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A B S T R A C T   

Lithium-ion batteries (LIBs) currently have the dominant market share in rechargeable batteries, a key tech-
nology reducing greenhouse gas emissions. However, concerns regarding the environmental impacts of 
manufacturing and requirements for critical resources result in the need for developing alternative battery 
technologies as well as improving LIBs. This study assessed environmental impacts and supply risks associated 
with three post-LIBs, namely two sodium-ion batteries (NMMT and NTO) and one potassium-ion battery (KFSF), 
and three LIBs (NMC, LFP, and LTO) using life cycle assessment and criticality assessment. Post-LIBs showed 
comparable environmental performances and lower supply risks compared with LIBs. The environmental hot-
spots were NiSO4 production for cathode for NMMT and NMC, and TiO2 production for anode for NTO and LTO. 
KFSF anode and cathode had no significant environmental impacts, achieving the best performance. LIBs had 
higher supply risks than the other batteries, mainly attributed to Li and Co used as electrode constituents.   

1. Introduction 

Rechargeable batteries are one of the key technologies used to reduce 
anthropogenic greenhouse gas (GHG) emissions. They enable electric 
energy storage to enhance the flexibility of power systems, consequently 
integrating a higher degree of renewables into the grid (Ram et al., 2019; 
Weil et al., 2020). Additionally, they form the basis for successful 
electric vehicle deployment (Dunn et al., 2011). The importance and 
demand for these technologies are projected to further increase in light 
of the need to achieve net-zero GHG emissions to limit the rise in global 
temperature below 1.5 ◦C relative to pre-industrial levels (IPCC, 2021; 
Rogelj et al., 2018). Among the various rechargeable battery technolo-
gies, lithium (Li)-ion batteries (LIBs) dominate the market share of 
rechargeable batteries and are widely used in various applications 
because of their high energy and power density, and long cycle life (shelf 
life) (IEA, 2020; Kim et al., 2012; Li et al., 2018; Zubi et al., 2018). 

Although LIBs have the aforementioned advantages, some major 
concerns exist, particularly regarding their environmental impacts 

associated with manufacturing and requirements for scarce and critical 
resources (e.g., Dolganova et al., 2020; Nayak et al., 2018; Nitta et al., 
2015; Peters and Weil, 2016). To avoid environmental burden shifting, 
that is, reducing GHG emissions by potentially increasing other envi-
ronmental impacts, assessing all environmental impacts associated with 
battery manufacturing is essential. In addition, Li, which is a primary 
constituent of LIBs, is distributed in a limited number of countries and 
often considered a critical metal with a relatively high supply risk (e.g., 
Miatto et al., 2021; Prior et al., 2013; Schrijvers et al., 2020; Yokoi et al., 
2021). Since the global demand for Li is expected to drastically increase 
in the future (Sovacool et al., 2020; Watari et al., 2020), this 
resource-related issue may become a source of price increases and 
constraints for expanding LIBs (Baumann et al., 2022; Lebrouhi et al., 
2021). Accordingly, in addition to improving LIBs, developing alterna-
tive battery technologies is also essential for the large-scale adoption of 
rechargeable batteries. 

Various post-LIBs have been explored as alternative battery tech-
nologies with the aim to be comparable to or even better than LIBs in 
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terms of battery performance, cost, large-scale adoption, environmental 
impact, and material requirements (Amici et al., 2022; Choi and Aur-
bach, 2016; Duffner et al., 2021; Walter et al., 2020; Yu et al., 2020). In 
particular, sodium-ion batteries (SIBs) and potassium-ion batteries 
(PIBs) are considered potential alternatives to LIBs (Kubota et al., 2018; 
Pham et al., 2017). SIBs are considered one of the most promising and 
mature post-LIB technologies because of their economic efficiency, 
similar chemical properties to LIB, and abundance of sodium (Chen 
et al., 2018; Delmas, 2018; Deng et al., 2018; Hwang et al., 2017; Peters 
et al., 2019a; Slater et al., 2013; Vaalma et al., 2018; Yabuuchi et al., 
2014). In addition, it was recently announced that SIBs are being 
implemented in electric vehicles (CATL 2023). At the same time, PIBs 
are another emerging technology also considered as a research-worthy 
alternative owing to their low cost, high operating voltages, fast rate 
capabilities (thus, high power density), and abundance of potassium 
(Dong et al., 2020; Hosaka et al., 2020; Hwang et al., 2018; Liu et al., 
2023; Min et al., 2021; Wang et al., 2021; Zhang et al., 2019, 2021a). 
Besides, sodium and potassium do not form alloys with aluminum; 
hence, aluminum foil can be used as a current collector instead of the 
copper foil found in LIBs, which reduces not only the cost but also the 
weight of batteries (Hwang et al., 2018; Kubota et al., 2018; Min et al., 
2021; Zhang et al., 2019). Substituting Li with sodium or potassium as 
the main battery component will change battery performance metrics in 
various environmental aspects, such as material use, energy consump-
tion, and GHG emissions. Therefore, a comprehensive assessment 
regarding the environmental impacts of batteries is crucial to demon-
strate the environmental performance of these batteries (LIBs, SIBs, and 
PIBs) by verifying that the alteration by sodium- or potassium-ion bat-
teries does not result in the net increase in the total environmental 
impact of overarching environmental issues. 

Life cycle assessment (LCA) is a standardized methodology for 
comprehensively quantifying and assessing a wide set of environmental 
impacts (e.g., global warming, acidification, and resource depletion) of 
products, services, and activities, considering the whole (or part of) life 
cycle (i.e., from resource extraction until the end-of-life treatment) (ISO, 
2006a, 2006b). Although LCA studies on the environmental impact 
associated with LIB manufacturing have already been conducted 
(Aichberger and Jungmeier, 2020; Arshad et al., 2022; Chen et al., 2022; 
Ellingsen et al., 2017; Peters et al., 2017; Porzio and Scown, 2021; 
Tolomeo et al., 2020; Zhao et al., 2021), research on those associated 
with SIBs have been limited (Guo et al., 2023; Lai et al., 2023; Mohr 
et al., 2020; Peters et al., 2016, 2019b, 2021; Schneider et al., 2019; 
Sharma and Manthiram, 2020; Wang et al., 2020) and to the best of our 
knowledge, no study has assessed the environmental impact of PIBs. 
Besides, in the current LCA framework, resource-related issues are 
generally assessed in terms of resource depletion from a long-term 
perspective, rather than resource scarcity, accessibility, or supply risk 
issues from a short-term perspective, which are often the main concerns 
of stakeholders for resource use-related issues (Berger et al., 2020; 
Cimprich et al., 2019; Schulze et al., 2020; Sonderegger et al., 2020). 
Such short-term aspects of resource use are generally assessed using 
criticality assessment (Schrijvers et al., 2020). Despite resource-related 
issues associated with LIBs, including resource requirements, deple-
tion, and criticality, have been discussed in several studies (Bongartz 
et al., 2021; Dolganova et al., 2020; Greenwood et al., 2021; Kiemel 
et al., 2021; Manjong et al., 2023; Pelzeter et al., 2022; Peters and Weil, 
2016; Santillán-Saldivar et al., 2022; Simon et al., 2015; Sun et al., 
2021), the raw material criticality associated with post-LIB technologies 
have been partly addressed in a very limited number of studies (Bau-
mann et al., 2022; Vaalma et al., 2018; Wentker et al., 2019). 

This study addressed these research gaps in the assessment of post- 
LIB technologies. We assessed the environmental impacts and supply 
risks associated with the production (cradle to gate) of 1 kWh of post- 
LIBs as well as LIBs using LCA and criticality assessment. This aimed 
to demonstrate the performance of the current and emerging batteries in 
both environmental impacts and supply risks in parallel and identify the 

hotspots to improve their performance towards the large-scale adoption 
of decarbonization. Six types of current and emerging batteries were 
analyzed in this study: Na1.1(Ni0.3Mn0.5Mg0.05Ti0.05)O2–Hard carbon 
SIB (NMMT), Na2Fe2(SO4)3–Na3LiTi5O12 SIB (NTO), KFeSO4F-Graphite 
PIB (KFSF), LiNi0.6Mn0.2Co0.2O2-Graphite LIB (NMC), LiFePO4-Graphite 
LIB (LFP), and LiFePO4-Li4Ti5O12 LIB (LTO). 

2. Methods 

2.1. Functional unit and system definition 

LCA is a method for quantifying the environmental impacts associ-
ated with products throughout their life cycle, allowing the comparison 
of the environmental performance of different products and identifica-
tion of hotspots among different processes in their life cycle. As this 
study focused on the environmental impacts associated with battery 
production, the scope of assessment (i.e., system boundary) was cradle 
to gate, that is, from resource extraction to battery manufacturing. The 
functional unit, the quantified performance of a product system as a 
reference unit (ISO, 2006a), was defined as 1 kWh of a battery pack. 

The production processes and weight composition of the six target 
batteries (cylindrical type) are illustrated in Figs. S1–S7. Batteries 
comprise a cathode, anode, electrolytes, separator, cell casing, battery 
management system (BMS), and pack casing. The battery design and key 
parameters, including mass balance, electricity and heat demand, and 
energy density, were calculated using a dimensioning tool developed by 
Peters et al. (2021) with assumptions of some parameters, such as active 
material capacity, cell open circuit voltage at full power, and open cir-
cuit voltage at 50% state of charge. The calculated energy densities for 
the NMMT, NTO, KFSF, NMC, LFP, and LTO battery packs were 137.4 
Wh kg− 1, 88.8 Wh kg− 1, 136.1 Wh kg− 1, 217.4 Wh kg− 1, 157.7 Wh kg− 1, 
and 81.9 Wh kg− 1, respectively. Although reported energy densities for 
batteries are highly diversified and include uncertainty, the calculated 
energy densities may be comparable to the reported, estimated, or 
assumed values in the literature. For example, the energy density of SIB 
cells can be 75–150 Wh kg− 1 (Abraham et al., 2020; Lai et al., 2023; 
Peters et al., 2016); that of NMC can be 115–300 Wh kg− 1 (Akgunduz, 
2022; Niu et al., 2019; Sun et al., 2020); and that of LFP can be 90–160 
Wh kg− 1 (Akgunduz, 2022; Oliveira et al., 2015). Regarding PIB, the 
theoretical energy density can be lower than LFP, whereas it has the 
potential to improve performances including energy density (Hosaka 
et al., 2019; Komaba, 2019; Lander et al., 2015). 

2.2. Life cycle inventory of the target batteries 

For the post-LIBs, two SIBs (NMMT and NTO) and one PIB (KFSF) 
were selected. NMMT is the most studied SIB in LCA and is composed of 
a hard carbon anode and Na1.1(Ni0.3Mn0.5Mg0.05Ti0.05)O2 cathode. The 
foreground data of anode and cathode production for NMMT were based 
on Peters et al. (2021) and Ellingsen et al. (2014). The hard carbon 
anode was assumed to be produced from petroleum coke (Peters et al., 
2016). NTO is a new type of SIB assessed in this study and is composed of 
a Na3LiTi5O12 anode and Na2Fe2(SO4)3 cathode. The anode material is a 
recently developed single-phase spinel-type sodium titanium oxide with 
a Li4Ti5O12-like structure, and is a promising anode material for con-
structing stable and safe SIBs (Kitta et al., 2020). The foreground data of 
anode and cathode production for NTO were developed based on Kitta 
et al. (2020) and Peters et al. (2021). KFSF is composed of a graphite 
anode and a KFeSO4F cathode. The foreground data of anode production 
for KFSF were based on Peters et al. (2021), whereas the foreground data 
of graphite production were updated based on Engels et al. (2022). The 
cathode material is produced by mixing, milling, and heating FeSO4 and 
KF (Hosaka et al., 2019; Lander et al., 2015; Recham et al., 2012). The 
foreground data of electrolyte production for the post-LIBs were based 
on Peters et al. (2016). 

Three types of LIBs were targeted in the assessment for comparison 
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with the post-LIBs: NMC, LFP, and LTO. NMC is one of the most 
frequently assessed LIBs in LCA studies, in which graphite and 
LiNi0.6Mn0.2Co0.2O2 are used in the anode and cathode, respectively. 
The foreground data of anode and cathode production for NMC were 
obtained from Ellingsen et al. (2014), Engels et al. (2022), and Peters 
et al. (2021), whereas the foreground data of CoSO4 production were 
updated based on Zhang et al. (2021b). LFP is also one of the commonly 
used types of LIBs, which is expected to be cheaper compared with LIBs 
requiring a Co-based cathode (Li et al., 2018). LFP is composed of 
graphite and LiFePO4 in the anode and cathode, respectively. The 
foreground data of anode and cathode production for LFP were based on 
Ellingsen et al. (2014), Engels et al. (2022), Le Varlet et al. (2020), and 
Peters et al. (2016). LTO is composed of a Li4Ti5O12 anode and LiFePO4 
cathode. Lithium-titanium oxide (i.e., Li4Ti5O12) is known as a reliable 
anode material with improved chemical and crystal stability and safety 
(Takami et al., 2013; Wang et al., 2013; Zhao et al., 2015). This study 
included LTO in the assessment for comparison with NTO, one of the 
target SIBs in this study. The foreground data of anode and cathode 
production for LTO were based on Le Varlet et al. (2020), Peters et al. 
(2016), and Ellingsen et al. (2014). The foreground data of electrolyte 
production for LIBs were based on Notter et al. (2010). 

The life cycle inventory of these six target batteries was developed 
based on the collected foreground data and background data from 
ecoincent 3.7 (Moreno Ruiz et al., 2020). A detailed inventory of the 
target batteries is provided in a full transparent manner in the sup-
plementary excel file 1, which is highly recommended by experts in 
this field (Bauer et al., 2022). 

2.3. Life cycle impact assessment 

The ReCiPe 2016 endpoint method (hierarchist perspective) was 
used to quantify environmental impacts (Huijbregts et al., 2017). It as-
sesses environmental impacts in terms of three endpoints: human health, 

ecosystems, and resources (Fig. 1). To determine the scores of these 
endpoints, the results of the corresponding midpoints were summed up. 
The impacts on human health were attributed to seven categories: global 
warming (GW), stratospheric ozone depletion (SO), ionizing radiation 
(IR), ozone formation (OF), particulate matter (PM), human toxicity 
(HT), and water use (WU). The impacts on ecosystems were attributed to 
seven categories: GW, OF, terrestrial acidification (TA), eutrophication 
(EP), ecotoxicity (ET), land use (LU), and WU. The impacts on resources 
were attributed to two categories: mineral resources (MR) and fossil 
resources (FR). The scores for the three endpoints were normalized using 
global normalization factors for the reference year 2010 and then 
aggregated into a single score (total environmental impact) with 
weighting factors from Eco-indicator 99 (Goedkoop and Spriensma, 
2001). Weighting is effective in interpreting results when there is a 
trade-off between impact categories, although it includes uncertainty 
(Finnveden et al., 2009; Kalbar et al., 2017). In addition to the envi-
ronmental impacts, the supply risks associated with material re-
quirements were assessed, as described in the following section. The 
impact assessment was implemented using SimaPro 9 software devel-
oped by PRé Sustainability as well as the inventory analysis. 

2.4. Supply risk assessment 

Supply risks are the main concerns associated with raw materials and 
products. To quantitatively assess the supply risks of mineral resources 
associated with batteries, this study adopted the integrated method to 
assess resource efficiency: ESSENZ method. The ESSENZ method was 
developed to assess the risks associated with resource use for a product 
system in terms of sustainability including overarching aspects in eco-
nomic, environmental, and social dimensions (Bach et al., 2016, 2019). 
This method has been applied to assess the criticality aspect of not only 
products but also companies (Manjong et al., 2023; Pelzeter et al., 2022; 
Yavor et al., 2021). This is a method recommended by the international 

Fig. 1. Impact categories for assessing environmental impacts and supply risks. The ReCiPe 2016 endpoint and ESSENZ methods were adopted to assess environ-
mental impacts and supply risks, respectively. 
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initiative, the Life Cycle Initiative hosted by UNEP, to assess potential 
accessibility issues for a product system within the LCA framework 
(Berger et al., 2020; UNEP, 2019). 

According to the ESSENZ method, the supply risks of minerals for 
batteries were assessed in terms of 11 categories (Fig. 1): demand 
growth (DG), occurrence as co-product (OC), primary material use (PU), 
mining capacity (MC), company concentration (CC), price fluctuation 
(PF), concentration of reserves (CR), concentration of production (CP), 
trade barriers (TB), feasibility of exploration projects (FP), and political 
stability (PS). The method provides characterization factors for abiotic 
resources based on a distance-to-target approach, in which factors are 
calculated by setting the indicator result in relation to the target value 
for each category. If an indicator result is smaller than the target value 
(ratio below 0.8), the characterization factor is set to zero. A larger in-
dicator result is reflected in a larger characterization factor. In addition, 
characterization factors are scaled up to 1.7 × 1013 for all categories to 
allow application also for big inventories. The resulting score for each 
category was calculated by multiplying the inventory data of resource 
use by the corresponding characterization factors. The overall supply 
risks were calculated by summing the scores of the 11 categories. This 
study adopted the updated characterization factors of ESSENZ in 2019 
provided on the website of the Technical University of Berlin (Techni-
sche Universität Berlin, 2023). Note that the underlying data for 
calculating characterization factors for supply risks can vary from year 
to year; thus, updating characterization factors is required to assess 
supply risks based on the latest situations (Bach et al., 2019). 

3. Results 

3.1. Overview of the total performance in environmental impacts and 
supply risks 

Post-LIBs have comparable environmental impacts and promising 
performance in terms of supply risks compared with LIBs (Fig. 2). In 
particular, KFSF exhibited the best performance for environmental 
impact, although it is still an immature technology compared with the 
other battery technologies. Although the LFP results were lower than 
those of the SIBs (NMMT and NTO) in terms of environmental impact, 
the SIBs showed lower scores for supply risks. Among the SIBs investi-
gated, NMMT was better than NTO in both aspects. These results suggest 
that there is a trade-off among environmental, supply risk, and 

technological maturity aspects for current and emerging batteries. 
The main contributors differed depending on the battery type and 

aspect. Regarding environmental impacts, the cathode was one of the 
main contributors to NMMT and NMC (Fig. 2), mainly because of the 
production of nickel sulfate (NiSO4) for active materials (Fig. 3). In 
addition, cobalt sulfate (CoSO4) production for active materials in the 
cathode also contributed significantly to the environmental impact of 
NMC. In contrast, NTO and LTO require neither NiSO4 nor CoSO4, 
resulting in a relatively low environmental impact of the cathode 
(Fig. 2). The anode and BMS were the main contributors to the envi-
ronmental impacts of NTO and LTO. The environmental impact associ-
ated with the anode production of these batteries mainly arose from the 
production of titanium dioxide (TiO2) (Fig. 3), which is a distinctive 
material used in these batteries. For KFSF and LFP, the BMS was the 
main contributor due to the production of the printed wiring board. 
Given that the BMS is a common part of all six batteries, the environ-
mental impacts of BMS were more prominent for these batteries because 
the other parts exhibited relatively low environmental impacts. 

Regarding the supply risks, Li was a key mineral for NTO, NMC, LFP, 
and LTO (Fig. 4). The cathode was the main contributor to the supply 
risks of LIBs owing to the use of lithium hydroxide (LiOH) for the active 
materials. In addition, the use of lithium carbonate (Li2CO3) for the 
anode of LTO also contributed significantly. Li2CO3 was also used for the 
anode of NTO, but its content was lower than that of LTO (approxi-
mately 35% of the content in 1 kWh of LTO), resulting in lower supply 
risks. For KFSF, the supply risks for anode were relatively high due to 
graphite use. 

3.2. Hotspot materials for environmental impacts 

This section explores environmental hotspots by breaking down the 
environmental impacts of the anodes and cathodes (Fig. 3). We exhibit 
environmental hotspots based on the aggregated environmental impacts 
of all target impact categories, while the endpoint- and midpoint-level 
results for environmental impact are discussed in detail in the supple-
mentary material (Figs. S8–S12). Substance-level results of the total 
environmental impacts are provided in the supplementary excel file 2. 
Environmental hotspots generally differ depending on the battery type 
and the corresponding anode and cathode materials, while they can be 
categorized into three groups according to the similarity of the hotspots: 
1) NMMT and NMC, 2) NTO and LTO, 3) KFSF and LFP. 

Fig. 2. Overall results for environmental impact and supply risk scores associated with the production of 1 kWh of the two sodium-ion batteries (SIBs), one potassium 
ion battery (PIB), and two lithium-ion batteries (LIBs). NMMT: Na1.1(Ni0.3Mn0.5Mg0.05Ti0.05)O2–Hard carbon SIB; NTO: Na2Fe2(SO4)3–Na3LiTi5O12 SIB; KFSF: 
KFeSO4F-Graphite PIB; NMC: LiNi0.6Mn0.2Co0.2O2-Graphite LIB; LFP: LiFePO4-Graphite LIB; LTO: LiFePO4-Li4Ti5O12 LIB; BMS: battery management system. 
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The environmental hotspot for the cathode of NMMT and NMC 
stemmed from the production of NiSO4 for the cathode precursors, 
which accounted for 12.0 % and 18.6 % of the total environmental 
impacts of the battery pack, respectively. In addition, CoSO4 for the 
cathode of NMC was also the hotspot material, which accounted for 16.4 
%. In contrast, the hotspot materials for the anode differed between 
NMMT and NMC. For NMMT, hard carbon production (from petroleum 
coke) for the anode accounted for 19.1 %, which was the most signifi-
cant environment hotspot of the anode. For NMC, graphite and copper 
current collector production were the hotspots for the anode, which 
accounted for 8.5 % and 5.4 %, respectively. A breakdown of the envi-
ronmental impacts associated with NiSO4 production suggests that 
nickel (Ni) mining and electricity consumption were its main contribu-
tors. The main impact category for environmental impact associated 
with Ni mining was particulate matter (PM), which was also the main 
impact category for the total environmental impact of the batteries 
(Fig. S9). The environmental impacts of CoSO4 were mainly attributed 
to cobalt (Co) production, particularly its electricity consumption in 
China. 

NTO and LTO had the same environmental hotspots: TiO2 for the 
anode. TiO2 production accounted for 16.3 % and 19.2 % of the total 
environmental impact of NTO and LTO, respectively. For the NTO 
cathode, Na2Fe2(SO4)3 and the aluminum current collector were also 
contributors, although the cathode contributed a minor share of the total 
environmental impact (5.1 %). Other contributors to LTO were the 
production of LiOH and phosphoric acid (H3PO4) for the cathode, which 
accounted for 5.1 % and 4.7 %, respectively. The aluminum current 
collector is used for the anode of LTO, unlike NMC and LFP, resulting in 
relatively small contributions of the current collectors for LTO. The 
environmental impact of TiO2 production was mainly attributed to the 
treatment of waste gypsum at a sanitary landfill and sulfuric acid pro-
duction, both of which mainly contribute to PM. TiO2 production also 

contributes to global warming (GW), but its contribution to GW is less 
significant than that to PM. 

The environmental hotspots for KFSF were graphite production for 
the anode and KFeSO4F production for the cathode, accounting for 13.9 
% and 6.0 % of the total environmental impact of the battery pack, 
respectively. Graphite production was also the environmental hotspot 
for the anode of LFP, which accounted for 9.9 % of the total environ-
mental impact of the battery pack. The environmental impact of 
graphite production mainly originated from electricity consumption. In 
addition, copper current collector for the anode and LiFePO4 for the 
cathode were the main contributors to the environmental impact of LFP, 
accounting for 10.1 % and 14.8 %, respectively. The main contributors 
to the environmental impact of LiFePO4 were production of LiOH and 
H3PO4. The environmental impact of LiOH production was mainly due 
to soda ash production for Li2CO3, contributing to GW and PM. The 
contribution of H3PO4 was mainly attributed to sulfuric acid production 
and treatment of H3PO4 purification residue. The former mainly 
contributed to GW and PM, while the latter mainly contributed to 
human toxicity (HT). LiFePO4 was also used for the cathode of LTO, 
while TiO2 for the anode was more significant in the case of LTO. 

Electricity and heat consumption for battery fabrication and BMS, 
which are common processes for all batteries, were the main contribu-
tors to the environmental impact of all batteries, especially for KFSF. 
Although electricity and heat consumption for battery fabrication per 1 
kg of battery packs are slightly different depending on battery types as 
shown in the supplementary excel file 1, their environmental impacts 
per 1 kWh of battery packs are mainly determined by energy densities. 
The environmental impacts associated with electricity and heat con-
sumption for battery fabrication and BMS accounted for 49.4 %, 55.4 %, 
56.2 %, 31.4 %, 46.0 %, and 46.4 % for NMMT, NTO, KFSF, NMC, LFP, 
and LTO, respectively. Although the energy density for KFSF is higher 
than those for NTO and LTO, contributions of the environmental impacts 

Fig. 3. Breakdowns of the environmental impact of the anode and cathode for the six batteries.  
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associated with these components were relatively high for KFSF because 
the environmental impacts associated with other components (i.e., 
anode, cathode) were smaller for KFSF. Similar trends were observed in 
the case of other next-generation batteries (Montenegro et al., 2021). 
The main contributor to BMS was printed wiring board, which 
accounted for 67.5 % of the environmental impact of BMS. 

3.3. Supply risks 

Supply risks were evaluated by summing the scores of the 11 cate-
gories according to the ESSENZ. Different trends were observed among 
categories (Figs. 4 and S13). For demand growth (DG), primary material 
use (PU), concentration of reserves (CR), and concentration of 

production (CP), LTO exhibited the highest scores, mainly attributed to 
Li use required for the production of Li2CO3 for the anode and LiOH for 
the cathode (Fig. 4). The scores for these categories were relatively high 
compared with the others; thus, Li was also the main contributor to the 
total supply risk score. As NMMT and KFSF do not require the use of Li, 
the scores for these categories were low. Meanwhile, the risks of Li for 
the other categories are assessed as zero by the ESSENZ, that is, indicator 
values are lower than target values (see Section 2.4); thus, Li use did not 
contribute to them. 

For occurrence as co-product (OC), mining capacity (MC), trade 
barriers (TB), feasibility of exploration projects (FP), and political sta-
bility (PS), the NMC scores were noticeable, mainly attributed to Co use 
required for CoSO4 production for the cathode. In particular, Co use was 

Fig. 4. Contributions of mineral resources to categories of the supply risks for the production of 1 kWh of the six batteries.  
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dominant in the OC and FP (Fig. 3). Co use for NMC was a major reason 
for the difference in supply risks between NMC and LFP. For MC, Ni use 
associated with NiSO4 production for the cathode and gold (Au) use 
associated with printed wiring board for the BMS also contributed to the 
scores. Although the amount of Au used for the BMS was significantly 
small, the risk of Au for this category is assessed as relatively high by the 
ESSENZ. This resulted in a high Au contribution to the MC, although the 
share of the MC in the total score of the supply risks was less significant. 
Regarding TB and PS, graphite for the anode of KFSF, NMC, and LFP was 
also the main contributor. 

Company concentration (CC) and price fluctuation (PF) showed 
different results from the other categories. KFSF, NMC, and LFP 
exhibited prominent scores for CC due to graphite use for the anode. This 
is because the risks of the other main materials required for battery 
production, including aluminum (Al), Co, copper (Cu), iron (Fe), Li, 
manganese (Mn), Ni, and titanium (Ti), are assessed as zero for the CC by 
the ESSENZ. NTO and LTO exhibited higher scores for PF due to Ti use 
associated with anode production. 

As mentioned before, this study summed the scores of the 11 cate-
gories to calculate the total supply risk score of battery production, 
therefore applying equal weighting to all categories. Thus, analyzing 
these categories separately is necessary. The results in Figs. 4 and S11 
suggest that the total supply risk score can vary when specific categories 
would be considered more important. 

4. Discussion 

4.1. Technological potentials for improvement 

The large-scale introduction of rechargeable batteries is one of the 
key elements for achieving decarbonization; however, the supply risks of 
critical materials are of high concern in this context. Our analysis 
demonstrated the high supply risks associated with LIBs, while the 
transition from LIBs to SIBs and PIBs will generally alleviate supply risks. 
However, this transition cannot be instantaneously achieved, and some 
challenges regarding the environmental impacts and technological 
immaturity of SIBs and PIBs exist, as suggested by our results. Therefore, 
technological improvements in all batteries, i.e., LIBs, SIBs, and PIBs, are 
crucial during the transition. 

For NMMT and NMC, Ni use for a cathode is a major hotspot of the 
environmental impacts. Meanwhile, Co, graphite, and Li are key mate-
rials in terms of the supply risk for NMC. The present development of 
NMC goes in the direction of reducing dependency on Co and promoting 
Ni-rich layered oxide cathodes for the sake of higher energy density and 
safety (Kim et al., 2021; Li et al., 2020; Myung et al., 2017; Xia et al., 
2018), which will reduce supply risks but may increase environmental 
impacts. Options to reduce the environmental impacts associated with 
NiSO4 include utilizing secondary nickel (i.e., promoting recycling), 
developing production technologies of NiSO4 with lower energy re-
quirements, and using renewable energy. The technologies for recycling 
Ni in NMC are currently being developed (e.g., Baum et al., 2022; Zhang 
and Azimi, 2022). This is also effective for Co, which shows the second 
major environmental impact and high supply risk. In addition, battery 
recycling will be promoted according to the European Union battery 
directive (European Parliament, 2022), which requires improved recy-
cling rates (Baum et al., 2022). Another hotspot of the environmental 
impact associated with NMMT is hard carbon production for the anode. 
This study assumed petroleum coke to be the source of hard carbon; 
however, it has other sources, such as sugar, starch, cellulose, and bio-
waste, which may have different environmental impacts (Liu et al., 
2022; Peters et al., 2016, 2019b). Developing production technologies 
and hard carbon sources will be effective in improving the performance 
of NMMT. 

For NTO and LTO, the improvement of the energy density is of high 
priority compared with other types of batteries. Their energy densities 
were less than half that of NMC, which also resulted in higher 

environmental impacts of the BMS and utilities for manufacturing bat-
tery packs (i.e., electricity and heat) in NTO and LTO (Fig. 2). In this 
analysis, the BMS and utilities were not specific to the type of anode and 
cathode; therefore, the environmental impacts of the functional unit 
were simply determined by the energy density. Battery performance, 
including energy density, of LIBs has improved substantially and still has 
potential for improvement (Ziegler and Trancik, 2021). Improving the 
energy density of other types of batteries (SIBs and PIBs) is an essential 
task. Simultaneous with the improvement in energy density, TiO2 re-
covery for the anode can also alleviate the environmental impacts as the 
main contributor of NTO and LTO. Recovery technologies for Ti as well 
as Li (Larouche et al., 2020) are promising for the large-scale intro-
duction of these batteries. 

KFSF showed the best performance in terms of environmental im-
pacts and fairly low supply risks, but it is still an early-stage technology 
as a new-generation battery; thus, the results are connected to higher 
uncertainties. The moderate energy density of KFSF indicates that its 
environmental impacts and supply risks could still be improved by 
increasing the energy density (Masese et al., 2018). Apart from the 
improvement in energy density, graphite use for the anode contributes 
to the environmental impacts and supply risks of KFSF, which is the 
same challenge for LFP. Recycling graphite and alternative anode 
development could be options to accelerate the benefits of KFSF and LFP 
(Abdollahifar et al., 2023). 

4.2. Influence of background database for inventory analysis 

The selection of a background database for inventory analysis is one 
of the sources of uncertainty in LCA results (Herrmann and Moltesen, 
2015; Pauer et al., 2020). Therefore, we used in addition to ecoinvent 
(Moreno Ruiz et al., 2020), GaBi (Sphera, 2023) as the background 
database to calculate the environmental impacts of the main contribu-
tors (anode, cathode, and BMS) and compared the results (Fig. 5). The 
GaBi is one of the most widely used databases along with ecoinvent. The 
ReCiPe 2016 endpoint method (hierarchist perspective) was used for 
both in life cycle impact assessment. 

The environmental impacts of all batteries were higher using 
ecoinvent, mainly due to the difference in the environmental impact of 
BMS production (particularly the printed wiring board) between 
ecoinvent and GaBi. Since BMS was one of the main components in 
terms of environmental impact, these results suggest that the selection of 
a background database has a considerable effect. Excluding BMS, envi-
ronmental impacts of NMMT, LFP, and LTO were larger using GaBi, 
while those of NTO, KFSF, and NMC were comparable in both cases 
(Fig. S14). The cathode of NMMT showed a larger environmental 
impact based on GaBi mainly because the environmental impacts of 
nickel carbonate (NiCO3) and manganese dioxide (MnO2) were larger 
based on GaBi. Environmental impacts of cathodes for LFP and LTO, 
both of which are composed of LiFePO4, were larger using GaBi mainly 
because the environmental impact of LiOH production was calculated 
larger based on GaBi. Meanwhile, anodes for KFSF, NMC, and LFP 
exhibited larger environmental impacts based on ecoinvent. This is 
because graphite, which is a main constituent for anodes of these bat-
teries, showed larger environmental impacts based on ecoinvent. These 
results suggest that the environmental impact scores of batteries could 
change depending on the choice of background database for inventory 
analysis, which highlights the significance of collecting foreground data 
for a more accurate assessment. Although there were some differences in 
the results of the environmental impact assessment based on two 
different inventory databases, the identified hotspots were generally 
common in both cases. The comparative assessment based on different 
background databases can endorse the relevance of the identified hot-
spots, while any difference in hotspots between different background 
databases will prioritize processes and materials for collecting fore-
ground data, which usually requires resources and time. 
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4.3. Limitations and future works 

This study explored the environmental impacts of batteries consid-
ering only the production process, but the use phase and end-of-life 
treatment (e.g., recycling) are also relevant (Ellingsen et al., 2017; 
Pellow et al., 2020; Peters, 2023; Peters et al., 2021). Not only energy 
density but also battery cycle life is an important parameter that in-
fluences the life cycle environmental impact of batteries. Cycle life is one 
of the challenges that SIBs face, while research is ongoing to improve the 
cycle life of SIBs (Hasa et al., 2021; Jemesh et al., 2018; Xiang et al., 
2015). PIBs also have the potential to show long cycle life (Deng et al., 
2021; Hosaka et al., 2020; Onuma et al., 2020; Zheng et al., 2021). 
Assessing the environmental impacts throughout the full life cycle of 
batteries is an essential task in the future. 

The recyclability of batteries is also a significant aspect in terms of 
both environmental impact and supply risk. Peters et al. (2021) 
demonstrated the potential to reduce the environmental impacts of 
NMMT and NMC by recycling. Our results also suggest that recycling Ni 
and Co will reduce the environmental impacts of NMMT and NMC, and 
recycling Li will substantially reduce the supply risks associated with 
LIBs. In addition, the recycling of TiO2 will affect the environmental 
impacts of NTO and LTO. Our results also suggest that graphite recycling 
is an effective measure for reducing both the environmental impacts and 
supply risks of KFSF, NMC, and LFP. Recent studies have shown that 
graphite recycling can contribute to a reduction in environmental 
impact (Abdollahifar et al., 2023; Rey et al., 2021). In addition, other 
options to address end-of-life batteries are available, including reuse, 
remanufacturing, and second-use (Bobba et al., 2019; Kastanaki and 
Giannis, 2023). Collecting data on the recyclability of batteries and 
materials and the environmental impacts associated with the recycling 
process as well as considering scenarios for different options for 
end-of-life battery management are required to understand the net 
environmental impacts throughout the life cycle of batteries (Mousavi-
nezhad et al., 2023). It is worth mentioning that recycling leads to lower 
environmental impact of battery chemistries that rely on critical metals 
which are related to higher efforts for raw materials extraction and 
processing. In contrast, low value materials used for SIBs and PIBs might 
lead to limited environmental benefits or even additional impact from 
advanced recycling methods (Peters et al., 2021). 

This study assessed the environmental impacts and supply risks 
associated with the batteries, while other aspects are also relevant for 
the battery performance, including cost, safety, and technological 
maturity (Chen et al., 2021a; Pelomares et al., 2012; Vaalma et al., 

2018). The quantitative assessment of these aspects will complement 
our findings to provide the overall picture of battery performance. 
Finally, we mention uncertainties associated with the assessment. This 
study adopted the ReCiPe 2016 endpoint method to calculate a single 
index (i.e., total environmental impact) by weighting endpoint-level 
scores in LCA, which are subject to uncertainty (Finnveden et al., 
2009). Several methods are available for assessing environmental im-
pacts and weighting the environmental impacts in LCIA (Chen et al., 
2021b; Prado et al., 2020). Besides, various assumptions were set in 
collecting data and developing life cycle inventories, including pro-
duction regions and battery performances. In particular, KFSF is an 
emerging and immature technology, including various uncertainties. 
Sensitivity and scenario analyses will be effective for addressing these 
uncertainties in future works. Even though uncertainties are included, 
this study is the first attempt to assess the environmental performance 
and supply risks of next-generation batteries including PIBs. Our results 
show the potential to develop sustainable battery systems based on SIBs 
and PIBs and support battery developers in identifying hotspots for 
developing new-generation batteries with lower environmental impacts 
and supply risks. 
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