing, and feature
extraction steps are outlined along with the corrections for drifts. A bench-
mark for the maximum achievable predictability was derived to assess the
economic benefit of a use case at an early stage. The framework then
applies step-by-step data mining techniques to quantitatively break down
variance contributors such as material, production line, measurement de-
vice, batch and measurement position, as well as their interactions and
dynamic behavior over time. Based on these factors, a set of feature sub-
set selection, machine learning pipeline optimization, as well as training
and evaluation approaches were explored in order to find the most robust
prediction strategy for thermally treated components. For case hardening
a custom solution, the hidden-state-pipeline was developed. Finally, an
industry pilot shows how to implement these models in daily operations
and transfer the process to other component types to reduce the costs of
end of line tests.
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Kurzfassung

Industrielle Wärmebehandlungsprozesse werden in der Serienproduktion
üblicherweise über Jahre hinweg optimiert, aber die Vielzahl der Fak-
toren, die die Härte beeinflussen, und das hohe Messrauschen der End-of-
Line-Härteprüfung machen es zunehmend schwieriger, die Kosten weiter
zu senken oder den Prozess zu optimieren. In dieser Arbeit wurde ein
Data-Mining-Framework für Batch-Prozesse entwickelt, um die umfan-
greichen Datenquellen, die sich im Laufe der Zeit ansammeln, für zwei
Pilot-Anwendungsfälle nutzbar zu machen, nämlich das Bainitisieren von
20 000 und das Einsatzhärten von 7 000 Chargen. Alle notwendigen Daten-
quellen, Vorverarbeitungs-, Bereinigungs- und Feature-Extraktionsschritte
werden zusammen mit den Korrekturen für Drifts dargestellt. Es wurde ein
Benchmark für die maximal erreichbare Vorhersagbarkeit abgeleitet, um
den wirtschaftlichen Nutzen eines Anwendungsfalls frühzeitig zu bewerten.
Das Framework wendet dann schrittweise Data-Mining-Techniken an, um
Varianzeinflüsse wie Material, Produktionslinie, Messgerät, Chargen und
Messposition sowie deren dynamisches Verhalten über die Zeit quanti-
tativ aufzuschlüsseln. Auf der Grundlage dieser Faktoren wurden eine
Reihe von Featureauswahlverfahren, verschiedene Pipeline-Optimierungen
für maschinelles Lernen sowie Trainings- und Bewertungsansätze unter-
sucht, um die robusteste Vorhersagestrategie für thermisch behandelte
Komponenten zu finden. Für das Einsatzhärten wurde eine maßgeschnei-
derte Lösung, die Hidden-State-Pipeline, entwickelt. Schließlich zeigt ein
Industriepilot, wie diese Modelle im täglichen Betrieb implementiert und
der Prozess auf andere Komponententypen übertragen werden kann, um
die Kosten für die End-of-Line-Prüfung zu reduzieren.
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Eat your vegetables, floss your teeth, remember to say:
"It’s difficult to quantitatively assess
the relative contribution of gens and environment
to a particular trade when they interact."

- ROBERT M. SAPOLSKY
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1 Introduction

Heat treatment of metals has been an established, widespread, and impor-
tant processing step for centuries, with high significance for mechanical
engineering, mobility concepts, consumer goods, and the economy in gen-
eral. Parallel to the development of new materials and heat treatment
technologies, new and innovative heat treatment processes are constantly
being developed and further optimized in series production applications.
These heat treatment processes not only modify the manufacturing prop-
erties of steel components for simple and cost-effective machining, but also
allow tailored property specifications to achieve high functionality for a
wide range of components with maximum stress resistance.

For economic reasons, usually the largest possible number of components
are heat treated together in one batch. Thus, depending on the batch
position, each component faces its own thermal and temporal sequence,
which also leads to scattering in the local alloy composition of the compo-
nents in thermochemical heat treatment processes. In total, this results in
a wide variety of achievable results from component to component, from
batch to batch, and from furnace to furnace. Therefore, usually at least
one specimen is taken from each batch from a test position (determined by
preliminary tests or experience) and subjected to quality assurance tests.
Taking all influencing variables into account (with special emphasis on
measurement noise), rather large tolerances of around ± 50HV must be
provided for hardness tests. To keep this spread relatively small and the
process secure, its process variables critical for heat treatment – such as
temperature, pressure, process gas composition – are identified (e.g., by
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Figure 1.1: Schematic chronological stages of component production-live-cycle along
with common cost reduction levers to increase profitability. The samples
(A-D) are prototypes with increasing maturity level. A prototype at stage
D has the required properties and is ready for production, [own represen-
tation]

means of a process failure mode and effects analysis (FMEA)) and moni-
tored by appropriate sensor technology. This is in order to detect serious
deviations from target variables already occurring during heat treatment
and to issue appropriate alarms or messages to the operator. Alarms and
quality test results, as well as all sensor signals, are stored as time series
for traceability purposes in the field.

In order to reduce the cost of heat treatment per unit and subsequent
testing, a plethora of methods are employed during production ramp-up
and subsequent scale-up. Figure 1.1 outlines these stages chronologically
with the corresponding levers for cost reduction from the first prototypical
samples of a component, through expansion and maximal production, to
diminishing yields. Initially, low hanging fruits like increased batch size
(i.e., more units produced per heat treatment cycle) and optimization of
parameters (e.g., higher or lower temperatures may allow shortening of
the process or increase the quality) are reaped, costing little while hav-
ing a sizable benefit. Further down the road, when startup difficulties are
overcome and production roars, more steps can be automated (e.g., auto-
matic instead of manual setup of batches1) and scaling effects exploited

1 Batches can contain hundreds to several thousands of components.
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Figure 1.2: Goal of thesis and motivation to employ data mining and machine learning
methods, [own representation]

(e.g., lower cost purchasing or improved machine utilization) to cut direct
labor and material costs. Finally, towards maximal output, it becomes
increasingly difficult to boost the profit margin as most levers are already
exhausted. Further process optimization attempts may lead to less robust
results, while quantification and manipulation of the influences of preced-
ing process steps (up to steel production) are difficult to attain.

Fortunately, as the Industry 4.0 wave sweeps across manufacturing com-
panies, countless projects are being set up to store and connect data from
the manufacturing processes over the years, most of which are piling up
untouched and unused in folders or databases. This thesis is one of these
projects, that actually follows through. Digging into that goldmine of pro-
duction data to identify and utilize its potential for further cost reduction
and enhanced product quality is its objective. Figure 1.2 maps the mile-
stones to be accomplished on the journey towards these goals, discussed
below from top to bottom and from right to left.
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Everything begins, as it must, with the expansion of knowledge by in-
creasing process understanding. For this purpose, process data must be
evaluated, which is currently only available as an XML file for each heat
treated batch. Detecting influences requires extracting, structuring, and
processing the data from these files. To increase component quality or op-
timize the reliability of assurance measures, the variance around the target
properties (which should already be minimal after years of optimization)
has to be further reduced. This presupposes that responsible influences
are quantitatively known and can be manipulated. A goal with greater
leverage is cost reduction through reduced testing, which will be central
to this dissertation. Industrially available standard test methods, such as
destructive hardness testing, are subject to considerable scatter and incur
costs in the form of specimen preparation, test equipment, and laboratory
personnel, but could be replaced by a predictive model deployed in daily
operations. This in turn presuppose that influences are known and an
IT-infrastructure as well as a model for deployment are available. Data
mining and machine learning (ML) methods will be applied to build such
models and perform the necessary analyses to quantify the influences, after
aggregating all relevant data sources and transforming their data into a
usable, structured format.

Finally, a cost reduction strategy that works can be scaled to similar pro-
cesses2. Such scaling assumes that a validated framework for data pre-
processing, analysis, and model building for heat treatment processes is in
place. Hence, this thesis will develop and use such a data mining frame-
work shown in Figure 1.3 as a structural approach for batch processes
in particular and heat treatment in general to attain the aforementioned
goals.

After motivating and explaining the structure of this thesis in the intro-
duction, Chapter 2 outlines the state of the art for heat treatment and

2 The two use cases bainitizing and case hardening (CH) already cover approx. 80%
of the heat treatments that are usually applied on an industrial scale [13].
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Figure 1.3: Detailed framework for data mining and machine learning in heat treat-
ment processes (Cha: Chapter, Meta: Metadata)

data mining, as well as their combination. Chapter 3 details all materi-
als and data (e.g., production lines, sensors, and test procedures) shown in
the left part of Figure 1.3 and methods (e.g., preprocessing, feature extrac-
tion, analysis, and ML algorithms), mostly to the right, used for analysis
in subsequent chapters. To understand the properties of the quality mea-
sures (labels) we seek to predict later on, Chapter 4 sheds light on their
distribution, behavior over time, and influence of batch position. It also
quantifies the error inherent in the measurement procedure and utilizes
the findings to create a prediction benchmark (i.e., achievable prediction
error). In Chapter 5 individual effects of material, process and metadata
are further quantified. The knowledge gained is then used in Chapter 6
to:

1. create robust prediction or forecasting pipelines for the hardness of
a component after heat treatment,

5



1 Introduction

2. explain most of the variance in the hardness distribution, and
3. propose a cost reduction strategy that recommends how many test

pieces can safely be replaced by a prediction.

Actual deployment is described in detail in Chapter 7 alongside the IT
infrastructure for day-to-day operation at the Bosch production plant in
Stuttgart to validate the framework. Finally, Chapter 8 summarizes the
findings and provides an outlook for further research.
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2 State of the Art

This chapter provides a general introduction to the two central fields of
research. To warm up, Section 2.1 introduces heat treatment of metallic
components, followed by data driven methods in Section 2.2 focusing on
data mining aided by machine learning. An application of the latter to the
former is given in Section 2.3. Finally, Section 2.4 poses the open research
questions that will be addressed in this thesis.

2.1 Heat Treatment

Steel components are manufactured by many different process steps such
as melting, forging, milling, turning, hardening, and grinding. In general,
steel in its ’soft state’ is easier to process and causes less wear on machine
components. Conversely, for their subsequent practical use, steel com-
ponents often must resist surface abrasion, mechanical stress, and high
strain or pressure. Thus, they seldom simultaneously meet the require-
ments they are supposed to have during manufacturing and subsequent
utilization. Many components are, therefore, hardened as one of the last
steps in their production chain in order to increase the mean time to fail-
ure and prevent early breakdown. Hardening is achieved by a change in
the atomic microstructure via heat treatment resulting in desired material
properties optimally suiting the application [39]. DIN 4885 [100] describes
this heat treatment process as:

"A Series of Operations in the course of which a solid ferrous
product is totally or partially exposed to thermal cycles to
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2 State of the Art

bring about a change in its properties and/or structure. The
chemical composition of the ferrous product may possibly be
modified during these operations."

Depending on the desired properties, numerous procedures are available
for hardening. Among other parameters, they differ in heat supply (e.g., by
furnace, induction, or laser), the quenching media (e.g., oil, salt, or gas),
the addition of further alloying elements (e.g., carbon or nitrogen), and
temperature profile. Some procedures target the whole cross-section of a
component, others only aim to harden the surface layer [40,90]. Figure 2.1
depicts the two heat treatment procedures relevant for this thesis: the first
being a bainitic treatment and the second being a case hardening by low
pressure carburization with high pressure gas quenching, subsequent deep
freezing, and tempering. Both treatments are explained in the following,
along with their specific applications.

Heat Treatment

Temperatures < 200 °C

Temp. 500 °C - 600 °C

...

Tempering

Recovery

Recrystallizing

Stress Relieving

...

Annealing

Carburizing

Carbonitriding

...

Boriding

Nitriding

Thermo-Chemical
Procedures

...

Case Hardening

Surface Hardening

Bainitizing

}
Hardening

Figure 2.1: Overview of heat treatment procedures based on [88]

2.1.1 Bainitizing

Components of a diesel injection pump must withstand the stress of fast
changing high pressure cycles. To achieve high durability and hardness
throughout the whole cross-section of the components (e.g., cylinder heads)
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2.1 Heat Treatment

with little distortion, the steel can be transformed into bainite1. A typical
temperature profile of a bainitic heat treatment is drawn in Figure 2.2. Ac-
cording to [88, 100], bainitization can be divided into three process steps:
Austenitization (heating to austenitizing temperature TA and holding for
a sufficiently long period ∆tA), quenching (cooling at a rate fast enough
to avoid the formation of ferrite or pearlite to a temperature TIa above the
martensite start temperature TMS), and isothermal transformation (partial
or total transformation of the austenite to bainite). Quenching includes
the option for (1) a martensitic nucleation (quenching below TMS for a
short time, to obtain first martensite needles), while the subsequent trans-
formation is performed either (2a) at TIa (one-stage bainitizing) or (2b)

with a heating to TIb after ∆tIb1 (two-stage bainitizing).

(1)

(2b)

(2a)

austenitization

isothermal 
transformation

quenching

TA

Time 

Te
m

p
er

at
u

re

TIb

TMS

TIa

ΔtH ΔtQΔtA ΔtIa

ΔtIb1 ΔtIb2

Figure 2.2: Schema of a time-temperature profile for bainitizing [26]

1 Bainite DIN 10052 [103]: "Metastable constituent formed by the decomposition
of austenite in a temperature interval between the temperature at which pearlite
forms and that at which martensite starts to appear. It consists of supersaturated
ferrite in which carbon has been finely precipitated in the form of carbide."
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2 State of the Art

Austenitization

Austenitization consists of heating components for a time ∆tH until the
whole component has reached temperature TA and a subsequent holding
for a time ∆tA. As the component’s core temperature lags behind its
surface, the heating process is divided into heat up and equalization2.
It serves the purpose of obtaining a desired microstructure defined by
a characteristic distribution of chemical elements (homogeneity), size of
grain as well as number and size of carbides. These factors determine
the conversion kinetics of all possible phase transformations during the
subsequent quenching and isothermal transformation.
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Figure 2.3: Schematic time-temperature-transformation diagram with isothermal
bainitic phase transformation of 10mm round rod made of 100Cr6 [121]

2 Period during which core temperature converges to surface temperature, whereby
the latter is already stable.
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2.1 Heat Treatment

Quenching

Quenching is the most time critical step, since the rate of cooling, among
other things depending on the alloy composition and the austenitizing
conditions, must be fast enough to avoid the formation of pearlite or ferrite
as indicated by Figure 2.3. It depicts a continuous-cooling transformation
diagram for the steel 100Cr6 which alongside its eponymous application in
roller bearings, is also used widely in the automotive industry, especially
for diesel injection systems, because high carbon and chromium content
ensure high strength and hardenability [18]. When the final temperature
TIa is reached after a time ∆tQ, the quenching is completed. The closer
the final temperature TIa lies above TMS, the longer the time necessary
until complete transformation to bainite, but also the more desirable the
resulting microstructure of bainite, as it is more fine-grained [143].

Isothermal transformation

During isothermal soaking the transformation to a bainitic microstructure
is completed. Depending on steel and austenitization conditions, the phase
transformation may take a long time, therefore, it would be beneficial
to shorten this process. By increasing the soaking temperature after a
time ∆tIb1 to TIb, the transformation is accelerated with the effect of
significantly higher fatigue resistance at the cost of reduced compressive
strength. In return, the time for complete transformation can be reduced
by 75% (i.e., ∆tIb1 +∆tIb2 = 1

4∆tIa) [34].

A sensitivity analysis of the heat treatment parameters on the resulting
hardness is given in Table 2.1.
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2 State of the Art

Table 2.1: Important process parameters for bainitic treatment by [26]

Parameter (↑) Hardness Influence

TA, ∆tA ↑ Increased amount of dissolved carbon in austen-
ite leads to stronger lattice distortion

TIa, TIb ↓ Increased carbon diffusion leads to relaxation of
lattice distortion

∆tIa, ∆tIb1,2 ↑ Increase in the volume fraction of bainite formed
at low temperature (given, that no martensite
was formed)

2.1.2 Case hardening

Diesel nozzle bodies must withstand an injection pressure of up to 2700 bar

necessitating high strength of their surface. Case hardening can achieve
such a requirement by initially carburizing or carbonitriding components
(i.e., adding carbon and/or nitrogen at austenitizing temperature) and
subsequently hardening them to form martensite. Typically, an industri-
alized heat treatment procedure of this type consists of case hardening with
subsequent deep freezing (optional) and tempering (obligatory), which is
why they are subsumed under the headline case hardening. Figure 2.4
delineates a time-temperature profile of the process at hand [100]. Next to
easy machinability before heat treatment, this procedure allows to com-
bine high surface strength with relatively high core strength. Especially
for work pieces of geometrically adverse design (e.g., notches or bore inter-
sections), this treatment enhances the locally endurable load. As a result,
such work pieces can be subjected to higher stresses, particularly in the
case of cyclic loads as often is the case in engines.
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Figure 2.4: Schema of a time-temperature profile for case hardening with optional
isothermal transformation and deep freezing followed by tempering [100]

Low pressure carburizing

To reduce the ingress of atmospheric oxygen, the process is carried out
in a vacuum furnace well below atmospheric pressure, referred to as low
pressure carburizing. Surface oxidation of components is most undesir-
able, as the resulting oxide formation leads to work piece failure. In the
first step, after furnace evacuation, components are heated to austenitiza-
tion temperature TA1, which subsequently leads to phase transformation
of the initial ferrite and pearlite into a fully austenitic microstructure.
The austenitic microstructure allows a fast inclusion of carbon atoms into
the work piece surfaces. During carburization, the components are offered
a carbon donor (e.g., acetylene C2H2, exemplified by the green patch in
Figure 2.4) to increase their hardenability and the maximum achievable
hardness of the near-surface layer. The carbon enriched layer might have
a thickness of only a couple of tenth up to several millimeters, depending
on the requirements of further work piece processing and its later appli-
cation. The sequence of pulses and pauses of the carburizing gas must be
carefully engineered to achieve the desired degree of carburization, while
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Figure 2.5: Schematic continuous time-temperature-transformation diagram, contin-
uous martensitic phase transformation of 18CrNi8 after 15 min austeniti-
zation, carburized to C=0.56% [121]

preventing too intensive carbide and soot formation. As carbides are con-
sidered critical for fatigue strength of the work piece, the soot, resulting
from oversaturation of carbon in the atmosphere, might damage parts of
the furnace, e.g., the heating system.

After carburization, components can either be brought to (1a) a temper-
ature TI at which isothermal transformation to pearlite occurs, or to (1b)
the room temperature TR. If (1b) involves a quenching, it is called direct
quench hardening even if the temperature is lowered before quenching. A
slow cooling to TR with a subsequent further austenitization and quench-
ing is called single quench-hardening. (1a) serves the grain refinement
and leads to a more desirable martensitic structure after quenching. As
indicated in Figure 2.5, the cooling rate during quenching must be high
enough to reach the critical temperature TMS required for martensite for-
mation without the introduction of pearlitic or bainitic structures. If the
desired amount of martensite was formed after quenching and cooling to
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2.1 Heat Treatment

room temperature TR, components can be tempered directly afterwards
(2a). Otherwise, a sub-zero treatment is necessary (2b) [41].

Deep freezing

A certain amount of retained austenite is left in the carbon enriched
surface-near layer which is dependent on the chemical composition after
carburizing, as well as austenitization temperature, and duration. Further
transformation from austenite to martensite after quenching only occurs
at temperatures below TR. Deep freezing components at TF for a time ∆tF
leads to the desired martensite-to-austenite ratio for a given application [6].

Tempering

Quenching and, if necessary, deep freezing result in a martensitic mi-
crostructure with extreme tension, which yields its ultimate hardness.
Unfortunately, it is then also more susceptibility to cracking and frac-
turing. For this reason, the steel is tempered (i.e., brought to temperature
TT below 200 ◦C for ∆tT ) in order to reduce the tensions and, thereby,
gaining the required toughness at the expense of some hardness. The ef-
fect for varying tempering temperatures and duration is formalized by the
Hollomon–Jaffe parameter (HP), given in Equation (2.1), where TT is in
Kelvin and ∆tT in hours. The constant C is dependent on the material
used and often set to 20 for carbon-manganese and low-alloy steels. It is
not critical in correlating the interdependence of tempering temperature
and time [16,64].

Hp =
TT

1000
(C + log(∆tT )) (2.1)

A sensitivity analysis of the heat treatment parameters on the resulting
hardness is given in Table 2.2.
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Table 2.2: Important process parameters for case hardening [79,87]

Parame-
ter (↑)

Hard-
ness

Influence

Carburi-
zation

↑ Provided that carbon is in solid solution, increasing the
carbon content up to 0.8wt.-% leads to higher hardness as
long as austenite is fully converted to martensite during
quenching; if the martensite formation is not completed
the resulting hardness might be reduced with increasing
carbon content due to more retained austenite; for carbon
contents higher than 0.8wt.-% carbide formation has to be
considered; for fully martensitic microstructure the hard-
ness is increased further

TA ↑ Increased amount of dissolved carbon in austenite leads to
stronger lattice distortion and lesser carbides which were
formed during carburizing

∆tQ ↓ Less lattice distortion and possible formation of softer fer-
rite, pearlite, and bainite depending on the local carbon
content

TF ↓ Increased austenite to martensite ratio

TT, ∆tT ↓ Increased carbon precipitations leads to relaxation of lat-
tice distortion

2.1.3 Quality evaluation

For many heat treatment processes the objective is to improve and refine
final material properties of a given workpiece. As properties like fatigue
strength or wear resistance are seldom measured directly for quality as-
surance, the material property hardness is typically chosen as indirect
criterion to evaluate a heat treatment’s result [43].

The achievable degree of hardness depends mainly on a material’s chem-
ical composition. An alloy’s hardenability is the "capacity of a steel to
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2.1 Heat Treatment

give rise to martensitic and/or bainitic transformations" [100]. This ca-
pacity must be further differentiated in maximum achievable hardness and
depth of hardening. While the first describes the maximal hardness that
is achievable under optimal conditions moderated by the carbon content
of the steel or alloy in question, the latter describes the hardness profile
along the longitudinal section. The measurement of these properties is
described below.

Hardness

Hardness measurements can be carried out on surfaces or on microsections
of a workpiece with a reasonable effort and are widely used in industry.
Since the hardness of case hardened steels declines with increasing distance
from the surface, hardness measurements are used to characterize the pen-
etration depth of the carbon enriched layer known as case hardening depth
(CHD). That is, the distance from the surface at which the hardness falls
below a defined value. It is determined by subsequent indentions perpen-
dicular to the surface until the hardness in question is reached.

The precision of the measurement procedure3 is limited by a number of
factors. (1) The force with which the indenter is pressed into the specimen
is allowed to deviate 1% from the norm, (2) a single indenter can be used

3 Under the assumption that hardness is proportional to the load necessary to produce
a constant sized impression, Smith and Sandland developed the Vickers hardness
measurement method [130] whereby a pyramid shaped indenter, usually a diamond,
is pressed into the test specimen by a precisely controlled test force. This force is
maintained for a specific dwell time, normally 10 to 15 seconds, and can range from
some gram to several kilogram which is indicated as number behind the unit (e.g.,
HV10 implies a force resulting from 10 kp with 1 kp = gN · 1 kg). As samples get
harder, the test force must be increased for accurate measurement. The indenter
is removed after completion of dwell time leaving a square shaped indent on the
surface of the sample. As indentation pyramids are of a precisely defined shape,
the Vickers hardness number can be derived as a function of the test load divided
by the surface area of the indent. This area is determined by averaging the optical
measurement of its diagonals.
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Table 2.3: Left, maximum permissible span rrel for n indents on hardness comparison
plates > 250HV. Right, example for 700HV based on DIN EN ISO 46507-
3 [101]

Number of inprints 5 10 15 20 25 5 10 15 20 25

rrel in % for > 250HV e.g., rrel in HV for 700HV

HV0.2 - < HV5 4.0 5.2 6.0 6.4 6.8 28.0 36.4 42.0 44.8 47.6

HV5 - HV 100 2.0 2.6 3.0 3.2 3.4 14.0 18.2 21.0 22.4 23.8

over 30, 000 times and is prone to abrasion. (3) The optical evaluation
of the diagonals depends strongly on surface quality and incident light.
According to DIN 6507 [101] repeated hardness measurements taken on
a hardness comparison plate to evaluate equipment accuracy are allowed
to scatter in a defined range rrel depending on number and force of in-
dents as well as measured hardness, shown in Table 2.3. For example,
25 indents of HV10 on a 700HV hardness comparison plate may lie in a
range rrel of 3.4% which is equivalent to 23.8HV. A complete analysis of
reproducibility for hardness measurements is given in [65].

Surface carbon content

The carbon content in the near-surface layer of a component can be de-
termined via glow-discharge optical emission spectroscopy (GDOES), a
method for the quantitative analysis of metals and other non-metallic
solids. Argon ions gradually ablate the layers of the metallic sample used as
a cathode in a direct current plasma. Photons are emitted by blasted out
atoms diffusing into the plasma. As the excited waves have characteristic
wavelengths which are recorded by means of a downstream spectrometer,
the number of atoms from each element can be quantified. Measurements
are sensitive to ambient temperature (i.e., fluctuations of ± 0.1 ◦C inside
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the chamber lead to erroneous results) and exhibit a scatter of ± 0.02wt%

for carbon [56].

2.2 Data Mining and Machine Learning

Aptly described by Maimon and Rokach, Data Mining is the process of
gaining a valid, comprehensive, and novel understanding of data. This
form of knowledge discovery recognizes patterns in the available infor-
mation through automatic exploratory data analysis and inference statis-
tics [91]. Figure 2.6 depicts the commonly used data mining framework
from which the structure of this chapter is adopted. The first Section 2.2.1
elaborates on advanced visualization techniques and statistical methods for
scientific knowledge discovery. Hereafter, the theoretical foundation is laid
for the typical data modeling pipeline, broken down in Section 2.2.2 pre-
processing of data, Section 2.2.3 selection of useful data parts, and the
process of self-learning pattern recognition, referred to as 2.2.4 Machine
Learning (ML)4. Section 2.2.5 Evaluation builds the capstone of the knowl-
edge discovery endeavor. Although the framework in Figure 2.6 might be
read in a linear fashion, the mining process usually needs many iterations,
starting with smaller circles (e.g., exploring data first and reformulating
the problem or collecting additional data) to larger circles (e.g., altering
the process based on important selected features), whereby the interplay
is indicated by the two-way arrows.

Industry 4.0 [63] in this work only plays a role insofar as the tools and
methods used presuppose that the production step of heat treatment has
already been digitized. Further digitization and communication along the
value chain is desirable and may improve data collection and analysis, but
is not the subject of this thesis.

4 A comprehensive explanation of all models will be given in this chapter, although
some models might be mentioned in earlier sections.
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Figure 2.6: Design process for knowledge discovery using a data mining framework,
based on [46,93,107]

2.2.1 Visual analytics and statistic

For the synthesis and representation of information, the literature sug-
gests a multidisciplinary approach that draws on domain knowledge of the
datas’ origin (i.e., heat treatment and material science), analytical rea-
soning (i.e., statistical methods and models), and visual representations
techniques (i.e., visual analytics [139]). These techniques seek to improve
information transparency, accelerate analytic discourse, and rapid model
evaluation, correction, and improvement [73]. To gain a comprehensive
understanding of the data and be able to formulate new hypotheses, in
a first step, the data sets are explored mostly by visual means to reveal
simple statistical measures. After formulating a collection of hypotheses
such as the difference between feature distributions or model performances,
inference statistics may be used to test them.

Exploratory data analysis

Exploring data sets to understand distributions, chronological behavior,
and generate hypotheses makes use of various statistical measures and vi-
sualization techniques. As our eyes are the only broadband connection
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to our brain for the time being, graphical depictions can speed up trans-
parency and, thereby, comprehension as described in [138]. In the follow-
ing, common practice exploration techniques for time series, distributions,
and relationships between variables are detailed.

Time series may usually be depicted pointwise over time. For noisy sets
a rolling window (a.k.a moving average5) serves as smoothing function by
calculating the mean of all values in the window ±d days of the actual
date. For larger windows (i.e., larger d), longer trends become visible
while shorter fluctuations are lost. Further, autocorrelations may exhibit
seasonality by correlating time series with a shifted version of itself. If the
correlation for a certain lag (e.g., minutes, days, month) is significantly
higher than the others, this may indicate a repetitive or time-dependent
nature. Lastly, Fourier transform, spectrograms, and wavelets may serve
for the study of high periodic signals.

Distribution of data can be quantified by many mathematical parametric
distribution types. However, numbers alone seldom give an intuitive sense
of a data set’s spread and many empirical distributions do not match one
of the common types, which is why the following graphical facilitators are
used [57].

Histograms represent the number of samples in chosen bins by height.
Choice of bin width and start may lead to different or even misleading vi-
sual representations. Although smaller bins generally produce more truth-
ful representations, the overall distribution might get lost.

Kernel density estimation (KDE) is a non-parametric way to estimate the
probability density function (PDF) used as an alternative to histograms
to generate a smooth curve of what is likely to be the true distribution

5 If the weights are the same and add up to 1, then the terms rolling window, moving
average (MA), and finite impulse response (FIR) filter may be used interchangeably.
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[109]. This is especially useful when plotting multiple distributions whose
underlying values are physically continuous6 (e.g., temperature) but are
only measured discretely (e.g., [. . ., 2 ◦C, 3 ◦C, 4 ◦C, . . . ]). The above
techniques work well for the individual examination of one or a small
number of distributions, as variance and skew as well as multimodality
(i.e., PDF has more than one local maximum or peak) are easily detectable.

Box and Violin Plots are used to compare distributions to each other
where the first explicitly depicts distribution percentages while the latter
is still able to detect multimodalities.

Relationships between variables most commonly are shown by scatter
plots revealing correlations and, possibly, clusters of a third variable if color
coded. Frequent combinations include (input, input), (input, output), and
(output, prediction).

For large data sets contour plots are used7. They combine relationship and
distribution by outlining the estimated 2-dimensional density function of
the two variables, drawing contours at levels of same density and increasing
darkness of shade with increased density.

(Clustered) Heat maps show the magnitude of a value in relation to the
complete set that contains the tuples of two sets at x- and y-axis. These
visual cues easily reveal how phenomena are clustered as well as extreme
values. Often the correlation coefficient between features is plotted as heat
map to reveal highly correlated features [148].

For the sake of completeness, it is mentioned that the above visualizations
should not be regarded as a causal link. Even between highly correlated
variables, if a thoroughly tested physical law cannot plausibly explain it.
This is especially important when explaining features later. Neither should

6 A consideration of quantum mechanics is not necessary here.
7 Too many points in one scatter plot obscures the distribution of these point, because

it is impossible to tell which points overlap and which do not.
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a significant difference between values or scores be assumed if no confidence
intervals are provided [3]. The following section introduces the methods
for such claims.

Inference statistics

In order to test the multiple hypotheses that have been formulated during
data exploration, statistical methods are used, that correct for the family-
wise error8. Correcting this error is particularly important for machine
learning, as many features and models are compared, easily leading to
spurious correlations and claims of seemingly different scores that are in
fact not justified. These tests allow to discard a certain null hypothesis
H0 (e.g., furnace 1 and 2 produce equal results), in favor of the alternative
hypothesis, when the probability (p-value) of the observation’s occurrence,
under the assumption that H0 is true, falls below a significance level α.
The estimation of p can either be derived from a post-hoc test or the
confidence intervals around the statistic in question.

Post-hoc multi comparison tests automatically integrate the correc-
tion for the family-wise error in their calculations. Depending on the test,
the distributions to be compared must satisfy certain requirements like
comparable sample size or homogeneity of variance. Two examples are
introduced below.

Tukey’s HSD test is an honestly significant difference (HSD) multiple com-
parison procedure that calculates all pairwise t-tests between the groups
and corrects for the family-wise error rate by determining the significance
level α through the studentized range distribution. It requires equal sam-
ples size and variance [141].

8 That is, a correction for the increased probability of making one or more false
discoveries (type I errors) when performing multiple hypotheses tests.
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Scheffé test is also a multiple comparison procedure that is robust against
imbalanced sets, as it uses all possible contrasts9 among the factor level
means, resulting in a lower test power.

Confidence intervals (c%CI) of a given statistical property, e.g., the
mean µ, indicate that if an experiment was repeated sufficiently often and
a c%CI calculated for µ in each trial, this CI would in c% of experiments
include the true µ [24]. They may also be used as an alternative to some
significance tests [112]. They allow transitioning from a null hypothesis
testing framework, where only a dichotomous outcome (i.e., rejecting or
keeping H0) is possible, to a more quantifiable approach that might show
how large the difference between populations is based on CI’s of their
means. When for example, the two 95% CI do not overlap, then the sig-
nificance level is p < .01 where sample sizes should be greater than 10,
and the error margins do not differ by a factor of more than 2 [25]. Using
sufficiently large CI amounts to a Bonferroni correction pi ≤ α

m for the
family-wise error, where m is the number of hypotheses and pi the cor-
responding p-values. By this means, box plots with confidence intervals
may serve as a first impression of whether two distributions are signifi-
cantly different, thereby partly integrating statistical inference methods in
the visualization. The estimation of a CI assumes knowledge about the
underlying distribution10. If this is either not the case or too expensive to
test for, the below method may be used.

Bootstrapping is a computationally intensive statistical resampling
method used as a non-parametric way of estimating CIs of statistical val-
ues in unknown distributions. It is beneficial for empirical distributions
not belonging to the common parametric ones: Given that an empiri-
cal distribution contains n values, first, we resample n values from that

9 A contrast is a linear combination of variables whose coefficients add up to zero.
10 This is usually difficult to obtain for large ML-sets.
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distribution with replacement, known as bootstrap sample. Second, we
calculate the descriptive statistic (e.g., median, mean) we want a CI for.
Third, we repeat 1. and 2. between 250 and 10.000 times, depending on
the methods used for CI estimation and the narrowness of the CI [42].
Lastly, we use the collection of obtained values to estimate the CI. Besides
the quickly calculable percentile method, there are more precise methods,
including normal approximation, (accelerated) bias-corrected method, and
the approximate bootstrap confidence method [60].

2.2.2 Preprocessing

According to a survey presented in Forbes, data scientists spend nearly
80% of their time with data preparation [114]. The following sections
dive into this preparation process, divided into a short cleansing section
and a more extensive feature engineering part. Much of the success in
machine learning is the successful engineering of features, which a model
can readily understand. Moreover, groups of models react with varying
sensitivity to the degree to which data has been transformed beforehand.
While, for example, tree-based models are more robust to unscaled and
irrelevant features, others, like neural networks or linear regressors, are
not [80] (p.27).

Data cleansing

The usability of data is dependent on its quality and purpose of use. To
enhance usability, factors that could compromise consistency, accuracy,
timeliness, believability, and completeness need to be examined and, if
possible, counteracted [57] (p. 84). Real-world data sets often come with
a multitude of defects which makes data cleansing an indispensable pre-
processing step (e.g., hardness measurements lack accuracy resulting in
inconsistencies of repeated measurements, data might not be available in
digital format, or lack a unique identifier). Moreover, missing values need
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to be imputed, often done by replacing the gap with the mean or median of
all samples. For time series, a search for data blocks with similar properties
may be performed that are copied and then pasted into gaps [146]. Further
steps include the deletion of outliers, correction of misspelled fields, and
removal of duplicates. Many of the steps presuppose a certain amount of
domain knowledge and their necessity is dependent on the rigorousness of
the data collection process.

Feature engineering

The success of a machine learning algorithm depends mainly on what kind
of data it is presented with. A feature is a numeric representation of
information inherent in the raw data. Formulating beneficial features con-
cerning the task, the data, and the model at hand, utilizing extraction,
encoding, scaling, and transformation is called feature engineering which
practitioners spend a majority of their time on11. Naturally, higher-quality
inputs result in better, faster, and more easily trainable models [151]. Con-
sequently, the first point in the data preparation checklist by Guyon and
Elisseeff reads: "Do you have domain knowledge? If yes, construct a bet-
ter set of ’ad hoc’ features" [55], pointing out the field-specific nature of
the engineering process, resulting in a relatively small amount of literature
about the topic, as generalization across domains is difficult. Furthermore,
ML methods differ in their ability to learn specific types of features (count-
ing, differences, polynomial, etc.), which is why it is important, how the
features are presented to an algorithm [62]. The upcoming paragraphs will
describe commonly available data types derived from those, what kinds of
features can be extracted, and which further transformations might be
helpful.

11 "At the end of the day, some machine learning projects succeed and some fail.
What makes the difference? Easily, the most important factor is the features used.
Learning is easy if you have many independent features that each correlate well
with the class." [33]
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Data types of the raw data generally fall into categorical12 and numeri-
cal13 data and determine largely how and what kind of features are being
engineered. Categorical data represents an unordered characteristic such
as component type or machine number and needs to be converted into a
numerical representation by encoding. Numeric types may be continuous
or discrete and usually need to undergo scaling, which is potentially fol-
lowed by further transformations. In rare cases binning is used to form
groups from numeric data (e.g., age buckets [10 y< 20 y< ...]). Time se-
ries (i.e., numerical data with timestamps) usually exhibit a high degree
of autocorrelation, resulting in a need for tailored feature extraction to
compress the information in the many redundant data points.

Feature encoding of categorical variables is necessary as ML algorithms
usually only accept numerical values. In case a category is already rep-
resented by a number, some algorithms (esp. for regression) assume that
some order existed between categories (e.g., category 4 is higher or bet-
ter than 3) [35]. If this is not the case or undesirable a one-hot encoding
or binary encoding can be used. The first, a.k.a. dummy encoding, is a
group of bits with value (0) among which only a single high bit (1) ex-
ists and where the length represents the number of groups. Its position
in the group represents the category. Binary encoding assigns ascending
integers to the categories starting from zero and converts them to their
binary representation. This can be advisable for high-dimensional cate-
gories to avoid an explosion of the feature space (i.e., one new column
per additional category). However, performance may suffer, which might
be counteracted by feature hashing (i.e., using the binary value resulting
from applying a hashing function to the feature categories) [123]. Table
2.4 shows the encoding of four production line numbers, in which case an

12 a.k.a. nominal
13 ordinal, interval, and ratio scales
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Table 2.4: One-hot and binary encoding of different categories: Four production lines
and days of the week. Arrays are used in their transposed form (vertical)
in a feature vector later

category line 1 line 2 line 3 line 4 Monday Tuesday ...

one-hot [ 1 0 0 0 ] [ 0 1 0 0 ] [ 0 0 1 0 ] [ 0 0 0 1 ] [ 1 0 ... 0 ] [ 0 1 ... 0 ]

binary [ 0 0] [ 0 1] [ 1 0] [ 1 1] [ 0 0 0] [ 0 0 1]

input vector would be appended by four additional rows, each representing
one line number.

Feature extraction from time series is essential as most ML algorithms
prefer non-redundant already featurized inputs14, with as few dimensions
as possible for easier detection of relevant signals. Despite the rapid growth
of deep learning algorithms which specialize in automatic extraction of
specific patterns (e.g., CNN for pattern recognition in pictures or EEG
data), the former statement generally holds because these algorithms need
vast amounts of data to recognize the patterns that otherwise would be
handed to an algorithm in already featurized form. Consequently, data
should pass through noise reduction, resampling, and subsequent feature
extraction for better results. This mainly applies to sensor signals, but
occasionally also concerns a series of labels15 explained in the following
two paragraphs.

14 ML algorithms that do not specialize in time series have difficulty using a complete
(unprocessed) time series array as input because it contains too much redundant
information. Values in the array are auto-correlated, which is true for almost all
sensor signals.

15 If a label’s fluctuations or trends over time can not be explained by the features
the past labels might be used as features. Turning these past labels into features
often involves some form of averaging, that is, noise reduction.
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Noise reduction with digital filters is done to clean a sensor signal
and/or extract longterm fluctuations of a label by feeding the series x[.] to
a low-pass filter characterized by its impulse response, given in Equation
(2.2). For finite impulse response (FIR) filters, this amounts to a weighted
moving average16 with all ak = 0, which means FIR filters do not use their
past output y[.] as feedback, rendering them always stable. Infinite impulse
response (IIR) filters additionally use their past output y[.] as input17,
which usually allows for a smaller filter order M and N and more complex
design, but also may render the filter unstable due to the feedback (for
linear filters, sufficient stability criteria exist that are easy to check) [125].
The coefficients ak and bk are calculated during filter design which, for
low-pass filters, includes a cutoff frequency ω0 above which frequencies are
attenuated.

y[n] =

M∑
k=0

bk x[n− k]−
N∑

k=1

ak y[n− k] (2.2)

Feature extraction from signals is dependent on the application (e.g.,
temperature, velocity, or neurophysiological biosignals). It might be
enough to extract basic statistics like mean, median, minimum, maxi-
mum, standard deviation, skew, and kurtosis. Other time series might
need special segmentation, filtering, Fourier transformation, or extraction
of permutation entropy to provide meaningful features to the algorithm. A
comprehensive list along with the extraction process is provided by [7,22].
In order to extract meaningful features while maintaining physical ex-
plainability, the use of domain knowledge can be crucial when deciding on
which statistical values to extract from which part of a time series.

16 This is similar to a rolling window, where every element is weighted individually.
17 This feedback works as a memory. In this way, the filter remembers its current

state and does not have to recalculate it from past inputs. It can thus be much
shorter than a comparable FIR filter.

29



2 State of the Art

Feature scaling for numerical features changes the range of a data set
to a defined interval, where the unit of a feature (e.g., meters vs. inch vs.
light-years) may affect how a model makes use of it. The first reason is
that floats18 are more precise for small numbers. The second reason being
the differences in the dimensions of the weights (i.e., internal parameters
of some ML algorithms) learned by the algorithm, which results in over-
or underemphasis of features and problems in learning, due to so-called
exploding19 gradients. Transforming the data to a standard range by nor-
malization20 helps to mitigate such issues, in particular for NN-like and
clustering algorithms [57](p.114).

Min-max normalization is one of the simplest data transformations
shifting the original distribution to an interval between [0, 1] or [-1, 1]. A
formula for the interval [0, 1] is given in Equation (2.3) where xmin and
xmax are the minimum and maximum of the vector x that holds the same
feature of every sample [71]. The inclusion of extreme values makes it
susceptible to outliers that are better handled by the next technique.

xmin−max =
x− xmin

xmax − xmin
(2.3)

Robust normalization is similar to min-max normalization but uses
the median instead of the mean to center the data and the range be-
tween the first q25 and third q75 quartile for normalization, in order to
be more robust against outliers. Depending on the distribution of the
to-be-normalized data, other quantiles may be used as well.

18 Is a type of representation format of a number in a computer.
19 Extremely large gradients may cause gradients to become unstable which may pre-

vent convergence.
20 Normalization and standardization may be used interchangeably in data processing.
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xrobust =
x− xmedian

xq75 − xq25
(2.4)

Z-score normalization, also known as standardization, is a transfor-
mation that maps the data to a distribution with a mean of zero and
unit-variance using Equation (2.5), where x̄ is the mean and σ the stan-
dard deviation of x. It is widely used for NNs, even between layers, known
as batch normalization [86].

xz−score =
x− x̄

σ
(2.5)

Feature transformation arose from the need to transform inputs of lin-
ear regression models to be able to capture nonlinear relationships be-
tween in- and output. As the ability to learn specific nonlinear relation-
ships varies between models, features may be transformed by the following
Equations [62]: Logarithms and power functions (2.6), differences, and ra-
tios (2.7), polynomials (2.8), counts and rational differences (2.9). Ideally,
the modeler knows the physical relationship between in- and output.

y = log(x), y = x2 (2.6)

y = x1 − x2, y =
x1

x2
(2.7)

y = 2 + 3x+ 4x2, y =
1

2 + 3x+ 4x2
(2.8)

y =

n∑
i=1

1 if xi > t else 0, y =
x1 − x2

x3 − x4
(2.9)
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2.2.3 Feature selection and predictor importance

This section deals with the general problem of finding a subset of features
that preserves the necessary learning information while the joint entropy
between the individual features is minimized (i.e., redundancy elimina-
tion). Too few informative features restrict the model’s ability to perform
its ultimate task. Too many or irrelevant features result in more expen-
sive and tricky to train models [151]. Following Occam’s razor (i.e., using
the simplest explanation for a given hypothesis), predictive models usu-
ally exhibit less overfitting, work faster, and have more explanatory power
when given only a useful (i.e., relevant and redundancy-free) subset of
features [122]. While selecting only useful features may lead to the ex-
clusion of redundant but relevant features, conversely, a selection of only
relevant21 features may be suboptimal for the modeling purpose due to
the introduction of redundancies [55].

Three categories of subset selection methods may be distinguished, namely,
filters, wrappers, and embedded methods, each with their own measure of
usefulness and relevancy [69,122]. More elaborate techniques like wrappers
and embedded methods may significantly improve predictor performance
compared to simpler filters. Especially in domains with more voluminous
feature sets, the curse of dimensionality needs to be counteracted at risk of
overfitting. An automatic feature construction aided by domain knowledge
can also improve performance and yields a more compact feature set [55].
Neither of the techniques can address the problem of causal inference be-
tween feature and label, which needs to be solved by the domain experts
at some point in order to build reliable models.

21 While there exist several mathematical definitions for relevancy, this work shall use
the term in an intuitive sense, meaning having an impact on the target variable.
For an extended discussion of relevancy, see [76].
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Filters

A feature relevance score is determined only by intrinsic properties between
feature and label. Features with low scores are then removed and the
remaining subset is used for prediction. In contrast to other methods,
filter techniques solve the feature subset selection problem independent of
the ML algorithm, making computation much cheaper and allowing for
easier scalability to high-dimensional data sets. The scores only have to
be calculated once and any desired algorithm uses the chosen features.
Unfortunately, features are only evaluated individually. Thus, the filters
ignore feature dependencies, which may worsen prediction performance.
Also, the interaction with a particular algorithm is not taken into account
[122]. Three of the more frequently used filter methods are explained
below; a comprehensive review can be found in [51].

F-ratio is generally used as a measure for the goodness of fit when
comparing different models22. Equation (2.10) [49] describes the F-ratio,
where R2 is the coefficient of determination, k is the number of predic-
tors, and N being the number of observations. The F-ration can also
be thought of as the fraction between variance explained by the model
and unexplained variance. A p-value can be calculated from F indicating
whether a predictor significantly increases the prediction or not (i.e., has
a high correlation with the target).

F =
(N − k − 1)R2

k(1−R2)
(2.10)

Mutual information (MI) or information gain (IG) measure the re-
duction in uncertainty (or the "information gained") for X by quantifying

22 While the term adjusted R2 is more commonly used for regression, the F-ratio is
widely used in classification.
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the information bits that can be obtained from observing Y . Equation
(2.11) gives an approximation for the mutual information I(X,Y ), where
the probability p for points falling into various bins23 i, j is approximated24

by the number of points in that bin. Thereby, it can capture nonlinear
relationships between X and Y [78].

I(X,Y ) ≈ Ibinned(X,Y ) =
∑
ij

p(i, j) log
p(i, j)

px(i)py(j)
(2.11)

(R)Relief originally was designed as a feature selection algorithm for
a two-class problem by calculating the feature quality based on its ability
to distinguish nearby instances of both classes. A randomly selected point
searches for the nearest neighbors from the same class and a different class.
Then, the so-called relief estimate W[A] is determined for all features and
their weights are updated [75]. This procedure was adapted to regression
problems by [120], hence the (R) in front of Relief.

Wrappers

Wrappers use ML algorithms as a scoring function with a selection proce-
dure ’wrapped’ around the model, that is, a subset of features is evaluated
by training and testing a model. This way, interactions between model and
feature are included in the search. Also, important dependencies between
features can be considered, which comes with a higher risk of overfitting.
The main drawback is the high computational cost of the procedure. The
search for an optimal subset may be divided in two classes. 1) Sequential
or deterministic selection, where features are stepwise added to or removed

23 Supports of X and Y have been partitioned into bins of finite size beforehand.
24 E.g., px(i) ≈ nx(i)/N , where nx(i) is the number of points in bin i of X and N the

total number of points.

34



2.2 Data Mining and Machine Learning

from a subset. This may be computationally infeasible for the exponen-
tially growing number of subsets for high dimensions.
2) Heuristic or randomized searches can better traverse large feature spaces
guided by an optimization procedure and might be less prone to local op-
tima. [19,122]

Sequential selection in its simplest form sequential forward selection
(SFS) grows a set of features by starting with an empty set and then adding
the feature that yields the best performance when added to the set. In ev-
ery step, thus, all remaining features are evaluated with the current subset
until prediction performance decreases or the required number of features
is included. In this naive form, not all feature dependencies might be taken
into account25. Sequential backward selection (SBS) already contains all
dependencies since the algorithm starts with a set of all features and step-
wise removes the feature whose exclusion leads to the smallest decrease in
predictor performance which is a highly computationally intensive proce-
dure. Sequential floating forward selection (SFFS) is more flexible than
the naive SFS as it can add and remove features but might also overfit the
data stronger and is distinctly more computationally intensive [19,119].

Genetic algorithms (GA) belong to the heuristic methods and are a
subtyp of evolutionary algorithms (EA). While the latter use real num-
bered values as encoding, GAs are limited to integer or even binary en-
coding. Both simulate the survival of population members (i.e., possible
solutions to the optimization problem) over many generations based on
their fitness (i.e., score of the evaluation metric to be optimized). Popula-
tion members differ by their genetic code (DNA), which is an array with
zeros and ones in its simplest form (i.e., GAs). If a member represents a

25 Although SFS sometimes misses hidden relationships, making a very early selected
feature redundant, it works much better than its reputation and is not particularly
computationally expensive, especially for small feature numbers.
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feature subset, then the subset of included features are marked with ones
while all remaining features have a zero. The evolution steps are listed
below:

1. Creation of the initial population is performed by initializing the DNA
of each population member at random (e.g., an array with zeros and
ones) with population size being a hyperparameter.

2. Fitness evaluation 26 uses a given evaluation metric (e.g., prediction
error of ML algorithm) to determine the fitness score of each popula-
tion member, where members with very low fitness may be eliminated
or die in a so-called tournament with other members. In addition, a
small portion of the best individuals from the last generation (with-
out changes) can also be transferred to the next generation, called
elitism selection. Other methods include the roulette wheel, rank,
and steady-state selection.

3. Cross-over occurs between pairs of the current population drawn at
random, with fitter members having a higher probability of being
chosen proportional to their rank. During mating of each pair, two
new offspring emerge by crossing over the DNA of their parents,
that is exchanging sequences of their arrays at randomly selected
segments.

4. Mutation flips bits of the DNA at random. Although this occurs with
rather low probability, some improvements may be obtained which
can lead out of a dead end like a local optimum. The mutated
offspring then forms a new population generation.

Steps 2, 3, and 4 are repeated until some termination criterion is reached
(e.g., no fitness improvement, a maximal number of generations, or calcula-
tion time). These steps are at the heart of every GA, but implementations
may vary between applications [84].

26 Sometimes is also listed as 4th step.
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Embedded methods

Embedded methods integrate the feature selection into the training pro-
cess, making them work more efficiently than wrappers. By optimizing a
two-part objective function consisting of a prediction metric and a penalty
for large amounts of features (i.e., avoiding the usage of too many irrelevant
variables), they may reach a solution faster as the need for retraining all
subset disappears. Examples of such algorithms are decision trees and en-
sembles thereof (e.g., random forest), as well as Lasso and Ridge regression
using l1 and l2 regularization for their weights, respectively [19,55,122].

2.2.4 Machine learning algorithms

Machine Learning (ML) refers to the development and application of al-
gorithms or statistical models with the ability to automatically improve
their internal parameters based on experience (i.e., data) [94], in order
to perform a specific task (e.g., make predictions or decisions) effectively
without using explicit instructions, but relying on patterns and inference
instead [10]. Depending on the nature of the task, different categories can
be distinguished, the most common being (un)-supervised and reinforce-
ment learning [150], see Figure 2.7:

Machine Learning

Reinforcement

Classification

Regression

Supervised

Clustering

Association 

Dimensionality 

Unsupervised

Reduction

Figure 2.7: Types of machine learning
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Supervised learning refers to automated decision-making by generaliz-
ing from examples (i.e., ability to make correct predictions for unseen data
by independently learning from a training set) [96]. The algorithm learns
to map inputs to desired outputs and generate accurate predictions [80].
The problem is termed classification if the predicted label is a categorical
value (e.g., pictures of a microstructure characterized as good, neutral,
or bad), whereas regression is the prediction of continuous values (e.g.,
hardness measurement, CHD).

Unsupervised learning is applied to data sets without pre-existing la-
bels in order to automatically cluster the data (i.e., divide by similarity),
reduce its dimensionality with minimal information loss, find associations
(i.e., identify sequences), or detect outlier by recognizing previously unseen
patterns [124].

Reinforcement learning happens during the interaction of an algo-
rithm, called agent, with an environment that can be modified through
inputs, called actions. The environment provides the agent with some
state variables during the interaction as well as a reward at the end of a
session. The agent tries to maximize this reward over the course of many
sessions by optimizing its actions based on the provided state variables
(e.g., finding the optimal process parameters to gain a desired hardness,
given that a simulation of the process exists).

Supervised regression models

Many algorithms now subsumed under the term machine learning were
introduced in the last century, when the available computing power did
not allow mass deployment on large data sets. Today, research is progress-
ing rapidly, designing new architectures and introducing modifications to
the body of algorithms. Almost all of which are available in a version for
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Figure 2.8: Machine learning algorithms for supervised regression, [own representa-
tion]

classification and regression. As the focus of this study lies on continu-
ous labels, explanatory emphasis is on regression. The most popular ML
methods shown in Figure 2.8 are explained below.

Linear models

Linear regression (LR) optimizes the weights w of the linear function
y = w0+

∑N
i=1 wixi+ε, where y is the label, xi the features, N the number

of features, and ε a random error. If the optimization of the weights
includes a penalty for large weights, we talk about Lasso regression (l1
regularization) and Ridge regression (l2 regularization) [97].

Sparse kernel methods

Support vector machine (SVM) finds a (hyper-) plane that maxi-
mizes the gap between two classes in feature space. The features are often
transformed into a higher dimension via a kernel to account for nonlin-
ear relationships. Since the points closest to the dividing plane are the
most relevant, they are called support vectors, hence the name. Its cor-
respondence for regression problems is the support vector regressor (SVR)
developed by [36].
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Neural networks

(Deep) neural network ((D)NN) uses multiple layers of nodes27, often
fully28 connected by weights, which are being optimized by backpropaga-
tion. The prefixed term deep implies that more than a certain amount29

of hidden layers of nodes is used. More layers allow for learning more
complex relationships but generally need more data and are more prone
to overfitting.

Convolutional neural network (CNN) is a class of deep neural net-
works that is most commonly used to classify images. Due to its 2D input
structure that allows for extraction of features based on spatial coherence
(e.g., edges and patches), it is particularly advantageous. The prefixed
term convolution refers to the mathematical operation by the same name
that works as a filter on the image to detect patterns. CNNs, thus, have
the ability to learn filters that extract features’ characteristics for an image
class and massively reduce the number of free parameters due to the cou-
pling structure compared to a DNN with only fully connected layers [85].

27 In the standard multilayer perceptron, every single node, also referred to as neuron,
contains a function similar to LR plus an output function (mostly sigmoid or ReLu).
Other functions (e.g., radial basis function) exist but are rarely used.

28 Each node of one layer is connected with each node of the following layer. However,
there exist many different architectures optimized for a particular use case with
fewer connections (e.g., CNNs).

29 There is an ongoing discussion about how many hidden layers are necessary to
warrant the term deep learning.
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Recurrent neural network (RNN) is, in contrast to the feed forward30

NNs mentioned above, equipped with feedback connections. It is, there-
fore, especially good at processing sequences of data (e.g., speech recogni-
tion or text). Two advanced architectures that work with this technique
are particularly prominent; namely the gated recurrent units (GRU) [20]
and the long short-term memory (LSTM) [54], which make use of gates
that decide which inputs and outputs to keep and forget.

Ensembles of regression trees

Random forest (RF) constructs a multitude of uncorrelated decision
trees (so-called weak learners) at training time, outputting the mean pre-
diction of the individual trees. The term random refers to the element
of chance involved in making decisions when creating the trees. Random
forests better correct for decision trees’ tendency of overfitting to their
training set [14].

Gradient boosting (GB) iteratively constructs the model in a stage-
wise fashion from an ensemble of weak prediction models, typically decision
trees being trained and pruned on examples that have been filtered by
previously trained trees. It generalizes them by allowing optimization of
an arbitrary differentiable loss function [37].

Instance-based learning

K-Nearest neighbors (KNN) finds the k samples that are closest in
feature space to the sample that is being predicted. The prediction is then

30 "Normal" NNs and CNNs are feed forwards because information is always processed
in one direction (i.e., the direction of output) and is never stored or fed back to the
same or previous neurons or nodes.
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a weighted average of the labels of these k samples. As it memorizes every
instance of the training set, computation time increases drastically with
high-dimensional data sets.

Unsupervised clustering and dimensionality reduction

Cluster analysis finds substructures in unexplored data by assigning data
points to clusters in such a way that items (usually consisting of multiple
data points) attributed to the same cluster are as similar as possible, while
other items are most dissimilar. Similarity measures include distance,
connectivity, and intensity.

Fuzzy c-means (FCM) introduced by Bezdek in 1981 [8] is an extension
of k-means. Unlike its predecessor, one data point can belong to multiple
clusters during the clustering process as each point possesses weights that
indicate the affiliation to each cluster. First, a predefined number of ran-
dom cluster centers (centroids) are determined, then, each point is assigned
to the closest centroids. Third, the squared distances between centroids
and belonging points are calculated and summed for each cluster. Lastly,
the centroids are moved to minimize these sums. Steps 2, 3, and 4 are
repeated until a stable minimum of sums is reached. This method has the
following advantage: the initial set of random centroids does not influence
the final clusters as much as k-means. In addition, the creation of a noise
cluster allows the detection of outliers that are not close enough to one of
the other clusters [104].

Principal Component Analysis (PCA) approximates a set of (statistical)
variables by finding their most relevant linear combinations (i.e., principal
components) [70].
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(Variational) autoencoder (VAE) is a form of nonlinear PCA that uses
a NN architecture to learn a compressed representation of a data set to
extract the relevant features. The encoder is a shrinking NN to the di-
mension z, while the decoder is its mirror image that tries to reproduce
the original input from the information given in z [77]. The variational
autoencoder forces the distribution of z to be Gaussian by adding an ap-
proximation of the Kullback-Leibler-Divergence between z and a standard
normal distribution to the loss function of the network.

2.2.5 Model evaluation

Two types of evaluation can be distinguished, which may use the same
metric, but not necessarily do so. The first concerns the optimization dur-
ing each training pass and is calculated by an algorithm’s internal loss
function. It often is continuously differentiable and the basis for param-
eters’ adjustment to make better predictions. The second determines the
goodness-of-fit between measured and predicted values, particularly for
the test set.

Evaluation metrics

While ML packages usually come with a fixed set of loss functions that can
not readily be altered, as the internal optimization depends on it, several
different final scores can easily be calculated. These scores are coupled
with the prediction task they are seeking to evaluate. The most prominent
metrics for regression and classification are explained in the following.

Regression metrics

Mean squared error (MSE) between labels yi and corresponding pre-
dictions ŷi, given in Equation (2.12), is used as loss function for most
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algorithms and often is the evaluation criteria for adjustment of the learn-
ing parameters [80]. The root mean squared error (RMSE) might be more
readily interpreted since it has the same dimensionality as the label it is
calculated from (e.g., if the original unit of measure of the label is Vickers,
then the RMSE is also in Vickers). However, the RMSE does not lend
itself to universal comparability between models because knowledge about
the label and its distribution is necessary to determine the actual predic-
tive power. It is therefore often compared to a dummy regression, a form
of intelligent guessing. The RMSE can be minimized by using the mean
of the labels of the training data ȳ as a prediction for all samples. The
resulting RMSEbl in Equation (2.14) gives a baseline on what an algorithm
has to achieve at least to make valuable predictions.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.12)

RMSE =
√

MSE (2.13)

RMSEbl =

√√√√ 1

n

n∑
i=1

(yi − ȳ)
2 (2.14)

Coefficient of determination (R2) can be derived from the MSE and
gives a comparison between the actual and baseline performance of the
model. Negative values indicate below baseline results, that is worse than
guessing ȳ, while values close to 1 attest minimal error between observed
and predicted outcomes. It can also be interpreted as the proportion of the

44



2.2 Data Mining and Machine Learning

variance in the target explained by the features. While different computa-
tional definitions exist for the R2 score, the one given below is preferable
as it generalizes well to problems outside linear regression.

R2 = 1− MSEmodel

MSEbl
(2.15)

Classification metrics

Confusion matrix of a two-class prediction evaluation shows the four
decisive values: true positives/negatives (TP)/(TN) (number of correctly
classified) and false positives/negatives (FP)/(FN) (number of misclassi-
fied) labels, in a two-by-two matrix. The most common ratios between
these values are accuracy, precision, true positive rate (TPR), and false
positive rate (FPR). Accuracy measures the percentage of correctly clas-
sified labels TP+TN

N , where N is the sample size, while precision TP
TP+FP

shows what percentage of the labels predicted as class 1 (i.e., positive
class) were correct. The TPR TP

TP+FN , also called sensitivity or recall,
conversely measures what percentage of the true class 1 labels was ac-
tually found. In ML, it is sometimes called the probability of detection.
The FPR FP

FP+TN , also known as the probability of false alarm or fall-out
rate, indicates what percentage of class 2 labels was wrongly classified as
belonging to class 1 [45].

Receiver operating characteristic can be used to find an optimal
threshold to decide whether a prediction belongs to class 1 (star) or class
2 (circle), see Figure 2.9. Regression problems can be converted to clas-
sification problems using a class separator that assigns the true values
to either class circle (< separator) or class star. In order to determine
the classifier’s discriminatory ability, a ROC curve plots the TPR against
the FPR at various threshold settings. By variation of the threshold, a
suitable trade-off between sensitivity and specificity can be made for the
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problem at hand (e.g., more emphasis on finding all positives requires a
higher sensitivity while more emphasis on avoiding FP requires a better
specificity) [45].

Area under the curve (AUC) is calculated from a ROC and gives an
indication of how well the classifier performs, where an AUC ≈ 0.5 is equal
to guessing while an AUC close to 1.0 indicates optimal discriminatory
ability.
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Figure 2.9: a) Scatter plot of true and predicted values with a classification in circles
(< class separator) and stars b) ROC curve showing the trade-off between
true positive (TPR) and false positive rate (FPR), based on [80]

Resampling methods

The risk of overfitting rises along with nowadays more complex models
that have the ability to learn a given input-to-label mapping virtually by
heart, such that labels can be predicted close to perfection. To avoid
a model’s loss of generalizability, the training and subsequent evaluation
must be performed in such a fashion that overfitting can be detected, at
best during training but at the latest during final evaluation. A number of
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methods are available to split data, as well as train and evaluate a model
to approximate its generalization ability. Often, the choice depends on
the number of samples available, their distribution, and how the modeler
wants to ’spend’ these data points [80,95].

Train-dev-test split is the most commonly used and least expensive
split in training, development (a.k.a. validation), and test (a.k.a. evalu-
ation) set by a ratio of approximately 7:1:2, respectively. After (and in
some cases during) training with the training set, the development set is
used to detect overfitting. With these two sets, different models are built
and tuned. Only in the last stage, when it comes to model selection, the
test set is evaluated to get an unbiased view of the models’ predictions.
Unfortunately, the available amount of data not always allows spending
30% of the data purely on the final evaluation. Further, sets might con-
tain disproportionate amounts of easy or difficult to learn samples, such
that different splits certainly lead to different results.

(Stratified) k-fold cross-validation (CV) splits the data (randomly)
into k equally sized sets. The model is then trained k times on k − 1 of
the sets, while the remaining set (called held-out set) is used for evalua-
tion. This way k development sets can be used for evaluation, with typical
numbers of k between 3 and 10. In extreme cases k takes the number
of samples called leave-one-out cross-validation (LOOCV). Repeated CV
performs the k-fold CV process several times to get a more truthful distri-
bution of the evaluation score. Stratified splitting is a non-random form of
partitioning such that each set ’strata’ approximately contains the same
distribution of labels and inputs to make them more comparable.

Monte Carlo Simulation in general performs repeated evaluation of
a function, process, or experiment with parameters randomly drawn from
a given distribution. It can be used for model evaluation by randomly
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splitting the data into training and evaluation set numerous times (e.g.,
10 to 100 iterations) and then summarizing the evaluation scores, which
amounts to repeated k-fold CV for a large number of iterations.

Bootstrapping already discussed in Section 2.2.1 may also be used
for model evaluation by repeatedly drawing samples with replacement31

to build the training set and subsequent evaluation with the out-of-bag
samples.

Hyperparameter optimization

The number of hyperparameters (e.g., learning rate, number of layers in a
NN, or splits in an RF) may vary greatly between model families. Conse-
quently, model tuning becomes an optimization problem of its own if the
hyperparameter space is high dimensional.

Grid search exhaustively searches through all possible combinations of
hyperparameter settings in a grid. It may provide the most comprehensive
overview of the effects of a set of hyperparameters but is only feasible
for very small dimensions because it evaluates the objective function32 at
every point in the grid, instead of directly optimizing for convergence to a
minimum.

Random search evaluates the objective function at randomly chosen
points in the hyperparameter grid. This way, much fewer evaluations need
to be performed while still coming close to an optimum.

31 Some samples may be represented multiple times in the training set.
32 Used to calculate the model performance for a particular set of hyperparameters.
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Genetic algorithms as described in Section 2.2.3 take randomly pa-
rameterized models as generation zero and evolve better models by crossover
and mutation between well performing models [83,106]

Factors affecting model performance

Typically, a data scientist works backward through the ML pipeline to find
factors that might worsen predictability when model performance does not
live up to the expectancy. Starting from optimization of hyperparameter
and identification of ineffective, erroneous, or missing features, over the
improvement of feature scaling and transformation to counteracting a po-
tentially large class imbalance [23]. On top of these factors, discretiza-
tion of continuous values (e.g., resolution of the sensors) and measurement
noise in either the predictors or the label (e.g., the influence of background
lighting when measuring a hardness imprint) put strict boundaries on the
achievable predictability [80]. Lastly, a "Type III" error may occur, that
is, answering the wrong question. For example, the ultimate test for a
cylinder head is the amount of pulsed pressure it can withstand. A hard-
ness measurement may give some indication of how sturdy the component
is, but it does not answer the question of longevity in the field [74].

2.3 Application of supervised ML to Heat
Treatment and Material Science

As the wave of enthusiasm for machine learning sweeps through industry
and research, material science and heat treatment communities are evolv-
ing to explore the predictive capabilities of these methods. Some work
published so far is listed in Table 2.5 providing a detailed non-exhaustive
overview regarding the application of ML methods to heat treatment,
sorted primarily by target and type of treatment. Correspondingly, this
section is split into the prediction of mechanical and component properties.
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2.3.1 Prediction of mechanical properties

Unsurprisingly, the chemical composition is the number-one predictor used
in many models, followed by a variety of heat treatment parameters. They
were used to predict austenite, bainite, and martensite start tempera-
ture [5,53,115], the volume fraction of bainite in low carbon steels [127], or
the bainite plate thickness [126]. The latter also using Gibb’s free energy,
austenite strength, and carbon concentration as features. The hardness of
bainitically hardened steels was investigated by [113, 128] on the basis of
mass fractions of the alloying elements as well as heat treatment parame-
ters, confirming the high relevance of manganese for bainite kinetics also
found by Bhadeshia [9].

Because hardness depends considerably on chemical composition, it was
also featured in an early model of Vermeulen to predict complete Jominy
hardness profiles [142], to optimize for a desired hardness while changing
input parameters [140] and to predict hardness and impact strength [44].
While the former two also made use of heat treatment parameters, the
latter included tensile properties. Hardness was also predicted for the low-
alloy steel C45E based on electromagnetic hysteresis loops, fed to particle
swarm optimization, [152] and based on tempering time and duration [135].

Chemical composition and heat treatment parameters also predict mechan-
ical properties of steels in different applications such as tensile strength,
impact toughness, or hot-ductility and -strength as shown by Sterjovski et
al. [132]. Focusing on prediction of tensile strength of martensitic hard-
ened low-alloy Cr-Mo steels [137] noticed strong influence of confounded
data (e.g., outliers), and introduced a data cleansing strategy to improve
prediction accuracy. A model with similar in- and outputs was used by
Reddy [117,118] in a genetic algorithm (GA) to design optimal composition
of medium carbon steels.

Images pose a special challenge because input features must first be ex-
tracted from detectable patterns. DeCost et al., therefore, applied CNNs
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to segment and identify microstructures and used an SVM to predict the
annealing schedule that led to these microstructures [28,29].

In order to predict the hardness of laser-hardened samples, temperature
curves were determined with the aid of thermal models from which effective
carbon diffusion times and cooling times were derived [105]. In a similar
approach, Lambiase [82] used a priori calculated time-temperature profile
by aid of the one-dimensional heat conduction equation as input.

Surface hardening by induction was also investigated with NNs. Stich used
motor speed and component temperature to predict the maximum hard-
ness increase [133], while Nguyen provided a model as input for prediction
of quality and process control [98].

NNs were also applied to welding, rolling, and squeeze casting, respectively,
to predict the Charpy toughness from chemical composition and interpass
temperature [108], ultimate tensile strength (UTS) and yield strength (YS)
from chemical composition and rolling parameters [129] as well as hardness,
impact energy (IE), and UTS from melt and die temperature [2].

2.3.2 Prediction of component properties

Publications are likewise available for the prediction of component behav-
ior. ML methods were most commonly used for prediction of crack prop-
agation [27,32,48,58] and lifetime under cyclic loading [4, 52,68,72,131].

Fatigue crack propagation behavior has been predicted mainly from stress
intensity. Sample size ranged from N = 12807 for Ni-Ti-Al alloys [32],
over 60 [58] down to 8 samples of cast iron [27]. Prediction of crack length
in stainless steels based on chemical composition and welding parameters
was made by [48].

Research has also been done on the prediction of various lifetime parame-
ters under cyclic loading. Based on 30, 000 simulated parts of SAPH 440
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multi-axially stressed bodies, the most critical parameters were identified
by analysis of the dynamic behavior and then fed to a NN to predict the
fatigue life. 5% of the generated training data were sufficient for opti-
mal training outcome [72]. Creep rupture strength of X10CrMoVNb9 was
predicted based on chemical composition and various material properties
after heat treatment [52]. Using only 5 samples, Solon-Alverez tried to pre-
dict the rolling contact fatigue [131], while Jin was more successful with
110 samples and an input of chemical composition, heat treatment, and
contact stress [68].

An approach to predict Wöhler lines for a number of low-alloy steels was
presented by Artymiak [4]. This was carried out based on data of steel life
predictions in the low cycle fatigue (LCF) and high cycle fatigue (HCF)
range, whereby only mechanical material and stress parameters, as well as
the type of load and the notch factor in fatigue, were included as input vari-
ables. The results were compared with synthetic Wöhler lines, which were
calculated with the help of literature references. The results prove the fun-
damental applicability of NNs to material fatigue applications. However,
the linking of heat treatment parameters to resulting service properties
has not yet been carried out by Artymiak.

Without reference to any heat treatment procedure, a prediction of the
probability density functions for the fatigue life of the case hardening steel
20NiCrMo2 was made on basis of the applied step stress conditions and
mechanical properties [50]. Up to 20, 000 simulated samples were used to
predict the damage from fatigue loading parameters [38]. Finally, the pre-
diction of tribological performance of highly alloyed steel based on material
and applied pressure should be mentioned [17].
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Samples Steel Treatment Input Model Target Ref

lit 788 - austenite heating rate, chem. comp. Gaussian
Process

TA,onset (530-921 ◦C)

TA,complete (650-1060 ◦C)

[5]

lit 2277 - martensite chem. comp. NN,RF,
GB,AdB,..

TMS (200-800 ◦C)
[115]

lit 247 - bainite chem. comp. NN TBS (250-700 ◦C) [53]

lit 300 - bainit Gibbs free energy, TI,
C%, strength austenite

NN plate thickness (25-330mm)
[126]

lit 437 - bainite chem. comp. NN volume fraction (0-0.6)
[127]

lit 220 - bainite chem. comp., TA,TI,∆tI NN hardness (315-760HV)
[128]

exp 96 - bainite Mo%, Cu%, Mn%, Ni%
TI,∆tI

NN hardness (370-520HV 10)
[113]

db 4000 - hardened chem. comp., TA NN hardness (Jominy)
(20-65HRC) [142]

lit 3532 - hardened chem. comp., TA, cooling
rate

NN hardness (200-650HV)
[140]

exp 104 - hardened chem. comp., YS, UTS, El NN hardness (192-224HV 10)
IE (222-353 J)

[44]

exp 5 1.1191
C45E4

surface-
hardened

hysteresis loops NN, LR hardness (200-700HV)
[152]

exp 33 1.1191
C45E

hardened,
tempered

TT, ∆tT NN hardness drop (2-26HRC)
[135]

sim 75,
86,
221

- hardened,
welded,
casted

chem. comp., treatment
parameters

NN hardness (160-500HV), TShot
(40-170MPa), IE (10-170 J),
ROA (9-90%)

[132]

lit,
db

600 - hardened chem. comp., heat
treatment parameters

NN + GA UTS (600-1600MPa),
StressProof (400-1400MPa),
ROA (25-75%),IE(25-150 J),El(10-30)

[137]

lit 140 low alloy,
medium C

hardened chem. comp., Mn/S ratio,
cooling rate, TT)

NN + GA UTS (700-1300MPa, YS),
(550-1200MPa), El(13- 30%),
ROA (30-65%), IE
(15-95 J)

[117,
118]

lit 24,
24

ultra
high C

hardened image CNN segment in image (of
microstructure, particle
segmentation)

[29]

lit cr(600),
cr(195)

ultra
high C

hardened images micrographs
(cr(600) = 2400, cr(195)
= 80 ), cooling method

CNN+
SVM

microstructures (prealite,
bainite,. . . ), Tannealing,
∆tannealing

[28]

cr(3)
=

213

1.2344
X40CrMoV5

laser cross-sectional
temperature distribution
by 3-D thermal simulation

CNN+
cGAN

hardness distribution
[105]

exp 4
i(20)

K340 laser Tmax, cooling time NN hardness (220-700HV) [82]

45 - induction motor speed, part
temperature

NN hardness (87-90HR15N)
[133]

sim 1200 AH32 induction model NN induction line, deformation [98]

db 5973 - welded chem. comp., T,∆t NN Charpy toughness (0-356 J)
[108]
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Samples Steel Treatment Input Model Target Ref

lit,
db

1892 - rolling chem. comp., rolling
parameters

NN UTS (420-650MPa)
YS (250-550MPa) [129]

exp 8 Al-alloy
2219

squeeze
casting

Tmelt, Tdie KNN+
GWO

hardness (78-94HB), IE
(3-5.7 J), UTS
(60-250MPa)

[2]

12807 Ni-Ti-Al
alloys

- mechanical properties,
test-specimen
characteristics,
stress-intensity range and
test-frequency

NN fatigue crack growth rate
(10−8 − 10−2 mm/cycle)

[32]

60 - - stress intensity ranges
(DK)

NN fatigue crack growth rate
(10−7 − 10−1 m/cycle)

[58]

exp 8 cast
iron

- ∆K, stress intensity factor
amplitude

NN fatigue crack propagation
(10−10 − 10−6 m/cycle)
over (3-50MPa

√
m)

[27]

lit,
db

487 - - chem. comp., samples
thickness, welding
parameters

NN, SVM total crack length
(0-20mm)

[48]

sim 29951 SAPH
440

defor-
mation

material properties,
fatigue life parameters

NN fatigue life (102-1015

blocks)
[72]

db 1396 1.4903
X10CrMoVNb9

- chem. comp., UTS,
Stress,El, ROA, heat
treat. temps./dur.

NN ∆tRupture (102-104h)

creep rupture strength (60-110MPa)

[52]

exp 5 hypereutectoid
pearlitic

- - NN rolling contact fatigue

6 · 104-18 · 104 cycles [131]

exp 110 chromium
alloyed

hardened,
tempered

chem. comp., heat
treatment parameters,
contact stress

NN contact fatigue life

0-3 · 106 cycles

[68]

1000 (cast)
steel

- UTS, YA; notch factor,
surface roughness, type of
loading

NN S-N curve: stress-amplitude
(180-420MPa) over
(103-106 cycles)

[4]

232 1.6523
21NiCrMo2

step-
stress

specimen characteristics,
stress-intensity, UTS, YS,
El, ROA, breaking
strength, ...

NN probability density for
stress

[50]

sim 102-2 · 104 - fatigue loading (material
properties, spectral
characteristics)

NN damage [38]

exp 216 highly
alloyed

nitro-
carburizing

material, bulk hardness,
rotational speed, applied
pressure

NN tribological performance [17]

Table 2.5: Meta analysis of ML applied to material science and heat treatment. The
following abbreviations are used to enhance readability.
Samples: (lit) literature, (db) database, (exp) experiment, (sim) simulated
Input & Target: (chem. comp.) chemical composition, (UTS) ultimate
tensile strength, (YS) yield strength, (ROA) reduction of area, (EL) elon-
gation, (IE) impact energy/strength)
Model: (NN) neural network, (RF) random forests, (GB) gradient boost-
ing, (adB) ada boost, (LR) linear regression, (KNN) K-nearest neighbor,
(cGAN) conditional generative adversarial network, (SVM) support vector
machine, (GA) genetic algorithms, (GWO) Grey wolf optimization

54



2.4 Open Questions

2.4 Open Questions

There has been rapid progress in material science and heat treatment
concerning the use of NNs. Bhadeshia claims, however, that it may be
rather hasty to assert that the method is established. A number of serious
drawbacks result from the often incomplete research and publication of
models [9]. While the literature already covers a wide variety of input-
output prediction pairs as far as heat treatment and material science are
concerned, there is an unexplored territory regarding the application of dif-
fering ML methods to large real-world data sets focusing on high accuracy
in a small parameter range.

• Neural Networks as one of the most prominent ML methods are able
to make use of highly nonlinear relationships and are used heavily
throughout literature and industry due to their performance capabili-
ties, flexibility, and popularity. However, a vast body of ML methods
like random forests or gradient boosting trees seems to be fairly un-
derrepresented, which leaves a big gap as to which models are best
suited for a particular prediction problem in heat treatment.

• As data is at the heart of every ML prediction, an adequate number
of samples is necessary to sufficiently cover the many nonlinear maps
between input and output space. However, many of the presented
papers work with limited resources of only a few hundred samples
leaving the question open of whether (1) the actual nonlinear re-
lationships could be captured or (2) the problem at hand did not
contain a mapping that would have needed a NN.

• The reported prediction accuracy for most of the work was astonish-
ingly high. Classically, this can be achieved by expanding the input
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and output space until the relationship can easily be detected. In-
deed, a relatively wide range of measurements regarding the target
variables can be observed quite frequently. There appears to be a
lack of attempted predictions for much narrower ranges with much
less variability in the input, raising whether a prediction accuracy
that suffices industry standard is achievable and what amount and
kind of input data would be necessary.

• Predictions from real-world applications are inherently more complex
than literature-based models, as many more influences and mistakes
happen between data generation and model ingestion. Moreover, the
effort of obtaining industry data is more costly and, yet, its acquisi-
tion can lead to valuable insights into hidden relationships and de-
pendencies. Given that industrial hardening processes often contain
company secrets, their data is seldom available to public, academic
research leaving the question of how and what can be learned from
these kinds of data sets.

• Machine learning algorithms mostly work well with a fixed set of
uncorrelated input features, which, fortunately, are often contained
in literature and databases (e.g., chemical composition). Complete
time series of processes and necessary feature extraction are per-
formed very seldom. Thus, it is not known yet which feature extrac-
tion process concerning heat treatment yields the best results, nor
which resulting features can point process developers in the direction
of improvement.

• Application of data mining and machine learning requires a con-
siderable upfront investment, for example, data digitization, data
scientists, and IT infrastructure. The economic benefits of applying
these methods to heat treatment have not yet been reported, which
raises the question of whether these methods can achieve significant
cost reductions or quality improvements.
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In order to provide a transparent basis from which the proposed frame-
work can be emulated to similar processes, this chapter lifts the lid on
the materials and methods that were created and used for the analyses
and predictions of the later chapters. Section 3.1 introduces the process
chains, detailing the industrial production lines as well as sensor, meta and
quality data collected from bainitizing Section 3.1.1 and case hardening
Section 3.1.2. These data are at the heart of the mining process outlined
in Section 3.2 including data set structure, preprocessing, feature extrac-
tion, and filtering techniques. Subsequently, we examine the architecture
of our general ML pipeline (3.3) and a custom hidden state pipeline (3.4)
that generate predictions or forecasts from the processed data. Section 3.5
finally describes the implementation with Python.

3.1 Process Chain and Data Collection

This section briefly explains the available data pools along the process
chain from material composition, over metadata and sensor signals of the
heat treatment process to the assessment of the component quality that
shall ultimately be predicted.

The components subjected to heat treatment are parts of the common rail
direct fuel injection system, including a high-pressure pump, producing the
desired injection pressure and an injector, dispensing fuel in the desired
amount and frequency into the vehicle’s engine. Both are connected via

57



3 Materials and Methods

Figure 3.1: CP4 high-pressure pump (left) and CRI3 piezo injector (right) of a
common-rail system [12]

rails. Figure 3.1 shows a CP4 high-pressure pump, consisting of two high-
pressure elements, each integrated into a housing with its own camshaft,
moving to generate the required high pressure. On the opposite, the pump
piston is held by the cylinder head through which injection takes place.
The component of interest regarding the injector is the nozzle body which
partly extends into the engine’s cylinder. As components differ in material
and functional requirements, they are subjected to carefully designed heat
treatment procedures explained in the following.

3.1.1 Bainitizing

Material

In this study, the CP4 cylinder head is the principal object of investiga-
tion for the heat treatment process bainitizing. All the different types of
CP4 cylinder heads are made from the bearing steel 100Cr6 (1.3505, AISI
52100) and are processed as well as quality tested in the same way, which is
why they can be analyzed together. Hot-rolled bars of 100Cr6 in Ovako’s
specification 803Q are used for production, as they have a particularly high
purity grade in terms of size and distribution of non-metallic inclusions as
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Table 3.1: Chemical composition of the bearing steel 100Cr6 in wt.-% with upper and
lower limits as contracted with the supplier. The mean was calculated from
three melting certificates.

Cr C Mn Si Ni Cu Al Mo P S

Upper limit 1.60 1.00 0.40 0.40 0.250 0.250 0.055 0.100 0.020 0.002

Mean 1.47 0.96 0.31 0.24 0.084 0.081 0.031 0.027 0.008 0.001

Lower limit 1.40 0.92 0.20 0.15 - - 0.020 - - -

well as minimal variations in chemical composition. The chemical compo-
sition of the raw material, produced by ingot casting, is given in Table 3.1
providing upper- and lower limits as well as an average of measurements
taken from three different batches.

Production line

Cylinder heads are bainitized in salt bath lines, henceforth often only re-
ferred to as lines, for large-scale industrialized batch processes whereby
several hundred of the components are combined in multiple layers to form
a batch. Eight comparable IPSEN salt bath lines of the chamber furnace
type TQA-4(5) with subsequent low-temperature circulating air furnaces
are used for the investigated production. They are shown schematically
in Figure 3.2 which also delineates the furnace chamber and salt bath
temperature curves measured in the process steps over time. Component
temperatures are not measured in daily operation but only during rou-
tinely performed temperature uniformity surveys. Below can be found a
detailed description of the two-step bainitization process scheduled and
controlled by DEMIG’s Prosys.

After automatically being pushed into the furnace chamber, the batch
is heated to austenitizing temperature in the natural gas-driven furnace,
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Figure 3.2: Diagram of process gas furnace with integrated salt bath and low-
temperature air circulation furnace. Three sensor systems are depicted:
Prosys sensor system (purple) as part of the feedback control system with
sensors in the complete line, supply line gas analyzer (green) to measure
gas mixture that goes into the furnace, and chamber gas analyzer (blue)

where it remains for a defined period. Upon completing the required soak-
ing, the front and middle doors are raised just enough to allow a batch to
be pushed into the next chamber and quickly lowered into the salt bath for
quenching, beginning the bainitic transformation. Consequently, the salt
bath temperature rises as components are much hotter than the salt and
the bainitic transformation is an exothermal process, requiring external
cooling of the bath to achieve a steady temperature. The slight tempera-
ture overshoot in the salt bath depends on the feedback controller settings.
Finally, batches are lifted and moved through a circulating air furnace in
which the components are kept at an isothermal temperature above salt
bath level until the desired degree of transformation is reached.
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3.1 Process Chain and Data Collection

Metadata

Each measured cylinder head carries, in addition to its quality measure-
ments, relevant meta-information listed in Table 3.2, which is any infor-
mation that is not a time series from a sensor:

• The batch position points to the exact location in the batch,
• the line indicates which salt bath line was used for heat treatment,
• date and time stem from the point when the batch is pushed into

the furnace,
• alarm type and duration are recorded from the system, and
• component type defines the cylinder head’s geometry.

The possible influences of these data points are studied in the chapters
indicated in the eponymous column. To avoid misunderstandings it is
already mentioned here that not the date itself is used as direct input
for the IIR filter, but the intervals between successive batches have to
be determined. These intervals are important because a longer interval
indicates that the last input value used to update the IIR filter may not
be a good indication of the current state.

Sensor signals

In order to acquire data, two different types of sensor systems are used,
indicated in Figure 3.2 by circled letters: Prosys (P) and supply line gas
analyzer (S). Whilst the two systems are described in the following para-
graphs, a list of the most important sensor signals of all systems are given
in Table 3.3.

1 Indicates which kind of components are treated in the furnace prior to the actual
batch. Some components use up more of the carbon contained in the atmosphere
than others. This might have an influence for the following batches.
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Table 3.2: Metadata and features derived for bainitization

Name Type Example Feature Chapter

Batch position categorical 9 - 4.2.2

Line categorical 26 one-hot line 5.2.2

Date ordinal 24.04.2019 IIR
5.2.3

Time production start ordinal 12:34:56 -

Alarm type categorical door defect
duration 5.2.3

Alarm duration numerical 300 seconds

Component type categorical slim line - -

Previous components1 categorical cylinder head - -

The Prosys system (P) offered by DEMIG is installed in each of the ten
production lines providing feedback for its control system. Sensors are
mounted throughout the entire line while data is stored on a central server
to guarantee traceability of possible complications (e.g., evaluating the
heat treatment process of components later failing in the field). Data is
recorded and stored for the time a batch is in a particular production step,
leaving the state of empty chambers unrecorded. Records can be exported
as XML files after process completion, including a unique tracking number
of the batch as well as timestamps that allow for synchronization with
foreign system events.

One of these systems is the gas analyzer (S) of the pipeline, which supplies
gas to all furnaces. Analyzing the gas mixture in the supply pipeline is
important as its composition fluctuates over time, e.g., winter to summer,
due to the fact that the provider must guarantee only a minimum calorific
value, not a defined gas composition [30].

62



3.1 Process Chain and Data Collection

Table 3.3: Selection of sensor signals recorded during bainitizing

Sensor Measure Unit Sensor Measure Unit

PC Furnace temperature ◦C S Methane CH4 %

PC Oxygen O2 mV S Ethane C2H6 %

PC Calculated carbon level %C S Propane C3H8 %

PC Mass flow src l/h S Carbon dioxide CO2 %

PS Salt bath temperature ◦C

P1 Heating power left %

P1 Heating power right %

Table 3.4: Bainite: Quality data of cylinder head after bainitization

Label Type Example Scaling Chapter

Surface hardness numerical 700 HV robust 4.2.1

Core hardness numerical 680 HV robust 4.2.1

Quality Assessment

Various inspection characteristics must be fulfilled to release a batch for
further handling. That is, process limits must not have been exceeded, and
hardness measurements, as well as microstructure analysis, must indicate
successful heat treatment. For further quality assurance, periodic sampling
is performed to determine the carbon content. The last and, for economic
reasons, least frequently performed evaluation is a pulse test, mimicking
the real-life operation.
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A minimum of one2 cylinder head of every batch is taken from a defined
test position to determine hardness and microstructure. Surface and core
hardness are assessed by averaging three HV10 indents. The former is on
a partially ground part of the surface, the latter on a microsection of the
cylinder head. After cutting, embedding, grinding, and polishing, hardness
measurements are executed automatically, consisting of indentation and
optical measurement. While the averaged core and surface hardness values
are stored in a database, the six original values are only noted in the paper
version of the batch document.

Figure 3.3 schematically illustrates a longitudinal cut through a cylinder
head with three indents for core hardness measurement. Specialized staff
uses microscopes to compare the microsection to reference images to de-
termine microstructural properties like needle length, internal oxidation,
and carbide formation. The resulting classifications are also entered into
the database.

HV 10

Surface Hardness

Core Hardness

Figure 3.3: Schematic longitudinal cut of cylinder head with exemplary check posi-
tions

Samples chosen for GDOES are analyzed by a GDA650 from Spectruma
GmbH. It is equipped with a high-resolution CCD-optic with a focal spot

2 For quality assurance purposes, more than one cylinder head is tested if the heat
treatment process does not remain within the defined limits.
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3.1 Process Chain and Data Collection

diameter of 2.5mm. As the ablation of the sample’s layers begins on its
contaminated surface, measurements can only be relied upon from a depth
of approximately 2 µm, depending on the roughness of the surface. The
carbon profile is created into a depth of about 25 µm.

3.1.2 Case hardening

Material

Injection nozzle bodies are manufactured from the case hardening steel
18CrNi8 (1.5920) supplied by the Stahl Judenburg GmbH in a certified
degree of purity. In particular, the high proportion of nickel ensures a
desired degree of hardenability. An inspection of the steel composition
can be found in Table 3.5 along with upper and lower bound according to
BOSCH order specifications.

Table 3.5: Chemical composition of the case hardening steel 18CrNi8 in wt.-% along
with upper and lower bound according to BOSCH order specification. The
symbol "-" indicates that no upper and/or lower bound is given

Cr Ni C Mn Si Cu Al Mo P S

Upper limit 2.100 2.150 0.220 0.640 0.300 - 0.040 0.15 0.035 0.035

Mean 2.006 2.075 0.176 0.567 0.155 0.002 0.031 0.006 0.014 0.021

Lower limit 1.700 1.750 0.130 0.360 - - 0.015 - - -

Production line

Nozzle bodies are processed in batches of several thousand pieces, not
necessarily of exactly the same type. They pass through a vacuum fur-
nace, a deep freezer, and a tempering furnace, as depicted in Figure 3.4, all
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governed by the same controlling system Prosys by DEMIG. For the inves-
tigated production the following equipment is available: Three comparable
IPSEN VUTK-524 vacuum heat treatment furnaces, two deep freezers (one
Linde LKS 1.0 and one CES of type CTC-LIN-900x7000x1200-S-FL), and
three IVA tempering furnaces of type RH 966 RVE. The route on which
the batches pass through the stations is variable (e.g., after furnace #1,
batches can be deep cooled in either the Linde or CES freezer).

Time
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Figure 3.4: Diagram of vacuum furnace, deep freezer, and tempering furnace with re-
spective temperature profiles. Green bars indicate carburization by acety-
lene injection, the blue bar quenching by nitrogen, [own representation]

Vacuum furnaces are loaded by forklifts, the door is closed and evacuation
begins. After sufficient pressure reduction, the chamber is flushed with ni-
trogen for initial convection. The subsequent evacuation step at elevated
temperature is followed by radiant heating in several steps to austenitiza-
tion temperature, giving pieces in the middle of the batch time to catch
up with the temperature of their colleagues closer to the heating rod. At
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TA1 the furnace is flooded with hydrogen to reduce possibly existing ox-
ides on the surface of the component, which is pumped out shortly before
the carburization phase to avoid dilution of the carbon donor with hy-
drogen [89]. Austenitization takes place at a slightly higher temperature
than subsequent carburization by pulsed injection of acetylene (system-
atic name: ethyne), indicated by the green bars in Figure 3.4. The nozzle
bodies’ desired case hardening depth and the required surface near mi-
crostructure, e.g., retained austenite or carbide formation, depend on the
number and length of acetylene pulses and the diffusion times at the end
and intermediate to the acetylene pulses. To control the surface layer prop-
erties (i.e., the carbon profile), the exact concentration of carbon achieved
in the diffusion stage at a certain depth must be carefully calibrated [81].

To reach the isothermal conversion stage, the temperature is lowered
by mild quenching via nitrogen injection. Soaking at a temperature for
pearlitic phase transformation, which supports refinement of grains, and
subsequent heating to austenitization temperature, which now is consider-
ably lower for the hardening step, takes several hours. The final quenching
below TMS is achieved by high-pressure injection of nitrogen alternating
between top and bottom, indicated by the blue bar and balls. When a
temperature close to TR is reached, the door can be opened and the batch
transferred via forklift.

Freezers are constantly kept at a temperature well below TR. The batch is,
thus, placed in an already cooled chamber – constantly controlled by liquid
nitrogen – to reach a sufficiently cold component temperature, allowing
the transformation of the retained austenite into martensite to the desired
degree.

Tempering the freshly deep-frozen components is the final heat treatment
step and takes place in one of the three tempering furnaces that are already
heated to a temperature below 200 ◦C. After a considerable drop in furnace
temperature due to the cold batch, TT is recovered by strong counter
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Table 3.6: CH: Metadata and features derived

Name Type Example Feature Chapter

Batch position categorical c1 one-hot position 4.3.2

Date ordinal 24.04.2019 IIR 4.3.2

Time production start ordinal 12:34:56 - -

Vacuum furnace categorical 1 one-hot vacuum 5.3.2

Freezer categorical 2 one-hot freezer 5.3.2

Tempering furnace categorical 3 one-hot tempering 5.3.2

Component family categorical F00VW one-hot family 5.3.3

Alarm type categorical door defect
duration 5.3.3

Alarm duration numerical 300 seconds

heating and kept for several hours to gain the desired component properties
in terms of strength and toughness.

Metadata

Table 3.6 provides an overview of the meta-information available for each
tested component of a batch of nozzle bodies. While the lines for bainiti-
zation are cohesive heat treatment lines, a nozzle body can take different
routes through vacuum furnace, freezer, and tempering furnace. The re-
maining information is similar to the bainitizing data but exhibits different
behavior, as will be shown in the upcoming chapters.

Sensor signals

All sensors are linked to the central control system Prosys that appoints a
unique identifier (Prosys ID) to each batch to allow traceability between
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Table 3.7: Selection of sensor signals recorded during case hardening, deep freezing
and tempering

Sensor Measure Unit Sensor Measure Unit

PV Temperature furnace ◦C PF Temperature freezer ◦C

PV Pressure Barocel mbar PT Temperature furnace ◦C

PV Pressure mbar PT Temp. heating rod ◦C

PV Acetylene C2H2 l/h PT Pressure mbar

PV Leakage rate mbarm
2

s

production steps. A selection of relevant signals is listed in Table 3.7 while
all systems include multiple temperature sensors as a backup in case of
malfunction. Signals are recorded and stored only for the process-time
along with the respective Prosys ID as XML files. Due to a dissimilar
design of freezer #1 and #2 location and number of mounted temperature
sensors differs considerably, leading to slightly varying signals.

Quality Assessment

Two nozzle bodies are sampled from every batch with alternating positions
(i.e., components from positions 1 and 2 for batch i, components from po-
sitions 3 and 4 for batch i+1). Every sampled nozzle body is longitudinally
cut as depicted in Figure 3.5, embedded, ground, and polished. A DuraS-
can from Struers then performs hardness evaluation with HV 1 on various
positions and distances from the surface, an excerpt of which is given in
Table 3.8, depending on the geometry of the nozzle body type.

Combined average scores were calculated for some measurement position
pairs with similar distances to the surface to mitigate measurement errors.
We subtract the mean x̄mi

of the two measurement position (m1 and m2)
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HV 1

undercut

shaft inside
seat middlespring chamber

shoulder

Figure 3.5: Schematic longitudinal cut of nozzle body with an exemplary check posi-
tions for hardness measurements

Table 3.8: Quality data after case hardening on specific positions of the nozzle body

Position Distance Combined Position Distance Combined

Undercut 0.1mm Seat middle 0.4mm } Score 0.4Shoulder 0.1mm } Score 0.1
Shaft inside 0.4mm

Seat middle 0.1mm Shaft inside 0.7mm } Score 0.7Core

CHD (550)

distributions xmi
, then add the values in each array3, and divide by two,

see Equation (3.1).

xScore =
(xm1 − x̄m1) + (xm2 − x̄m2)

2
(3.1)

3 An array contains the labels of all samples as a column vector.
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3.2 Data Mining

3.2.1 Terminology

As the art of data analysis and predictive modeling is practiced in many
different scientific domains, which all contributed to the field in their own
language, a variety of terms are being used synonymously. In contrast,
other terms have miscellaneous meanings across domains. Based on [80]
this thesis makes use of the following terminology:

• Data point refers to a single value or instance of a measurement.

• Features or predictors are explanatory variables, that is, a measur-
able property that ideally represents an independent and informative
characteristic of an observed phenomenon, on basis of which predic-
tions are being made. A feature is either calculated from many data
points (e.g., mean or maximum temperature) or a single data point
(e.g., production line, day of the week)

• Input or sample refers to the set of data points (including sensor-,
metadata, and derived features) that belong to the execution of a
heat treatment on the same batch of components. The total number
of samples is equal to the number of heat treatments for which all
necessary data points (including the outcome) were recorded and
stored.

• Outcome, target, or label refer to the value that is being predicted.
In this work mostly a measured hardness.

• Batch in the context of

– heat treatment refers to the group of components that were
combined in a multilayer structure and processed together,

– ML refers to the subset of samples that are processed by an
algorithm in one optimization pass.
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• Training set is the subset of all samples that is used to develop a
model or pipeline and optimize its parameters.

• Development set or dev set is used during and/or after each train-
ing to evaluate the generalization capacity of the trained model and
detect overfitting. The model does not learn parameters from this
set.

• Test set is used only for the purpose of evaluation of the final, already
optimized model.

• ML method or algorithm refers to the set of instructions implemented
in a software package that calculate particular outputs from given
inputs.

• Model is a trained instance of an ML method, that is, its parameters
have been optimized during training.

• Model training refers to the process of a model learning/optimizing
its internal parameters to make better predictions on the training
set. Often model training is repeated on different data sub sets and
hyperparameter settings.

3.2.2 Data sets

Multiple data sets of varying sizes are used throughout the thesis in order
to be able to test multiple hypotheses regarding explainability of mea-
surement and process noise as well as resulting quality scatter. Table 3.9
indicates the respective number of measurements per label4, how many
batches were heat-treated, and the number of specimens taken from each
batch, as well as kind of measurement. The sets in row 1 are historic data,
that is, the three original hardness measurements where retrieved manually
from the quality inspection files from 565 of the heat treatments. That

4 The number of labels depends on the use case. For bainitization, they can be found
in Table 3.4, for case hardening in Table 3.8.
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means, these values contain the full measurement error (incl. specimen
preparation, different equipment, etc.) that will later affect the labels to
be predicted. The sets in rows 2 and 3 were created by conducting 100
indents on a hardness comparison plate. The respective steel manufac-
turer provided the material composition set as a CSV file. Labels from
the remaining sets stem from respective quality databases at Bosch. Sen-
sor and meta information was extracted from XML files produced by the
DEMIG system for each batch and then stored in an SQLite database on
the author’s local machine for easier access. For all machine learning and
optimization procedures, we used the training set that roughly accounts
for the first 70% of all samples, i.e., data from before 01.01.2020 for the
bainite use case and before 01.01.2017 for the case hardening use case.

Table 3.9: Data sets for analysis. #Label: number of measurements per label,
#Batches: number of batches heat treated, Sens: (✓) if data from sensors
is available for these labels, #Spec.: number of specimens taken from each
batch., Meas: type of measurement procedure where 3·HV (three indents in
same area of measurement position), B: bainitizing, C: case hardening, Sec-
tion: reference to corresponding Section in this work, Analysis: objective
of the consideration. Note: The first line contains data from daily quality
control of cylinder heads, while lines 2 and 3 were created using a hardness
comparison plate.

# Label #Batches Sens # Spec. Meas Section Analysis

3·565 1 3·HV 10 B 4.2.4
Measurement error100 1 HV10 B 4.2.4

100 1 HV1 C 4.3.4

900 100 9 HV10 B 4.2.2
Position and benchmark

8600 4300 2 HV 1 C 4.3.2

160 1 wt.-% B 5.2.1
Material composition

370 1 wt.-% C 5.3.1

21800 21800 ✓ 1 HV 10 B 5.2, 6.2
Meta and process feature for ML

11500 6900 ✓ >=1 HV1 C 5.3, 6.3
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3.2.3 Resampling and segmentation of time series

Resampling

While the sensors continuously deliver an output signal, measurement
points are saved approximately every 60 seconds most of the time. That
is, during time-critical events like quenching, the frequency is raised. In
order to be able to write all time series in one table with shared, equidis-
tant timestamps, they must be resampled and cut to equal length, which
is necessary for multiple reasons.

Operating on a complete table with synchronized, equidistant time series
instead of working on individual series makes their segmentation, extrac-
tion of features, and plotting much faster, easier, and more reliable in terms
of comparability between time series. Additionally, most ML algorithms
using complete times series as input need to be provided with the same
size input, although some RNNs can work with variable length.

As measurement points are not always taken with exactly the same in-
terval and some batches spend more time in the furnace than others, the
data must first be brought in a processable format. To account for interval
variability, the time series tm with measurements xmeas is resampled with
a fixed period ∆ tr =60 s by linear interpolation resulting in xresamp at tri
shown in Figure 3.6. During quenching ∆ tr is lowered to appropriately
capture the cooling dynamic. This fact needs to be considered when ex-
tracting features from the time series later (e.g., the temperature mean
should only be calculated from time series with equidistant measurement
points in order not to overweight or underweight individual temperature
measurements and to preserve comparability between data sets). The re-
spective time series cuts can be found in Section 5.2.4.

The interpolation stops before the last measurement point cutting of the
reminder between tm,max − tr,max > 0. The true duration is stored sep-
arately and used as feature as was explained above. The vector size is
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Figure 3.6: Resampling of times series using linear interpolation between measured
values

now nr =
t̂r,max

Tr
where t̂r,max is the duration of the longest sample. For

samples shorter than the maximum length the vector is filled with NaNs
for feature extraction and zeros in case it is used directly as input5.

Segmentation

In order to extract useful information from the heat treatment process, its
different phases (e.g., austenitization, quenching) must be located in the
time series. A time series always consists of a multi-column vector whose
first column contains timestamps while the remaining columns contain the
sensor measurements. The latter columns are called channels. As long
as these phases are provided in one of the channels by the control system,
the segmentation is straightforward. Unfortunately, this is not the case for
our setups. Luckily, the bainitization process can be cut at fixed intervals,
as only the last segment of each station (i.e., process gas furnace, salt
bath,. . .) has a variable length and the remaining intervals are fixed6. A
detailed examination of the segments is provided in Section 5.2.4.

Partitioning the case hardening process is more demanding since its oper-
ating plan contains, unlike the previous procedure, wait-until blocks that
cause the heating process to dwell at a specific temperature until the gap

5 ML packages generally do not accept inputs containing NaN values.
6 The bainitizing program has no variable time blocks in the process gas furnace and

salt bath.
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between reference and the actual temperature has closed sufficiently. As
a consequence, heat treatments do not have the same length (∆tA1 can
vary significantly from batch to batch)7 and process sections (e.g., acety-
lene pulses for carburizing or quenching to TI) are, therefore, not to be
found after the same timespan after the start. This means that cutting the
time series at predefined intervals would lead to bins with unequal content.
Consequently, intervals for cutting are either found by specifically target-
ing a particular location in the time series with multiple if-statements (first
method) or based on jumps in reference values (second method), see Figure
3.7.

Working with the first method assumes that it is already known through
domain knowledge which sections and metrics in a channel are of interest.
Then, these sections can be targeted by specific requests (e.g., finding
the first austenitization phase using the conditions: t>ts, t<ts+1, T<TU ,
T>TL, with fictitiously ts =30min, ts+1=120min, TU=800 ◦C, and TL

=790 ◦C, where T can be either the measured or target temperature).
Used are then only values, that are part of this region. In general, this
method is preferred because it is easier to implement and finds the better
features, since only data of specific regions of interest is used to extract
features (e.g., mean or skew).

The second method segments the complete process. To detect changes in
reference channels, the difference quotient φ(xi, xi+1) =

xti+1
−xti

ti+1−ti
between

successive points is taken. As the jumps are vastly different in magnitude,
especially between different channels (e.g., a temperature change of 50K
vs. a pressure change of 2000mbar), thresholds xth have to be calibrated
for each channel and often amended with additional conditions, like tem-
perature or time ranges, to correctly identify a segmentation point. As can
be seen in Figure 3.7b), the first segmentation point (i.e., s1 = 1 start of
heat treatment) is indicated by three points of discontinuity, one in φ(T )

and two in φ(P ), while start of segment 4 has only one. Segmentation

7 See Figure 2.4 for the complete process.
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Figure 3.7: Principle segmentation methods for vacuum furnace process (e.g., case
hardening): a) reference temperature and pressure during heat up and
austenitization, where the gray area marks a region of special interest de-
rived by domain knowledge for extraction of mean austenitization temper-
ature b) respective difference quotient as basis for segmentation without
applying detailed domain knowledge

points are first determined per channel, that is every discontinuity larger
than a threshold φ(φ(.)) > xth is marked as possible cutting point tc.
Then further necessary conditions are tested for (e.g., is the value before
or after the tc equal to zero. With this, we sort out values that are part
of a ramp, which is the case for segment 1, 3, 5, etc.) to find or eliminate
cutting points. In a last step, cutting points are combined to a single point
if they lie together close enough. In sum, over 30 segments are created in
this way for the vacuum furnace, deep freezer, and tempering furnace pro-
cess. The data of each sample (i.e., process data of one batch) is processed
to find the respective segments. To determine whether the correct seg-
ments have been found, each segment’s characteristic values (e.g., mean
and length) are calculated. If for a sample either not the correct number
of segments were found or a certain amount of the characteristic values of
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Table 3.10: Statistical values as features extracted from resampled sensor signal xc,s

of channel c in segment s

Statistical feature Notation Statistical feature Notation

Mean value xc,s Standard deviation xc,s,sd

Median value xc,s,med Skew xc,s,skew

Maximum value xc,s,max Kurtosis xc,s,kurt

Minimum value xc,s,min Segment duration ∆tc,s

the segments lies outside a range of 3 standard deviations from the mode
of the characteristic distribution from all samples, then the sample is ex-
cluded. After complete segmentation, all segments are resampled to an
appropriate frequency depending on the dynamic of each segment.

Although this method works for over 99% of the samples which stem from
a period of about 6 years, significant changes in the heat treatment proce-
dure intervals would likely need either a fairly complicated adaption of the
segmentation determination or be incompatible with the current segmenta-
tion. Previous data could not be used anymore, or a different segmentation
would be needed to be used for all samples. If the segmentation and re-
sampling procedure is successful, we can now extract statistical indicators
from the respective sections.

3.2.4 Process feature extraction

Given that segments s have already been defined as spanning from ts to
ts+1, then vector xc,s contains the resampled measurements in s, of channel
c belonging either to a particular sensor or other to information from the
process controller. From this vector the features given in Table 3.10 are
calculated and stored in a feature vector xf(c,s). Figure 3.8 illustrates this
process exemplifying the statistical properties of the distribution formed
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Figure 3.8: Feature extraction from resampled measurements xc,s of channel c in seg-
ment s

by the values in xc,s. In addition, further process specific features are cal-
culated from these statistical values (e.g., Hollomon–Jaffe parameter from
the temperature channel using T̄ and ∆t in the respective segment of the
tempering furnace). Feature vectors xf(c,s) are calculated domain knowl-
edge specific only for the interesting segment and channel combinations
(e.g., the mass flow of acetylene is irrelevant during quenching or tempera-
tures far below austenitization). Feature vectors of interest are stacked as
shown in Equation 3.2 and are appended by process-specific features like
the Hollomon-Jaffe parameter HP . The matrix Xprocess

input then should hold
all potentially relevant information about the process each sample went
through. For clarity, sample identifiers (1st and nth) are not used in the
matrix HP , but the sample is written above the respective column.
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Table 3.11: Examples for duration features derived from alarm durations

feature alarm1 alarm2 alarmi . . .

duration 0 0.1 0.95 . . .

Xprocess
input =

1stsample︷ ︸︸ ︷

x1,1
x1,1,med
x1,1,max
x1,1,min
x1,1,sd

x1,1,skew
x1,1,kurt
∆t1,1

...
xf(c,s)

...
HP


. . .

nthsample︷ ︸︸ ︷

x1,1
x1,1,med
x1,1,max
x1,1,min
x1,1,sd

x1,1,skew
x1,1,kurt
∆t1,1

...
xf(c,s)

...
HP




features extracted from 1st

segment and 1st channel
(e.g., Tfurance when batch
is loaded into furnace)

features extracted from
channel c in sth segment

(3.2)

Each sample is then further appended by the one-hot encoded meta in-
formation from Tables 3.2 and 3.6, respectively. Alarms are included as
features as shown in Table 3.11. If an alarm did not occur for a particular
sample it is assigned value 0 (e.g., alarm1), else the scaled alarm duration
is used (e.g., in the particular example in Tables 3.2 alarm2 occurred. It
had a duration of 10% of the longest alarm2 that occurred of all batches).

3.2.5 Filtering

Ordinarily, filtering is applied to time series of noisy sensor signals, but
fortunately, neither temperature nor pressure sensors are affected. Hard-
ness measurements, by contrast, are strongly affected. As will be shown
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in later chapters, the mean hardness of consecutive batches is not station-
ary for longer periods but fluctuates or drifts significantly. To follow a
hardness trend of consecutive hardness measurements over weeks, these
measurements, shown in gray and green in Figure 3.9, are fed to an IIR
filter. The black line shows the closest approximation to the true hardness
trend realized by a noncausal8 filter with no phase delay. Our goal is to
follow this black line as closely as possible, however we are limited by the
information available (i.e. 1. we cannot look into the future, 2. we do
not measure all batches), elaborated on below. The small dots show the
hardness of a sample in green (if it was actually measured) and gray (if
it would have been measured) from a particular batch at the time it was
made, which is why they are not equidistant9.

If the black trend was to be evaluated over a longer period of time a non-
causal filter solution (or central rolling window) would be optimal. How-
ever, for prediction purposes, we are interested in the immediate develop-
ment of the trend but can only look as far as the subsequent measurement.
What is more, cost reduction dictates that only every nth batch (e.g., for
n = 4 at t0, t4, t8, t3n, t4n) is tested for hardness, leaving us with fewer
values to estimate the trend. As results are needed within a fixed time
frame after production, only a causal10 filter comes into consideration, in-
troducing a phase delay which in Figure 3.9 adds up to around the time
between three consecutive batches. How close the prediction may come to
the black line of the noncausal filter depends strongly on the size of this
fixed time frame.

In the following example, the goal is to predict the batch at t7. Specimens
from each 4th batch are tested and testing takes ∆tm. Predictions and
filter outputs in Figure 3.9 are drawn at the point in time (e.g., t4, t7) for

8 Uses values from the "future". That means it can only be applied in hindsight if
the measurements are already available (no real-time filtering).

9 The time between individual batches produced on the same line may vary consid-
erably. The same line may also produce different component types.

10 Only values from past and present can be used.
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Figure 3.9: Four predictions for the batch at t7 based on a filter applied to intermit-
tently tested batches dependent on the available information of past and
future measurements. The colored bars on the time line indicate the time
frame for which a certain prediction (1-4) is achievable. Better predic-
tions need more information and are, thus, only available later. White
diagonal stripes indicate a phase delay correction. The noncausal filter
(black line) applied to hardness measurements of consecutive batches is
the benchmark of best possible approximation

which they are approximations, not at the point in time at which they were
generated. Doing so, the following scenarios with chronological, increasing
information availability are likely:

1. Uncorrected: Only the measurement of the last test batch at t4 is
available and the last output of the filter is used as prediction.

2. Interpolation: The measurement from the batch at t8 is available
and an interpolation between the last two filter outputs is used as
prediction.

3. Phase corrected: Same circumstances as before, but a phase delay
correction is "applied" by using the prediction of the batch two pe-
riods into the future at t9. In this case the prediction for t9 is the
last filter output at t8.

4. Interpolation and phase corrected: The time frame is so long that
we can wait for the measurement at t3n. With this information we
can use an interpolation for t9 as the best prediction for t7.
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The example shows that the phase delay can be mitigated by shifting the
filter results (or interpolations in between) k steps backward. If k = -2
the filter output at t9 is used as prediction for t7 (in the past of t9),
or in other words, if we want to have a prediction for t7 we must wait
for the prediction at t9 to correct for the phase delay. Shifting the filter
results k steps forward11 (k > 0) simulates the information delay when
a prediction has to be made without the measurements of the previous k

batches available (e.g., specimen preparation is delayed during the night
shift). It can also be interpreted as forecasting the hardness of the batch
k steps into the future from the last measured batch.

To simulate this process of intermittent testing, a digital low-pass But-
terworth filter was implemented. For filter design the scipy function
signal.iirfilter(N ,ω) was used, which returns the filter coefficients b and
a [144]. Its parameters (i.e., order N and cutoff frequency ω) were op-
timized by Dual Annealing [149] (scipy.optimize.dual_annealing). The
results are presented in Section 6.2.1. Optimization resulted in order
N = 1 for over 99% of cases. A first-order Butterworth filter then takes
the simple form of Equation (3.3), where yi is the filter state or output
and xi a measurement (e.g., hardness) for time/batch i. The parameter a

can be interpreted as the percentage of the memorized value yn−1 (i.e., the
previous filter output) that is used for the next prediction while b = 1− a

is the proportion of the new measurement used to update the previous
state yn−1.

yn =
b

2
(xn + xn−1) + a yn−1, with b = 1− a; a, b ∈ (0, 1) (3.3)

Figure 3.10 depicts the coefficients a and b at different ω. Accordingly, a
first-order filter with ω = 0.03 uses 91% of its memorized previous state
and updates it with 9% of the averaged last and current measurements.

11 E.g., if k = 1 the filter output at t1 is used for t2 (that is in the future of t1).
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Figure 3.10: Relationship between filter coefficients a, b, and cutoff frequency ω of
first-order Butterworth filter

The optimization was restrained from using ω > 0.5, which would lead to
very fast filters that overshoot the target for a step response.

Filters are often not applied to a complete series of measurements (e.g.,
from 2018 to 2021) but to chronologically coherent subseries, where two
measurements are not further away than 10 days. Otherwise, the series is
cut. Filters are initialized with the mean of the first three measurements
of that subseries. Lastly, filters are often not applied to all measurement
points at once but only to every second or nth measurement. To still make
use of the complete training set, the filter is then applied twice or n times
to every other not used measurement, see Table 3.12. Parameters are then
optimized by dual annealing based on the joined RMSE.

Table 3.12: Two rounds of filter application to every second measurement

Round Measurements→ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 update filter with x1 x3 x5 x7 x9

predict x2 x4 x6 x8 x10

2 update filter with x2 x4 x6 x8 x10

predict x3 x5 x7 x9
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3.2.6 Data analysis and visualization

Because this work is strongly supported by visualizations, the following
guidelines shall help the reader to understand the depictions easily. All
figures were created or post-processed using Inkscape [67]. For easier rec-
ognizability, temperature differences in figures are given in ∆◦C in accor-
dance with DIN 1301-1, not in Kelvin.

Colors, if not stated otherwise, usually carry the following meaning:
blue for surface (or surface near) hardness measurements, green for core
(or surface distant) ones; violet for prediction related results; yellow for
measurement error; rainbow for different salt bath lines, shades of red,
blue, and orange for case hardening stations.

Box plots, if not stated otherwise, show 90% of the data ranging from
the 5th to the 95th quantile, with the box containing 50% ranging from the
25th to the 75th quantile being divided by the median (shown in orange).
Notches around the median usually indicate the 99.9% confidence intervals
(CI), determined by bootstrapping with 10.000 iterations. Outliers are
omitted to avoid cluttering the depiction and reduce window size for better
focus on the difference of distributions.

Histograms, if not stated otherwise, are centered around their respec-
tive mean x̄ or median xmed and usually depict hardness distributions.
That is, from each value in the distribution x their mean x̃ = x − x̄ or
median x̃med = x − xmed are subtracted and a histogram of the shifted
distribution x̃ is plotted. Consequently, negative values in the graph are
softer than the mean or median and positive values are harder.
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Figure 3.11: General machine learning pipeline

3.3 General Machine Learning Pipeline

The following sections introduce the ML pipeline used in Section 6.2.2 de-
picted in Figure 3.11. The IIR filters are those introduced in Section 3.2.5.
Training data makes up the first 70% of all samples (before 01.01.2020 for
bainite and before 01.01.2017 for case hardening). Transformation to simi-
lar variance is done with the robust scaler from scikit-learn. The remaining
pipeline steps are detailed from left to right below.

3.3.1 Outlier removal and drift correction

Before the actual train and test sets are built, outliers need to be removed
from the feature as well as the label set because the IIR filters are sen-
sitive to those extreme values and would falsely correct successive values.
The distribution of the individual features and labels over all samples are
analyzed and samples removed whose values lie further than 4 standard de-
viations away from the median. The remaining samples are drift corrected
by an IIR filter of order N=1, ωfeature=0.01 for features and ωlabel=0.018
for the labels. Only each nth measurement may be used for the label cor-
rection, where correction means that the filter output is subtracted from
the original values to remove the drift or fluctuation. In case predictions
of real hardness are of interest (e.g., serial production), the filter output
is later added back to the prediction of the pipelines. An evaluation that
only considers the predictability due to the process variation works with-
out this addition. Finally, after the chronological train-test split, a robust
scaler is used on the features.
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3.3.2 Feature ranking

To provide the machine learning algorithm with the most informative
features, the following algorithms were used to rank them by predictive
importance: Sequential feature forward selection (SFS) with linear regres-
sion, genetic algorithms (GA) with linear regression, manual selection with
domain knowledge, feature importance attribute by random forest (RF),
mutual information criteria (MI), and F-score. The packages used can be
found in Table 3.13. The RF was trained 80 times and the mean of the
feature_importances_ attribute used to rank the features. The genetic
algorithm usually does not provide a ranking but returns a set of important
features. Hence, the algorithm was deployed several times with increasing
size of the feature sets to return (i.e., max_features in [5, 10, 15, . . . ,
60]). These sets were then concatenated by adding those features from the
respective larger set that were not yet in the list of ranked features. Each
method generates a list of features sorted by their importance from most
to least predictive. Features of this list are then successively correlated
with features of a lower rank, where the latter may be removed if r > .8.
The pipeline then uses this final list to sort the feature matrix accordingly.

3.3.3 Pipeline optimization

Pipelines were created by the following sklearn function:
make_pipeline( SelectPercentile(percentile), RobustScaler(),
<ML_method>(*args)), where percentile is an argument that determines
how many top N features are handed to the scaler and then to the ML
methods which may differ considerably in their complexity and number of
tunable hyperparameters. While NNs have many such parameters (e.g.,
number of layers and their size, learning rate, activation function, etc.)
LRs possess none.

12 is an ANN
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Table 3.13: Hyperparameter settings (=) and/or their range (:) for optimization of
algorithms. The Type column indicates the usage of the algorithm, where
O is the optimization of: OFe = features, OFH = hidden states pipeline,
OFi = filter parameters, OP = pipeline, and Su = supervised learning,
Un = unsupervised learning. A reference to the packages is given in
Table 3.14. The StackingRegressor, in this case, trains three NNs (i.e.,
MLPRegressor) in parallel and then averages their output. It might be
though of as an ensemble of NNs

Type Algorithm Package Hyperparameter (range)

OFe Genetic
SelectionCV

sklearn-
genetic

estimator=LinearRegression, cv=5,
max_features = [5, 10, . . . , 60], n_population
= 1000, n_generations = 100,
n_gen_no_change = 20

OFe RandomForest-
Regressor

scikit-learn bootstrap=True, min_samples_leaf = 12,
min_samples_split = 10, n_estimators = 100

OFe f_regression scikit-learn k = ’all’
OFe mutual_info_

regression
scikit-learn k = ’all’

OH,
OFi

differential-
evolution

scipy polish=True

OH dual_annealing scipy

OP BayesSearchCV skopt cv = 5, n_iter = 100
OP TPOTRegressor tpot generations = 1000, population_size = 500, cv

= 5

Su LinearRegression scikit-learn
Su MLPRegressor12 scikit-learn early_stopping=True, learning_rate =

adaptive, hidden_layer_sizes: Int(1,100),
alpha: Real(1e-4, 0.5, ’log-uniform’),
beta_1,2: Real(0.5, 0.9999)

Su StackingRegressor scikit-learn estimators= [MLPRegressor, MLPRegressor,
MLPRegressor ]

Su RandomForest-
Regressor

scikit-learn n_estimators: Int(10, 300), max_depth: Int(2,
15), min_samples_split: Int(2, 30),
min_samples_leaf: Int(1, 30),
min_impurity_decrease: Real(1e-5, 0.999,
’log-uniform’)

Su GradientBoosting-
Regressor

scikit-learn learning_rate: Real(1e-4, 0.2, ’log-uniform’),
n_estimators: Int(10, 300),
min_samples_split: Int(2, 30),
min_samples_leaf: Int(1, 30), max_depth:
Int(2, 15)

Su SupportVector-
Regressor

scikit-learn C: Real(1e-6, 1e3, ’log-uniform’), tol:
Real(1e-6, 0.99, ’log-uniform’), epsilon:
Real(1e-6, 0.99, ’log-uniform’)

Su KNeighbors-
Regressor

scikit-learn n_neighbors: Int(2,100), leaf_size: Int(2,100),
p: Real(1,2)

Un PCA scikit-learn n_components = 2
Un FCM fuzzy c-means n_clusters = [ 5; 300 ]
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With growing dimensions of the hyperparameter space, tuning, and pre-
venting overfitting of a model become increasingly difficult. Thus, a
Bayesian search algorithm with 5-fold cross-validation from the skopt pack-
age is used to optimize the hyperparameters of the pipeline constituents
(i.e., percentile and args of the respective ML method), the results of
which can be found in Appendix Table A.1. In addition to the pipeline
described above, one further pipeline was created and optimized by the
TPOT regressor. The respective optimization algorithms as well as the
ML methods and the parameters optimized can be found in Table 3.13. It
also lists the unsupervised algorithms implemented in this work. For all
parameters that are not listed the default of the respective function was
used.

3.4 Custom Hidden States Pipeline

3.4.1 Modeling approach

As will be discovered in the upcoming Sections 4.3.2 and 5.3.2, the long-
term behavior of different stations in the case hardening process as well as
the influence of the batch position of the specimens and their component
type can vary considerably. Because general-purpose ML pipelines can not
properly describe such behavior, a hidden states model is introduced that
estimates the influences and current states of the contributing factors from
the measured hardness of the specimens.

Influences are collected in the model below, see Equation (3.4). It rests
on the on the unconfirmed assumption that the final hardness y of a given
case hardened component at a point in time ti can be calculated as the sum
of: xBase influences prior to case hardening (e.g., material composition or
annealing of raw material), xR sum of the contribution of the individual
stations (i.e., the route taken), ∆ the static offset caused by batch position
and component type, and ϵ noise including the measurement error.
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y[ti] = xBase[ti]+xV acuum[ti] + xFreez[ti] + xTemp[ti]︸ ︷︷ ︸
xR[ti]

+∆Pos +∆Comp︸ ︷︷ ︸
∆

+ϵ

(3.4)

For simplicity and because no other interactions are known, a simple addi-
tive model was chosen. In order to make predictions with such a model, the
dynamic states xBase, xR as well as the offsets in ∆ need to be estimated.
Fortunately, we will see that the process parameters in industrialized op-
eration move within a very narrow window and the hidden states13 x are
highly autocorrelated, making them predestined for a filter application. In
the following, a first-order IIR filter algorithm is introduced that makes
a prediction about the hardness y that is expected from a given specific
combination of route, component, and position based on its hidden in-
ternal states. It then updates these hidden states based on successive
hardness measurements of batches incorporating route, component type,
and batch information. Before diving into the algorithm itself, the sub-
sequent paragraphs outline its individual components, with vectors v in
bold and subscripts denoting affiliation: route (R), vacuum furnace (V),
deep freezer (F), tempering furnace (T), batch position (P), and compo-
nent type (C). A superscript T indicates a transposed vector (i.e., row to
column or vice versa).

For every hardness measurement ymeas we have additional information en-
coded in feature vectors fR, fP , and fC . For our particular case, the first
three entries of fR hold the vacuum furnace encoding, the following two the
deep freezer, and the last three which tempering furnace was used (e.g.,
fR = [1, 0, 0, 1, 0, 1, 0, 0] would activate all the first stations). Congruently,
the hidden states vector holds the 8 current states of the several stations,

13 Hidden, because they can not be measured directly but must be estimated from
available measurements.
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that is xR = [xV 1, xV 2, . . . , xT3], which represent the hardness contribu-
tion of each station at a specific point in time. The base state xBase gets
its own variable.

The final ingredient are the variables to be optimized, each falling into
one of two categories: 1) filter coefficients aBase, bBase, aR, and bR, 2)
offsets cP and cC . Coefficients are used analogous14 to the notation for
first-order IIR filters or ARMA models as shown exemplary15 in Equation
(3.5), where aR = [aV , aV , aV , aF , aF , aT , aT , aT ], bR analogous, and ⊙
denotes element wise multiplication. That means, that stations of the
same type share the same filter coefficients (e.g., all vacuum furnaces are
updated with aV and bV ).

xBase[n] = aBasexBase[n− 1] + bBasey

xT
R[n] = aTR ⊙ xT

R[n− 1] + bT
Ry

(3.5)

3.4.2 Model execution

The key idea to this filter pipeline is that only the offsets and states that
affect the current measurement are used for prediction and update. Op-
timization, however, is done for all elements at once. If, for example,
a harder component would, by chance, take a specific route more often,
it would be impossible to find out whether the route or component con-
tributed to the increased hardness when only looking at the final results.
By including all information in a single model, such differences can be
distilled out. The following paragraphs explain the individual steps to be
executed.

14 Cf. Section 2.2.2. Formally x is the signal measured and y the filter output. In our
case x is the hidden state and y the measured hardness, to be consistent with ML
notation.

15 These equations demonstrate the general method and are not the exact equations
later used in the algorithm. Those are explained in Section 3.4.2 below.
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Activate respective offsets according to the current feature vector. De-
pending on which of the k batch positions and which of the j component
types the measured specimen was taken from, the respective offsets are
written to ∆Pos and ∆Comp, where (·) is the scalar product:

∆Pos = cP · fTP , cP = [cp1, . . . , cpk], (e.g., fP = [0, 1, . . . , 0])

∆Comp = cC · fTC , cC = [cc1, . . . , ccj ], (e.g., fC = [1, 0, . . . , 0])

Predict hardness from last states. Based on the model (3.4) given above,
the filter predicts the hardness ŷn for a given combination of route, com-
ponent type, and position based on the last states x[n− 1].

ŷ[n] = xBase[n− 1] + xR[n− 1] · fTR +∆Pos +∆Comp (3.6)

Update states with new measurement information. First, we correct the
measurement ymeas by subtracting the estimated offsets ∆Pos and ∆Comp

because we want to make the states update independent from component
type and batch position.

ycor[n] = ymeas[n]−∆Pos −∆Comp (3.7)

The update of xBase is calculated from Equation (3.8). Additionally, we
enforce that this base state truly follows the complete amplitude of hard-
ness drifts by setting the filter gain aBase + bBase = 1. Otherwise, the
optimization algorithm might become unstable or attribute16 parts of the
overall fluctuation to xR which is supposed only to carry the offset between
the base and individual stations and not parts of the overall fluctuation.

16 by setting aBase + bBase < 1

92



3.4 Custom Hidden States Pipeline

xBase[n] = aBasexBase[n− 1] + bBase︸ ︷︷ ︸
=1−aBase

ycor[n] (3.8)

Accordingly, Equation (3.9) calculates the delta between measurement and
current base state, since the remaining hidden states in xR are only up-
dated with this difference ∆y.

∆y = ycor[n]− xBase[n] (3.9)

Finally, Equation (3.10) updates those hidden states that contributed to
the measurement (i.e., the route taken by the batch from which the test
specimen was obtained). The remaining states stay the same. Since only
one measurement is used to update all the states the last term ∆y in
Equation (3.10) is a scalar.

xT
R[n] = (⃗1− fTR )⊙ xT

R[n− 1]︸ ︷︷ ︸
Keep unaffected states

the same,

+aTR ⊙ xT
R[n− 1]⊙ fTR︸ ︷︷ ︸

use fraction of the
old states and..

+ (bT
R ⊙ fTR )∆y︸ ︷︷ ︸

..update with fraction
of new measurement

(3.10)

Stable optimization of the filter can be ensured by restricting all filter
coefficients to be ∈ (0, 1) and aR+bR ⪯ 1. This filter is now applied to the
series of hardness measurements and supplied with information about each
measurement’s route, component, and position. A differential evolution
algorithm then optimizes the coefficients and offsets to minimize the MSE
between ymeas and ŷ, where xBase[0] is initialized with the mean of the
first three measurements of ymeas.
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3.5 Implementation with Python

The complete framework (i.e., data conversion, databases, analysis, ma-
chine learning, etc.) was implemented using the Python programming
language in the Anaconda ecosystem. Packages that provide specific func-
tionalities are listed in Table 3.14. The choice for Python is based on the
following reasoning: R is slower and has fewer ML-related packages. Mat-
lab is not open source. C++, C#, and Java might execute code faster
but take longer to implement (i.e., rapid prototyping). Python is the best
choice since our use cases are not time-critical (i.e., fast real-time execution
necessary).

17 Is part of the standard Python library.
18 Uses the DEAP package, that implements the actual genetic algorithm, for feature

subset selection.
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Table 3.14: Packages used for storing, preprocessing, and plotting of data as well as
supervised (Su) and unsupervised (Un) machine learning

Package Version Applikation Citation

conda 4.7.12 Package management
python 3.7.8 -
numpy 1.19.1 - [59]
pandas 1.1.2 - [116]
xml.dom.minidom -17 Parse XML files
sqlite 3.33.0 Database
matplotlib 3.3.2 Plotting [66]
seaborn 0.11.0 Plotting [145]
tsfresh 0.17.0 Extract feature [22]
statsmodels 0.12.2 Post hoc tests [111]
fuzzy c-means 0.0.6 Un-ML [31]
sklearn-genetic18 0.3.0 GA feature ranking [15]
deap 1.3.1 GA [47]
scikit-learn 0.23.2 Su/Un-ML, scale, encode [110]
scikit-optimize (incl. skopt) 0.8.1 Optimization (Bayes search) [61]
scipy 1.5.2 Optimization and filter [144]
keras 2.3.1 Su-ML [21]
tensorflow 1.14.0 Su-ML [1]
tpot 0.11.5 Su-ML, optimization [147]
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4.1 Introduction

Making good predictions usually presupposes a good understanding of the
target in question, factors biasing the target, as well as the quality of the
process by which the target was quantified. Often, this quantification itself
is prone to scattering. Therefore, to explain the overall variation in the
distribution of a label, this chapter analyzes the various sources of scatter
and bias individually. It starts with an overview of the meas. pos. on the
cylinder head in Section 4.2.1 and nozzle body in Section 4.3.1, followed
by positional effects in the batch, due to slightly different temperatures
and gas mixtures, for bainitizing Section 4.2.2 and case hardening Section
4.3.2, uncovering their differences and dependencies. Subsequently, an
upper limit for predictability is derived from these dependencies Section
4.2.3 and 4.3.3. This benchmark already points out how effectively ML
methods can be expected to learn from the given measurements and which
limitations are set by irreducible measurement noise1, which is explored in
Section 4.2.4 for HV10 and Section 4.3.4 for HV1.

A list of noise generators includes, but is not limited to, the following:

− Diamond abrasion reducing edge sharpness of the indent.

1 See [80] (p. 524) if the label is affected by significant measurement noise, the
irreducible error increases in severity. The R2 then has a lower upper bound due
to this error.
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− Resolution of the measurement optic limiting the precision of indent
edge detection.

− Variation in specimen preparation leading to different surface condi-
tions or a shift in indent position.

− Recalibration of measurement devices entailing an offset between
measurements of different devices and/or periods.

− Carbide formation causes the surface to be harder in some places
than others.

Although this list may appear exaggerated to the reader, the influence of
these factors on determining hardness and, therefore, its predictability can
not be understated. When considering measurement results, correlations,
and predictions, one should keep in mind that hardness measurement does
not equal hardness measurement, as will be shown in the following sections.
The figures in these sections generally adhere to the following color schema:
Blue for surface (or surface near) hardness measurements, green for core
(or surface distant) ones. Additional colors are explained in the respective
legends.

4.2 Bainitizing

4.2.1 Measurements on the cylinder heads

For evaluation of the bainitization process, mainly two measurements on
the cylinder head are relevant, namely, core and surface hardness, as de-
scribed in Section 3.1.1, taken from a fixed position in every batch. This
section examines the distribution around their means, shown in Figure
4.1, along with the labels’ development over time. Both histograms show a
spread around 60HV. However, while the core hardness is distributed sym-
metrically, with 50% of labels in a window of 11HV around the median,
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Figure 4.1: Above) distribution of core and surface hardness around their mean (=0),
for explanation see Chapter 3.2.6. Below) median, 50%, and 95% bound-
aries of the labels in a rolling window over 25 days

the surface hardness is left skewed2. The maximal achievable hardness3

explains this skewness leading to a sharp drop on the right side.

This representation can also be interpreted as error distribution using the
mean of all values as a predictor. In this case, the prediction error would
already be smaller than ±10HV for 76.6% of measured core hardness
values. The root mean squared error (RMSE) between prediction (in this
case mean) and measured value may be used as a good first indication

2 Mean is to the left of the median, with a tail to the left.
3 Given the amount of carbon in the material, the process gas in the furnace, and

the fixed heat treatment parameters, it is physically impossible to realize greater
hardness at the surface.
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for a prediction’s accuracy. However, to fully understand the behavior of
a predictor, it is always necessary to assess the whole error distribution
as predicting labels at the edges of these distributions (i.e., outliers that
are too hard or soft) might prove challenging due to the vast imbalance
between outliers and satisfying samples.

Regarding the behavior over time, the median of the core hardness is
subject to fluctuations greater than 12HV, making up roughly 20% of the
total spread. Further investigations suggest that chemical composition4,
as determined by the steel supplier, does affect achievable hardenability
elaborated on in the upcoming Chapter 5. The frequency-of-use of the lines
could not predict the drift, which does not exclude its possible influence
but, at least, diminishes the probability. The measuring device might
be ruled out since firstly, the daily check on a hardness reference plate
does not correlate with the drift, and secondly, this behavior needed to be
similar for core and surface. But, a correlation between surface and core
hardness could not be found. In contrast to the factors mentioned above
(that hardly seem to be impactful), the position of a test specimen in the
batch produces a consistent bias. While all labels above were taken from
the standard position, the following section investigates the whole batch.

4.2.2 Position in the batch

A component’s position in a batch can significantly influence the heat
treatment result as heating behavior, and quenching characteristics are
location-dependent (e.g., components closer to the heating elements reach
the target temperature faster). Thus, regularly testing multiple pieces at
specific batch locations is necessary to ensure that all components in one
batch meet the requirements that allow a release to the customer. It also
ensures that predictions made for and learned from one position generalize

4 100Cr6 contains minor variations in its material composition for the period in ques-
tion.
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Figure 4.2: Batch positions of test specimens with number 9 being the standard spec-
imen that is always tested

well to the complete batch. Hence, this section explores the consistent bias
in hardness due to exposure to slightly different physical influences on each
position.

Figure 4.2 shows the specific position of each specimen tested during an
extensive routine check. From 100 batches of such nine-piece measure-
ments, the distribution of surface and core hardness is shown in Figure
4.3. To the right, we see the mean values of each position with their re-
spective 95% confidence intervals (CIs) determined by bootstrapping with
4000 iterations. As seen from the box plots, a certain discrepancy exists
between different positions for the mean values and variances.

The confidence intervals suggest a significant difference between test spec-
imens’ distributions, with the ones for the surface being wider due to more
substantial measurement noise. For the surface, it is thus harder to achieve
the same significance levels for differences between positions as for the core.
Tukey’s HSD test backs up this claim, as shown in Figure 4.4 by the red
asterisks. Further properties of this figure are assessed in the next Sec-
tion 4.2.3. These results imply that, for machine learning purposes, it is
important to distinguish predictions for different positions in the batch.
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Figure 4.5: Temperature uniformity survey for (a) process gas furnace and (b) salt
bath from 35 batches. Shown is the heating from room temperature TR to
target austenitization temperature TA and subsequent quenching to first
transformation temperature TIa. The upper left graph is a zoom in on the
austenitization phase while the upper right zooms in on the quenching

To understand why the hardness differs between batch layers and why
surface and core hardness show inverse behavior, it is helpful to have a look
at the temperature uniformity surveys (TUS). Thermocouples take the
actual component temperature of positions 1, 5, and 9 on their respective
surface and core, the latter by drilling into the component. Figure 4.5
shows the average temperature per position of 35 TUSs. Position 1 and
5 (bottom to middle layers of the batch) are associated with a higher
temperature TA during austenitization for core and surface. For quenching,
the reverse is true. Position 9 (upper layer) is not quenched as harshly (i.e.,
encounters higher TIa) as lower layers since it is the last to enter the salt
bath, with a clear distinction visible between core and surface temperature.

The high core hardness of position 1, thus, can be explained by the greater
TA, as more carbon is solved and fewer carbides remain, while a faster
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quenching rate allows the formation of finer-grained bainite. At the com-
ponent’s surface, two effects counteract each other. While a higher TA

likewise facilitates carbide dissolution, it also might reduce the relative
amount of carbon in the atmosphere and, thereby, lessen its capacity as a
carbon donor. As expected, a GDOES analysis (Figure 4.6) shows signifi-
cant differences between surface5 and core carbon content with increasing
distance from the measured surface. Surprisingly, core carbon content also
seems to differ between position 1 (pos. 1) and the others. A potential
explanation might be the higher TA than pos. 9 and longer holding period
than pos. 5. Both factors possibly allow carbon to diffuse deeper into the
surface of the test component at pos. 1, thereby adding to the core hard-
ness of the component. Other positions of the same cluster do not differ
significantly. Consequently, pos. 9 contains the same average amount of
carbon in the surface as other positions but resolves less of it due to a
lower TA which leads to a slightly higher bainite start temperature. Al-
though a faster quenching would (for complete transformation) lead to a
harder bainitic structure, the slightly slower quenching of pos. 9 allows for
an earlier start of the transformation process as well as a shorter overall
transformation ∆tIb. Thus, upper layer components have a higher bai-
nite to austenite ratio after the first transformation phase. With bainite
formed at the first transformation temperature being harder than the bai-
nite formed at the second transformation temperature, the final resulting
surface hardness is higher. Now, that the differences between positions are
established, the section below elaborates on commonalities.

5 The lesser degree of carbon concentration at the very surface (i.e., 3µm) is most
likely due to decarburizing oxygen that enters the chamber when batches are pushed
to the salt bath, having just enough time to steal away a few carbon atoms from
the surface.
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Figure 4.6: Mean carbon content for three batch positions of core and surface in in-
creasing depths, with 99.9%CI. Number of tested pieces per position:
pos. 1 = 355, pos. 5 = 289, pos. 9 = 4958

4.2.3 Prediction benchmark from batch positions

To avoid fruitless continuation of optimization regarding the ML models
developed later, this section establishes a benchmark that already provides
an upper bound for the best expectable prediction accuracy. After coming
close to this benchmark, any further attempts to improve the models’ accu-
racy (e.g., bigger model, better features or subset thereof, hyperparameter
tuning) are destined to fail. The benchmark is based on the relationship
between batch positions. Figure 4.4 from the previous section, for example,
indicates the Pearson correlation coefficient r between the nine positions
by darkness of color. As might be expected, generally, the distance be-
tween two positions seems to decrease their correlation slightly. Under the
assumption that two spatially close components of the same batch should
show the same hardening effect, the correlations appear to be moderate.
A more detailed picture is given in the Appendix A.1. To estimate the
precision with which the hardness of one position can be predicted by the
hardness of another position from the same batch, linear regression was
used6. Figure 4.7 provides the resulting distribution of the RMSE as box
plots including their medians as well as their 95%CI based on a 4000-fold

6 Related models (e.g., Huber, Lasso, Ridge, . . . ) lead to similar results even when
using warping or quantile transformation to adjust for the skewness of the surface
hardness.
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bootstrapping. The same analysis using the R2 score can be found in the
Appendix A.2.
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Figure 4.7: RMSE distribution by 4000-fold bootstrapping for linear regression of each
position pair. Whiskers indicate the 5 and 95 percentiles of the distribu-
tion, boxes the 2nd and 3rd quartile, notches the 95%CI of the median

This analysis suggests a significant difference in the predictability be-
tween position pairs. The Scheffe test for pairwise comparison in Ap-
pendix A.3 supports this claim. The wide distribution range between
whiskers is due to the small number of 100 data points, containing some
outliers that strongly influence the RMSE, depending on how often they
have been drawn in a particular bootstrap. Nevertheless, some positions
clearly exhibit more similar behavior for the resulting core hardness than
others, which might partly be explainable by spatial proximity (e.g., 4
and 7 are close with high correlation while 9 and 1 (as well as 9 and
2) are far away with low correlation). Besides the lower correlation of
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opposed position pairs between the lowest and highest level, other loca-
tion patterns (e.g., front-back, left-right) are not easily distinguishable.
Hence, further attempts to explain better predictability between specific
pairs are omitted not to be fooled by randomness. However, from the
means (i.e., RMSECore=7.9HV and RMSESurface=10.1HV) it is immedi-
ately clear these predictions can not suffice as a benchmark because, first,
their values are partly worse than using the mean of the complete distri-
bution as a predictor (conf. Section 4.2.1), and second, the measurement
error of two parts now affects the accuracy.

A much better benchmark can be established by using the mean of 8
positions as ground truth and predicting this value with the 9th posi-
tion7. Figure 4.8 shows that there still exist significant differences be-
tween the predictive capabilities of each position to predict the whole
batch8, but the overall RMSE is much lower (i.e., RMSECore=5.5HV and
RMSESurface=7.2HV) compared to the piecewise predictions. They are
used as an approximation for the achievable predictability between test

7 All positions have been centered around zero by subtracting their respective means,
to account for the offset between positions.

8 The mean of the remaining 8 positions.
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Figure 4.9: Benchmark error distribution

specimens when drawing a test specimen randomly from one position and
generalizing its hardness measurement to the complete batch, resulting in
an R̄2

core of 0.65 and R̄2
surface of 0.58.

Interestingly, there is no clear pattern in terms of generalizability from one
position to the complete batch. Positions 4 and 6 distinctly show below-
average errors (dashed line) for surface and core hardness, which would
make them the best candidates for regular inspection in terms of gener-
alizability to the complete batch9. Especially pos. 9 seems to show one of
the worst generalizations for core and best for surface hardness predictions,
rendering an explanation based on position somewhat implausible.

To sum up, Figure 4.9 gives the desired benchmark in the form of the
accumulated test set prediction errors from all positions and shall serve as
a yardstick for the ML predictions from process parameters. It assumes
that predicting a component’s hardness based on the measured hardness
of all remaining components is the closest approximation to predictions
from process parameters achievable, including the noise in the process,

9 This might not be the preferred testing strategy which usually seeks to test the
worst position in order to safeguard the complete batch.
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edly drawing 3 values and taking the mean to simulate three indents

preparation, and measurement. The following section estimates the con-
tribution of this measurement noise to the overall variance of the hardness
distribution.

4.2.4 Measurement error

While specimen preparation (e.g., cutting, embedding, polishing) has an
influence on the measured outcome, here, the focus lies on the irreducible,
not negligible noise from indention force and measurement of diagonals. It
was evaluated by 100 HV 10 indents on a standardized comparison plate
with a nominal hardness of 692HV the result of which can be found in
Figure 4.10 a). Although the PDF looks like a normal distribution, both
the Shapiro-Wilk and Anderson-Darling test, reject this hypothesis. To
simulate the testing practice of taking the mean of three indents (cf. Sec-
tion 3.1.1), a Monte Carlo simulation was used resulting in Figure 4.10 b),
illustrating the accuracy gain of repeated indents10.

While this analysis shows that, in principle, some of the labels’ inaccuracy
can be attributed to the measurement procedure itself, it does not account

10 PourAsiabi and colleagues [113], for example, used the mean value of 8 indents to
improve the accuracy of their labels.
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for additional contributors. To get a more complete picture, the original
three hardness values of 565 batches were retrieved. Figure 4.11 a shows
that their estimated PDF matches the distribution of the complete data
set, compare Figure 4.1, indicating that the samples are representative of
the overall distribution. Figure 4.11 b) then plots the three measurements
(x-axis) over their mean (y-axis), where the darkness of color indicates the
mean absolute error (MAE) from their respective mean. The upper figure
also delineates the averaged MAE of the three indents over their actual
hardness. It clearly shows that the further the mean of three indents is
away from the distribution center, the larger their MAE. Consequently,
data points at the distribution edge are more prone to measurement error
as the underlying indents have a greater MAE. Vice versa, a greater MAE
of the three indents more likely pushes their mean to the distribution
edge. This phenomenon is also shown in Appendix A.4 by a Monte Carlo
simulation.

The deviation from the three indents’ mean is also shown as a histogram in
Figure 4.11 c) which is wider than the distribution of the hardness compar-
ison plate, suggesting that further scatter is introduced in routine testing.
The MAE is much greater for the surface measurements cS) likely due to
the lower preparation effort and uneven dispersion of carbon in the surface.

As the mean of the three indents is close to but not precisely the true
hardness, this error, which was determined in Figure 4.10 b), must be
added to the MAE of the distribution in c). The result is shown in orange
in Figure 4.10 d). It represents the closest estimate of the measurement
error distribution of one indention from which now again three values are
repeatedly drawn and averaged to simulate the standard procedure. It
gives rise to the red distribution as the best estimate for the true error (or
closest estimate) from 3 measurements.

In order to be able to estimate the R2 loss due to measurement noise,
the true hardness distribution (i.e., the distribution of the true hardness
without measurement noise) must be recovered. Figure 4.12 a maps the
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Figure 4.12: a) Map of measured distribution range to estimated true distribution
range without measurement noise. b) Loss in R2 score when applying
measurement noise to the true distribution. The wider the underlying
distribution, the smaller the influence of a constant measurement error.
The gray area indicates the most probable range of distribution range
(and resulting loss) inferred from the distributions in Figure 4.1

range (delta between the minimum and maximum) of this recovered true
distribution to the measured distribution by adding11 the red measurement
noise from Figure 4.11 d) to the recovered true distribution.

If there was no measurement noise, an R2 of linear regression between
true and measured distribution would be equal to 1. That is, the R2 loss
would be zero, because those distributions would be the same. However,
to calculate the loss of R2 due to measurement noise, it is important to
know how large the measurement noise is compared to the range of the
distribution (cf. signal-to-noise ratio). In the following, this dependence
between R2 loss, measurement error, and distribution range is explained.

Linear regression between values of the true and measured distribution
results in an R2 score which is strongly dependent on the range (delta

11 Adding the red error distribution to the true distribution can either happen ran-
domly (dark blue) or sorted (light blue), Figure 4.11. Sorted means that the n
values are drawn from each distribution at random, but then both arrays are sorted
and added. This is done because the MAE rises with distance from the distribution
mean, as shown in Figure 4.11, and so, the biggest negative and positive errors
from the error distribution are added to the smallest and highest values from the
true distribution. As mentioned above, values at the edges are at the edges because
they most likely experienced a higher measurement error.
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between the minimum and maximum) of the true and measured distribu-
tion as shown in Figure 4.12. Because the measurement error is constant,
it leads to a stronger R2 loss for narrower distributions12. At a range of
approximately 40HV, the core hardness distribution is subject to a loss of
0.22 (indicated by the red line) due to measurement errors, which means
that the hardness prediction by measurement reaches a benchmark of R2

= 0.78. This R2 provides an upper limit for any prediction based on
the 3-fold 10HV measurement procedure used above. The prediction of
core hardness from process parameters must lie below this benchmark and
most likely is below R̄2

core of 0.48 derived from multiple position testing in
Section 4.2.3.

In sum, about 25% to 50% of the overall variance of the labels is ex-
plained by the measurement procedure with another 20% due to drifts in
core hardness. In the following, the same investigation is performed for
measurements after case hardening. Further predictors for variance are
explored in Chapter 5.

4.3 Case Hardening

In contrast to the cylinder head, both, more positions on a nozzle body,
referred to as measurement positions (meas. pos., Section 4.3.1), as well
as more test specimen from a single batch, referred to as batch positions
(Section 4.3.2), are evaluated (cf. Section 4.3.3). Further, hardness on a
nozzle body is measured by a single HV1 indent elaborated on in Section
4.3.4.

12 An error of 2HV has a greater impact among values between 0 and 10HV (20%
error) than 0 and 100HV (5% error).
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4.3.1 Measurements on the nozzle body

To understand the data available for selected meas. pos. on the speci-
men, Figure 4.13 depicts their hardness distributions, ordered by increas-
ing mean hardness from left to right and top to bottom. Distributions are
composed of pieces from four batch positions, explained in detail in the
upcoming Section 4.3.2. All labels in the shown histograms were corrected
by their batch position medians with their offset to the overall median to
avoid a variance broadening in the shown distribution.
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Figure 4.13: Hardness distribution of meas. pos. on the nozzle body with increasing
mean hardness from left to right and top to bottom. Green indicate
meas. pos. >= 0.4mm away from the surface, blue = 0.1mm

Most meas. pos. seem to exhibit a comparable distribution in terms of
shape and variance, with notable exceptions for undercut, shoulder, and
seat middle 0.4mm. Greater variance in the undercut measurements might
be due to the concave geometry of the nozzle body at this position, see
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Figure 4.14. It exhibits less surface for carbon uptake, probably because
it is shielded from the acetylene flow by the way the rag (that holds the
nozzle bodies) is constructed, which also explains why this position is the
least hard from the group measured at 0.1mm. Similar to the surface
of the cylinder head, the shoulder has a left skewed13 distribution. It
indicates that the distribution is close to the achievable hardness, which is
also congruent with it being the hardest measurement point. The increased
variance of seat middle at 0.4mm might be due to several factors.
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Figure 4.14: Carbon content of a nozzle body after the carburization step simulated
with ANSYS CFX 18.2

First, a slight deviation from cutting the nozzle body in its very cen-
ter during specimen preparation results in a significant displacement of
the meas. pos., as the drill hole inside the nozzle body is relatively thin.
Second, the geometry of the nozzle tip has a unique design for different
customers, resulting in varied drilling holes and carbon diffusion parame-
ters. Lastly, the thin geometry at the seat middle, see Figure 4.14, allows
for carbon to also diffuse from the outside of the nozzle. It has a much
higher surface-to-volume ratio and penetrates as far as to reach the car-
bon diffusing from the inside. It is expected that measurement points with

13 Mean is to the left of the median, with a tail to the left.
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similar carbon diffusion properties exhibit comparable hardening effects,
elaborated on in the following.
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Figure 4.15: Correlation coefficient r between two measurement positions in grey. R2

score (purple) and RMSE (red) from linear regression when predicting
the hardness of one meas. pos. from another

While surface and core hardness of the cylinder head were independent of
each other, the multiple measurement points of the nozzle body display
clear correlations, shown in Figure 4.15. Mutual distance from the surface,
expectedly, serves as a good predictor for a position pairs’ r in most cases.
Also, shaft inside and CHD exhibit a strong correlation, as the latter is
estimated from the former, while seat middle at 0.4mm generally shows
decreased predictability, most likely due to the particular carburization
behavior mentioned above. Figure 4.15 additionally points towards the
nonlinear relationship between r and R2. In this case R2 ̸= r2 because R2

was calculated from a prediction using linear regression, that is, fitting a
linear regression to the data points of two measurement positions and then
predicting the first position from that second and vise versa. Figure 4.15
additionally shows the RMSE from these predictions, where the prediction
is always made from y-axis to x-axis. The RMSE clearly is unsymmetrical,
that is, predicting meas. pos A (e.g., Seat middle 0.4mm) from meas. pos
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Figure 4.16: Batch position of the 4 test specimens in a case hardening batch

B (e.g., Shaft inside 0.4mm) leads to quite different results then predicting
B from A.

The r = 0.81 between shaft inside 0.4mm and CHD (550) only achieves
an R2 = 0.68, while the r = 0.64 to shaft inside 0.7mm already drops to
an R2 = 0.43. This seems like an astonishingly loose connection between
two positions that are only 0.3mm away from each other on the same
test specimen and points towards a strong potential influence of a hard-
ness measurement error. Although a not to be underestimated portion of
scatter will be attributable to the measurement procedure, these findings
already hint at the difficulties involved in precisely learning the hardness
from process parameters, conducted in Chapter 6.

4.3.2 Position in the batch

After comparing meas. pos. on the same specimen, we now turn to the
behavior between different batch positions. Test specimens are regularly

117



4 Label Analysis

sampled from two alternating position pairs, including a center c1-c4 and
front f3-f6 pair, shown in Figure 4.16, where numbers indicate the layer14.
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Figure 4.17: Mean values per measurement and batch position with 95%CI, taken
from 3000 batches

Since two measurement specimens are taken from every nozzle body batch,
many more data points are available for different batch positions com-
pared to the cylinder head, resulting in narrower confidence intervals for
the mean of every batch position, shown in Figure 4.17. Once more, a
batch position-dependent bias can be observed, especially for f3, which is
significantly harder than the other green meas. pos., except for the core.
Especially the already well-known meas. pos. seat middle 0.4mm creates
a substantial difference of 10HV between c1 and f3. Since only the core

14 Bottom most layer has number 1, as it is the first layer that is filled with nozzle
bodies.
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shows a decreased hardness for f3, the current hypothesis for these differ-
ences is the carbon donator distribution behavior in the vacuum furnace.
Acetylene is injected through nozzles in the door and the three walls, see
Appendix A.5. Under the assumption that spatial closeness to the injec-
tion increases the amount of time and gas a batch position is exhibited
to the carbon donor, f3 should receive the most opportunity to absorb
carbon. Although f6 also sits close to the injectors, it likely receives less
acetylene since the injectors are mounted behind the heating bar15, while
c1 and c4 sit deep inside the batch. This small head start of f3 during
every injection phase could be enough to diffuse significantly more carbon
into deeper parts of the component, leading to an increased hardness for
this batch position, except for the core. Since carbon saturation occurs
at the components’ surface (blue positions) during each acetylene supply
phase for all batch positions, no significant difference in hardness is found
there.

Surprisingly, the temperatures at the various positions seem to have a lesser
impact on the resulting hardness than the carbon. The only meas. pos.
readily explained by the temperature uniformity surveys in Figure 4.18
for the vacuum furnace and Figure 4.19 for deep freezing and tempering,
is the core, which is least affected by carburization. Position f3, in this
case, has the lowest hardness in accordance with the significantly lower
quenching rate of 140 s compared to approx. 88 s for all other positions.
Besides the lower austenitization temperature at c1, which might result
in a slight loss of hardness, the remaining temperature conditions, except
for quenching, are roughly equal for the positions or at least seem not to
affect the resulting hardness consistently. Neither final tempering nor deep
freezing temperature warrants a hypothetical claim to have an effect on
hardness since the temperature spread between the positions in question
is too small.

15 The bar blocks the way for free gas flow and heats the injected gas significantly.
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Figure 4.19: Temperature uniformity survey for two deep freezers and the three tem-
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◦C) during soaking

In summary, carburization behavior and quenching rate seem to be more
impactful for a batch position’s hardness, at least for surface distant ones
(green), than the various soaking temperatures. Near-surface differences
in meas. pos. (blue) per batch position evade an immediate interpreta-
tion. Furthermore, it can be inferred from the TUS that the intra-batch
temperatures scatter much stronger than the inter-batch ones, prompt-
ing the implication that nozzle bodies within the same batch might have
greater variance than nozzle bodies from the same positions of consecutive
batches. This variation in the measurements position behavior over time
is discussed in the following.

121



4 Label Analysis

Behavior over time

To uncover seasonal and temporal behavior of quality indicators, Figure
4.20 shows a smoothed trend of meas. pos.16. The curves have been shifted
horizontally such that the depiction in one graph is possible, which means
that the y-axis does not show the true hardness in HV but can be used
to infer the fluctuation in ∆HV. The following three types of fluctuation
may be distinguished: first, sharp drops or ascents (↑ 2014, ↓ mid 2015,
↓ mid 2018), second, cyclic oscillation (from mid 2015 until 2017), and last,
small, fast scatter throughout the graph which is presumably primarily
attributable to measurement noise.

Drops in hardness for strongly carburized positions in 2015 are most likely
due to a rise of the initial17 tempering temperature as a countermeasure for
a strong undershoot of the target temperature. It would also explain why
shaft inside 0.7 and core are not affected, since, for one, the thermal energy
takes a long time to reach deeper layers18 and, for another, much less
distorted martensite by less carbon, which could be tempered, was formed
in the first place. Changing the diamond on the indenter and recalibrating
the measurement device led to a sharp drop during 2018. Figure 4.20 a also
reveals a sudden decrease in standard deviation (SD) after the diamond
change 2018 (i.e., SD ≈ 7HV (before), SD ≈ 5HV (after)) recognizable
by the much closer blue horizontal line patterns. They emerge because
the measurement optic is not able to dissolve more precisely. Combined
with internal rounding, this leads to discretization with a step size larger
than a single Vicker, leading to the line-shaped patterns in the depiction.
Such maintenance and recalibration events demand that not all labels be

16 The graph includes measurements from all four test positions in the batch, which
was corrected for by shifting all values to the common mean.

17 While entering the furnace.
18 A change in the outside temperature affects the inside of a nozzle body much later

and to a lesser degree.
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treated equally and must be corrected period-wise if used in a single data
set.

Locating plausible hypotheses for type 2 cyclic (e.g., 2016) fluctuations is
more challenging, as no single event can be held accountable. The sup-
ply chain is proposed as main factor as steel composition, extrusion pro-
duction, and annealing may experience changes over time. A comparison
between blue (i.e., near-surface, carburized meas. pos.) and green (i.e., sur-
face remote positions) lines, especially in the period around 2016, speaks
for the steel composition hypothesis, as the blue graphs show much less
fluctuation due to the carburization while the hardenability of the green
graphs, ceteris paribus, is dependent solely on steel composition. Chap-
ter 5.3.1 will further substantiate this hypothesis. Plant maintenance can
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most likely be ruled out as inspections occur at different times for each fur-
nace, and the fluctuation does not change much when looking at machines
individually.

Overall, the measurement points move remarkably uniformly. The parallel
motion is reflected in the correlation described earlier, where the sharp
drop in 2018 indeed adds to that effect. Thus, part of the correlation
does not stem from physically similar behavior between positions but a
recalibration of the measurement device. The following section seeks to
quantify this relationship between batch and meas. pos. in more detail.

4.3.3 Prediction benchmark from batch positions

Similar to the cylinder head, LR was used repeatedly to predict the two
positions in each position pair c1,4 and f3,6 from each other in a 1000-fold
bootstrapping, the result of which can be found in Figure 4.21.

While the variances of R2 distributions are much narrower because over
3000 batches were evaluated, their means are also widespread. Generally,
the correlation should decrease for greater hardness, as can be seen in Fig-
ure 4.21, from left to right, because measurement precision wears off (cf.,
upcoming chapter). The three outliers are explained as follows: The core
hardness exhibits worse predictability than most other positions because it
does not enjoy the mitigating effects of carburization. Forming the lower
end, seat middle 0.4mm prominently sits around R2 = 0.19, while the un-
dercut averages at R2 = 0.50 marking the upper end. Low predictability
of the former is readily explained by the great variance in degree of car-
burization19 as well as low repeatability20 in preparation and indention. It
is more difficult to explain the high R2 of the latter. Its distribution (cf.,

19 Carbon diffuses from inside and outside.
20 The very small, round geometry makes it more difficult to cut precisely in the

middle and, thereby, often leads to an offset of the indent.
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4.13) has a negative kurtosis21 leading to a more uniform distribution with
more values at the edges. Such a property can enhance the R2 because
the total sum of squares becomes larger.

In most cases, the centerpieces can be predicted slightly but significantly
better from each other than the two front test specimens. Although it is
clearly visible that predictability depends rather on measured position on
the specimens than position pair of test specimens in the batch. Conse-
quently, a benchmark for predictability was inferred for each meas. pos.
individually as the mean R2 score of each meas. pos. These benchmarks
are strongly dependent on the precision with which hardness is determined.
An assessment of HV 1 measurement precision is given below.

21 It is more round (less peaky) than a normal distribution.
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4.3.4 Measurement error

The diagonals of an HV 1 indent on a hardness comparison plate of about
780 HV are about 48.7 µm long. According to Formula 4.1, subtracting
only 0.1 µm leads to a decrease of 3HV indicating, that a precise hardness
measurement necessitates a sharp diamond and a high focus measurement
optic [102].

HV = c
F

d2
,with c = 0.1891 and F = 9.806 65N (4.1)

By repeating the measurement of the same diagonals (d1,d2) of one HV 1
indent 50 times, an estimate of the measurement’s optical precision can
be gained. The smallest 8% of values measured on a hardness comparison
plate of 780 HV were d̄min = 48.6 µm=̂ 776HV and the largest 8% d̄max =

48.9 µm=̂ 785HV. Thus, the optic alone introduces a spread of around
9HV with a resolution not allowing to resolve single HVs but only about
3 HV for this hardness.

To investigate the error between measurements, one hundred HV 1 indents
were made on a standardized hardness comparison plate of 710HV. The
yellow histogram in Figure 4.22 a shows the result of these measurements,
which approximately fit a triangular distribution. Under the assumption
that the true hardness distribution (red) after heat treatment also has a
triangular shape, Figure 4.22 b) shows the resulting distribution (orange)
when applying the measurement error to the original distribution.

This result closely resembles the distribution shapes of Figure 4.13. On this
basis, the R2-loss resulting from the measurement error can be estimated.
Figure 4.22 c) maps the range of the measured distribution (x-axis) to the
estimated true distribution range (y-axis) when subtracting the measure-
ment error. Figure 4.22 d) then shows the reduction of R2 in dependency
of the range of the distribution the error was applied on. Obviously, the
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710HV with estimated PDF (dashed line). b) red: assumed true hard-
ness distribution, orange: PDF after adding the yellow measurement
noise to the red distribution. c) Map of measured distribution range to
estimated true distribution range without measurement noise. d) Loss
in R2 score when applying measurement noise to the true distribution

larger the range of the true distribution, the more insignificant the influ-
ence of the same measurement error and, hence, the smaller the loss of
R2. As most measured distributions in Figure 4.13 have a range of about
65HV, the red line indicates that on sole evaluation of the measurement
error the best prediction can never exceed R2 = 1−0.16 = 0.84. After cor-
rection for the recalibration that artificially widens the distribution around
15HV, the influence becomes much larger and drops the achievable R2 to
0.70. The difference between this irreducible error and the benchmarks
derived earlier points out the significance of precise specimen preparation.
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4 Label Analysis

4.4 Discussion

For label analysis in general, as we have seen, it is not enough to know
the distribution of the variable under examination but also necessary to
investigate its dynamic behavior over time. Not only does it reveal drifts
and fluctuations, but it can also indicate discontinuities in the way mea-
surements were obtained, whether it is due to a diamond change, a new
measurement device, a change of supplier, or a changed quality of the sup-
plied. This dynamic portion is indispensable for a holistic understanding
of the partial variations that make up the label distribution. In addition,
a gap-free data collection, including a log of all changes made with regards
to recording and process, is imperative to enable proper post hoc expla-
nations. Such information can then be used, for example, to explain the
relationship between the influence of local temperature differences on the
consistent hardness offsets between batch positions. These discrepancies
are to be expected from most kinds of batch processes.

Several sets of labeled data should be collected, if possible, to capture
the variance contributions due to measurement errors (including sample
preparation, instrument, and measurement optics) and derive a prediction
benchmark that cannot be exceeded based on the process used to obtain
the label. This approach allows a very early assessment of the achievable
predictability and thus which economic benefit can be maximally achieved.
Such data sets may also point out how the trustworthiness of hardness
measurement drops with increasing distance from the expected values. In
addition, it is strongly recommended to regularly check the measuring
devices (especially for hardness) to obtain comparable and usable data.

Finally, it was shown that it is not sufficient to rely upon one statistical
measure to quantify prediction capacity. Mean values, RMSE, and R2

with respective confidence intervals are good indicators but might not tell
the full truth (e.g., mean of unevenly split categories) of a specific research
question.
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In sum, a data scientist analyzing the labels belonging to a new heat treat-
ment process is advised to do the following: Analyze the dynamic label
behavior, including an explanation of drifts, discontinuities, and changes in
variance over time by use of rolling windows or other filters. Assess the in-
fluence of various batch positions to understand the hardness distribution
in different locations as well as derive a benchmark for their predictability.
Evaluate the accuracy of the measurement procedure (incl. indentation,
optical resolution, and specimen preparation) to find the limitations of
possible predictions and the meaningfulness of single measurements.

As always, the interpretation of the diagrams should be made with great
caution, which means that in the case of minor deviations or contradictory
results, premature conclusions should be avoided, as unmeasured and/or
unknown influences may well distort results. The remaining known and
measured influences, including different furnaces, routes, process parame-
ters, and alarms, are explored in the next chapter.
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5.1 Introduction

While some of the variances in the labels could already be attributed to the
measurement error, this chapter seeks to explain as much of the remaining
variance as possible by analyzing the various properties of the two heat
treatment processes. These, in turn, may later serve as features for the
ML algorithm if a sufficient physical explanation for their suitability as
predictors could be established. Expert knowledge thus plays a role in
feature selection that should not be underestimated.

Changes in chemical composition are uncovered in the first Section Ma-
terial for the 100Cr6 (5.2.1) and 18CrNi8 (5.3.1), explaining much of the
larger long-term fluctuations in the label. As not all production lines are
built equal, Section 5.2.2 takes a closer look at the individual lines for
bainitization, while 5.3.2 examines the different stations of the case hard-
ening process as well as the routes a nozzle body batch can take through
these stations. Further, meta feature analyses of alarms and component
types are provided in 5.2.3 and 5.3.3, respectively. In each of the final sec-
tions, we address the features extracted from the sensor signals in order to
show how much variance is actually caused by variations in the process of
bainitization 5.2.4 and case hardening 5.3.4 itself. Moreover, we encounter
the difficulty of selecting good features for the right reasons, since tempo-
ral changes in one feature may cancel out the effect of another or result in
spurious correlations.
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5.2 Bainitizing

Before the results of the feature examination are discussed, the follow-
ing paragraphs set the scope detailing which analysis will and will not
be included. Previous chapters examined test specimens from all batch
positions. But since position 9 is the only component tested after every
produced batch (i.e., standard specimen) this chapter will, without loss of
generality, focus on these specimens, as much more data is available and
predictions will be made for this test position, exclusively.

Although the following investigations focus on the core hardness of the
cylinder head as a methodical demonstration, the analytical approach for
the surface hardness is generally the same. However, the latter exhibits
three undesirable characteristics that make analysis more difficult. First,
the measurement error is increased at the surface due to the inferior prepa-
ration and higher hardness (smaller indent). Second, the surface is exposed
to a fluctuating furnace atmosphere, the composition of which currently
is not measured precisely but is known to change the surface carbon con-
tent of the cylinder heads and, thereby, influences its hardness. Third, the
controlled gas flow in the furnace atmosphere also differs for the various
components produced in a particular line. These components themselves
absorb different amounts of carbon and, thus, may leave behind different
amounts of carbon in the furnace. While the hypothesis that a cylinder
head batch is decarburized if it follows a batch of components with a lower
enrichment gas flow process must currently be rejected based on the data
available, future research with more sensors may investigate such ques-
tions in more depth. Lastly, geometric variations between the cylinder
head types are only of small magnitude and have no significant influence
on the hardness at the measurement positions, which is why no deep dive in
this matter is provided. However, the following section focuses on material
composition rather than geometry.
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Figure 5.1: a) Correlation between weight percentages of elements in 100Cr6 and core
hardness, b) share of carbon (C) and molybdenum (Mo) in 100Cr6 along
with core hardness over time, c) scatter plot of 1st and 2nd principal
component (PC) of chemical composition with color indicating respective
hardness, d) weights of 1st and 2nd PC with explained variance of 38%
and 18%, respectively

5.2.1 Material

As mentioned in Section 4.2.1, a sufficient change in the chemical composi-
tion of the bearing steel 100Cr6 might influence its hardenability and cause
significant fluctuations. This section investigates these changes and their
consequences for the bainitization of the cylinder head’s core hardness, as
well as predictability of hardness from the chemical composition.

A steel melt usually is obtained from a mixture of particular ores and scrap
metal, each containing specific proportions of chemical elements (hereafter
referred to only as elements). Naturally, their shares in consecutive steel
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melts are, except for manganese (Mn), all positively1 correlated, as shown
in Figure 5.1 a), containing a selection of elements affecting hardenability.
Molybdenum (Mo) and carbon (C) exhibit a high r suggesting a partic-
ularly strong positive influence on resulting hardness, also visible in their
partial parallel movement to the core hardness in Figure 5.1 b). In accor-
dance with the literature [99], both are, in fact, generally hardness enhanc-
ing. Evidently, they are not the only factors, as indicated by the Mo spike
in mid 2020 which is not accompanied by a corresponding peak in core
hardness. Chromium (Cr), for example, is known to increase hardenabil-
ity as well but only has a small r. Yet, it must not be concluded that it has
no influence in general, but only that its weight fraction is kept relatively
constant over time, as required by high steel quality specifications.

To investigate whether element concentration indeed may be associated
with core hardness variation, Figure 5.1 d) shows a PCA with two principal
components (PC). While the weights of the 1st PC closely resemble the
correlation coefficients to the core hardness, the 2nd PC mainly contains
the uncorrelated Mn. As can be seen in the scatter plot 5.1 c), the PCA
manages quite well to separate steel batches resulting in greater hardness,
colored in green, from the less hard, colored blue (without any knowledge
of the target). Clusters mainly form due to horizontal separation (1st PC),
although the 2nd also helps to carve out some of the red points of medium
hardness. Based on these observations, the fluctuation in core hardness
might be partially attributable to changes in chemical composition. To
gather further evidence for such a claim, this fluctuation shall be predicted
by the elements using ML methods.

The ML pipeline used for predictions was optimized by TPOT, consisting
of polynomial feature transformation, an AdaBoost regressor, and Least
Angle Regression, detailed in Section 3.3.3. As can be inferred from Figure
5.2, the way in which the data is split into training and test sets makes a

1 The addition of one element to the melt by scrap metal commonly involves the
addition of other elements with a proportional share.
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right) box plot of R2 score of the respective test sets from 200 trainings

profound difference. While predicting randomly sampled training points
is satisfactory, future periods from which no training data is given to the
algorithm can only be predicted with much less accuracy, also indicated
by the R2 box plots. Results from this chronological split reveal the im-
practicality of an ML approach for the precise forecast of the drift from
alloy composition because the remaining drift factors are not yet known.
Moreover, it shows that the confidence in the predictions of an ML pipeline
should depend on the proximity of the train-test split to the real-world use
case to prevent bias in the results due to information leakage2. Generally,
it is difficult for regression models to extrapolate if the true underlying
system structure can not be derived from the data or is even physically
unknown (i.e., no scientific model exists for the phenomenon). If physical

2 In case of a random split, information about "future" leaks into the training set.
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Figure 5.3: a) mean core hardness over time per line smoothed by a centered rolling
window of 31 days (±15 d). Lines are only3shown for production days. b)
box plot of core hardness with median and its 99%CI. Dashed lines show
median (orange) and mean (gray). Columns at the bottom show number
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properties of the system are known the design of hybrid models can ad-
vance the extrapolation capabilities [11]. The final prediction model must,
nevertheless, get information about the drift to make meaningful predic-
tions. Because the chemical composition does not suffice to do so, Section
6.2.1 will introduce filters to track these drifts. The following sections will
analyze further factors leading to differences in core hardness over time,
starting with the production lines.

5.2.2 Production line

Although the data was produced by lines similar in construction, slight
variations are expected due to, e.g., sensor placement, isolation from en-
vironmental influences, or maintenance cycles that impact the heat treat-
ment process. To capture varied output originating from such line dissim-
ilarities, their individual produced mean core hardness over time as well
as a box plot are shown in Figure 5.3. A similar analysis for the surface
can be found in the Appendix A.6.
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5.2 Bainitizing

The following three observations are immediately apparent: First, lines
do consistently produce cylinder heads with significantly different hard-
ness but mostly possess similar variance. Second, the lines experience a
collective drift, moving up and down in parallel. Third, the number of
cylinder head batches processed during the shown period differs visibly
- see the columns at the bottom of Figure 5.3 b). Reasons for the off-
set between lines include varying age, slight variation in process settings,
overhaul, and divergence in construction. While the influence of process
settings will be assessed in Section 5.2.4, the individual characteristic of
each line may not be separable in more detail. As the offset between lines
can not be predicted and is not constant over time, fluctuations must be
tracked individually. It also means that a desired reduction in test parts
and a replacement by prediction can only go so far, as the fluctuation is
still recoverable from the remaining test parts. Periodic fluctuations will
be discussed in the next section alongside additional (meta) information
that might prove valuable.

5.2.3 Metadata

Seasonality

Frequent changes in production circumstances like outside temperature
fluctuation over year and day or decreased capacity utilization of lines
on weekends might lead to cyclic hardness variation. Figure 5.4 a) shows
an autocorrelation analysis where an array of the mean core hardness of
each day is correlated with an array where these values were shifted by d
days (lag in days) with the turquoise shaded area indicating insignificant
correlation. The representation is limited to one month since the analysis
yields little evidence for repeated behavior over longer (i.e., months or

3 A rolling window would also provide values for a day with no production using the
days before and/or behind the current day. In this case, values are set to NaN.
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hardness with mean hardness of last n batches or d days (implemented
with a rolling window)

years) or shorter (i.e., hours) periods. The hypothesis that summer-winter
and day-night outside temperature fluctuations alter production outcome
could be rejected on this account. For a lag of one day, r is equal to .57,
implying that the average mean hardness of today may be a good estimate
for the hardness of tomorrow (or yesterday). This claim is supported by
Figure 5.4 b) that shows the correlation between today’s hardness and the
last n batches (d days respectively). The mean hardness of the last 20
batches produced on one line gives a good prediction about the upcoming
batches.

Figure 5.4 a) also shows weekly spikes, which likely stem from batches
produced on Saturdays which exhibit a significant drop in hardness, see
Figure 5.5 a). Production hardness does not change over the course of a
day (with a very slight exception for 15 o’clock batches), see b). A further
investigation shall reveal the reason for this behavior as it can not be
assumed that a Saturday (or the afternoon) in and of itself is causing a
diminished core hardness rather than potential temporary irregularities,
which are usually captured by alarms.
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Figure 5.5: Box plot of core hardness from batches with production start on given: a)
day of the week and b) time of the day

Alarms

To use alarms as features, a causal relationship must exist between a trig-
gered alarm and the cause for this alarm leading to a change in output
quality (i.e., core hardness). This fact is spelled out explicitly since the
mere comparison of average hardness between batches produced, including
a specific alarm and those without, would lead to false inferences. To make
this point less abstract, two examples shall be given: If alarm A would be
more frequently exhibited by a line that generally produces softer parts
(e.g., line 20), then, in overall comparison, batches produced including A
would exhibit a lower than average hardness. If the cause for alarm A is
not also causing a lower hardness, a misleading feature would be intro-
duced. This can be circumvented by either a) looking at the alarms for
each furnace individually but, thereby, losing explanatory power as the
data is split up and reduced, or by b) correcting the hardness values for
each line such that the median of each line is equal to the overall median.
The second example concerns the hardness fluctuation over time. If alarm
A coincides with a time interval of greater hardness (e.g., March 2020),
maybe because of a defect relief valve, then, even after the previous cor-
rective measures, this alarm would be associated with a greater average
hardness even though the two are not causally related. To reduce the
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probability for this attribution error, all hardness values can be corrected
by the joint fluctuation that occurs for all lines over time.

In sum, the hardness values of each line are corrected by their offset to
the common mean (correcting for line difference) resulting in Figure 5.6 a);
then the joint fluctuation (yellow line) is subtracted from each hardness
value (correcting for trends), resulting in 5.6 b). After this correction,
alarm data can more safely be examined for all furnaces at once. Unfortu-
nately, this correction nullifies alarms that actually occur for all furnaces
at once and lead to a changed hardness (e.g., alarms concerning the over-
all process gas supply system). Such events must be examined before,
although the probability for this kind of event is quite minimal.

The complete set of alarm types lies well beyond 200, which is why a
selection of alarms is analyzed here to showcase their properties. To include
a particular alarm A as a feature, it must occur often enough to make
statistically reliable assertions. Furthermore, its occurrence must be part
of a causal chain leading to significantly increased or decreased labels, as
compared to the baseline, examples of which are shown in Figure 5.7.

In the following, alarms are explained from left to right, sorted by associ-
ated median core hardness, along with their occurrence rate and Scheffe’s
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p-value for pairwise comparison4 to the baseline (no alarm). The box plot
suggests that AUnload furnace (3%, p = .003.) leads to increased core hard-
ness which might be explained by prolonged austenitization, as the batch is
not pushed through the furnace to the salt bath in due time. A batch with
no alarms tends to have, on average, only a slightly higher hardness than
one with at least one alarm, indicating that the cause for most alarms does
not affect production outcome in the short term. Neither the temperature
of the container from which salt is refilled, ALowT refill (4%, p = .99), nor
switching off the automatic mode, AAutomaticmode off (1%, p < .15), seem
to have detrimental effects on the batch. The latter gives some credit to
the machine operators who seem to act fast enough with a manual override
when a problem occurs.

Process interference by AExhaust flap failure (1%, p = .008) seems very un-
likely from a physical perspective and the observed significant hardness

4 A significant difference between alarm A and no alarm is assumed for p < .01
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loss might well be a false positive. The most frequent alarm
AUnload tempering exceeded(20%, < .001), indicating that the batch has been
in the tempering furnace longer than desired, explains the aforementioned
hardness drop on Saturdays. This elongated tempering furnace dwell time
of a batch will be elaborated on in the upcoming section. Diminished
hardness occurring with AConditioning unit power board(0.5%, < .07) (i.e., the
cooling unit of the power control board is malfunctioning) is most likely
due to electrical signal artifacts produced by the overheated control board
which might entail any number of problems. As this alarm was only found
in line 29, it might be necessary to examine every produced batch when
such an alarm is triggered.

Figure 5.7 b) confirms that the offset between furnaces was removed suc-
cessfully5. It also exemplifies that, although it is possible to analyze lines
individually, fewer data generally lead to larger confidence intervals which
might make detection of significant differences per line and alarm (e.g.,
AUnload tempering exceeded for line 26) difficult.

In conclusion, the decision of which alarms to include as features is fore-
most based on the analysis above. If no significant influence is observed,
the feature is most likely not included. If an alarm shows significance but
can be explained by a process feature, the latter is given precedence be-
cause it more precisely pinpoints the problem. Such process features are
examined in the next section.

5.2.4 Sensor signals

Intuitively, differences in hardness between batches are predominantly at-
tributed to a change in the heat treatment procedure, which is captured by

5 Otherwise, all values of furnace 26 would have been much higher.
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Figure 5.8: Kernel density estimation of furnace temperature curves at each minute
from ∼ 20, 000 batches along with segmentation for feature extraction
from all lines

sensors throughout the line. This section investigates how large these pro-
cess deviations are for each section and how they affect the resulting core
hardness, beginning with a segmentation of the heat treatment procedure.

Process sections

The segmentation intervals are based on the process stages, ideally, such
that all significant values for a prediction are extracted but not more (i.e.,
using too many segments). The convection furnace for tempering is not
included as temperatures across all segments and lines are similar. Chosen
segments for process gas furnace and salt bath are shown in Figures 5.8
and 5.9, respectively.

143



5 Feature Analysis

These plots contain a condensed version of all temperature curves in the
process gas furnace and salt bath in the form of a kernel density estima-
tion at each resampled point in time. Temperatures are measured with
a precision of 1K resulting in a discretization reflected in the plots, es-
pecially for the salt bath (and more attenuated for austenitization), by
the individual dark bands. Both the interpolation step in resampling and
the kernel density estimation lead to a deviation from pure integer values
and, thereby, more closely approximate the true distribution, which has a
smooth shape. The darkness of color indicates the percentiles closest to
the modal values (i.e., extreme values or most dense regions)6.

In comparison to the temperature uniformity surveys for different batch
positions in Section 4.2.2 from 35 batches, the spread of these temperature
curves from approximately 20, 000 batches from all lines seems to be quite
small (e.g., ∆16K for the minimal turning point of all measured process
gas furnace temperatures and ∆9K for the 90th percentile shortly before
austenitization). Critical process stages like austenitization and quenching
in the salt bath have even smaller windows indicating that intra-batch
temperatures deviate more strongly than temperatures measured at a fixed
point between batches. This serial process appears to be quite robust and
stable, with such minor temperature deviations hardly resulting in huge
hardness differences.

To determine whether learning from these minimal variety temperatures
is reasonable, we take a closer look at different hardness buckets and their
associated salt bath temperature. Figure 5.10 sorts batches into four bins
based on their core hardness and then plots the 60th percentile temper-
ature band of each bin in their respective color. As expected, greater
hardness is associated with a slightly lower soaking temperature TIa for

6 The intervals for the percentiles have been calculated by using the estimated PDF.
Individual percentiles were found by shifting up and down the PDF to find its zeros
until the integral between the zeros of the CDF was equal to the percentile. Of
course, multi-modal PDFs have multiple zeros (e.g., 6 zeros for 3 modes in Figure
5.9).
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from ∼ 20, 000 batches along with segmentation for feature extraction
from all lines

isothermal conversion at t2. Thus, including a temperature-related feature
from segment 7 should be of predictive value even if the variations seem
to be minimal. Alternatively, the time from immersion in the salt bath to
reaching the peak temperature (approximately at t1) and the undershoot
(approximately at t2) can also serve as valuable indicators.

Process features

To include all important characteristic properties of the heat treatment
process into the prediction, 156 features from sensors throughout the lines
have been extracted, as described in Section 3.2.4. As demonstration,
this section assesses three selected features: mean salt bath tempera-
ture T salt bath,7 in section 7 , maximal mass flow of the enrichment gas
Mass flowfurnace,3,max in section 3, and temperature skew in the furnace
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Tfurnace,3,skew also in section 3. Analyzed are their dependency on line,
development over time, and correlation to associated hardness (i.e., label
to be predicted).

Feature T salt bath,7 is depicted over the course of a two and a half year
period for every line in Figure 5.11 a). Hardly any significant changes
can be noted over time, except for line 23 that undergoes a drop of 3K
in 2019. More significant are the differences between lines (e.g., 2.5K

between the means of line 20 and 26), as shown in the box plots b) that
contain the distribution of all T salt bath,7 per line. Notably, this feature
seems to be quite stable for each line with very little variance such that the
boxes (25th to 75th percentile) are often barely overlapping. The minimal
correlation of -.04 with the core hardness, shown in c), hardly allows any
conclusion to be drawn. Nonetheless, the accumulation of chronologically
stable differences between the lines might be a reason for the hardness
offset between the lines, which itself are due to a multitude of possible
reasons: different temperature settings for each line, temperature sensor
bias (e.g., orientation (correct T at wrong position) or calibration (correct
position but wrong T )), or unmeasured influences like paneling.

To examine correlations between features that appear to be mostly stable
over time for each line and a label that is susceptible to measurement error,
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Figure 5.11: a) T salt bath,7 of individual batches per line over time, b) box plot per
line of T salt bath,7 with 99%CI, c) scatter plot of T salt bath,7 and core
hardness for each batch

we take the mean of each month for both feature and label. In this way,
we can alleviate the measurement error and might capture changes in core
hardness that are explained by slow changes in the mean of a feature in a
particular line.

As shown in Figure 5.12 a), the correlation between T salt bath,7 and core
hardness now becomes r = -.24. It does still barely support a salt bath
influence hypothesis. Although the points of one color (i.e., same line) do
lie closer to the imagined negative correlation line7, it seems unreasonable
to attribute a specific change in core hardness to a change in T salt bath,7.

The maximal enrichment gas flow Mass flowfurnace,3,max shortly before
austenitization is a paragon of spurious correlation with core hardness
(r = -.46), since there exists no causal link between the mass flow and
core hardness of the component. It just so happens that line 26 (red),
which produces the parts with the highest core hardness, also has the
lowest mass flow. Line 27 (orange) follows at some distance, while the
remaining lines cluster in the lower right corner. It is essential to be aware
of such associations (or the lack thereof) since ML algorithms do not learn
cause-effect relationships but use inputs that they can map to a specific

7 upper left to lower right
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with the mean core hardness of that window. More transparency indi-
cates that the values lie further in the past. Colors indicate line associ-
ation, see Figure 5.11

output. If a model learns the correlation in (d) and is used for predictions,
it would likely give incorrect results in time. Especially if the mass flow
of line 26 is increased, resulting in a decreased core hardness prediction
but having no actual effect on core hardness. Incidentally, the reverse is
true for the surface hardness with an r = .6. Here, more gas can deliver
more carbon resulting in greater surface hardness. Thus, caution must be
exercised when correlating features with labels, always considering other
influential factors (measurable and immeasurable).

As a last example we investigate c) Tfurnace,3,skew which is a feature of
true predictive power. Higher skew means that TA is reached faster, in
turn leading to a longer austenitization time which leads to greater core
hardness as suggested by the positive correlation of r = .38. Compared to
minimum or maximum temperatures, in general, features related to dwell
time are more promising indicators of hardness. Especially, the length
between the last8 segments (i.e., 4, 7, and convection furnace9) of each
process step varies substantially between batches. These differences in

8 All other segments are fixed in length for bainitizing.
9 It comprises one large segment of its own.
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Figure 5.13: Core hardness over differences in dwell time between batches in process
gas furnace, salt bath, and tempering furnace, along with histogram of
respective bin size in green

dwell time evoke a change in hardness with clear physical explanation, as
shown in the next section.

Dwell time

Although the heat treatment procedure is conducted by a well-controlled
system, the process step durations (i.e., dwell time in furnace, salt bath,
and tempering furnace) are subject to fluctuation. This elongated or short-
ened austenitization or soaking time has an effect on resulting hardness,
depicted in Figure 5.13.
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Remaining in the process gas furnace longer10 increases time spent for
austenitization which is known, under otherwise identical conditions, to
increase the resulting hardness. No apparent effect is found for the salt
bath. The dwell time was reduced about 5min in the middle of 2019,
see Appendix A.7, resulting in an uneven distribution of bins but not in a
drop or increase in hardness. Surprisingly, an increased soaking time in the
tempering furnace significantly reduces hardness. Most likely, the trans-
formation to bainite leading to increased hardness at some point tips into
a kind of tempering that softens the bainitic structure again. From this in-
spection, the lower hardness coinciding with alarm AUnload tempering exceeded

is readily understood. It turns out that batches produced late Saturday
stay in the tempering furnace until they are unloaded early Monday morn-
ing, rendering Saturday batches lower in hardness due to increased soaking
time that effectively tempers the cylinder heads.

5.3 Case Hardening

Generally, the analytical approach for case hardening features is similar
in structure to bainitization, with exceptions detailed in the following. As
discussed in the previous chapter, the four batch positions from which two
test specimens are sampled alternatingly cause a constant bias. In order
to be able to use labels from all positions, they have been corrected by
their respective median. Further, the features are primarily analyzed with
respect to the scores (i.e., Score 0.1/0.4/0.7), where surface near measure-
ment positions (meas. pos.) are more important because carburization
has a more significant influence here and the result is more critical for the
nozzle bodies’ expected mean time to failure. The last Section 5.3.4 will
also give a justification for the suitability of these scores.

10 Could also partly be due to a longer time necessary to reach TA.
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triangular shape

5.3.1 Material

Variations in chemical composition of the case hardening steel 18CrNi8
were proposed to cause fluctuations in the core hardness in Section 4.3.2
based on Figure 4.20. In the following, this hypothesis is investigated by
partial correlation and regression analysis.

Unlike the 100Cr6, correlations between core hardness and weight fractions
of specific elements in the 18CrNi8 are time-dependent for the period under
consideration12. Thus, instead of a correlation heat map, Figure 5.14 a)
shows the correlation coefficients of the usual suspects C, Cr, and Ni with
core hardness over time along with the time series they were derived from
shown in Figure 5.14 b). The congruent shape of their curves suggests a
strong influence of C on core hardness during 2016/17. This finding is re-
flected in a high r during that period. It is also observable for Ni, although
to a smaller degree. In fact, a similar synchronous movement is displayed
by Mn and Si for 2016, see Appendix A.8. Such coincidental synchronous

11 r is calculated for all value pairs in the corresponding window.
12 A time dependency might also very likely be found for the 100Cr6 if observed over

a more extended period.
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route), weights learned for the complete data set of core hardness (pink
dot). Dark purple bars show minimum and maximum of weights learned
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changes of elements likely intensify oscillation of core hardness. An aware-
ness of such interdependence might prevent an investigation of fluctuations
in the wrong hypothesis space. However, as correlations change over time,
chemical composition’s exact cause and effect relations are more challeng-
ing to quantify. They are mitigated by several unmeasured effects13 from
any other process step (e.g., annealing or carbide formation).

Figure 5.15 a) demonstrates such a quantification attempt via linear re-
gression14, based on the elements in 5.15 b). A complete regression fitted
to the whole curve serves as a benchmark for achievable predictability,
simulating complete knowledge availability. The 5-fold regression learns
from 4 years and then predicts the respective fifth year. Neither of the
curves predicts the one large down and upward trend that the green curve
(Measured) displays (i.e., starting at nearly +10HV before 2016, dropp-
ping to -10HV in 2017 and recovering to 0HV in 2020), which presumably
is not due to chemical composition but could be a drift of a measurement

13 A partially negative r like for Cr might also result from a simultaneous increase of
Cr and decrease of C, thereby dropping hardenability although Cr was rising.

14 It may be assumed, that the small changes in chemical composition under consid-
eration are locally linear.
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5.3 Case Hardening

device. In contrast, in almost all cases, the model accurately predicts the
direction of a short up- or downward trend but regularly misestimates the
magnitude of the amplitude. From the weights, it may also be inferred
that C is the only reliable predictor, with Cr aiding a little. None of the
remaining elements contributes consistent weights and should, therefore,
not be used for prediction as their influence is too small or nonlinear to be
captured.

In sum, the relatively small fluctuations of C seem to affect hardenability
(respectively hardness) more deeply and consistently than either Cr or
Ni. While an accurate prediction seems out of reach, at least a trend
direction might be forecastable in some cases. Finally, the fluctuations in
2016/17 can confidently be attributed to the material composition. More
fluctuations are to come in the next section.

5.3.2 Production line

In contrast to the bainitization in a single line, nozzle body batches are
processed in three different stations (cf., 3.1.2). This section investigates
individual furnaces, freezers, and the effect of routes taken through these
stations. To evaluate the difference between stations, Figure 5.16 plots the
drift corrected15 mean hardness of batches produced with a given station
over time along with their overall CIs. The following three observations
can be made.

1) Stations mostly, but not always, behave consistently for different scores
(i.e., if vacuum furnace 1 has the highest mean hardness for Score 0.1, it
most likely also does so for Score 0.4 and 0.7) with a notable exception
for the deep freezers. 2) In contrast, scores are affected differently by the
various stations. Scores 0.4 and 0.7 vary strongly for the vacuum furnace,

15 The long-term drifts (e.g., Section 5.2.1 and 4.3.2 were approximated by a first-
order IIR filter and, then, subtracted from the respective measurement score, to
make differences in stations visible.
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while tempering affects 0.1 and 0.4 more strongly. These observations sup-
port a temperature-based hypothesis where the temperature influence is
mitigated by carburization for the surface-near Score 0.1 but has a much
more substantial impact during tempering on these same surface near lay-
ers. These claims will be further strengthened in the upcoming process
feature section. 3a) Variance between stations seems to have decreased
over the years, presumably as production was optimized stepwise. 3b) Al-
though overall variance was reduced, there are still significant differences
between stations that change over time (e.g., Score 0.4 in the vacuum fur-
nace). While vacuum furnace 1 during 2015 produced at a level being
around 7HV higher than furnace 2, in 2018, the reverse was true. This
example underlines the importance of time-depended inspections since an
analysis of the CIs might have led to the wrong conclusion, that 1 always
produces harder than 2. Thus, passing a feature such as a station to an ML
algorithm can lead to undesirable predictions, especially when the train-
ing and test sets are separated in time16. Although such individual deltas
might seem relatively small, they might add up to noticeable differences
when taking specific routes through the stations, see Figure 5.17. It shows
how the combination of different vacuum and tempering furnaces leads to
divergent mean hardness over time. For Score 0.4, this divergence aver-
ages at 10HV underlining the greater effect caused by adding up seemingly
small differences in stations. Careful planing of routes could help to pre-
vent undesirable deviations from the target hardness. Balancing the effects
of individual vacuum furnaces by changing the parameters of freezing or
tempering furnaces for a particular combination seems too complex and
would probably not yield the desired result. Instead, the furnace param-
eters should be optimized to approach a common mean behavior (i.e., all
vacuum furnaces, freezer, etc. behave in the same way).

16 They should be chronologically separated to prevent data leakage from the present
to the future.

155



5 Feature Analysis

Time

S
co

re
 0

.7
S

co
re

 0
.4

S
co

re
 0

.1

H
ar

d
n

es
s

 (
𝚫

H
V

)

5

-5

0

5

-5

0

2013 2015 2017 2019

5

-5

0

112 412 411 311

0

5

-5

0

5

-5

0

5

-5

Figure 5.17: Left) hardness scores smoothed by rolling window (100 days) of batches
associated with a particular route (e.g., 112 = vacuum 1, freezer 1, tem-
pering 2) Scores were initially corrected by their common drift calculated
by a first-order IIR filter. Right) mean and 99.9%CI of route

It will be difficult to determine which part of the fluctuation can be at-
tributed to process parameter differences and which are due to mainte-
nance or other unmeasured external circumstances. In the latter case, it
might also be necessary to track the hardness level of each station individ-
ually for each score to identify actual adverse routes and detect stations’
divergence. To understand the hardness variance, in addition to the differ-
ence between stations, it is also important to know what type of component
was heat treated, as explained below.

5.3.3 Metadata

Components

Batches contain nozzle bodies of different component families (e.g., X2,
X4) that are further divided into types (e.g., 6, 8), each with slight geomet-
rical variations in particular at the nozzle itself (cf., Section 3.1.2). These,
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in turn, slightly influence the absorption behavior of heat and carbon. A
strong influence of such geometrical differences manifests in hardness of
the Seat middle 0.4mm, shown in Figure 5.18, most likely due to carbur-
ization behavior as the walls are thinnest here (other meas. pos. are not
significantly different). Components of family 6204 are consistently 20HV

harder over time17 than the remaining families, which means that most of
the spread of the particularly wide Seat middle 0.4mm distribution can
be attributed to component family differences. No difference is observed
between the components of the same family, with a notable exception for
X4: type 5 is harder than type 22 and 23, which is likely due to the fact
that the latter two are made of a different grade of steel (i.e., electroslag
remelting (ESU)18). Thus, whether a component type or family serves as
a valuable predictor and whether types should be combined into a single
feature must be judged on a case-by-case basis but need not be tracked
over time. The last meta-information that may serve as a feature is the
alarms, briefly discussed below.

17 Thus, it is not necessary to track differences between families over time. Also, there
would be no physical explanation to do so, because the geometry does not change
over time.

18 Elektroschlacke-Umschmelzverfahren
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Alarms

The author was not able to derive helpful information from the occurrence
of an alarm and link it to a particular hardness measure of a batch. Al-
though some alarms are correlated with reduced or increased quality mea-
sures, these effects vanish when correcting for the collective trend meaning
that they most likely co-occurred with a time span when the overall hard-
ness was higher or lower. Second, significant alarms usually stem from
mechanical failure of the production line. Since there are very few mov-
ing parts in the case hardening stations (as compared to the bainitization
line), barely any alarms of this type occur. Third, no causal link could
be established between such alarms and indicated deviation of the quality
measure. In the words of Prof. Mikut: "There is not much to be found in
a competent process."

Discussion

Despite the fact that some interesting effects were found in the data pre-
sented above, claims of causal effects should be made tentatively. Fluc-
tuations over time, uneven distribution, or unmeasured influences on a
particular feature, be it station, component, route, alarm, or measurement
position, can lead to spurious correlations and imply significant differences
where none exist. It could be, for example, that more components of fam-
ily A took route 1 and more of family B route 3. It is now difficult to
attribute a deviation from the mean to either the component family or
the route. The same goes for shifts due to material composition, possibly
resulting in a hardness drop of a certain component type. It leaves open
the question of which of both caused the drop or even if a third factor
was involved. On that score, although potentially valuable, these analyses

19 The ω must be adjusted for each component type because each has a different "sam-
pling rate". Otherwise, components produced less frequently would be smoothed
more than if the same filter were applied to a more common component.
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must also be taken with a sufficient amount of skepticism and must not
replace well-controlled experiments. With these words of caution in mind,
we now turn to the influences of process fluctuations as measured by the
sensor signals.

5.3.4 Sensor signals

The information of the sensor signals is analyzed in featurized form, the
extraction process of which is described in Section 3.2.4, which already con-
tains the heat treatment’s key values in condensed form. As the number
of extracted features may be sizable, this section first investigates which
features are actually of predictive value not to feed useless or redundant in-
formation to the algorithm later and better understand which differences
between the process actually lead to dissimilar results over time. Sec-
ond, it is useful to confirm that the additional labels created (i.e., Score
0.1/0.4/0.7) are predictable by the same input features as the meas. pos.
they were derived from (i.e., are influenced by the same physical phenom-
ena during the process).

Feature over time and label correlation

A first impression of a feature’s usefulness can be gained by its correlation
coefficient with the respective label, calculated for every extracted feature
and label combination. Among the features with the highest |r| are those
shown in Figure 5.19. It contains the feature values and their correlation
with the labels over time as well as a scatter plot of feature and label,
respectively.

Neither of the features remains continuous over time, nor are they similar
for the stations they were measured in. Vacuum furnace 3, for example,
was not able to generate the same maximal quenching pressure leading
to a higher temperature 25 s after quenching before maintenance of the
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system at the beginning of 2017. During this period, the rolling r drops
remarkably, indicating the expected negative correlation, where a lower
temperature is associated with a greater hardness of Score 0.4, also in-
ferable from the scatter plot. When a single line is stationary (e.g., after
2018), the rolling r fluctuates around zero for all stations, suggesting that
the process is so stable (with respect to this feature) and/or the measure-
ment error is so high that inference of hardness influence seems almost
impossible, with one exception for the freezer. Although the mean cooling
temperature of deep freezer 2 is rock stable, its rolling r decreases contin-
uously. Further, the scatter correlation claims a positive r, which would
contradict the expected behavior, where lower freezing temperatures lead
to more transformation of the remaining austenite leading to higher hard-
ness. This phenomenon (i.e., a drift of rolling r and positive scatter r)
occurs because the label Score 0.1 was not shift corrected. As was shown
in Figure 4.20, the hardness drops during 2018 (diamond change) and 2015
(rise of initial TT) while, coincidentally, the freezing temperature was also
lowered in 2016. Omitting such a shift correction, thus, may lead to the
appearance of an erroneous correlation. On the other hand, shift cor-
rection may also erase effects like the one visible for the Hollomon–Jaffe
parameter (HP ), cf. Section 2.1.2. Due to the temperature increase be-
tween batches of the tempering furnace in 2015, nozzle bodies experience
a slightly stronger tempering effect resulting in a higher HP . A lower HP

naturally results in a harder martensitic surface, especially exhibited by
tempering furnace 2, which incidentally was the one that generally pro-
duced harder components (cf. Figure 5.16). Again, this correlation effect
is only visible during the large discontinuity as indicated by the deflection
of the rolling r at these points as well as the shifted hardness values in the
scatter plot.

In sum, larger feature discontinuities for a single station (e.g., vacuum
furnace 3) or all stations (e.g., tempering furnaces) show visible effects
on hardness while stationary fluctuations are not noticeably reflected in
the rolling r. Some feature-label correlations are only visible when shift
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correcting the label; others are not or exhibit erroneous relations. The
complete tracking of each station (proposed above) will provide a feature
that accounts for larger changes in each line. In turn, the ML algorithm
might not be able to learn something from these changes, raising how
to optimally present features to the ML algorithm during training. This
matter will be analyzed in the upcoming chapter.

Correlation between features

Redundant information between features as well as their integrity are
shown in Figure 5.20 by the correlation between selected features of the
deep freezer, vacuum furnace, and the shift corrected label Score 0.1. In
line with expectation, mean and minimal freezing temperature are promi-
nently positively correlated as well as all features belonging to the temper-
ing furnace, where the time spent at tempering temperature has the most
substantial influence on the HP . Since the HP (calculated from ∆tT and
TT) is the best predictor for hardness among the three, it should be the
one included in the feature set while dropping the other two as redundant.
The same would be valid for the deep freezer (i.e., only keeping one) if the
ML algorithm can actually use one of them. This might be difficult due to
their low correlation, which now is negative as expected due to the shift
correction, as compared to Figure 5.19. In- and exclusion of other features
will, thus, be determined by a feature selection algorithm.

Surprisingly, correlations between features of freezer and tempering fur-
nace are negative suggesting that lower deep freezing leads to higher tem-
pering, which in fact is not the case. Deep freezer temperatures were indeed
lowered at the time when initial TT was risen, resulting in a negative cor-
relation, but no causal connection could be found (i.e., the temperature of
freezer and tempering are independent).
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Figure 5.20: Heat map of correlation coefficient r between features

Conformity between meas. pos. regarding feature

To evaluate whether the same features are predictive of different labels, we
turn to Figure 5.21. For each label-feature combination, the correlation
coefficient r was calculated. Now each of the 8 meas. pos. has features with
which it is more or less correlated. Figure 5.21 then shows whether the
same feature, represented by one dot, is highly correlated with two different
labels. If a high correlation between the feature rankings of two labels
exist (e.g., r = 0.99 between features of Shoulder 0.1mm and Seat middle
0.1mm), it can be expected that the same specific physical conditions
influence those labels in the process. Between most meas. pos. (with
exception to Undercut 0.1mm) this is true, expectedly more so in clusters
of similar depth (i.e., 0.1mm vs. 0.4mm vs deeper). Thus, the scores
derived previously are meaningful aggregations of meas. pos. and input
features do not have to be optimized individually for all labels but these
groups of label scores. Most features of vacuum furnace and deep freezer
are of little use indicated by the peak around r = 0 of the distributions
shown along the diagonal of Figure 5.21. This is also due to the much
higher number of features extracted from the vacuum furnaces, containing
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Figure 5.21: Each dot represents one extracted feature from vacuum furnace (red),
deep freezer (blue) or tempering furnace (orange). The scatter plot shows
the correlation coefficients r of that feature with the respective labels
(i.e., position on piece - lines and columns). The heat map in turn gives
the correlation coefficient r of the scatter plot. If the individual r between
vacuum-, tempering furnace, and deep freezer are greater than 0.2 then
their individual values are shown

many more segments and channels, many of which are useless byproducts.
Conversely, features of the tempering furnace are more often found at
the edges of the distribution and scatter plots, indicating a higher r and,
therefore, more significant influence.
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5.4 Discussion

Generally, even seemingly small percentage changes in material compo-
sition (especially carbon concentration) can lead to severe deviations in
measured hardness, especially for measuring positions and processes where
little or no carburization occurs. Both the models obtained from empirical
data and those known from the literature support this claim. However,
the resulting hardness variance usually cannot be predicted directly from
the proportion of the respective elements since too many other influences
are at work. For example, the line or route through different furnaces
and freezers may result in an offset. That is, a heat treatment program
applied to similar batches in two seemingly identical furnaces can lead to
consistently different results. Moreover, the high stability of industrial
processes makes the influence analysis of the heat treatment itself labori-
ous since the differences between lines are more significant than between
successive batches of the same line. Part of the problem may be that mea-
surements of absolute temperature or absolute pressure are not accurate.
While the internal feedback controller achieves a minimal error between
measured and reference temperature, the measurement may be off by a
few degrees from the true temperature—a problem to be expected in any
heat treatment process. Consequently, long-term changes (e.g., change of
salt bath temperature) are more indicative than minor variations in the
same furnace. Interestingly, regarding hardness prediction, the alarms do
not provide any additional information beyond the process measurements
(i.e., at least as long as the operator performs his job well)20. In contrast,
an influence of the measuring procedure and the measuring position on the
hardness result can very well be recognized, especially when the geometry

20 There are cases when alarms may be necessary if the operators do not work cleanly.
For instance, the salt bath loses salt over time. If it is not refilled in time, the top
layer of the batch is no longer completely covered with salt. These parts will then
not be quenched correctly. The salt bath temperature does not capture this mishap.
To prevent such ill-fortune from happening, there is an alarm that is triggered when
the salt bath level is too low.
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of a component is slightly changed at a critical position (e.g., nozzle tip of
a nozzle body or tooth of a gear).

Higher-level domain knowledge is essential for a variance breakdown of
heat treatment processes in general since only meaningful and not all possi-
ble features should be extracted from the process in order to avoid spurious
correlations and possibly resulting unfavorable measures as a consequence.
It is to be expected that the influences examined above will be found in
most heat treatment processes, and it may be difficult to disentangle their
intertwined nature.
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6.1 Introduction

To put the proposed data mining framework to the test, we investigate
how much of the variance studied in the previous chapters can actually be
learned and predicted by our machine learning and hidden states pipeline.
The results determine which cost reduction strategy (e.g., reduced testing)
is applicable. First, optimal fluctuation tracking by filters and their abil-
ity to forecast hardness of upcoming batches under various information
restrictions is discussed in Sections 6.2.1 and 6.3.1. For bainitization, we
proceed with 6.2.2 to investigate the predictive power of process features,
explain what the models learned and what the optimal learning strategy
is. In 6.2.3 we access the difficulties arising from process outliers. For
case hardening, we focus on a complete percental breakdown of variance
contributors in 6.3.2.

6.2 Bainitizing

6.2.1 Forecasting and label tracking

To account for unknown, not measured, and immeasurable influences
(e.g., material composition, modifications through maintenance, etc.) that
present changing influences over time, the hardness level of each line needs
to be tracked continuously, as was hinted at in Section 5.2.2.
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Figure 6.1: Average RMSE between label and output of causal first-order IIR filter
applied to individual lines for a) different a using every 2nd, 4th, 8th, and
16th batch as filter input, b) for every nth batch as filter input to predict
the remaining batches with a = 0.9. Predictions were shifted by k batches
before RMSE calculation to simulate information delay (k>0) or advance
(k<0)

This section elaborates on the optimal filter parameters to track the mean
produced core hardness of each line. Since the goal is to reduce test speci-
mens, in a first step, we investigate how the fraction of tested to predicted
pieces influences the RMSE between label and filter output. Of course, the
ultimate intent is to sample as little as possible (only every nth sample)
while still achieving acceptable filter performance.

As described in Section 3.2.5, we use a causal first-order Butterworth IIR
filter. Because parameter optimization led to N = 1 in over 99% of cases,
the filter could be reduced to a function of only one parameter, that is, the
retaining percentage1 a. Figure 6.1 a) shows the RMSE between label and
filter output for different a, number of test specimens used as filter input
(i.e., 1 out of n, or every nth)2, and time-related measurement information
availability (i.e., k>0 forecasting hardness k batches into the future, k<0
phase delay correction possible). Three conclusions may be drawn from

1 yn = a yn−1 +
1− a

2
(xn + xn−1)

2 The higher n, the more costs can be saved by not having to test n-1 pieces.
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this figure: first, a retaining percentage a of around 0.9 seems to strike
a good balance between forecasting and phase delay correction. A faster
filter (smaller a) may perform better when phase delay correction is pos-
sible (i.e., measurements from batches produced after the current batch
are available)3 but is worse for forecasting. Second, forecasting (k>0) ac-
curacy is worse than phase delay correction (k<0). Consequently, if the
measurement of test specimens takes a long time and a prediction is needed
rapidly4, the prediction will suffer. Third, using fewer test specimens as
input also leads to worse performance. Thus, for prediction purposes, it
would be important to wait for the information that can correct the phase
delay (optimal correction lies at k ≈ -1, that is, waiting for the next batch),
where testing less than every 8th batch seems unreasonable. With these
preconditions, it should be possible to follow the trend closely enough.

Figure 6.1 b) shows prediction accuracy when using a = 0.9 and every
nth batch as input. If fewer batches are tested, they need to be shifted
slightly further back for optimal phase correction. On the one hand, test-
ing fewer batches might take less time (although probably mitigated by
the decreased staff situation due to the reduced testing). On the other
hand, the time between tested batches increases, stretching the amount of
time until information about "future" batches is available for phase delay
correction and, thereby, possibly delaying the release of a batch for fur-
ther processing. In practice, therefore, the consequences of information
delay must be factored into the trade-off between accuracy and cost re-
duction when deciding how many batches to test ultimately. Moreover,
this decision may be different for various lines.

The following optimization looks at lines individually and assumes that
every second batch is tested and every other batch predicted. Figure 6.2 a)

3 This is possible because a prediction is not required immediately after production
of a batch. Thus, the test result of a batch produced after the batch for which a
prediction is to be made can be used to correct the filter phase delay.

4 In some cases, the components are supposed to be further processed as fast as
possible to prevent a pileup of stock.
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Figure 6.2: Causal first-order IIR filter applied to every 2nd batch to predict every
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percentage a for each salt bath line and shift of k batches, b) RMSE when
predicting every second unmeasured batch with the optimal a for each line
and different shifts k. Color indicates the line number displayed to the
left of a)

shows a heatmap of optimal retaining percentages a per k revealing that,
although a varies, in general, the sensitivity of a seems very small (i.e., a big
change in a leads to a small change in RMSE)5. In the case of forecasting,
filters prefer an increased a (corresponding to slower updating), as the
best prediction for the future is the current mean production hardness.
A small a would give too much weight to the most recent measurements
and, thus, most likely deviate from the best estimate for the current mean,
though could be helpful to capture small trends as seen in the phase delay
corrected outputs6.

In b), the corresponding RMSE is shown per line. Interestingly, predic-
tion accuracy between different lines is significantly different because the

5 This is important since the design process of a robust IIR filter is thereby drastically
simplified. All lines could use the same filter, independent of k and n.

6 Cf. Table 3.12: For the optimization, only uneven numbers of phase delay shifts k
are considered because every second batch is given to the filter in order to predict
every second+kth batch. If k were even, then the filter would have to predict the
batch it was given (e.g., k = 2) two steps before and try to optimize for that by a
high order. However, it should only predict the uneven batches it has not used to
update its state.
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Figure 6.3: Rolling window (50 days) using a) mean and b) standard deviation (SD)
of core (C) and surface (S) hardness per line

stability (i.e., the hardness variance produced) is dependent on line age,
maintenance, and charging. Larger hardness variations per line (i.e. qual-
ity instability per product) could be due to the higher number of different
products produced on the same line.

The standard deviation (i.e., produced quality scatter) changes unusually
uniformly over time for the different lines, as can be seen in Figure 6.3.
Consequently, the RMSE between filter output and label fluctuates to the
same extent7. The long-term hardness fluctuation does not quite seem
to explain the changes in variance. It would have been expected that
periods of large changes in hardness would result in greater variance, but
this seems to be true only occasionally (e.g., core hardness middle of 2020,

7 The formula for RMSE and SD is similar (
√

1
n

∑n
i (yi − µ)2) with the only differ-

ence that in the former case µ is the filter output yn and in the latter µ is the mean
over the samples inside the rolling window used (i.e., dummy predictor output).
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surface hardness end of 2019). The uniformity of the variance movement
suggests that external factors affecting all lines cause these production
instabilities (e.g., the ramp down during the corona crisis, starting in Q1
2020, most likely led to worse production conditions). It also means that
a prediction outcome must always be compared to the actual variance for
the predicted period to assess whether it is valuable and compare it to
other periods (i.e., train test splits). The following section attempts to
predict the part of this variance that may be explained by the features
collected in the previous chapters using data from before 2020 for training
and optimization of different pipelines and the remaining 30% (after 2019)
as the test set.

6.2.2 Prediction from features

IIR correction and scaling

As we have seen in the previous sections, for each line, both the labels and
the process features fluctuate around individual quasi-stationary points
that are subject to change over time. Therefore, the following correction
and learning strategies are proposed in order to achieve optimal predic-
tions, see Table 6.1. Training of the ML model might be done with all
lines together (i.e., one training set containing data from all lines) or for
each line individually (i.e., the number of training sets is equal to the num-
ber of lines). The latter might be necessary if the physical line properties
differ significantly (e.g., higher temperature leads to lower hardness in one
line but higher hardness in another line). The hardness drift is corrected
for all conditions by the IIR filter proposed above, which means that,
first, the ML model is only learning to predict the deviation from the cor-
rected hardness and, second, the impact of long-term feature fluctuations
are already included in this correction. As a consequence, feature fluctu-
ations should be corrected by a filter as well, such that a deviation from
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the current feature-mean can be learned as a deviation from the current
hardness-mean, which is reflected in the strategy Xy-all.

All four strategies were applied to the pipelines explained in the upcoming
sections. The test set results are the R2 score distributions shown in the
box plots of Figure 6.4, which confirms that Xy-all is the best strategy for
feature and label corrections. Accordingly, results in the following para-
graphs are based on the Xy-all approach.

Strategy Data correction Training

Xy-all X and y corrected train with all lines

y-all only y corrected train with all lines

Xy-indiv. X and y corrected train lines individually

y-indiv. only y corrected train lines individually

Table 6.1: Four strategies for data cor-
rection and training
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Figure 6.4: Distribution of R2-scores
from 48 optimized pipelines
for each strategy

Feature selection and correlation

Different ranking methods were used to provide the ML algorithm with
an optimal feature subset to sort the features according to their predictive
power regarding the core hardness. Table 6.2 provides the top 11 features
calculated by each method, where the manual selection was made with
knowledge of the results of the other algorithms by domain expertise. The
percental contribution of each additional feature to an overall prediction
score calculated by linear regression8 (LR) is provided in Figure 6.5 a).

8 Is equivalent to the results of each successive round of SFS.
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Table 6.2: Top 11 features as ranked by the feature selection algorithms: Sequential
feature forward selection (SFS) with linear regression, genetic algorithms
(GA) with linear regression, manual selection, feature importance by ran-
dom forest (RF), mutual information criteria (MI), and F-score. Color code
indicates affinity to line segment: process gas furnace, salt bath, isothermal
convection furnace

Rank SFS GA Manual RF MI F-score

1 tisotherm tisotherm tisotherm tisotherm tisotherm tisotherm

2 T furn,4 T furn,4 T furn,4 Aunload iso Aunload iso Aunload iso

3 Tfurn,1,med Tfurn,1,med Tfurn,1,med T furn,2 T furn,2 T furn,4

4 Tfurn,2,med T furn,2 T furn,2 T furn,4 Tfurn,3,min Tfurn,2,min

5 T salt,6 Tsalt,1,med T salt,6 Tfurn,2,min tfurn T furn,2

6 tfurn Tfurn,2,med tfurn Tfurn,2,med Tfurn,3,med Adefect door

7 Parttype A Parttype A Tfurn,1,med Tfurn,2,sd Tfurn,1,med

8 Aflamemissing Aflamemissing Tfurn,4,min tsalt Tfurn,2,med

9 Tsalt,6,sd Tsalt,6,sd Tfurn,2,max Tsalt,7,min Tfurn,1,min

10 Tsalt,5,min Tsalt,5,min tfurn Tfurn,4,max Tfurn,4,max

11 Tsalt,5,max T salt,6 Tfurn,4,max Tsalt,7,sd Tfurn,2,sd

Undoubtedly, the time spent in the convection furnace tisothermal has the
strongest predictive power (due to the previously discussed tempering ef-
fect), accounting already for about 75% of the total score. The second
place is occupied by the mean austenitization temperature T furn,4 closely
followed by the median starting temperature Tfurn,1,med, jointly contribut-
ing another 15%. With a salt bath feature in fifth place, the SFS, GA,
and manual set already contain information of all line segments in the
first hand full of features, where any additional information seems to be
only of marginal importance. Further, the top features are remarkably
uncorrelated, as can be seen in Figure 6.5 b), indicating a sound feature
ranking.
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To achieve optimal predictions, the hyperparameters of eight plus one dif-
ferent ML pipelines were optimized on the training set by 5-fold cross-
validation, as specified in Section 3.3.3. Eight of the pipelines, composed
of a robust scaler, percentile selection, and ML algorithm, were optimized
by Bayesian search (see Appendix Table A.1), while the ninth was cre-
ated by tree-based genetic programming using TPOT. Each of the eight
pipelines was optimized for every feature subset presented above, leading
to 48 combinations plus the TPOT pipeline optimized only on the SFS set
due to the expensive computational resources. Figure 6.6 provides four
types of information for each pipeline: a) R2-scores during optimization,
b) number of optimal features, as well as R2 scores for c) training and d)
test set. The following paragraphs first discuss the properties of the fea-
ture sets, move on to the number of features selected, and finally elaborate
on the different algorithms.

SFS, GA, and manual selection (referred to as the purple set) require far
fewer rounds of Bayesian search to reach an optimum than RF, MI, and
F-score (referred to as the pink set) for most pipelines. This fact is also
reflected in the number of features chosen from each set. While the number
of features selected from the purple set, averaging around 15, is quite
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6 Machine Learning

similar for the various pipelines, two different strategies emerge for the pink
set. One could either take many features and then evaluate importance
(embedded methods) or only use the most important feature(s), as can be
seen for NNs, SVR, and KNN, to avoid redundant information. It seems
that algorithms try to compensate for the suboptimal features in the pink
set by adjusting their hyperparameters but in most cases can not catch
up (especially salient for the F-score) with the purple set, except for the
tree-based ensemble methods that possess an internal evaluation method
to evaluate feature importance. Consequently, the purple set is associated
with better scores on the training set than the pink one, with particularly
bad results for the F-score. It may thus be inferred that a good set of
features facilitates pipeline optimization and robustness during training.
Unfortunately, in this case, it does not imply better generalization to the
test set, which might well be a particular problem with this entire data
set, as the overall R2 scores are very low and strongly dependent on the
ML algorithm used.

The implemented ML methods can be loosely divided into three and a half
categories which are discussed below from left to right: 1a) LR, 1b) NNs
(i.e., 1-layer NN, 3-layer NN, and stacked NN), 2) ensemble trees (i.e., GB,
RF, TPOT), and 3) other (i.e., SVR, KNN).
Compared to its nonlinear bigger brothers, LR performs astonishingly well
during training and subsequent generalization to the test set, possibly due
to its inability to overfit the data. The comparison also suggests that
the relation between features and label is primarily of linear nature, and
more complex models like the NNs can barely make use of their ability to
discover and learn non-linearities. While NNs may perform slightly better
on the purple training set, they are much more prone to overfitting, as
seen from the corresponding test set. In fact, the opposite is true as well.
Underfitting the pink training set (comprised of only one feature) may lead
to better results in the test set. Overall, the stacked NN retains the best
generalization score, most likely due to its ensemble nature.
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The popularity of ensemble trees is readily understood when considering
the minimal amount of hyperparameter optimization required to achieve
excellent training and test results (with slight overfitting for the RF), re-
gardless of which feature set they run through. Due to their embedded
feature selection, they smoothly handle the pink set, although they choose
to use fewer features when given a better-ranked set. However, using trees
for regression comes at the cost of accepting unsmooth prediction bound-
aries, as we will see in the upcoming section.

The remaining methods generally exhibit the same behavior for the pink
set as the NNs did and have a slightly worse performance. They do not or
barely overfit the purple training set. Excuses for this shortfall for the SVR
may be its concentration on points further away from the mean that it uses
as support vectors but are most likely affected by stronger measurement
noise9. The KNN simply is not constructed for regression tasks in the first
place.

Sensitivity analysis

For deeper comprehension of the relationships that the model has actually
learned on the training set, a sensitivity analysis is performed by holding
all but one input constant (i.e., median of the respective feature distri-
bution) and varying this feature from its smallest to its largest occurring
value10. Because the resulting inputs are partially artificial, the feature
space is additionally clustered using fuzzy c-means. The centroids of these
300 clusters can then be used as prototypical inputs to the model to gain
further understanding of the true sensitivity of a particular feature varia-
tion. In the left column of Figure 6.7, 95% of the feature distribution lies
within the dark blue line, while the right column contains only these 95%.

9 These points are less useful
10 Based on the assumption that the model output is close to a linear combination of

its inputs around the median.
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Additionally, the shaded areas show where 50% (darker blue) and 100%

(lighter blue) of the learned input-output mappings lie when retraining the
model 111 times by sliding a window of 1000 samples chronologically over
the input of the training set. Learning from training and test set results
in the dashed line. Using Gradient Boosting for prediction is indicated in
orange.

Undoubtedly, the feature tisotherm (i.e., deviation from reference duration
of isothermal conversion in the convection furnace) exhibits the most con-
siderable variance explaining more than 10HV of the hardness deviation
from the median with two particular outliers to the left and right. The
prediction of hardness loss with increasing dwell time in the convection
furnace seems justified, though the extrapolation for the converse is cer-
tainly not valid (i.e., shortening tisothermal leads to increasing hardness),
underscoring the dilemma of trustworthiness in ML models. Since the al-
gorithm has never seen (or at least not seen enough) batches that were in
the convection oven for too short a time, it cannot learn the second bainite
conversion behavior properly and, therefore, extrapolates incorrectly. Con-
sequently, the confidence in a particular prediction depends on which part
of the feature space the input originates. Boundary regions with few data
points may need to be made impermissible for prediction (this statement
naturally generalizes to the remaining features as well).

While the relationship above was physically explainable, the remaining
features have a narrow variance and contribute only single Vickers to the
overall prediction. Thus, the following explanatory attempts are merely
hypotheses that need to be validated by further research. Three of the
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6 Machine Learning

four furnace features (i.e., Tfurn,1,med, T furn,2, and tfurn) support the hy-
pothesis that a longer austenitizing period leads to increased core hard-
ness11. More carbides are resolved, resulting in higher carbon content in
solid solution, which increases the overall hardenability, given that the mi-
crostructure had enough time for homogenization. Conversely, reducing
temperature T furn,4 should decrease carbide solution, which, according to
the model, has the effect of also increasing hardness. It may be specu-
lated that slightly longer austenitization allows for a more homogeneous
microstructure, whereas higher temperature at median time only leads to
locally increased carbide solution, which might prolong the transforma-
tion start to bainite. Less austenite would then locally be transformed to
the harder stage-1 bainite, leading to slightly more stage-2 bainite. This
line of reasoning would be congruent with the salt bath feature T salt,6,
where higher salt bath temperatures lead to slightly increased hardness by
shortening the bainite transformation start point of stage-1, although the
prototypical cluster inputs seem not to follow the sensitivity lines.

We can conclude that some of the core hardness variance can be reasonably
predicted by a physically congruent ML model, with one feature doing
most of the work. Yet, the low variance of most features indicates either
i) that the process does indeed not generate more variance (i.e., it stems
from prior processes, for instance), ii) that unmeasured process properties
affect the resulting hardness, and/or iii) that the measurement error does
not allow for better learning and prediction.

From Figure 6.7 it may also be inferred that different algorithm families
(e.g., NNS and GB), learn more or less physically reasonable feature-label
mappings. While NNs generally learn smooth functions12, as would be
expected locally for most physical relations, the tree family learns buckets

11 A higher temperature in sections 1 or 2 indicates that the final austenitizing tem-
perature can be reached more quickly, thereby prolonging austenitization. In this
case, a better feature would be the time spent over austenitization onset above
780 ◦C [26] S.55

12 Is dependent on the activation function.
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that do not appear physically meaningful for either inter- or extrapolation,
as shown by the orange line. The right column of this figure also shows
how the mapping may change over time, see 50% and 100% areas. Al-
though the mapping direction is almost always similar, the gradient can
vary greatly due to feature correlation, real physical changes, or initializa-
tion of model training, among other factors. Whether it is necessary to
incorporate these temporal changes in the model training over time and
to forget old data is discussed in the next section.

Rolling prediction

To understand the temporal behavior of the data-model interaction, Figure
6.8 illustrates three different training-prediction scenarios by comparing
their RMSE with the SD of the measured hardness, used as a baseline:

1. Blue scenario: rolling-retrain-from-start (rollstart) mimics retraining
the model every 500 batches with all previously collected data and
predicts the upcoming 500 batches Then it is retrained again. The
complete process was done three times.

2. Red scenario: rolling-retrain-window (rollwindow) uses only the last
1500 batches to predict the upcoming 500, also done three times.

3. Purple scenario: (trainonce) uses all data before the start of 2021 and
then predicts 2021 without retraining.

The RMSE of the predictions is highly dependent on the current SD. As we
have seen during sensitivity analysis, models learn slightly different feature-
label mappings over time, but depending on the training initialization, they
may also learn different mappings on the same data set. In some cases
(e.g., Q4 2018, Q2 2020), it might be slightly more beneficial to forget the
old data and relearn from newer data because some dependencies indeed
changed (i.e., red curves mostly below blue curves in these cases). However,
for more extended periods, it seems advantageous to use the entire data
history for training (i.e., blue below red). Once the model has seen enough
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Figure 6.8: a) Standard deviation (SD) of core hardness and RMSE of hardness pre-
diction in a rolling window of 30 days, b) difference between RMSE and
SD

data, it seems there is nothing to be gained from training on more data
(i.e., purple is very similar to blue. It matches the observation in the
sensitivity analysis Figure 6.7 of minimal difference between training and
training + test set). Regarding the implementation of such a pipeline in an
actual use case, retraining seems unnecessary if a particular data threshold
is exceeded, which is only valid if no process changes are anticipated in the
future.

The better than usual prediction performance (i.e., comparison of blue and
purple to SD) between April and July 2020 can be explained by the ramp
down due to the corona crisis, which led to short-time work and lower
line utilization. More batches, therefore, exceeded the usual dwell time in
the convection furnace and experienced a tempering effect (explaining the
higher SD) that can be predicted particularly well by the ML model.
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Error distribution and ROC curve

Our final evaluation reveals what can and can not be expected from the
pipeline optimized above. Figure 6.9 shows a test set evaluation includ-
ing a scatter plot between predicted and measured hardness, their error
distribution compared to the benchmark derived in Section 4.2.3, and a
ROC analysis, which are discussed in that exact order below. Scatter plot
and error distribution show that a solid 88% of predictions lie in a band
of ±10HV around the main diagonal, which in and of itself is a satisfy-
ing result. Further, when averaging predictions belonging to one cluster
(introduced during sensitivity analysis), the maximal error from the di-
agonal drops to ±12HV suggesting that a majority of outliers are due
to measurement error or unknown influences. The closeness between the
error distribution of prediction and benchmark also indicates that further
optimization might be intricate.
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Although these results may justifiably be called decent, assertions regard-
ing their implication should be made with the utmost caution. This is
because the exciting action takes place at the edges of the distribution
where predictability plummets (e.g., for benchmark 99% of the error lie
within ∼30HV, for prediction it is ∼42HV). Ultimately, the algorithm is
supposed to predict outlieres, that is, solve the classification problem be-
tween good head treatments and bad ones (i.e., hardness of components is
to soft (below a given threshold in shades of red) or to high (above a given
treshhold in shades of blue), see the left of Figure 6.9). ROC curves for the
harder distribution part point in a problematic direction: the further the
threshold (i.e., values beyond the threshold are defined as outliers) is from
the overall mean, the more the AUC decreases. A risk assessment via the
ROC curve suggests that, depending on the threshold value between 20%

and 60% of test specimen results with measurements beyond that thresh-
old would not be classified as outliers13. In sum, this means that while
most predictions are quite good, those that should indicate outliers do not
accomplish this task consistently, including the impossibility of knowing
whether these outliers are due to measurement artifacts or truly deviate
in core hardness due to unknown influences. The last section shall shed
some light on at least those outliers due to process deviations.

6.2.3 Clustering and anomaly detection

As we have seen above, accurately predicting hardness values is rather
difficult, and the imbalance of good to near-tolerance parts, as well as
measurement error, makes finding parts that are out of specification an
even more daunting endeavor. This section approaches the task by un-
supervised clustering of process data using fuzzy c means. Outliers may

13 When accepting a 10% false positive rate and ignoring the uppermost threshold
with very view samples.
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Figure 6.10: Box plot of a) core and b) surface hardness for each cluster found by
fuzzy c-means. Colored points in cluster 99 represent the hardness of the
78 individual samples that belong to this noise cluster, c) heat map that
shows the percental composition of each cluster by line along with the
absolute number of samples in braces below

then be identified as those samples that are too far away from any cluster
centers.

The clustering is applied to the resampled time series of temperature,
mass flow, and C-level in the furnace as well as temperature in the salt
bath. Five groups were determined by increasing the number of clusters
incrementally until the algorithm sorts significantly fewer samples in the
marginal cluster. Samples whose highest probability of belonging to a
cluster was less than p < .24 were sorted into outlier14 cluster 99. The box
plots in Figure 6.10 display the core and surface hardness distributions
along with line affiliation as heat map of every cluster. Two observations

14 The value of p was chosen based on the distribution of all p values, where values
smaller p < .24 visually displayed an outlier set.
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Figure 6.11: Centroids of the 5 clusters found by using the inputs temperature, mass
flow, and C-level in the furnace as well as temperature in the salt bath

immediately catch the eye. First, unexpectedly, the distribution of the
outlier cluster is similar in variance and even closer to the overall average
than the five main clusters. Because this cluster contains samples that went
through a process maximally dissimilar to the common procedure, it would
have been expected to have much broader variance15 with hardness values
much closer to the tolerance limit. Based on this observation, the process
robustness may be considered remarkably high, which is also evidence for
the impracticality of finding outliers based on the process data assessed
to date. Second, clusters are strongly associated with particular lines, as
indicated by corresponding colors. While cluster 3 (yellow) consists of 96%
line 20 and 23, cluster 1 (red) even entirely consists of line 26 samples.
Thus, the box plots mainly show the joint hardness distribution of two
lines, respectively, which are very similar in their process behavior (conf.

15 Or even show a bimodal distribution with peaks at "good" and "bad".
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Section 5.2.2). Furthermore, it can be clearly seen once again that the
process variation between lines is much higher than within individual lines
over time. In this case, a precise hardness prediction within a single line
is more difficult or rather the prediction of the deviation from the current
mean hardness of a line. In order to evaluate whether hardness differences
between clusters may still be attributable to process dissimilarities, their
centroids are shown in Figures 6.11 and 6.12 along with the outliers in
cluster 99, suggesting that non-arbitrary differences between lines exist.

The hardness distribution of core and surface may be explainable by focus-
ing on the five main centroids. Comparing the yellow and red clusters, the
latter shows the lowest quenching temperature, which may lead to greater
hardness in the core but also slows down transformation to bainite16 at the
surface, thus, the lowest hardness there. This resembles the effect found
for different test piece positions in Section 4.2.2, where pieces lower in the
batch are quenched faster and become harder in the core and less hard
at the surface. The lower enrichment gas flow in the red cluster presum-
ably also contributes to its decreased surface hardness. Although it also
measures the highest C-level, the difference between carbon content per
cluster is much smaller than mass flow.

While the outliers support the mass flow hypothesis (i.e., darker outliers
are harder and have an increased mass flow), they strongly contradict the
quenching hypothesis. Higher salt bath temperatures are associated with
both higher core and surface hardness samples from cluster 99. Neverthe-
less, it should be safe to assume that the findings above are valid despite
the outlier behavior because these samples are anomalies and few in num-
ber. In summary, although it is relatively easy to find these process-related
outliers, predicting their behavior in terms of hardness is not feasible at
this time, reinforcing the previously proposed guideline that predictions
may only be made for a batch whose process parameters fall within a

16 Although lower quenching temperatures can lead to greater hardness at the surface,
this is only the case for a complete transformation to bainite at that temperature.
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Figure 6.12: Centroids of the 5 clusters found by using temperature in the furnace
and in the salt bath

defined confidence window. Our second use case poses a quite different
challenge regarding process influences, as will be discussed below.

6.3 Case Hardening

6.3.1 Forecasting and label tracking

In the following, the generalizability of the modeling approach from the
previous section to the case hardening use case is investigated. Analogous
to the bainitization use case, data were divided into training and test set
(i.e., training data from before 2017 (70%), test data thereafter), then
feature and label correction, selection, and optimization of several models
was performed. Among the most important were always features related
to quenching and categorical features such as station or component type.
When given the opportunity, selection algorithms rarely selected features
that were corrected by a filter. While training scores ranged from R2=0.1
to 0.2, the test set did not even hit the dummy regression mark of zero,
clearly exposing the non-generalizability of the models to newer data. As
seen in the last chapter, stations change their behavior over time which
the standard ML algorithms could not capture. Tracking fluctuations of
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influences on the case-hardening process necessitates a more elaborate ap-
proach since batches may take different routes, components geometry has
an impact on measured hardness, and test specimens come from different
batch positions. However, hardness differences due to component type or
batch position may be assumed to be static (i.e., barely change over time).

Model Selection

Hence, a custom model was created (detailed in Section 3.4) that accounts
for the dynamic behavior of the stations by tracking their hidden states
and correcting for component and position offsets with respective vari-
ables. Interpretability of such model parameters is then much better and
optimization time reasonable. At this point, the interested reader may
already speculate about the possible use of RNNs known for their ability
to handle dynamic time series, which were also tested and could in no way
match the performance of well-calibrated filters with additional offsets ac-
counting for categorical influence. Accordingly, this chapter will elaborate
on the hidden states pipeline’s optimization and evaluation, ending on a
surprising note concerning the station’s influence.

Optimization

Close to the supposed use case, only every second measurement was used as
input during training of the model to then predict its respective successor,
as was specified in Table 3.12. Therefore, it is a forecasting model that uses
its actual state to predict the hardness outcome when a specific component
at a specific batch location takes a particular route through the stations
before undergoing heat treatment.

Optimization of the custom hidden states pipeline was performed on the
training set in the following way:
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Table 6.3: Optimal parameters for the custom hidden states pipeline, introduced in
Section 3.4. Optimization was performed via differential evolution and dual
annealing(∗) on training data. Sea: Seat middle, Sho: Shoulder, Sha: Shaft
inside. V: vacuum furnace, F: deep freezer, T: tempering furnace, pi and
cj are in ∆HV. The color is intended to aid the reader in recognizing the
different magnitude of values within each parameter group (i.e., a, b, p and
c), where darker color generally indicates smaller or negative values

Filter Parameter Positions Components
RMSE aBase aV aF aT bV bF bT p1 p3 p4 p6 cA1 cA2 cB1 cB2 cC1 cC2 cD1 cD2 cD3

6.47∗ 0.95 0.99 0.45 0.99 0.01 0.04 0.01 -0.9 0.2 0.5 0.2 0.7 -1.3 -0.3 -0.5 -0.3 -0.4 -0.4 2.0 1.3
6.47 0.95 0.99 0.43 0.99 0.01 0.04 0.01 -0.9 0.1 0.5 0.2 0.7 -1.2 -0.3 -0.5 -0.3 -0.4 -0.5 1.9 0.7
6.57 0.98 0.24 0.56 0.94 0.05 0.02 0.03 -0.9 0.6 0.1 0.3 1.2 -1.0 -0.4 0.4 -0.2 -1.1 0.7 1.6 0.8

Sc
or

e
0.

1

6.58 0.96 0.48 0.26 0.98 0.07 0.04 0.01 -1.1 0.0 0.9 0.2 0.2 -1.9 -0.6 -1.4 1.1 -0.2 -0.5 5.6 -1.4
Sea1 8.18 0.97 0.82 0.38 0.92 0.03 0.04 0.04 0.1 0.8 1.2 -2.1 1.7 -1.7 -0.6 -1.4 1.8 0.2 1.9 4.8 4.1
Sho1 8.72 0.96 1.00 0.18 1.00 0.00 0.01 0.00 -2.2 -0.8 0.4 2.5 -0.1 -0.2 -0.3 -0.4 -0.3 -1.1 -2.1 4.6 -0.6

9.01∗ 0.95 0.96 0.39 0.34 0.04 0.05 0.05 -4.0 5.0 -0.8 -0.2 8.7 -5.5 -2.8 -3.4 -2.9 -3.4 5.9 -1.0 -1.6
9.02 0.94 0.98 0.28 0.27 0.02 0.05 0.05 -4.0 5.0 -0.8 -0.2 8.7 -5.5 -2.8 -3.4 -2.9 -3.4 5.9 -1.0 -1.6
9.07 0.94 0.98 0.29 0.79 0.02 0.08 0.02 -4.1 5.0 -1.0 0.1 8.3 -5.8 -2.7 -4.1 -4.1 -3.5 4.1 -2.3 -1.0

Sc
or

e
0.

4

9.07 0.97 0.95 0.41 0.35 0.04 0.06 0.07 -3.4 5.1 -1.3 -0.5 8.6 -4.9 -2.6 -4.3 -2.6 -3.3 8.2 -1.4 -4.1
Sea4 11.73 0.96 0.97 0.42 0.39 0.03 0.01 0.05 -5.2 5.0 -0.7 1.0 18.2 -9.1 -6.4 -6.5 -6.0 -9.9 9.9 -1.0 -2.4
Sha4 9.80 1.00 0.90 0.58 0.58 0.07 0.08 0.05 -3.5 4.5 -0.6 -0.4 -1.1 -2.1 -0.5 -0.8 0.5 1.0 1.5 1.9 0.9

7.80∗ 0.87 0.99 0.18 0.04 0.01 0.04 0.02 -0.9 1.1 -0.4 0.3 -0.4 -0.3 2.6 3.2 -0.5 0.2 -0.2 0.3 -0.8
7.80 0.87 0.99 0.17 0.04 0.01 0.04 0.02 -0.9 1.1 -0.4 0.3 -0.4 -0.3 2.6 3.2 -0.5 0.2 -0.3 0.2 -0.8
7.83 0.88 0.99 0.30 0.18 0.01 0.06 0.01 -0.8 1.1 -0.4 0.1 -0.4 2.0 2.5 2.6 0.2 -0.3 -0.7 0.8 -2.8

Sc
or

e
0.

7

7.92 0.91 0.51 0.15 0.53 0.10 0.06 0.01 -1.5 1.8 -0.2 -0.1 -0.2 -1.1 2.4 3.5 -2.5 -1.6 0.2 0.0 0.0
Sha7 8.60 0.90 0.98 0.44 0.00 0.02 0.03 0.04 -2.2 4.2 -1.7 -0.3 -1.3 -1.4 5.2 5.7 -0.6 -0.1 -0.4 0.0 -0.8
Core 9.62 0.90 0.56 0.18 0.15 0.02 0.04 0.00 0.3 -2.0 0.8 0.8 0.5 0.7 0.0 0.8 -0.3 0.6 -0.1 -0.1 -0.9

• Row 1, 7, 13: Optimization of Score (0.1, 0.4, 0.7) via dual annealing
• Row 2-4, 8-10, 14-16: Optimization of Score (0.1, 0.4, 0.7) via differ-

ential evolution. That is, a total of three times per score
• Row 5+6: Optimization of Seat middle 0.1 and Shoulder 0.1 via

differential evolution
• Row 11+12: Optimization of Seat middle 0.4 and Shaft 0.4 via dif-

ferential evolution
• Row 17+18: Optimization of Shaft 0.7 and Core via differential evo-

lution
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The resulting parameterization is shown in Table 6.3 which is examined in
the following from left to right. Generally, dual annealing takes longer17

but is always as good or better as the best differential evolution result,
where optimal parameters for the best results (i.e., first two lines of each
score) are almost equal, despite the very different optimization approaches.
Interestingly, the model performance often barely changes for parameter
deviations from that optimum (e.g., aV =0.24 for Score 0.1), hinting at
the slow sensitivity of some features explored in the upcoming section.
Tracking the base variation (e.g., influences by the material composition
or processes previous to heat treatment) is best done with a slow filter
(i.e., high aBase), as expected, where Score 0.7 exhibits the fastest version,
likely because material composition leads to the most substantial fluctua-
tions in that depth. Also, decreased hardness in that depth may lead to
less distorted measurements such that the filter does not have to rely on
memorized values as much to smooth out errors. Filter parameters18 of
the stations give a mixed picture. The influence of the vacuum furnace
seems ambiguous (i.e., mostly high with some outliers) while tracking the
freezer seems hardly worthwhile. Surface near measurements are affected
significantly by the tempering furnace behavior, while deeper layers largely
remain unaffected.

Position and component parameters reveal one major drawback of using
combined scores. While the scores consistently have smaller RMSEs than
the measurement positions they were calculated from (mostly due to mit-
igation of measurement error), they lose the ability to account for the
partially very different behavior of the underlying measurement position.
For example, component type affects hardness very differently for seat

17 Strongly dependent on the setting of the optimization algorithm, including the
maximal number of iterations, initial conditions, and convergence criteria.

18 As a reminder: the base state is updated with aBase and b = 1 − aBase, while
the sum of coefficients for each station type may be < 1, thereby indicating the
relative importance of a specific station type (i.e., when ai + bi is small, relative
contribution of station type i is small).
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middle 0.4 cA1 = 18.2∆HV and shaft inside 0.4 cA1 =−1.1∆HV. Ex-
pectedly, individual geometries in particular influence Score 0.4, mainly
because of the shape of the nozzle tips, as shown in the last chapter. To
see how these parameters generalize to unseen data, the following section
evaluates training and test set.

Evaluation

Results of training and test predictions using the custom hidden states
pipeline are shown in Figure 6.13. Again, combined scores have lower
RMSEs for all depths then the original measurement positions, where over-
all lower RMSE is generally coupled with a higher R2, as expected. Con-
trary to intuition, test results often show better performance (i.e., higher
R2 and lower RMSE) than their corresponding training sets. This behavior
is readily explained by the chronological train-test split where the test set
includes the diamond change (leading to less scatter) and recalibration of
the measurement devices (leading to a large change in mean hardness)19,
cf. Section 4.3.2.

For a better interpretation of the model performance, we compare it with
the results from measuring two components in one batch and then predict-
ing one component from the other, cf. Section 4.3.3, shown in the figure
as triangles, pointing in the direction of the better performance. Overall,
model predictions are as good or better than the triangle benchmark which
means, that knowing the approximated immediate past mean hardness of
a meas. pos. might be better than the measurement of one test specimen

19 The spread between measurement values is artificially enlarged by this recalibration.
Small process or component type errors do now have a smaller share in the overall
distribution. Because filters can track this change, they reach a higher R2 score
because what they can measure (fluctuation) now has a bigger contribution to the
hardness variance.

194



6.3 Case Hardening

Measurement Positions

R
M

S
E

 H
ar

d
n

es
s

 (
𝚫

H
V

)

Core

Shaft in
side 0.7 mm

Score 0.7 mm

Shaft in
side 0.4 mm

Seat m
iddle 0.4 mm

Seat m
iddle 0.1 mm

Shoulder  0
.1 mm

Score 0.4 mm

0.2

0.0

0.4

0.6

6

12

14

10

Score 0.1 mm

8

R
²

train test

predict one
from another

Figure 6.13: Prediction results (i.e., RMSE in red with y-axis on the left and R2

score in purple on the right y-axis) for training and test set for different
measurements position as well as associated scores

of a batch to make a prediction about the hardness of the second test spec-
imen20. Admittedly, it is not an entirely fair comparison because the LR
was given no information about the component type, which is particularly
apparent for depths of 0.4mm, where model predictions are much better
than measurement predictions and components type has a significant in-
fluence. It also explains why the model on average exhibits a higher R2

score for 0.4mm, because it can make good use of the component type
information, as compared to 0.1 and 0.7, which is also apparent in the
behavior over time shown in the next section.

20 The reason for this is that the large drifts over time can be tracked by the filter
and used for prediction. The LR, on the other hand, needs to deal with all of
the measurement errors and has no information about the local temporal state of
a meas. pos. Such findings further worsen the trustworthiness of a single HV1
measurement.
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Rolling prediction

A comparison of the models’ RMSE with the SD of the labels over time re-
veals what can actually be predicted apart from the base variation. Figure
6.14 shows the dynamic behavior of the measurements’ scatter over time
with no particular correlation between labels but a clear drop in 2018 (i.e.,
diamond change), explaining the lower RMSE of the test sets from above.
It turns out that for Score 0.1, there is nothing much to be predicted,
most likely because the carburization levels the playing field (i.e., very low
influence of material composition), the SD is already low, and the mea-
surement positions have the greatest hardness, increasing the probability
of high measurement error. On the other hand, for Score 0.4, component
type and position give huge leverage for better predictions. It also starts
from a much worse SD, leaving plenty of room for improvement.
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Seemingly, models generalize well from training to test, although the end
of 2019 foments some skepticism, with strongly degrading performance.
While the influence of the component type can be assumed to be station-
ary for some time, we also saw in Section 5.3.3 that the hardness drifts
slightly over time, likely explaining the decreased performance in 2019. If
components react differently to changes in one of the stations, this offset
has to be relearned, or the component type be made a hidden state in
the model21. Generally, it seems like sound advice to continuously access
performance when running models for a prolonged period of time (e.g.,
over a year) and recalibrate parameters in case of degradation. Lastly,
performance loss may also be experienced when further reducing the num-
ber of test parts or predicting too far into the future, as shown in the next
paragraph.

Reducing parts

Figure 6.15 assesses the information availability influence on model per-
formance. Two trends are immediately visible. Predicting further into the
future worsens performance, while some amount of phase delay correction
(i.e., knowing the hardness of a successor batch before predicting the pre-
vious one) increased the R2 score. Performance also deteriorates for higher
n when only testing each nth component or batch. However, the loss seems
to be relatively moderate even after quartering the testing efforts22 which
might, therefore, be a reasonable cost reduction strategy. Moreover, even
after reducing the tests to each eighth sample for the combined score (e.g.,
score 0.7) is better than using every second sample with only the individual
measurement positions. Still, caution should be exercised when using such
a method (i.e., skipping test specimens) because components of different

21 In fact, this seems unreasonable and may not even improve the performance of the
model due to the large number of different component types and the then irregular
updating of these states.

22 Which would be equivalent to testing one nozzle body of every second batch.
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types may then be tested at different batch locations that may not be gen-
eralizable to other types. Lastly, faster filters (a=0.75) exhibit a higher
vulnerability to improper phase delay correction, and the recommended
action derived therefrom might be to use a slower filter at the cost of a
slight performance loss, as was suggested by the optimization algorithms.

6.3.2 Analysis of variance

Finally, this section breaks down the variance into contributing factors
and their relative importance to the deviation from the mean of the label
distribution for each score, see Figure 6.16. The bars show the total con-
tribution in HV, that is, how much of the error can be better predicted
than using a dummy regression (predicting the mean of the label distri-
bution). Pie charts show the relative contribution to the variance with
the predictable R2 score in the center. The R2 itself is not coherent (i.e.,
R2(A) + R2(B) ̸= R2(A&B) ), which means that contributions may be
overlapping and should be seen as rough estimates23.

23 Shares were determined by calculating the R2 score after using all but one specific
feature and by only using that specific feature.

198



6.3 Case Hardening

Score 01 Score 04 Score 07

Train

Test

Position Component Station Base UnexplainedMeasurement error

0.40

0.54

0.49

0.62 0.41

0.51

R²

8.5
6.5

10.0

6.7

12.6

9.0
11.2

7.8

13.7

8.4
9.4

7.2

R
M

S
E

 (
𝚫

H
V

) Dummy

Predic-
table

Figure 6.16: Contribution of various sources to variance of label distribution

The measurement error (yellow) with an RMSE of 4.5 is taken from Section
4.3.4 and gives a lower bound of the measurement and specimen prepa-
ration influence. It may be assumed to be comparable for the different
scores and, therefore, has the same size in every bar, although its relative
contribution changes significantly depending on the size of the remaining
influences. Station (i.e., the heat treatment process itself) has the smallest
predictive power explaining why the RMSE scores in Table 6.3 are insensi-
tive to changes in filter parameters of the freezer, vacuum, and tempering
furnace. After all these analyses, it turns out that the process is so sta-
ble that label variation does stem from everything but heat treatment.
For this reason, the use of a complicated hidden states model, besides
being interesting, is not necessary to obtain accurate predictions. Batch
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position and component type are better predictors. They have more influ-
ence than process variations between batches themselves24. In most cases,
however, knowing the baseline fluctuation provides the most explanatory
power for label variation, although its relative contribution might vary
quite strongly over time, as can be seen between training and test set for
Score 0.4. In sum, most of the variance can be explained, with about half
being predictable by the model. The last chapter presents the respective
recommendations and conclusions that may be drawn from these analyses,
as well as their applicability in daily work.

6.4 Discussion

While it is relatively easy to track the average hardness state influenced
by the line or furnace and the alloy composition over time using an IIR
filter, in industrialized stable heat treatment processes, it is generally dif-
ficult or even impossible to predict the hardness changes caused by the
small random variations in heat treatment parameters from day to day.
If a prediction (or forecast) is to be made for the process, a few well-
corrected features are the best choice, with a chronological train-test split
being mandatory to detect overfitting. Predictive performance must then
always be reported over time to capture differences between train and test
set, changes in measurement (or process) variance affecting the RMSE, and
changes in long-term fluctuation affecting the R2 value (a better score not
always implies a more accurate prediction). Regarding the potential for im-
provement in hardness prediction, either there are too few well-calibrated,
high-resolution sensors mounted in the line to detect these changes, or,
more likely, the process itself really does not contribute significantly to

24 It goes without saying that not position and component type per se are responsible
for the differences, but differences in local temperature, process gas composition,
and local quenching intensity. In this respect, the local process is responsible but
can only be represented here by position and type. If the local data were available
for each process, other predictions would certainly be possible.
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hardness variance (with the exception of increased convection oven dwell
time on weekends). More meaningful are the component type, batch po-
sition, and the number of samples used to update the filter, which means
that hardness testing can never be replaced entirely by predictions since
too many factors are involved that influence the hardness result. Further-
more, hardness tests not only indicate successful heat treatment but can
also reveal irregularities in the preceding process chain from which no data
are (or even can be) available, such as the accidental mixing up of mate-
rial. Ultimately, the measurement error determines the upper bound on
prediction accuracy, as it is itself one of the most significant contributors
to the overall variance.

Machine learning models must be trained with caution as their tendency
to overfit the data may lead to erroneous predictions for future unseen
data. As counteraction, initially, simple models are to be trained with a
chronological train-test split and few, well-selected, physically understood
features. Although ensemble methods (e.g., random forest or boosting
tree) may lead to slightly better predictions, training a simple NN and
a linear regression model may be the better choice. The NN is prefer-
able to the LR only when its performance is significantly better in the
test set. Compared to ensemble methods, NN and LR have better inter-
pretability and learn smoother functions with respect to the true physical
system properties. Predictions that extrapolate from the learned distribu-
tion, particularly for such nonlinear processes as heat treatment, should
be averted. In short, machine learning is a sharp sword to be employed
carefully.

These findings beg the question of whether an economically viable cost
reduction strategy can be derived that trades-off the savings from reduced
testing with the consequences of producing out-of-spec components mul-
tiplied by the probability of not detecting them (due to reduced testing).
Empirical risk assessment is quite problematic because none of the labels
in the data set were out of specification (in terms of hardness), and the
measurement error is higher for near-tolerance values (i.e., it is difficult
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to know if a measured hardness is really out of specification or only very
poorly measured). The answer to this question depends, as so often, on
the individual risk aversion of the production manager and the quality de-
partment. The results suggest that halving the testing effort is well worth
it in our specific use cases. The methods presented above may not find
the outliers, but then there are also no outliers to be found. What the
methods can and should be used for is to track the individual features and
labels. As a result, critical trends are easy to identify, deviations from the
norm are immediately visible25, and the influence of line, type, and batch
position can be handily taken into account when evaluating a particular
measurement result. In order to reap the fruits of the preceding endeavors,
some final hurdle must be overcome, that is, deploying the methodology
into daily production.

25 When a bad part is found, it is relatively easy to determine the likelihood of whether
a defect occurred during heat treatment or whether the problem lies elsewhere.
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7 Deployment

An industrial machine learning project may generally distinguish between
three phases: development, deployment, and operation, see Figure 7.1.
While the development cycle, a.k.a. CRISP-DM (CRoss-Industry Stan-
dard Process for DM) [107] was the primary focus of this thesis up to
this point, addressing the business case, data collection, analysis, and un-
derstanding, as well as model development and validation, the latter two
are elaborated on in this chapter. They are concerned with model integra-
tion into day-to-day operations, requiring an IT infrastructure that enables
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Figure 7.1: Schematic development-, deployment-, and operations-cycle as used in the
current project, based on [107,136]
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easy access, monitoring, error logging, maintenance, and scalability. These
three stages are often referred to as MLOps when the primary goal is to
use machine learning models.

Often enough, specifically, the integration efforts are underestimated be-
cause necessary resources such as clean data, knowledge of deployment
platforms, databases, source code management, and versioning, as well
as continuous data flow, are rarely covered by the data scientist who de-
veloped the model, and should be consummated by an information or
computer scientist [92].

For this thesis the system was fully implemented (including platform
preparation and pipeline automation) up to the Pipeline validation in
shadow mode. That is, the system can be monitored already and runs on
the production system, but release to replace test specimens has not yet
been granted. The following sections dive into the deployment, explaining
which steps were taken to implement the models developed in previous
chapters into daily business.

Platform preparation lies at the heart of a successful deployment for
continued stable operation. The IT infrastructure used for this project is
explained in more detail below and shown in Figure 7.2. Choosing an in-
tegrated development environment (IDE) certainly is a matter of personal
preference. For a tight budget Spyder seems better suited for the data
sciences task due to its easy access to variables and layout proximity to
Matlab and R Studio, PyCharm and Visual Studio might be the better
choice for deployment since debugging and including a source code repos-
itory is easier. If affordable PyCharm Professional seems to be the best
choice. This IDE is also used more often by computer scientists. For ver-
sioning and traceability of code changes, any major Git-based repository is
sufficient (most companies have a subscription to the professional version
of the major brands).
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Figure 7.2: Deployment and operations framework

Choosing a deployment environment (e.g., local machine, virtual machine,
or a container platform — in our use case OpenShift by Red Hat) requires
a little more thought as it depends on the available resources project scope
and requirements for the future. While deployment on a local machine is
relatively easy to accomplish, maintenance, stable operation, and scala-
bility are horrendous (e.g., system updates, accessibility for programmers,
and hardware stability are just a few of many caveats), thus this choice is
only suggested as a stopgap solution for a temporary rapid prototype or
when resources are scarce. Virtual machines (VMs) and container plat-
forms alleviate most of these pain points, with their own pros and cons:
VMs are a well-understood industry standard that emulate an entire com-
puting environment and provide more security through this encapsulation.
Unfortunately, they take longer to boot, backup, or migrate between plat-
forms. In addition, their images typically consume gigabytes (i.e., a phys-
ical server can support fewer VMs than containers). Containers are more
lightweight (i.e., image in the megabyte range), spin up in milliseconds,
and require fewer IT resources to deploy, run, and manage. On the other
hand, all containers must run on the same operating system, are somewhat
less secure, and operate in an evolving ecosystem due to the novelty of the
technology.
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Database selection should be application-dependent but is commonly dic-
tated by available resources. For both use cases, a non-SQL database (i.e.,
Mongo DB) was used for bainitization and an SQL DB (i.e., Microsoft SQL
Server) for case hardening. While deleting entries, creating new collections
(e.g., using Robo 3T), and dumping data in any format into a Mongo DB is
fairly easy, its speed (i.e., retrieving and filtering data) seems comparably
slow. In contrast, an SQL DB enforces certain data types and structures,
enhancing their integrity and considerably speeding up retrieval. That
means more thought must be put into how to store the data into an SQL
DB, but this may save a lot of time later on. In addition, SQL is widely
known and well documented, making it easier to put the query burden
on the database than loading more data and then filtering with Python
commands. Both DBs allow to either store the complete model as a binary
file or their weights. However, due to higher speed, data type enforcement,
and tabular structure, the SQL version is recommended, as it often also
makes visualization much easier, as most such tools (e.g., tableau) expect
tabular data or even have their own SQL interface. For this thesis, 4 ta-
bles (resp. collections in the MongoDB) where created: Label, Feature,
Prediction and model.

The Label table holds one measurement value per row along with mea-
surement type, unit, the component type tested, time stamp, and unique
ID that links to a specific batch. In addition, it holds the filter output cal-
culated1 from previous labels of the same component type and salt bath
line (or furnace) as an indication of the current hardness state. Although
it increases the table size, it is essential to have each measurement in a sin-
gle row because data can be processed and filtered much easier. Moreover,
new types of components and measurements can easily be entered into
the table, making the generalizability of the concept to new components,
measurements, or furnaces much easier.

1 These values are calculated by microservices explained in the upcoming section.

206



7 Deployment

Generally, the same would be valid for the Feature table, but putting each
feature in an individual row would overload the database. Consequently,
the number of features to be stored in the DB must be known beforehand
for the SQL Database. Here, MongoDB can play out its full advantage
since new features can be added to a collection at any point. However,
this functionality should not be overused, as dissimilar structures between
categories (e.g., components, furnaces) lead to more complicated, error-
prone processing.

The Prediction table is similar in structure to the Label table, with one
prediction in each row. Additionally, it holds the information with which
model the prediction was made.

The Model table holds the models used for prediction, along with a times-
tamp of its last training, a timestamp of expiration (i.e., if retraining is
necessary every six months, it is reflected in this timestamp), as well as
the features used for the model and the training scores.

Pipeline automation involves several tasks. Splitting the tasks at hand
(i.e., preprocessing, model training, and prediction) into microservices (i.e.,
independent applications) and running them on the OpenShift platform
provides a most resource-efficient and stable deployment. It already inte-
grates monitoring and logging as well as scheduling (i.e., each microservice
- except for model training - is executed every 15min), see Figure 7.3.
This makes the maintenance of individual modules much more effortless
and enhances overall system stability. In order to find out which data
to process next (each heat treated batch has its unique identifier), each
microservice possesses its own table or collection2 in a database and com-
pares the entries it has already made to its designated table with any new
data available. This way, even if a service breaks down, it can easily be
reloaded and take of from the last new ID.

2 In a non-SQL database a collection is the equivalent of a table in an SQL DB.
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Figure 7.3: Screenshot of OpenShift console used as deployment and operations frame-
work

In contrast to the data mining process, where samples can be handled in
batches, daily business automation requires that IDs be handled individu-
ally, resulting in rewriting the code to overcome the following challenges.
Knowledge about distributions or distinct values that previously was in-
ferred from the data must now be stored beforehand and then retrieved
(e.g., detecting outlier). Failures during the processing of a particular ID
(e.g., missing entry or new categorical value) must be caught by try-except
statements, and their ID still be entered into the database to acknowledge
that the processing of this ID failed and to prevent the application from
trying to reprocess the same ID again and again. IIR filters need the
last N values they calculated. Thus, either these values need to be stored
away (e.g., into a states table) and then retrieved during prediction, or an
FIR filter approximates it, and only the last measured values need to be
retrieved. Both strategies worked fine.

Finally, microservices are ideally written generically enough to handle dif-
ferent types of components that are heat treated similarly. For our specific
use cases, only a few parameters (i.e., window size and temperature con-
ditions) are component-specific, such that the feature extraction task for
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solenoid valve, camshaft, and roller shoe bainitization can be handled by
the same task as for the cylinder head with the given parameter changes.
Of course, an individual model must be trained for each label-component
combination, but since all data have the same format, the same microser-
vice can be used for all combinations, with the same being true for the
predictions.

By setting the system up using this structured modularity, it is easy to
retrain models (i.e., by triggering the resp. microservice) and add new
components or salt bath lines. For a new component the respective feature
extractions parameters have probably to be adjusted (e.g., points in time
for quenching, maximal or minmal tempetures, etc.). This problem can
also be solved by using ontologies between similar heat treatment processes
[134]. As soon as a sufficient amount of data is available in the data
base for either one, the respective microservice will pick up the additional
component or line and start making predictions for it.

A completely new heat treatment technique (e.g., carbonitriding) would
require more implementation effort since feature extraction could be wildly
different from the bainitizing procedure. The overall concept would stay
the same, but a good amount of analysis would be required before deploy-
ment. To ensure that these services and pipelines are functioning properly,
the entire framework must be audited, as described below.

Pipeline validation and release are the final milestones to be achieved
before operations cash in the promised benefits. Therefore, three require-
ments must be fulfilled to pass the system qualification test: Success-
ful completion of shadow mode, comprehensive Failure Mode and Effects
Analysis (FMEA), and training of and restriction to personnel allowed to
interact with the system.

During shadow or test mode, the system is running as if used for daily
operations, but its output is still continuously compared to the physical
measurements of the label. It may not only reveal modeling mistakes but
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any data processing difficulties (i.e., database connection, system speed,
empty- or wrong database entries) that may break the system. Malicious
database entries can also be made deliberately to test the system’s reaction
and validate or restrict the manual insertion of data upon entry into the
database (e.g., drop-down menus for categorical entries, check for number
format and range if a numeric value is expected).

An FMEA’s goal is to avoid defects from the outset instead of discovering
and correcting them later. For this purpose, possible causes of defects,
severity, and probability of their occurrence, as well as the probability of
detecting them, should be identified and evaluated already in the develop-
ment phase, along with respective countermeasures.

Often the most significant source of trouble sits between the keyboard and
the back of the chair. Therefore, it is essential to train all persons who
interact with the system and have a small circle of administrators who
can make changes to any subparts. Adjustments to the system structure
should only be made after consultation with all users (i.e., defined respon-
sibilities). Non-compliance causes maintenance costs to skyrocket.
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Monitoring and maintenance are essential tasks for continuous daily
operation. This is true for the system status itself (i.e., are the services
running as scheduled, cf. Figure 7.3) as well as for the output the sys-
tem generates (i.e., extracted features and predictions for the individual
components, cf. Figure 7.4). Such monitoring provides the ability to
continuously assess how much discrepancy exists between measured and
predicted values in order to respond to trends promptly, Figure 7.4 (a).
Color-coded confidence (based on the number of available past data points
and proximity to the main cluster) of the prediction can also aid inter-
pretation. Figure 7.4 (b) shows all the models for different components,
batch and measurement positions, as well as the R2 score they achieve
on the test set and the number of samples available for training. With
the exception of one component (with negative R2 value, colored red), the
models show some predictive power, with the most informative legacy fea-
ture3 being the dwell time in the convection furnace. Although predictive
performance and the number of samples are not directly correlated, too
small a number of samples impairs predictive performance. Expectedly,
the prediction of the surface hardness is much more error-prone and may
not be used as a reliable source for true hardness, see Figure 7.4 (c).

3 The features used are displayed in the column LstFeat and have been calculated by
SFS.
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(a) Prediction (circles) vs. measurements (lines) for the solenoid valve

(b) Models used for different components along with R2 score

(c) Scatter plot: prediction vs. measurement for solenoid valve

Figure 7.4: Screenshot of tableau dashboards to monitor system status
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Heat treatment of batches is a rather intricate process, the result of which
is influenced by many parameters, starting from the material composi-
tion of the components and preceding process steps, through the position
of the batch, the temperatures, and the gas mixture, to the measuring
method. Over the life cycle of a component being produced, these steps
are optimized in terms of stability and cost efficiency, starting with the
low-hanging fruits such as increased batch size, moving on to shortening
process step duration until only small improvements with minor economic
benefits can be realized. During this period of diminishing marginal im-
provements, the datasets continue to grow, paving the way to discover
previously undetected relationships through data mining. These methods
allow to quantitatively estimate the relative contribution of each influenc-
ing factor to the final heat treatment result (with the focus on hardness
in this work), thus highlighting the area with the highest potential for
improvement and cost reduction effects. Raising profit margins by replac-
ing destructive end-of-line testing with machine learning predictions is the
primary focus here.

From two use cases, bainitizing of cylinder heads (100Cr6, 20 000 batches)
and case hardening (CH) of nozzle bodies (18CrNi8, 7 000 batches), data
were collected and merged, including steel manufacturers’ material compo-
sition, meta- and sensor data from the processes, hardness measurements
of components, and hardness comparison plates. Preparation and analysis
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were performed according to the framework for batch heat treatment de-
veloped in this work, consisting of data preprocessing (merging and clean-
ing sources, extracting features, and correcting drifts), label and feature
analysis, as well as machine learning.

Label analysis reveals that highly optimized industrialized heat treat-
ment achieves a quite narrow quality window for both processes (bainitiz-
ing : ±35HV, SD = 8.6HV, CH: ±40HV, SD = 9-15HV), with almost
no hardness values out of tolerance. A significant portion of variance is
caused by measurement noise (RMSE to hardness comparison plate refer-
ence: 2.2-3.9HV for bainitizing (HV10), 4.4-5.5HV for CH (HV 1)) which
is further amplified by test specimen preparation. These additional effects
were quantified by testing multiple specimens from the same batch and
using one to predict the mean value of the remaining positions. We can
see that the current measurement and processing procedure alone limits
the predictive capacity to a maximum score of 0.5 - 0.7 resulting in a pre-
dictability benchmark that is batch and measurement position-dependent
(bainitizing: RMSEcore = 5-6HV, RMSESurface = 6-8HV, CH: RMSE:
9-10HV). The offset between different batch positions (up to: 15HV

(bainitizing), 10HV(CH)) could be largely explained by temperature uni-
formity studies for bainitization but could hardly be explained for CH.
Measurement positions on the same component for bainitization were un-
correlated, while those of equal depth for CH were predictable from each
other with R2 = 0.3− 0.42. To mitigate the imprecise HV1 hardness test,
measurement positions of the same depth were combined to the scores 0.1,
0.4, and 0.7mm. Lastly, the large drifts over time account for another 10-
20HV sometimes attributable to changes in measurement procedure (like
recalibration or diamond changes of hardness testers) and sometimes to
the features elaborated on below.

Feature analysis shows that most of the long-term hardness fluctuations
can be readily explained by the material composition, where even slight

214



8 Summary

carbon fluctuations (± 0.01 wt.-%) in the raw material lead to significant
hardness drifts. Both data-driven machine learning approaches and estab-
lished physical models (e.g., Maynier) arrive at comparable weights for the
individual elements and can predict the direction of hardness change as the
material composition varies, but often misestimate the amplitude because
alloy composition is not the only factor contributing to fluctuations. That
is, reacting to future material changes with, for example, modified quench-
ing pressure is possible but certainly not easy. Changes in process param-
eter settings (e.g., tempering furnace temperature between batches) also
explain some of the hardness jumps over time with correlation coefficients
up to r = .3− .4. These correlations must be examined with utmost cau-
tion and sound domain expertise to avoid falling for spurious correlations.
Measured temperatures and pressures generally have very limited predic-
tive power. The extracted process features from these measurements show
minimal variation (e.g., ±2 ◦C during austenitization for both bainitizing
and CH) and are barely correlated with hardness r < .05. This is true even
after correcting for all other known influences (long-term fluctuations, off-
sets, etc.). Effectively, the process or feedback controller does a marvelous
job where the difference between successive batches on the same furnace or
line is much smaller than between different lines. Consequently, depending
on the station(s) used for production at the same time, hardness difference
caused by route, line, or component may be up to 7HV (bainitizing) and
20HV(CH). Alarms either do not provide any predictive information re-
garding hardness or hint at process deficiencies that are easily visible from
process parameters, like a prolonged dwell time of the second bainitiza-
tion stage over weekends. Employing this holistic influence quantification
through data mining (incl. time, material, process, batch position, plant,
measuring equipment, etc.), statistically robust, generalizable statements
can be made about the source of variance, and recommendations can be
derived as to where intervention would be most beneficial in order to re-
duce the variance and further optimize the process. The prediction of this
hardness variance using machine learning methods is summarized below.
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Machine learning based on process parameters produces quite different
results for the two use cases, except for fluctuations. Fortunately, these can
reliably be tracked with a first-order Butterworth filter that uses weights
around b = 0.1 from newly measured values to update its state. It loses
about 0.7 RMSE points when the number of support points used to track
trends and predict the next values is repeatedly halved.

For bainitization label drifts must be corrected for each individual line
(which also differ in the hardness variance produced), as well as their
features, which should be calculated based on domain knowledge about
the process. Generally, sequential feature forward selection and genetic
algorithms then deliver the most predictive uncorrelated subsets. After
comprehensive pipeline optimizations with Bayes search, small, robust ML
models that can learn minor nonlinearities are best suited for predictions
as they barely overfit and still capture the relevant relationships. Although
tree-based ensembles generally perform well, a sensitivity analysis also re-
vealed that they can only learn buckets and may not be adept at extra-
polation. This analysis also shows that prediction from minimal variance
features does not explain a lot of final hardness variance attributable to
the process variation itself (R2 = 0.11). Unsupervised analysis with fuzzy
c-means mainly found clusters representing single lines and demonstrates
that it is almost impossible to detect hardness outliers based on the heat
treatment parameters themselves. This is also reflected in a ROC anal-
ysis, which can reach an AUC of up to 0.9 for some thresholds, but also
shows that between 20-60% of the outliers would not be detected. These
thresholds do not represent the true tolerance limits, as there were almost
no true outliers to begin with.

For case hardening the classical ML approach does not work because the
process variations are too small and the measurement noise too large. In-
stead, predicting the hardness of subsequent batches can be accomplished
with a hidden state pipeline that considers material variation by tracking
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routes through various stations and the position of the test specimens in
the batch and its component family. This forecast is as good as testing two
specimens from the same batch and then predicting one from the other.
The resulting RMSE and R2 depend strongly on measurement position.
Further, a rolling prediction over time shows that parameters seem not
time-invariant and should be relearned each year. This pipeline may ex-
plain up to 80% of the variance, with an individual breakdown showing
that the largest scatter is caused by measurement error, followed by gen-
eral fluctuations mainly due to alloy changes. Interestingly, the station
seems to have almost no influence here.

Deployment in daily operation was done on an OpenShift platform and
works for bainitization of various component categories. A cost reduc-
tion strategy (e.g., halving the number of test specimens) may then be
implemented based on the known factors contributing to the variance by
monitoring all features and label drifts, making predictions from the an-
alyzed features, excluding those batches with properties that are too far
from the main cluster, and hedging against bad predictions by adding an
additional safety band around the prediction that must not exceed the
limits for the measurements.

To summarize, the proposed framework shows how to collect and pre-
process data, derive a benchmark for maximum achievable predictability,
break down the variance into its contributing factors, and apply state-of-
the-art machine learning methods to predict the hardness of heat treated
batches. Furthermore, it is shown how to launch a use case in daily op-
eration and transfer the findings to another component. Although many
relations could be discovered by data mining and explained by material
science, the data-driven models are unusable for extrapolation and the de-
velopment of new heat treatment processes. Hybrid models, which have
inherited their internal structure from physical models and use machine
learning methods only for complicated relationships, have the potential to
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further increase process understanding and open up a whole new avenue
for process development.
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Figure A.1: Bainite: Scatterplot between batch positions regarding core and surface
hardness. Upper left corner indicates the mean square error e for the
normalized data, while the lower right corner contains the correlation
coefficient r. Each point depicts the hardness measurement of two test
specimens’ positions from the same batch with the hardness of one posi-
tion on the x- and the other position on the y-axis. The deviation from
identity (i.e., same hardness), indicated by the grey diagonal line, is due
to several reasons including, position bias, measurement errors, different
hardness and hardenability of the blanks and process noise (e.g. convec-
tion in the furnace and salt bath). The lower left corner of each subplot
contains the correlation coefficient
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Figure A.2: Bainite: Estimated R2 score distribution by 4000-fold bootstrapping for
each position pair. Whiskers indicate the 5th and 95th percentiles of the
distribution, boxes the 2nd and 3rd quartile, notches the 95% confidence
interval of the median
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Figure A.3: Bainite: Scheffetest for pairwise comparison of all position pairs showing
their significant difference222
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Figure A.4: Bainite: Histogram of mean absolute error in HV between the three im-
prints and their mean. The measurement of the surface hardness shows
a standard deviation of σs = 5 HV, while the spread in core is smaller
with σc = 3 HV
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Figure A.5: CH: Picture of IPSEN vacuum furnace used for case hardening nozzle
bodies. Black rods are used for heating and white nozzles inject the
acetylene
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Figure A.6: Left: Mean surface hardness over time per furnace smoothed by a centered
rolling window of 31 days (±15 d). Lines are only shown for production
(A rolling window would also provide values for a day with no production
using the days before and or behind the current day. In this case values
are set to NaN). Right: boxplot of surface hardness with median and its
99.9% CI
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Figure A.7: Bainite: Rolling window over dwell time and core hardness per line for
salt bath. No effect can be found for reduced salt bath dwell time
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Table A.1: Bainite: Optimization results of Bayes search of different pipelines and
feature subset selections

model name select by cv5 mean cv5 median percentile n feature

LR SFS 0.12 0.120 87 52
LR GeneticAlgo 0.118 0.114 37 22
LR manual 2 0.116 0.121 100 6
LR RandomFor 0.11 0.113 6 10
LR Mutual Inform 0.11 0.111 20 36
LR F score 0.087 0.084 1 1

model name select by cv5 mean cv5 median percentile n feature alpha beta 1 beta 2 layer size
NN single SFS 0.127 0.125 20 12 0.005 0.500 1 100
NN single GeneticAlgo 0.127 0.133 26 15 0.006 0.878 0.876 86
NN single manual 2 0.127 0.133 100 6 0 0.500 0.751 100
NN single RandomFor 0.108 0.108 1 1 0 0.753 1 100
NN single Mutual Inform 0.102 0.099 1 1 0.062 0.500 0.500 100
NN single F score 0.068 0.072 2 3 0.5 0.85 0.799 4

model name select by cv5 mean cv5 median percentile n feature layer 1 size layer 2 size layer 3 size
NN 3 layer SFS 0.13 0.135 19 11 100 2 45
NN 3 layer GeneticAlgo 0.121 0.122 23 13 21 100 62
NN 3 layer manual 2 0.126 0.132 100 6 100 30 42
NN 3 layer RandomFor 0.105 0.107 1 1 100 45 100
NN 3 layer Mutual Inform 0.105 0.110 1 1 100 100 100
NN 3 layer F score 0.051 0.048 3 5 83 2 72

model name select by cv5 mean cv5 median percentile n feature layer size layer size layer size
NN stacked SFS 0.127 0.133 14 8 100 1 100
NN stacked GeneticAlgo 0.132 0.136 28 16 83 27 72
NN stacked manual 2 0.126 0.130 100 6 3 67 23
NN stacked RandomFor 0.108 0.115 8 14 1 27 45
NN stacked Mutual Inform 0.099 0.092 7 12 99 10 100
NN stacked F score 0.072 0.103 5 9 30 94 80

model name select by cv5 mean cv5 median percentile n feature learning rate max depth min samp. leaf min samp. split n estim.
GB SFS 0.124 0.133 54 32 0.015 4 30 26 254
GB GeneticAlgo 0.124 0.133 30 18 0.200 2 1 30 78
GB manual 2 0.122 0.126 100 6 0.065 2 1 30 207
GB RandomFor 0.121 0.125 100 183 0.042 2 1 2 300
GB Mutual Inform 0.122 0.127 99 181 0.038 2 30 15 244
GB F score 0.122 0.128 41 75 0.082 2 16 21 86

model name select by cv5 mean cv5 median percentile n feature min impur. decr. max depth min samp. leaf min samp. split n estim.
RF SFS 0.124 0.135 40 24 0.029 8 12 2 200
RF GeneticAlgo 0.123 0.133 54 32 0.043 9 12 16 274
RF manual 2 0.119 0.125 100 6 0.063 14 1 30 300
RF RandomFor 0.121 0.129 72 131 0.013 7 17 30 191
RF Mutual Inform 0.121 0.130 100 183 0.001 11 7 2 300
RF F score 0.122 0.131 86 157 0.001 8 22 2 300

model name select by cv5 mean cv5 median percentile n feature C epsilon tol
SVR SFS 0.116 0.116 19 11 0.068 0.084 0
SVR GeneticAlgo 0.114 0.113 17 10 0.019 0.9 0.002
SVR manual 2 0.114 0.118 100 6 0.017 0.016 0
SVR RandomFor 0.094 0.099 1 1 0.008 0.404 0
SVR Mutual Inform 0.094 0.098 1 1 0.003 0.9 0
SVR F score -5.735 -0.954 1 1 0.001 0.088 0.001

model name select by cv5 mean cv5 median percentile n feature leaf size n neighbors p
KNN SFS 0.119 0.117 19 11 35 92 1.561
KNN GeneticAlgo 0.119 0.114 29 17 100 100 2.000
KNN manual 2 0.116 0.118 100 6 100 100 1.663
KNN RandomFor 0.101 0.102 1 1 87 96 1.043
KNN Mutual Inform 0.101 0.101 1 1 2 97 1.048
KNN F score 0.08 0.081 37 67 62 100 1.000
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