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Abstract

Industrial heat treatment processes are usually optimized for many years during
series production, but the number of factors influencing hardness and the high
measurement noise of end-of-line hardness testing make it increasingly difficult
to further reduce costs or optimize the process. In this work, a data mining
framework for batch processes was developed and applied to harness the rich
data sources that fill up over time for two pilot use cases, namely bainitization
of 20 000 and case hardening of 7000 batches. All necessary data sources, pre-
processing, cleansing, and feature extraction steps are outlined along with the
corrections for drifts. A benchmark for the maximum achievable predictability
was derived to assess the economic benefit of a use case at an early stage. The
framework then applies step-by-step data mining techniques to quantitatively
break down variance contributors such as material, production line, measure-
ment device, batch and measurement position, as well as their interactions and
dynamic behavior over time. Based on these factors, a set of feature subset
selection, machine learning pipeline optimization, as well as training and eval-
uation approaches were explored in order to find the most robust prediction
strategy for thermally treated components. For case hardening a custom solu-
tion, the hidden-state-pipeline was developed. Finally, an industry pilot shows
how to implement these models in daily operations and transfer the process to
other component types to reduce the costs of end of line tests.
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Kurzfassung

Industrielle Wärmebehandlungsprozesse werden in der Serienproduktion üb-
licherweise über Jahre hinweg optimiert, aber die Vielzahl der Faktoren, die die
Härte beeinflussen, und das hohe Messrauschen der End-of-Line-Härteprüfung
machen es zunehmend schwieriger, die Kosten weiter zu senken oder den
Prozess zu optimieren. In dieser Arbeit wurde ein Data-Mining-Framework
für Batch-Prozesse entwickelt, um die umfangreichen Datenquellen, die sich im
Laufe der Zeit ansammeln, für zwei Pilot-Anwendungsfälle nutzbar zu machen,
nämlich das Bainitisieren von 20 000 und das Einsatzhärten von 7 000 Char-
gen. Alle notwendigen Datenquellen, Vorverarbeitungs-, Bereinigungs- und
Feature-Extraktionsschritte werden zusammen mit den Korrekturen für Drifts
dargestellt. Es wurde ein Benchmark für die maximal erreichbare Vorher-
sagbarkeit abgeleitet, um den wirtschaftlichen Nutzen eines Anwendungsfalls
frühzeitig zu bewerten. Das Frameworkwendet dann schrittweise Data-Mining-
Techniken an, um Varianzeinflüsse wie Material, Produktionslinie, Messgerät,
Chargen und Messposition sowie deren dynamisches Verhalten über die Zeit
quantitativ aufzuschlüsseln. Auf der Grundlage dieser Faktoren wurden eine
Reihe von Featureauswahlverfahren, verschiedene Pipeline-Optimierungen für
maschinelles Lernen sowie Trainings- und Bewertungsansätze untersucht, um
die robusteste Vorhersagestrategie für thermisch behandelte Komponenten zu
finden. Für das Einsatzhärten wurde eine maßgeschneiderte Lösung, die
Hidden-State-Pipeline, entwickelt. Schließlich zeigt ein Industriepilot, wie
diese Modelle im täglichen Betrieb implementiert und der Prozess auf andere
Komponententypen übertragen werden kann, um die Kosten für die End-of-
Line-Prüfung zu reduzieren.
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ŷ i The prediction outcome of the ith sample
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1 Introduction

Heat treatment of metals has been an established, widespread, and important
processing step for centuries, with high significance for mechanical engineering,
mobility concepts, consumer goods, and the economy in general. Parallel to
the development of new materials and heat treatment technologies, new and
innovative heat treatment processes are constantly being developed and further
optimized in series production applications. These heat treatment processes
not only modify the manufacturing properties of steel components for simple
and cost-effective machining, but also allow tailored property specifications to
achieve high functionality for a wide range of components with maximum stress
resistance.

For economic reasons, usually the largest possible number of components are
heat treated together in one batch. Thus, depending on the batch position, each
component faces its own thermal and temporal sequence, which also leads to
scattering in the local alloy composition of the components in thermochemical
heat treatment processes. In total, this results in a wide variety of achievable
results from component to component, from batch to batch, and from furnace to
furnace. Therefore, usually at least one specimen is taken from each batch from
a test position (determined by preliminary tests or experience) and subjected
to quality assurance tests. Taking all influencing variables into account (with
special emphasis on measurement noise), rather large tolerances of around
± 50HV must be provided for hardness tests. To keep this spread relatively
small and the process secure, its process variables critical for heat treatment –
such as temperature, pressure, process gas composition – are identified (e.g., by
means of a process failure mode and effects analysis (FMEA)) and monitored by
appropriate sensor technology. This is in order to detect serious deviations from
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Figure 1.1: Schematic chronological stages of component production-live-cycle along with com-
mon cost reduction levers to increase profitability. The samples (A-D) are prototypes
with increasing maturity level. A prototype at stage D has the required properties and
is ready for production, [own representation]

target variables already occurring during heat treatment and to issue appropriate
alarms or messages to the operator. Alarms and quality test results, as well as
all sensor signals, are stored as time series for traceability purposes in the field.

In order to reduce the cost of heat treatment per unit and subsequent testing,
a plethora of methods is employed during production ramp-up and subsequent
scale-up. Figure 1.1 outlines these stages chronologically with the correspond-
ing levers for cost reduction from the first prototypical samples of a component,
through expansion and maximum production, to diminishing yields. Initially,
low hanging fruits like increased batch size (i.e., more units produced per heat
treatment cycle) and optimization of parameters (e.g., higher or lower temper-
atures may allow shortening of the process or increase the quality) are reaped,
costing little while having a sizable benefit. Further down the road, when
startup difficulties are overcome and production roars, more steps can be auto-
mated (e.g., automatic instead of manual setup of batches1) and scaling effects
exploited (e.g., lower cost purchasing or improved machine utilization) to cut
direct labor and material costs. Finally, towards maximal output, it becomes
increasingly difficult to boost the profit margin as most levers are already ex-
hausted. Further process optimization attempts may lead to less robust results,

1 Batches can contain hundreds to several thousands of components.
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Figure 1.2: Goal of thesis and motivation to employ data mining and machine learning methods,
[own representation]

while quantification and manipulation of the influences of preceding process
steps (up to steel production) are difficult to attain.

Fortunately, as the Industry 4.0 wave sweeps across manufacturing companies,
countless projects are being set up to store and connect data from the manu-
facturing processes over the years, most of which are piling up untouched and
unused in folders or databases. This thesis is one of these projects, that actually
follows through. Digging into that goldmine of production data to identify and
utilize its potential for further cost reduction and enhanced product quality is
its objective. Figure 1.2 maps the milestones to be accomplished on the journey
towards these goals, discussed below from top to bottom and from right to left.

Everything begins, as it must, with the expansion of knowledge by increasing
process understanding. For this purpose, process data must be evaluated, which
is currently only available as an XML file for each heat treated batch. Detecting
influences requires extracting, structuring, and processing the data from these
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files. To increase component quality or optimize the reliability of assurance
measures, the variance around the target properties (which should already be
minimal after years of optimization) has to be further reduced. This presupposes
that responsible influences are quantitatively known and can be manipulated. A
goal with greater leverage is cost reduction through reduced testing, which will
be central to this dissertation. Industrially available standard test methods, such
as destructive hardness testing, are subject to considerable scatter and incur costs
in the form of specimen preparation, test equipment, and laboratory personnel,
but could be replaced by a predictive model deployed in daily operations. This
in turn presupposes that influences are known and an IT infrastructure as well
as a model for deployment are available. Data mining and machine learning
(ML) methods will be applied to build such models and perform the necessary
analyses to quantify the influences, after aggregating all relevant data sources
and transforming their data into a usable, structured format.

Finally, a cost reduction strategy that works can be scaled to similar processes2.
Such scaling assumes that a validated framework for data preprocessing, anal-
ysis, and model building for heat treatment processes is in place. Hence, this
thesis will develop and use such a data mining framework shown in Figure 1.3
as a structural approach for batch processes in particular and heat treatment in
general to attain the aforementioned goals.

After motivating and explaining the structure of this thesis in the introduction,
Chapter 2 outlines the state of the art for heat treatment and data mining, as well
as their combination. Chapter 3 details all materials and data (e.g., production
lines, sensors, and test procedures) shown in the left part of Figure 1.3 and
methods (e.g., preprocessing, feature extraction, analysis, and ML algorithms),
mostly to the right, used for analysis in subsequent chapters. To understand the
properties of the quality measures (labels) we seek to predict later on, Chapter
4 sheds light on their distribution, behavior over time, and influence of batch
position. It also quantifies the error inherent in the measurement procedure and

2 The two use cases bainitizing and case hardening (CH) already cover approx. 80% of the heat
treatments that are usually applied on an industrial scale [13].
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utilizes the findings to create a prediction benchmark (i.e., achievable prediction
error). In Chapter 5 individual effects of material, process and metadata are
further quantified. The knowledge gained is then used in Chapter 6 to:

1. create robust prediction or forecasting pipelines for the hardness of a
component after heat treatment,

2. explain most of the variance in the hardness distribution, and
3. propose a cost reduction strategy that recommends how many test pieces

can safely be replaced by a prediction.
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Figure 1.3: Detailed framework for data mining and machine learning in heat treatment processes
(Cha: Chapter, Meta: Metadata)

Actual deployment is described in detail in Chapter 7 alongside the IT infras-
tructure for day-to-day operation at the Bosch production plant in Stuttgart
to validate the framework. Finally, Chapter 8 summarizes the findings and
provides an outlook for further research.
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2 State of the Art

This chapter provides a general introduction to the two central fields of research.
To warm up, Section 2.1 introduces heat treatment of metallic components,
followed by data driven methods in Section 2.2 focusing on data mining aided
by machine learning. An application of the latter to the former is given in
Section 2.3. Finally, Section 2.4 poses the open research questions that will be
addressed in this thesis.

2.1 Heat Treatment

Steel components are manufactured by many different process steps such as
melting, forging, milling, turning, hardening, and grinding. In general, steel in
its ’soft state’ is easier to process and causes less wear on machine components.
Conversely, for their subsequent practical use, steel components often must
resist surface abrasion, mechanical stress, and high strain or pressure. Thus, they
seldom simultaneously meet the requirements they are supposed to have during
manufacturing and subsequent utilization. Many components are, therefore,
hardened as one of the last steps in their production chain in order to increase
the mean time to failure and prevent early breakdown. Hardening is achieved
by a change in the atomic microstructure via heat treatment resulting in desired
material properties optimally suiting the application [39]. DIN 4885 [100]
describes this heat treatment process as:
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2 State of the Art

"A Series of Operations in the course of which a solid ferrous
product is totally or partially exposed to thermal cycles to bring
about a change in its properties and/or structure. The chemical
composition of the ferrous productmay possibly bemodified during
these operations."

Depending on the desired properties, numerous procedures are available for
hardening. Among other parameters, they differ in heat supply (e.g., by furnace,
induction, or laser), the quenching media (e.g., oil, salt, or gas), the addition
of further alloying elements (e.g., carbon or nitrogen), and temperature profile.
Some procedures target the whole cross-section of a component, others only aim
to harden the surface layer [40, 90]. Figure 2.1 depicts the two heat treatment
procedures relevant for this thesis: the first being a bainitic treatment and the
second being a case hardening by low pressure carburization with high pressure
gas quenching, subsequent deep freezing, and tempering. Both treatments are
explained in the following, along with their specific applications.

Heat Treatment

Temperatures < 200 °C

Temp. 500 °C - 600 °C

...

Tempering

Recovery

Recrystallizing

Stress Relieving

...

Annealing

Carburizing

Carbonitriding

...

Boriding

Nitriding

Thermo-Chemical
Procedures

...

Case Hardening

Surface Hardening

Bainitizing

}
Hardening

Figure 2.1: Overview of heat treatment procedures based on [88]

2.1.1 Bainitizing

Components of a diesel injection pump must withstand the stress of fast chang-
ing high pressure cycles. To achieve high durability and hardness throughout
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2.1 Heat Treatment

the whole cross-section of the components (e.g., cylinder heads) with little dis-
tortion, the steel can be transformed into bainite1. A typical temperature profile
of a bainitic heat treatment is drawn in Figure 2.2. According to [88, 100],
bainitization can be divided into three process steps: Austenitization (heating
to austenitizing temperature TA and holding for a sufficiently long period∆tA),
quenching (cooling at a rate fast enough to avoid the formation of ferrite or
pearlite to a temperature TIa above the martensite start temperature TMS), and
isothermal transformation (partial or total transformation of the austenite to bai-
nite). Quenching includes the option for (1) a martensitic nucleation (quenching
below TMS for a short time, to obtain first martensite needles), while the sub-
sequent transformation is performed either (2a) at TIa (one-stage bainitizing) or
(2b) with a heating to TIb after ∆tIb1 (two-stage bainitizing).

(1)

(2b)

(2a)

austenitization

isothermal 
transformation

quenching

TA

Time 

Te
m

p
er

at
u

re

TIb

TMS

TIa

ΔtH ΔtQΔtA ΔtIa

ΔtIb1 ΔtIb2

Figure 2.2: Schema of a time-temperature profile for bainitizing [26]

1 Bainite DIN 10052 [103]: "Metastable constituent formed by the decomposition of austenite
in a temperature interval between the temperature at which pearlite forms and that at which
martensite starts to appear. It consists of supersaturated ferrite in which carbon has been finely
precipitated in the form of carbide."
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2 State of the Art

Austenitization

Austenitization consists of heating components for a time ∆tH until the whole
component has reached temperature TA and a subsequent holding for a time
∆tA. As the component’s core temperature lags behind its surface, the heating
process is divided into heat up and equalization2. It serves the purpose of
obtaining a desired microstructure defined by a characteristic distribution of
chemical elements (homogeneity), size of grain as well as number and size of
carbides. These factors determine the conversion kinetics of all possible phase
transformations during the subsequent quenching and isothermal transforma-
tion.
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Figure 2.3: Schematic time-temperature-transformation diagram with isothermal bainitic phase
transformation of 10mm round rod made of 100Cr6 [121]

2 Period during which core temperature converges to surface temperature, whereby the latter is
already stable.
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2.1 Heat Treatment

Quenching

Quenching is the most time critical step, since the rate of cooling, among other
things depending on the alloy composition and the austenitizing conditions,
must be fast enough to avoid the formation of pearlite or ferrite as indicated
by Figure 2.3. It depicts a continuous-cooling transformation diagram for the
steel 100Cr6 which alongside its eponymous application in roller bearings,
is also used widely in the automotive industry, especially for diesel injection
systems, because high carbon and chromium content ensure high strength and
hardenability [18]. When the final temperature TIa is reached after a time∆tQ,
the quenching is completed. The closer the final temperature TIa lies above
TMS, the longer the time necessary until complete transformation to bainite, but
also the more desirable the resulting microstructure of bainite, as it is more
fine-grained [143].

Isothermal transformation

During isothermal soaking the transformation to a bainitic microstructure is
completed. Depending on steel and austenitization conditions, the phase trans-
formation may take a long time, therefore, it would be beneficial to shorten this
process. By increasing the soaking temperature after a time ∆tIb1 to TIb, the
transformation is accelerated with the effect of significantly higher fatigue resis-
tance at the cost of reduced compressive strength. In return, the time for com-
plete transformation can be reduced by 75% (i.e.,∆tIb1+∆tIb2 =

1
4∆tIa) [34].

A sensitivity analysis of the heat treatment parameters on the resulting hardness
is given in Table 2.1.

2.1.2 Case hardening

Diesel nozzle bodies must withstand an injection pressure of up to 2700 bar
necessitating high strength of their surface. Case hardening can achieve such a
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2 State of the Art

Table 2.1: Important process parameters for bainitic treatment by [26]

Parameter Hardness Influence

TA,∆tA ↑ Increased amount of dissolved carbon in austenite
leads to stronger lattice distortion

TIa, TIb ↓ Increased carbon diffusion leads to relaxation of lat-
tice distortion

∆tIa,∆tIb1,2 ↑ Increase in the volume fraction of bainite formed
at low temperature (given, that no martensite was
formed)

requirement by initially carburizing or carbonitriding components (i.e., adding
carbon and/or nitrogen at austenitizing temperature) and subsequently hardening
them to form martensite. Typically, an industrialized heat treatment procedure
of this type consists of case hardening with subsequent deep freezing (optional)
and tempering (obligatory), which is why they are subsumed under the headline
case hardening. Figure 2.4 delineates a time-temperature profile of the process
at hand [100]. Next to easy machinability before heat treatment, this procedure
allows to combine high surface strength with relatively high core strength.
Especially for work pieces of geometrically adverse design (e.g., notches or
bore intersections), this treatment enhances the locally endurable load. As a
result, such work pieces can be subjected to higher stresses, particularly in the
case of cyclic loads as often is the case in engines.

Low pressure carburizing

To reduce the ingress of atmospheric oxygen, the process is carried out in a
vacuum furnace well below atmospheric pressure, referred to as low pressure
carburizing. Surface oxidation of components is most undesirable, as the
resulting oxide formation leads to work piece failure. In the first step, after
furnace evacuation, components are heated to austenitization temperature TA1,

12
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Figure 2.4: Schema of a time-temperature profile for case hardening with optional isothermal
transformation and deep freezing followed by tempering [100]

which subsequently leads to phase transformation of the initial ferrite and
pearlite into a fully austenitic microstructure. The austenitic microstructure
allows a fast inclusion of carbon atoms into the work piece surfaces. During
carburization, the components are offered a carbon donor (e.g., acetylene C2H2,
exemplified by the green patch in Figure 2.4) to increase their hardenability
and the maximum achievable hardness of the near-surface layer. The carbon
enriched layer might have a thickness of only a couple of tenth up to several
millimeters, depending on the requirements of further work piece processing
and its later application. The sequence of pulses and pauses of the carburizing
gas must be carefully engineered to achieve the desired degree of carburization,
while preventing too intensive carbide and soot formation. As carbides are
considered critical for fatigue strength of the work piece, the soot, resulting
from oversaturation of carbon in the atmosphere, might damage parts of the
furnace, e.g., the heating system.

After carburization, components can either be brought to (1a) a temperature
TI at which isothermal transformation to pearlite occurs, or to (1b) the room
temperature TR. If (1b) involves a quenching, it is called direct quench hardening
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Figure 2.5: Schematic continuous time-temperature-transformation diagram, continuous marten-
sitic phase transformation of 18CrNi8 after 15min austenitization, carburized to
C= 0.56% [121]

even if the temperature is lowered before quenching. A slow cooling to TR with
a subsequent further austenitization and quenching is called single quench-
hardening. (1a) serves the grain refinement and leads to a more desirable
martensitic structure after quenching. As indicated in Figure 2.5, the cooling
rate during quenching must be high enough to reach the critical temperature
TMS required for martensite formation without the introduction of pearlitic
or bainitic structures. If the desired amount of martensite was formed after
quenching and cooling to room temperature TR, components can be tempered
directly afterwards (2a). Otherwise, a sub-zero treatment is necessary (2b) [41].

Deep freezing A certain amount of retained austenite is left in the carbon-
enriched surface-near layer, which is dependent on the chemical composition
after carburizing, as well as austenitization temperature and duration. Further
transformation from austenite to martensite after quenching only occurs at
temperatures below TR. Deep freezing components at TF for a time ∆tF leads
to the desired martensite-to-austenite ratio for a given application [6].
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2.1 Heat Treatment

Tempering Quenching and, if necessary, deep freezing result in a martensitic
microstructure with extreme tension, which yields its ultimate hardness. Un-
fortunately, it is then also more susceptible to cracking and fracturing. For this
reason, the steel is tempered (i.e., brought to temperature TT below 200 °C for
∆tT) in order to reduce the tensions and, thereby, gaining the required toughness
at the expense of some hardness. The effect for varying tempering temperatures
and duration is formalized by the Hollomon–Jaffe parameter (HP), given in
Equation (2.1), where TT is in Kelvin and ∆tT in hours. The constant C is
dependent on the material used and often set to 20 for carbon-manganese and
low-alloy steels. It is not critical in correlating the interdependence of tempering
temperature and time [16, 64].

Hp =
TT

1000
(C + log(∆tT )) (2.1)

A sensitivity analysis of the heat treatment parameters on the resulting hardness
is given in Table 2.2.

2.1.3 Quality evaluation

For many heat treatment processes the objective is to improve and refine final
material properties of a given workpiece. As properties like fatigue strength or
wear resistance are seldommeasured directly for quality assurance, the material
property hardness is typically chosen as indirect criterion to evaluate a heat
treatment’s result [43].

The achievable degree of hardness depends mainly on a material’s chemical
composition. An alloy’s hardenability is the "capacity of a steel to give rise
to martensitic and/or bainitic transformations" [100]. This capacity must be
further differentiated in maximum achievable hardness and depth of hardening.
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Table 2.2: Important process parameters for case hardening [79, 87]

Parame-
ter (↑)

Hard-
ness

Influence

Carburization ↑ Provided that carbon is in solid solution, increasing the car-
bon content up to 0.8wt.-% leads to higher hardness as long
as austenite is fully converted to martensite during quenching;
if the martensite formation is not completed the resulting hard-
ness might be reduced with increasing carbon content due to
more retained austenite; for carbon contents higher than 0.8wt.-
% carbide formation has to be considered; for fully martensitic
microstructure the hardness is increased further

TA ↑ Increased amount of dissolved carbon in austenite leads to
stronger lattice distortion and lesser carbides which were formed
during carburizing

∆tQ ↓ Less lattice distortion and possible formation of softer ferrite,
pearlite, and bainite depending on the local carbon content

TF ↓ Increased austenite to martensite ratio

TT,∆tT ↓ Increased carbon precipitations leads to relaxation of lattice dis-
tortion

the latter describes the hardness profile along the longitudinal section. The
measurement of these properties is described below.

Hardness

Hardness measurements can be carried out on surfaces or on microsections of
a workpiece with a reasonable effort and are widely used in industry. Since
the hardness of case hardened steels declines with increasing distance from the
surface, hardness measurements are used to characterize the penetration depth
of the carbon enriched layer known as case hardening depth (CHD). That is,
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2.1 Heat Treatment

It is determined by subsequent indentions perpendicular to the surface until the
hardness in question is reached.

The precision of the measurement procedure3 is limited by a number of factors.
(1) The force with which the indenter is pressed into the specimen is allowed
to deviate 1% from the norm, (2) a single indenter can be used over 30,000
times and is prone to abrasion. (3) The optical evaluation of the diagonals
depends strongly on surface quality and incident light. According to DIN
6507 [101] repeated hardness measurements taken on a hardness comparison
plate to evaluate equipment accuracy are allowed to scatter in a defined range
rrel depending on number and force of indents as well as measured hardness,
shown in Table 2.3. For example, 25 indents of HV10 on a 700HV hardness
comparison plate may lie in a range rrel of 3.4%which is equivalent to 23.8HV.
A complete analysis of reproducibility for hardness measurements is given
in [65].

Surface carbon content

The carbon content in the near-surface layer of a component can be determined
via glow-discharge optical emission spectroscopy (GDOES), a method for the
quantitative analysis of metals and other non-metallic solids. Argon ions gradu-
ally ablate the layers of the metallic sample used as a cathode in a direct current

3 Under the assumption that hardness is proportional to the load necessary to produce a constant
sized impression, Smith and Sandland developed the Vickers hardness measurement method
[130] whereby a pyramid shaped indenter, usually a diamond, is pressed into the test specimen
by a precisely controlled test force. This force is maintained for a specific dwell time, normally
10 to 15 seconds, and can range from some gram to several kilogram which is indicated as
number behind the unit (e.g., HV10 implies a force resulting from 10 kp with 1 kp = gN · 1 kg.
As samples get harder, the test force must be increased for accurate measurement. The indenter
is removed after completion of dwell time leaving a square shaped indent on the surface of
the sample. As indentation pyramids are of a precisely defined shape, the Vickers hardness
number can be derived as a function of the test load divided by the surface area of the indent.
This area is determined by averaging the optical measurement of its diagonals.
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2 State of the Art

Table 2.3: Left, maximum permissible span rrel for n indents on hardness comparison plates greater
than 250HV. Right, example for 700HV based on DIN EN ISO 46507-3 [101]

Number of inprints 5 10 15 20 25 5 10 15 20 25

rrel in % for > 250HV e.g., rrel in HV for 700HV

HV0.2 - <HV5 4.0 5.2 6.0 6.4 6.8 28.0 36.4 42.0 44.8 47.6

HV5 - HV100 2.0 2.6 3.0 3.2 3.4 14.0 18.2 21.0 22.4 23.8

plasma. Photons are emitted by blasted out atoms diffusing into the plasma. As
the excited waves have characteristic wavelengths which are recorded by means
of a downstream spectrometer, the number of atoms from each element can be
quantified. Measurements are sensitive to ambient temperature (i.e., fluctua-
tions of ± 0.1 °C inside the chamber lead to erroneous results) and exhibit a
scatter of ± 0.02wt.% for carbon [56].

2.2 Data Mining and Machine Learning

Aptly described byMaimon andRokach,DataMining is the process of gaining a
valid, comprehensive, and novel understanding of data. This form of knowledge
discovery recognizes patterns in the available information through automatic
exploratory data analysis and inference statistics [91]. Figure 2.6 depicts the
commonly used data mining framework fromwhich the structure of this chapter
is adopted. The first Section 2.2.1 elaborates on advanced visualization tech-
niques and statistical methods for scientific knowledge discovery. Hereafter,
the theoretical foundation is laid for the typical data modeling pipeline, broken
down in Section 2.2.2 preprocessing of data, Section 2.2.3 selection of useful
data parts, and the process of self-learning pattern recognition, referred to as
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2.2 Data Mining and Machine Learning

2.2.4Machine Learning (ML)4. Section 2.2.5 Evaluation builds the capstone of
the knowledge discovery endeavor. Although the framework in Figure 2.6might
be read in a linear fashion, the mining process usually needs many iterations,
starting with smaller circles (e.g., exploring data first and reformulating the
problem or collecting additional data) to larger circles (e.g., altering the process
based on important selected features), whereby the interplay is indicated by the
two-way arrows.

Industry 4.0 [63] in this work only plays a role insofar as the tools and methods
used presuppose that the production step of heat treatment has already been
digitized. Further digitization and communication along the value chain is
desirable and may improve data collection and analysis, but is not the subject
of this thesis.

Data Collection

Process

Model selection and Tuning2. Preprocessing

1. Exploration, Interpretation, Inference and Visualization
Data Mining

Scientific Reasoning

5. Evaluation

Data
Cleansing

Feature
Engineering

3. Feature
Selection

4. Machine
Learning

Extraction, Encoding
Scaling, Transforming

Problem Formulation Knowledge Discovery

Decision Making

Figure 2.6: Design process for knowledge discovery using a data mining framework, based on
[46, 93, 107]

4 A comprehensive explanation of all models will be given in this chapter, although some models
might be mentioned in earlier sections.
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2.2.1 Visual analytics and statistic

For the synthesis and representation of information, the literature suggests
a multidisciplinary approach that draws on domain knowledge of the datas’
origin (i.e., heat treatment and material science), analytical reasoning (i.e., sta-
tistical methods and models), and visual representations techniques (i.e., visual
analytics [139]). These techniques seek to improve information transparency,
accelerate analytic discourse, and rapid model evaluation, correction, and im-
provement [73]. To gain a comprehensive understanding of the data and be
able to formulate new hypotheses, in a first step, the data sets are explored
mostly by visual means to reveal simple statistical measures. After formulating
a collection of hypotheses such as the difference between feature distributions
or model performances, inference statistics may be used to test them.

Exploratory data analysis

Exploring data sets to understand distributions, chronological behavior, and
generate hypotheses makes use of various statistical measures and visualization
techniques. As our eyes are the only broadband connection to our brain for
the time being, graphical depictions can speed up transparency and, thereby,
comprehension as described in [138]. In the following, common practice ex-
ploration techniques for time series, distributions, and relationships between
variables are detailed.

Time series may usually be depicted pointwise over time. For noisy sets a
rolling window (a.k.a moving average5) serves as smoothing function by calcu-
lating the mean of all values in the window ±d days of the actual date. For larger
windows (i.e., larger d), longer trends become visible while shorter fluctuations
are lost. Further, autocorrelations may exhibit seasonality by correlating time

5 If the weights are the same and add up to 1, then the terms rolling window, moving average
(MA), and finite impulse response (FIR) filter may be used interchangeably.
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series with a shifted version of itself. If the correlation for a certain lag (e.g.,
minutes, days, month) is significantly higher than the others, this may indicate
a repetitive or time-dependent nature. Lastly, Fourier transform, spectrograms,
and wavelets may serve for the study of high periodic signals.

Distribution of data can be quantified by many mathematical parametric
distribution types. However, numbers alone seldom give an intuitive sense of
a data set’s spread and many empirical distributions do not match one of the
common types, which is why the following graphical facilitators are used [57].

Histograms represent the number of samples in chosen bins by height. Choice
of bin width and start may lead to different or even misleading visual represen-
tations. Although smaller bins generally produce more truthful representations,
the overall distribution might get lost.

Kernel density estimation (KDE) is a non-parametric way to estimate the prob-
ability density function (PDF) used as an alternative to histograms to generate
a smooth curve of what is likely to be the true distribution [109]. This is
especially useful when plotting multiple distributions whose underlying values
are physically continuous6 (e.g., temperature) but are only measured discretely
(e.g., [..., 2 °C, 3 °C, 4 °C, ...]). The above techniques work well for the indi-
vidual examination of one or a small number of distributions, as variance and
skew as well as multimodality (i.e., PDF has more than one local maximum or
peak) are easily detectable.

Box and Violin Plots are used to compare distributions to each other where the
first explicitly depicts distribution percentages while the latter is still able to
detect multimodalities.

Relationships between variables most commonly are shown by scatter plots
revealing correlations and, possibly, clusters of a third variable if color coded.

6 A consideration of quantum mechanics is not necessary here.
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Frequent combinations include (input, input), (input, output), and (output, pre-
diction).

For large data sets contour plots are used7. They combine relationship and
distribution by outlining the estimated 2-dimensional density function of the two
variables, drawing contours at levels of same density and increasing darkness
of shade with increased density.

(Clustered) Heat maps show themagnitude of a value in relation to the complete
set that contains the tuples of two sets at x- and y-axis. These visual cues easily
reveal how phenomena are clustered as well as extreme values. Often the
correlation coefficient between features is plotted as heat map to reveal highly
correlated features [148].

For the sake of completeness, it ismentioned that the above visualizations should
not be regarded as a causal link. Even between highly correlated variables, if
a thoroughly tested physical law cannot plausibly explain it. This is especially
important when explaining features later. Neither should a significant difference
between values or scores be assumed if no confidence intervals are provided [3].
The following section introduces the methods for such claims.

Inference statistics

In order to test the multiple hypotheses that have been formulated during data
exploration, statistical methods are used, that correct for the family-wise error8.
Correcting this error is particularly important for machine learning, as many
features and models are compared, easily leading to spurious correlations and
claims of seemingly different scores that are in fact not justified. These tests
allow to discard a certain null hypothesisH0 (e.g., furnace 1 and 2 produce equal

7 Too many points in one scatter plot obscures the distribution of these point, because it is
impossible to tell which points overlap and which do not.

8 That is, a correction for the increased probability of making one or more false discoveries (type
I errors) when performing multiple hypotheses tests.
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results), in favor of the alternative hypothesis, when the probability (p-value) of
the observation’s occurrence, under the assumption thatH0 is true, falls below a
significance level α. The estimation of p can either be derived from a post-hoc
test or the confidence intervals around the statistic in question.

Post-hoc multi comparison tests automatically integrate the correction for
the family-wise error in their calculations. Depending on the test, the distribu-
tions to be compared must satisfy certain requirements like comparable sample
size or homogeneity of variance. Two examples are introduced below.

Tukey’s HSD test is an honestly significant difference (HSD) multiple com-
parison procedure that calculates all pairwise t-tests between the groups and
corrects for the family-wise error rate by determining the significance level αt
through the studentized range distribution. It requires equal samples size and
variance [141].

Scheffé test is also a multiple comparison procedure that is robust against
imbalanced sets, as it uses all possible contrasts9 among the factor level means,
resulting in a lower test power.

pi ≤ α
m

Confidence intervals (c%CI) of a given statistical property, e.g., the mean
µ, indicate that if an experiment was repeated sufficiently often and a c%CI
calculated for µ in each trial, this CI would in c% of experiments include the
true µ [24]. They may also be used as an alternative to some significance
tests [112]. They allow transitioning from a null hypothesis testing framework,
where only a dichotomous outcome (i.e., rejecting or keepingH0) is possible, to
a more quantifiable approach that might show how large the difference between
populations is based on CI’s of their means. When for example, the two 95%
CI do not overlap, then the significance level is p< .01 where sample sizes

9 A contrast is a linear combination of variables whose coefficients add up to zero.
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should be greater than 10, and the error margins do not differ by a factor of
more than 2 [25]. Using sufficiently large CI amounts to a Bonferroni correction
pi < α

m for the family-wise error, wherem is the number of hypotheses and pi the
corresponding p-values. By this means, box plots with confidence intervals may
serve as a first impression ofwhether two distributions are significantly different,
thereby partly integrating statistical inference methods in the visualization. The
estimation of a CI assumes knowledge about the underlying distribution10. If
this is either not the case or too expensive to test for, the below method may be
used.

Bootstrapping is a computationally intensive statistical resampling method
used as a non-parametric way of estimating CIs of statistical values in unknown
distributions. It is beneficial for empirical distributions not belonging to the
common parametric ones: Given that an empirical distribution contains n
values, first, we resample n values from that distribution with replacement,
known as bootstrap sample. Second, we calculate the descriptive statistic (e.g.,
median, mean) we want a CI for. Third, we repeat 1. and 2. between 250
and 10,000 times, depending on the methods used for CI estimation and the
narrowness of the CI [42]. Lastly, we use the collection of obtained values to
estimate theCI. Besides the quickly calculable percentilemethod, there aremore
precise methods, including normal approximation, (accelerated) bias-corrected
method, and the approximate bootstrap confidence method [60].

2.2.2 Preprocessing

According to a survey presented in Forbes, data scientists spend nearly 80%
of their time with data preparation [114]. The following sections dive into
this preparation process, divided into a short cleansing section and a more
extensive feature engineering part. Much of the success in machine learning is

10 This is usually difficult to obtain for large ML-sets.
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the successful engineering of features, which a model can readily understand.
Moreover, groups of models react with varying sensitivity to the degree to which
data has been transformed beforehand. While, for example, tree-based models
are more robust to unscaled and irrelevant features, others, like neural networks
or linear regressors, are not [80] (p.27).

Data cleansing

The usability of data is dependent on its quality and purpose of use. To
enhance usability, factors that could compromise consistency, accuracy, time-
liness, believability, and completeness need to be examined and, if possible,
counteracted [57] (p. 84). Real-world data sets often come with a multitude of
defects which makes data cleansing an indispensable preprocessing step (e.g.,
hardness measurements lack accuracy resulting in inconsistencies of repeated
measurements, data might not be available in digital format, or lack a unique
identifier). Moreover, missing values need to be imputed, often done by replac-
ing the gap with the mean or median of all samples. For time series, a search for
data blocks with similar properties may be performed that are copied and then
pasted into gaps [146]. Further steps include the deletion of outliers, correction
of misspelled fields, and removal of duplicates. Many of the steps presuppose
a certain amount of domain knowledge and their necessity is dependent on the
rigorousness of the data collection process.

Feature engineering

The success of a machine learning algorithm depends mainly on what kind of
data it is presented with. A feature is a numeric representation of information
inherent in the raw data. Formulating beneficial features concerning the task,
the data, and the model at hand, utilizing extraction, encoding, scaling, and
transformation is called feature engineeringwhich practitioners spend amajority
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of their time on11. Naturally, higher-quality inputs result in better, faster, and
more easily trainable models [151]. Consequently, the first point in the data
preparation checklist by Guyon and Elisseeff reads: "Do you have domain
knowledge? If yes, construct a better set of ’ad hoc’ features" [55], pointing
out the field-specific nature of the engineering process, resulting in a relatively
small amount of literature about the topic, as generalization across domains
is difficult. Furthermore, ML methods differ in their ability to learn specific
types of features (counting, differences, polynomial, etc.), which is why it is
important, how the features are presented to an algorithm [62]. The upcoming
paragraphs will describe commonly available data types derived from those,
what kinds of features can be extracted, and which further transformations
might be helpful.

Data types of the raw data generally fall into categorical12 and numerical13

data and determine largely how and what kind of features are being engineered.
Categorical data represents an unordered characteristic such as component type
or machine number and needs to be converted into a numerical representation
by encoding. Numeric types may be continuous or discrete and usually need
to undergo scaling, which is potentially followed by further transformations. In
rare cases binning is used to form groups from numeric data (e.g., age buckets
[10 y < 20 y < ...]). Time series (i.e., numerical data with timestamps) usually
exhibit a high degree of autocorrelation, resulting in a need for tailored feature
extraction to compress the information in the many redundant data points.

Feature encoding of categorical variables is necessary as ML algorithms
usually only accept numerical values. In case a category is already represented
by a number, some algorithms (esp. for regression) assume that some order

11 "At the end of the day, some machine learning projects succeed and some fail. What makes
the difference? Easily, the most important factor is the features used. Learning is easy if you
have many independent features that each correlate well with the class." [33]

12 a.k.a. nominal
13 ordinal, interval, and ratio scales
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Table 2.4: One-hot and binary encoding of different categories: Four production lines and days of
the week. Arrays are used in their transposed form (vertical) in a feature vector later

category line 1 line 2 line 3 line 4 Monday Tuesday ...

one-hot [ 1 0 0 0 ] [ 0 1 0 0 ] [ 0 0 1 0 ] [ 0 0 0 1 ] [ 1 0 ... 0 ] [ 0 1 ... 0 ]

binary [ 0 0] [ 0 1] [ 1 0] [ 1 1] [ 0 0 0] [ 0 0 1]

existed between categories (e.g., category 4 is higher or better than 3) [35]. If
this is not the case or undesirable a one-hot encoding or binary encoding can
be used. The first, a.k.a. dummy encoding, is a group of bits with value (0)
among which only a single high bit (1) exists and where the length represents
the number of groups. Its position in the group represents the category. Binary
encoding assigns ascending integers to the categories starting from zero and
converts them to their binary representation. This can be advisable for high-
dimensional categories to avoid an explosion of the feature space (i.e., one new
column per additional category). However, performance may suffer, which
might be counteracted by feature hashing (i.e., using the binary value resulting
from applying a hashing function to the feature categories) [123]. Table 2.4
shows the encoding of four production line numbers, in which case an input
vector would be appended by four additional rows, each representing one line
number.

Feature extraction from time series is essential as most ML algorithms
prefer non-redundant already featurized inputs14, with as few dimensions as
possible for easier detection of relevant signals. Despite the rapid growth of deep
learning algorithmswhich specialize in automatic extraction of specific patterns
(e.g., CNN for pattern recognition in pictures or EEGdata), the former statement

14 ML algorithms that do not specialize in time series have difficulty using a complete (unpro-
cessed) time series array as input because it contains too much redundant information. Values
in the array are auto-correlated, which is true for almost all sensor signals.
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generally holds because these algorithms need vast amounts of data to recognize
the patterns that otherwisewould be handed to an algorithm in already featurized
form. Consequently, data should pass through noise reduction, resampling, and
subsequent feature extraction for better results. This mainly applies to sensor
signals, but occasionally also concerns a series of labels15 explained in the
following two paragraphs.

Noise reduction with digital filters is done to clean a sensor signal and/or
extract longterm fluctuations of a label by feeding the series x[.] to a low-pass
filter characterized by its impulse response, given in Equation (2.2). For finite
impulse response (FIR) filters, this amounts to a weighted moving average16

with all ak = 0, which means FIR filters do not use their past output y[.] as
feedback, rendering them always stable. Infinite impulse response (IIR) filters
additionally use their past output y[.] as input17, which usually allows for a
smaller filter orderM and N and more complex design, but also may render the
filter unstable due to the feedback (for linear filters, sufficient stability criteria
exist that are easy to check) [125]. The coefficients ak and bk are calculated
during filter design which, for low-pass filters, includes a cutoff frequency ω0

above which frequencies are attenuated.

y[n] =

M∑
k=0

bk x[n− k]−
N∑

k=1

ak y[n− k] (2.2)

Feature extraction from signals is dependent on the application (e.g., tem-
perature, velocity, or neurophysiological biosignals). It might be enough to

15 If a label’s fluctuations or trends over time can not be explained by the features the past labels
might be used as features. Turning these past labels into features often involves some form of
averaging, that is, noise reduction.

16 This is similar to a rolling window, where every element is weighted individually.
17 This feedback works as a memory. In this way, the filter remembers its current state and does

not have to recalculate it from past inputs. It can thus be much shorter than a comparable FIR
filter.
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extract basic statistics like mean, median, minimum, maximum, standard devi-
ation, skew, and kurtosis. Other time series might need special segmentation,
filtering, Fourier transformation, or extraction of permutation entropy to pro-
vide meaningful features to the algorithm. A comprehensive list along with the
extraction process is provided by [7,22]. In order to extract meaningful features
while maintaining physical explainability, the use of domain knowledge can be
crucial when deciding on which statistical values to extract from which part of
a time series.

Feature scaling for numerical features changes the range of a data set to a
defined interval, where the unit of a feature (e.g., meters vs. inch vs. light-years)
may affect how a model makes use of it. The first reason is that floats18 are
more precise for small numbers. The second reason being the differences in the
dimensions of the weights (i.e., internal parameters of some ML algorithms)
learned by the algorithm, which results in over- or underemphasis of features
and problems in learning, due to so-called exploding19 gradients. Transforming
the data to a standard range by normalization20 helps to mitigate such issues, in
particular for NN-like and clustering algorithms [57](p.114).

Min-max normalization is one of the simplest data transformations shifting
the original distribution to an interval between [0, 1] or [-1, 1]. A formula for the
interval [0, 1] is given in Equation (2.3) where xmin and xmax are the minimum
and maximum of the vector x that holds the same feature of every sample [71].
The inclusion of extreme values makes it susceptible to outliers that are better
handled by the next technique.

xmin−max =
x− xmin

xmax − xmin
(2.3)

18 Is a type of representation format of a number in a computer.
19 Extremely large gradients may cause gradients to become unstable which may prevent conver-

gence.
20 Normalization and standardization may be used interchangeably in data processing.
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Robust normalization is similar to min-max normalization but uses the
median instead of the mean to center the data and the range between the first
q25 and third q75 quartile for normalization, in order to be more robust against
outliers. Depending on the distribution of the to-be-normalized data, other
quantiles may be used as well.

xrobust =
x− xmedian

xq75 − xq25
(2.4)

Z-score normalization, also known as standardization, is a transformation
that maps the data to a distribution with a mean of zero and unit-variance using
Equation (2.5), where x̄ is the mean and σ the standard deviation of x. It is
widely used for NNs, even between layers, known as batch normalization [86].

xz−score =
x− x̄

σ
(2.5)

Feature transformation arose from the need to transform inputs of linear
regression models to be able to capture nonlinear relationships between in- and
output. As the ability to learn specific nonlinear relationships varies between
models, features may be transformed by the following Equations [62]: Log-
arithms and power functions (2.6), differences, and ratios (2.7), polynomials
(2.8), counts and rational differences (2.9). Ideally, the modeler knows the
physical relationship between in- and output.

y = log(x), y = x2 (2.6)

y = x1 − x2, y =
x1

x2
(2.7)

y = 2 + 3x+ 4x2, y =
1

2 + 3x+ 4x2
(2.8)

y =

n∑
i=1

1 if xi > t else 0, y =
x1 − x2

x3 − x4
(2.9)
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2.2.3 Feature selection and predictor importance

This section deals with the general problem of finding a subset of features that
preserves the necessary learning information while the joint entropy between
the individual features is minimized (i.e., redundancy elimination). Too few
informative features restrict the model’s ability to perform its ultimate task.
Too many or irrelevant features result in more expensive and tricky to train
models [151]. Following Occam’s razor (i.e., using the simplest explanation
for a given hypothesis), predictive models usually exhibit less overfitting, work
faster, and have more explanatory power when given only a useful (i.e., relevant
and redundancy-free) subset of features [122]. While selecting only useful
features may lead to the exclusion of redundant but relevant features, conversely,
a selection of only relevant21 features may be suboptimal for the modeling
purpose due to the introduction of redundancies [55].

Three categories of subset selection methods may be distinguished, namely,
filters, wrappers, and embedded methods, each with their own measure of use-
fulness and relevancy [69, 122]. More elaborate techniques like wrappers and
embedded methods may significantly improve predictor performance compared
to simpler filters. Especially in domains with more voluminous feature sets,
the curse of dimensionality needs to be counteracted at risk of overfitting. An
automatic feature construction aided by domain knowledge can also improve
performance and yields a more compact feature set [55]. Neither of the tech-
niques can address the problem of causal inference between feature and label,
which needs to be solved by the domain experts at some point in order to build
reliable models.

21 While there exist several mathematical definitions for relevancy, this work shall use the term in
an intuitive sense, meaning having an impact on the target variable. For an extended discussion
of relevancy, see [76].
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Filters

A feature relevance score is determined only by intrinsic properties between
feature and label. Features with low scores are then removed and the remaining
subset is used for prediction. In contrast to other methods, filter techniques
solve the feature subset selection problem independent of the ML algorithm,
making computation much cheaper and allowing for easier scalability to high-
dimensional data sets. The scores only have to be calculated once and any
desired algorithm uses the chosen features. Unfortunately, features are only
evaluated individually. Thus, the filters ignore feature dependencies, which
may worsen prediction performance. Also, the interaction with a particular
algorithm is not taken into account [122]. Three of the more frequently used
filtermethods are explained below; a comprehensive review can be found in [51].

F-ratio is generally used as a measure for the goodness of fit when com-
paring different models22. Equation (2.10) [49] describes the F-ratio, where R2

is the coefficient of determination, k is the number of predictors, and N being
the number of observations. The F-ration can also be thought of as the fraction
between variance explained by the model and unexplained variance. A p-value
can be calculated from F indicating whether a predictor significantly increases
the prediction or not (i.e., has a high correlation with the target).

F =
(N − k − 1)R2

k(1−R2)
(2.10)

Mutual information (MI) or information gain (IG) measure the reduction
in uncertainty (or the "information gained") for X by quantifying the infor-
mation bits that can be obtained from observing Y. Equation (2.11) gives an
approximation for the mutual information I(X,Y), where the probability p for

22 While the term adjusted R2 is more commonly used for regression, the F-ratio is widely used
in classification.
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points falling into various bins23 i,j is approximated24 by the number of points in
that bin. Thereby, it can capture nonlinear relationships between X and Y [78].

I(X,Y ) ≈ Ibinned(X,Y ) =
∑
ij

p(i, j) log
p(i, j)

px(i)py(j)
(2.11)

(R)Relief originally was designed as a feature selection algorithm for a two-
class problem by calculating the feature quality based on its ability to distinguish
nearby instances of both classes. A randomly selected point searches for the
nearest neighbors from the same class and a different class. Then, the so-
called relief estimate W[A] is determined for all features and their weights are
updated [75]. This procedure was adapted to regression problems by [120],
hence the (R) in front of Relief.

Wrappers

Wrappers use ML algorithms as a scoring function with a selection procedure
’wrapped’ around the model, that is, a subset of features is evaluated by training
and testing a model. This way, interactions between model and feature are
included in the search. Also, important dependencies between features can be
considered, which comes with a higher risk of overfitting. The main drawback
is the high computational cost of the procedure. The search for an optimal
subset may be divided in two classes. 1) Sequential or deterministic selection,
where features are stepwise added to or removed from a subset. This may be
computationally infeasible for the exponentially growing number of subsets for
high dimensions.

23 Supports of X and Y have been partitioned into bins of finite size beforehand.
24 E.g., px(i) ≈ nx(i)/N, where nx(i) is the number of points in bin i of X and N the total number

of points.
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guided by an optimization procedure and might be less prone to local optima.
[19, 122]

Sequential selection in its simplest form sequential forward selection
(SFS) grows a set of features by starting with an empty set and then adding
the feature that yields the best performance when added to the set. In every
step, thus, all remaining features are evaluated with the current subset until pre-
diction performance decreases or the required number of features is included.
In this naive form, not all feature dependencies might be taken into account25.
Sequential backward selection (SBS) already contains all dependencies since
the algorithm starts with a set of all features and stepwise removes the fea-
ture whose exclusion leads to the smallest decrease in predictor performance
which is a highly computationally intensive procedure. Sequential floating for-
ward selection (SFFS) is more flexible than the naive SFS as it can add and
remove features but might also overfit the data stronger and is distinctly more
computationally intensive [19, 119].

Genetic algorithms (GA) belong to the heuristic methods and are a subtyp
of evolutionary algorithms (EA). While the latter use real numbered values as
encoding, GAs are limited to integer or even binary encoding. Both simulate
the survival of population members (i.e., possible solutions to the optimization
problem) over many generations based on their fitness (i.e., score of the evalu-
ation metric to be optimized). Population members differ by their genetic code
(DNA), which is an array with zeros and ones in its simplest form (i.e., GAs).
If a member represents a feature subset, then the subset of included features are
marked with ones while all remaining features have a zero. The evolution steps
are listed below:

25 Although SFS sometimes misses hidden relationships, making a very early selected feature
redundant, it works much better than its reputation and is not particularly computationally
expensive, especially for small feature numbers.
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1. Creation of the initial population is performed by initializing the DNA
of each population member at random (e.g., an array with zeros and ones)
with population size being a hyperparameter.

2. Fitness evaluation26 uses a given evaluation metric (e.g., prediction
error of ML algorithm) to determine the fitness score of each population
member, wherememberswith very lowfitnessmay be eliminated or die in
a so-called tournament with other members. In addition, a small portion
of the best individuals from the last generation (without changes) can
also be transferred to the next generation, called elitism selection. Other
methods include the roulette wheel, rank, and steady-state selection.

3. Cross-over occurs between pairs of the current population drawn at
random, with fitter members having a higher probability of being chosen
proportional to their rank. During mating of each pair, two new offspring
emerge by crossing over the DNA of their parents, that is exchanging
sequences of their arrays at randomly selected segments.

4. Mutation flips bits of the DNA at random. Although this occurs with
rather low probability, some improvements may be obtained which can
lead out of a dead end like a local optimum. The mutated offspring then
forms a new population generation.

Steps 2, 3, and 4 are repeated until some termination criterion is reached (e.g.,
no fitness improvement, a maximal number of generations, or calculation time).
These steps are at the heart of every GA, but implementations may vary between
applications [84].

Embedded methods

Embedded methods integrate the feature selection into the training process,
making them work more efficiently than wrappers. By optimizing a two-part

26 Sometimes is also listed as 4th step.
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objective function consisting of a prediction metric and a penalty for large
amounts of features (i.e., avoiding the usage of too many irrelevant variables),
they may reach a solution faster as the need for retraining all subset disappears.
Examples of such algorithms are decision trees and ensembles thereof (e.g., ran-
dom forest), as well as Lasso and Ridge regression using l1 and l2 regularization
for their weights, respectively [19, 55, 122].

2.2.4 Machine learning algorithms

Machine Learning (ML) refers to the development and application of algorithms
or statistical models with the ability to automatically improve their internal
parameters based on experience (i.e., data) [94], in order to perform a specific
task (e.g., make predictions or decisions) effectively without using explicit
instructions, but relying on patterns and inference instead [10]. Depending
on the nature of the task, different categories can be distinguished, the most
common being (un)-supervised and reinforcement learning [150], see Figure
2.7:

Machine Learning

Reinforcement

Classification

Regression

Supervised

Clustering

Association 

Dimensionality 

Unsupervised

Reduction

Figure 2.7: Types of machine learning

Supervised learning refers to automated decision-making by generalizing
from examples (i.e., ability to make correct predictions for unseen data by
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independently learning from a training set) [96]. The algorithm learns to map
inputs to desired outputs and generate accurate predictions [80]. The problem
is termed classification if the predicted label is a categorical value (e.g., pictures
of a microstructure characterized as good, neutral, or bad), whereas regression
is the prediction of continuous values (e.g., hardness measurement, CHD).

Unsupervised learning is applied to data sets without pre-existing labels
in order to automatically cluster the data (i.e., divide by similarity), reduce its
dimensionality with minimal information loss, find associations (i.e., identify
sequences), or detect outlier by recognizing previously unseen patterns [124].

Reinforcement learning happens during the interaction of an algorithm,
called agent, with an environment that can be modified through inputs, called
actions. The environment provides the agent with some state variables during
the interaction as well as a reward at the end of a session. The agent tries
to maximize this reward over the course of many sessions by optimizing its
actions based on the provided state variables (e.g., finding the optimal process
parameters to gain a desired hardness, given that a simulation of the process
exists).

Supervised regression models

Many algorithms now subsumed under the term machine learning were intro-
duced in the last century, when the available computing power did not allow
mass deployment on large data sets. Today, research is progressing rapidly,
designing new architectures and introducing modifications to the body of al-
gorithms. Almost all of which are available in a version for classification and
regression. As the focus of this study lies on continuous labels, explanatory
emphasis is on regression. The most popular ML methods shown in Figure 2.8
are explained below.
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Figure 2.8: Machine learning algorithms for supervised regression, [own representation]

Linear models

Linear regression (LR) optimizes the weights w of the linear function y
= w0 +

∑N
i=1 wi xi + ε, where y is the label, xi the features, N the number

of features, and ε a random error. If the optimization of the weights includes
a penalty for large weights, we talk about Lasso regression (l1 regularization)
and Ridge regression (l2 regularization) [97].

Sparse kernel methods

Support vector machine (SVM) finds a (hyper-) plane that maximizes the
gap between two classes in feature space. The features are often transformed
into a higher dimension via a kernel to account for nonlinear relationships. Since
the points closest to the dividing plane are the most relevant, they are called
support vectors, hence the name. Its correspondence for regression problems is
the support vector regressor (SVR) developed by [36].
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Neural networks

(Deep) neural network ((D)NN) uses multiple layers of nodes27, often
fully28 connected by weights, which are being optimized by backpropagation.
The prefixed term deep implies that more than a certain amount29 of hidden lay-
ers of nodes is used. More layers allow for learning more complex relationships
but generally need more data and are more prone to overfitting.

Convolutional neural network (CNN) is a class of deep neural networks
that is most commonly used to classify images. Due to its 2D input structure
that allows for extraction of features based on spatial coherence (e.g., edges and
patches), it is particularly advantageous. The prefixed term convolution refers
to the mathematical operation by the same name that works as a filter on the
image to detect patterns. CNNs, thus, have the ability to learn filters that extract
features’ characteristics for an image class and massively reduce the number of
free parameters due to the coupling structure compared to a DNN with only
fully connected layers [85].

Recurrent neural network (RNN) is, in contrast to the feed forward30

NNs mentioned above, equipped with feedback connections. It is, therefore,
especially good at processing sequences of data (e.g., speech recognition or
text). Two advanced architectures that work with this technique are particularly

27 In the standard multilayer perceptron, every single node, also referred to as neuron, contains
a function similar to LR plus an output function (mostly sigmoid or ReLu). Other functions
(e.g., radial basis function) exist but are rarely used.

28 Each node of one layer is connected with each node of the following layer. However, there
exist many different architectures optimized for a particular use case with fewer connections
(e.g., CNNs).

29 There is an ongoing discussion about how many hidden layers are necessary to warrant the
term deep learning.

30 "Normal" NNs and CNNs are feed forwards because information is always processed in one
direction (i.e., the direction of output) and is never stored or fed back to the same or previous
neurons or nodes.
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prominent; namely the gated recurrent units (GRU) [20] and the long short-
term memory (LSTM) [54], which make use of gates that decide which inputs
and outputs to keep and forget.

Ensembles of regression trees

Random forest (RF) constructs a multitude of uncorrelated decision trees
(so-called weak learners) at training time, outputting the mean prediction of the
individual trees. The term random refers to the element of chance involved in
making decisions when creating the trees. Random forests better correct for
decision trees’ tendency of overfitting to their training set [14].

Gradient boosting (GB) iteratively constructs the model in a stage-wise
fashion from an ensemble of weak prediction models, typically decision trees
being trained and pruned on examples that have been filtered by previously
trained trees. It generalizes them by allowing optimization of an arbitrary
differentiable loss function [37].

Instance-based learning

K-Nearest neighbors (KNN) finds the k samples that are closest in feature
space to the sample that is being predicted. The prediction is then a weighted
average of the labels of these k samples. As it memorizes every instance of the
training set, computation time increases drastically with high-dimensional data
sets.

Unsupervised clustering and dimensionality reduction

Cluster analysis finds substructures in unexplored data by assigning data points
to clusters in such a way that items (usually consisting of multiple data points)
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attributed to the same cluster are as similar as possible, while other items
are most dissimilar. Similarity measures include distance, connectivity, and
intensity.

Fuzzy c-means (FCM) introduced by Bezdek in 1981 [8] is an extension of
k-means. Unlike its predecessor, one data point can belong to multiple clusters
during the clustering process as each point possesses weights that indicate
the affiliation to each cluster. First, a predefined number of random cluster
centers (centroids) are determined, then, each point is assigned to the closest
centroids. Third, the squared distances between centroids and belonging points
are calculated and summed for each cluster. Lastly, the centroids are moved to
minimize these sums. Steps 2, 3, and 4 are repeated until a stable minimum of
sums is reached. This method has the following advantage: the initial set of
random centroids does not influence the final clusters as much as k-means. In
addition, the creation of a noise cluster allows the detection of outliers that are
not close enough to one of the other clusters [104].

Principal Component Analysis (PCA) approximates a set of (statistical)
variables by finding their most relevant linear combinations (i.e., principal
components) [70].

(Variational) autoencoder (VAE) is a form of nonlinear PCA that uses a
NN architecture to learn a compressed representation of a data set to extract
the relevant features. The encoder is a shrinking NN to the dimension z,
while the decoder is its mirror image that tries to reproduce the original input
from the information given in z [77]. The variational autoencoder forces the
distribution of z to be Gaussian by adding an approximation of the Kullback-
Leibler-Divergence between z and a standard normal distribution to the loss
function of the network.
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2.2.5 Model evaluation

Two types of evaluation can be distinguished, which may use the same metric,
but not necessarily do so. The first concerns the optimization during each
training pass and is calculated by an algorithm’s internal loss function. It
often is continuously differentiable and the basis for parameters’ adjustment to
make better predictions. The second determines the goodness-of-fit between
measured and predicted values, particularly for the test set.

Evaluation metrics

While ML packages usually come with a fixed set of loss functions that can
not readily be altered, as the internal optimization depends on it, several dif-
ferent final scores can easily be calculated. These scores are coupled with the
prediction task they are seeking to evaluate. The most prominent metrics for
regression and classification are explained in the following.

Regression metrics

Mean squared error (MSE) between labels yi and corresponding predic-
tions ŷi, given inEquation (2.12), is used as loss function formost algorithms and
often is the evaluation criteria for adjustment of the learning parameters [80].
The root mean squared error (RMSE) might be more readily interpreted since it
has the same dimensionality as the label it is calculated from (e.g., if the original
unit of measure of the label is Vickers, then the RMSE is also in Vickers). How-
ever, the RMSE does not lend itself to universal comparability between models
because knowledge about the label and its distribution is necessary to determine
the actual predictive power. It is therefore often compared to a dummy regres-
sion, a form of intelligent guessing. The RMSE can be minimized by using the
mean of the labels of the training data ȳ as a prediction for all samples. The
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resulting RMSEbl in Equation (2.14) gives a baseline on what an algorithm has
to achieve at least to make valuable predictions.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.12)

RMSE =
√
MSE (2.13)

RMSEbl =

√√√√ 1

n

n∑
i=1

(yi − ȳ)
2 (2.14)

Coefficient of determination (R2) can be derived from theMSE and gives a
comparison between the actual and baseline performance of themodel. Negative
values indicate belowbaseline results, that isworse than guessing ȳ, while values
close to 1 attest minimal error between observed and predicted outcomes. It
can also be interpreted as the proportion of the variance in the target explained
by the features. While different computational definitions exist for the R2 score,
the one given below is preferable as it generalizes well to problems outside
linear regression.

R2 = 1− MSEmodel

MSEbl
(2.15)

Classification metrics

Confusion matrix of a two-class prediction evaluation shows the four deci-
sive values: true positives/negatives (TP)/(TN) (number of correctly classified)
and false positives/negatives (FP)/(FN) (number of misclassified) labels, in a
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two-by-two matrix. The most common ratios between these values are accu-
racy, precision, true positive rate (TPR), and false positive rate (FPR). Accuracy
measures the percentage of correctly classified labels TP+TN

N , where N is the
sample size, while precision TP

TP+FP shows what percentage of the labels pre-
dicted as class 1 (i.e., positive class) were correct. The TPR TP

TP+FN , also
called sensitivity or recall, conversely measures what percentage of the true
class 1 labels was actually found. In ML, it is sometimes called the probability
of detection. The FPR FP

FP+TN , also known as the probability of false alarm or
fall-out rate, indicates what percentage of class 2 labels was wrongly classified
as belonging to class 1 [45].

Receiver operating characteristic can be used to find an optimal thresh-
old to decide whether a prediction belongs to class 1 (star) or class 2 (circle),
see Figure 2.9. Regression problems can be converted to classification prob-
lems using a class separator that assigns the true values to either class circle
(< separator) or class star. In order to determine the classifier’s discriminatory
ability, a ROC curve plots the TPR against the FPR at various threshold set-
tings. By variation of the threshold, a suitable trade-off between sensitivity and
specificity can be made for the problem at hand (e.g., more emphasis on finding
all positives requires a higher sensitivity while more emphasis on avoiding FP
requires a better specificity) [45].

Area under the curve (AUC) is calculated from a ROC and gives an in-
dication of how well the classifier performs, where an AUC ≈ 0.5 is equal to
guessing while an AUC close to 1.0 indicates optimal discriminatory ability.

Resampling methods

The risk of overfitting rises along with nowadays more complex models that
have the ability to learn a given input-to-label mapping virtually by heart, such
that labels can be predicted close to perfection. To avoid a model’s loss of
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Figure 2.9: a) Scatter plot of true and predicted values with a classification in circles (< class
separator) and stars b) ROC curve showing the trade-off between true positive (TPR)
and false positive rate (FPR), based on [80]

generalizability, the training and subsequent evaluation must be performed in
such a fashion that overfitting can be detected, at best during training but at
the latest during final evaluation. A number of methods are available to split
data, as well as train and evaluate a model to approximate its generalization
ability. Often, the choice depends on the number of samples available, their
distribution, and how the modeler wants to ’spend’ these data points [80, 95].

Train-dev-test split is the most commonly used and least expensive split
in training, development (a.k.a. validation), and test (a.k.a. evaluation) set by
a ratio of approximately 7:1:2, respectively. After (and in some cases during)
training with the training set, the development set is used to detect overfitting.
With these two sets, different models are built and tuned. Only in the last stage,
when it comes to model selection, the test set is evaluated to get an unbiased
view of the models’ predictions. Unfortunately, the available amount of data not
always allows spending 30% of the data purely on the final evaluation. Further,
setsmight contain disproportionate amounts of easy or difficult to learn samples,
such that different splits certainly lead to different results.
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(Stratified) k-fold cross-validation (CV) splits the data (randomly) into
k equally sized sets. The model is then trained k times on k-1 of the sets,
while the remaining set (called held-out set) is used for evaluation. This way
k development sets can be used for evaluation, with typical numbers of k
between 3 and 10. In extreme cases k takes the number of samples called
leave-one-out cross-validation (LOOCV). Repeated CV performs the k-fold
CV process several times to get a more truthful distribution of the evaluation
score. Stratified splitting is a non-random form of partitioning such that each
set ’strata’ approximately contains the same distribution of labels and inputs to
make them more comparable.

Monte Carlo Simulation in general performs repeated evaluation of a func-
tion, process, or experiment with parameters randomly drawn from a given
distribution. It can be used for model evaluation by randomly splitting the data
into training and evaluation set numerous times (e.g., 10 to 100 iterations) and
then summarizing the evaluation scores, which amounts to repeated k-fold CV
for a large number of iterations.

Bootstrapping already discussed in Section 2.2.1 may also be used for
model evaluation by repeatedly drawing samples with replacement31 to build
the training set and subsequent evaluation with the out-of-bag samples.

Hyperparameter optimization

The number of hyperparameters (e.g., learning rate, number of layers in a NN,
or splits in an RF) may vary greatly between model families. Consequently,
model tuning becomes an optimization problem of its own if the hyperparameter
space is high dimensional.

31 Some samples may be represented multiple times in the training set.
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Grid search exhaustively searches through all possible combinations of
hyperparameter settings in a grid. It may provide the most comprehensive
overview of the effects of a set of hyperparameters but is only feasible for very
small dimensions because it evaluates the objective function32 at every point in
the grid, instead of directly optimizing for convergence to a minimum.

Random search evaluates the objective function at randomly chosen points
in the hyperparameter grid. This way, much fewer evaluations need to be
performed while still coming close to an optimum.

Genetic algorithms as described in Section 2.2.3 take randomly parame-
terized models as generation zero and evolve better models by crossover and
mutation between well performing models [83, 106]

Factors affecting model performance

Typically, a data scientist works backward through the ML pipeline to find fac-
tors that might worsen predictability when model performance does not live up
to the expectancy. Starting from optimization of hyperparameter and identifi-
cation of ineffective, erroneous, or missing features, over the improvement of
feature scaling and transformation to counteracting a potentially large class im-
balance [23]. On top of these factors, discretization of continuous values (e.g.,
resolution of the sensors) and measurement noise in either the predictors or the
label (e.g., the influence of background lighting when measuring a hardness
imprint) put strict boundaries on the achievable predictability [80].

Lastly, a "Type III" error may occur, that is, answering the wrong question. For
example, the ultimate test for a cylinder head is the amount of pulsed pressure
it can withstand. A hardness measurement may give some indication of how

32 Used to calculate the model performance for a particular set of hyperparameters.
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sturdy the component is, but it does not answer the question of longevity in the
field [74].

2.3 Application of supervised ML to Heat
Treatment and Material Science

As the wave of enthusiasm for machine learning sweeps through industry and
research, material science and heat treatment communities are evolving to ex-
plore the predictive capabilities of these methods. Some work published so far
is listed in Table 2.5 providing a detailed non-exhaustive overview regarding
the application of ML methods to heat treatment, sorted primarily by target and
type of treatment. Correspondingly, this section is split into the prediction of
mechanical and component properties.

2.3.1 Prediction of mechanical properties

Unsurprisingly, the chemical composition is the number-one predictor used in
many models, followed by a variety of heat treatment parameters. They were
used to predict austenite, bainite, and martensite start temperature [5, 53, 115],
the volume fraction of bainite in low carbon steels [127], or the bainite plate
thickness [126]. The latter also using Gibb’s free energy, austenite strength, and
carbon concentration as features. The hardness of bainitically hardened steels
was investigated by [113, 128] on the basis of mass fractions of the alloying
elements as well as heat treatment parameters, confirming the high relevance of
manganese for bainite kinetics also found by Bhadeshia [9].

Because hardness depends considerably on chemical composition, it was also
featured in an early model of Vermeulen to predict complete Jominy hardness
profiles [142], to optimize for a desired hardness while changing input param-
eters [140] and to predict hardness and impact strength [44]. While the former
two also made use of heat treatment parameters, the latter included tensile
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properties. Hardness was also predicted for the low-alloy steel C45E based on
electromagnetic hysteresis loops, fed to particle swarm optimization, [152] and
based on tempering time and duration [135].

Chemical composition and heat treatment parameters also predict mechanical
properties of steels in different applications such as tensile strength, impact
toughness, or hot-ductility and -strength as shown by Sterjovski et al. [132].
Focusing on prediction of tensile strength of martensitic hardened low-alloy
Cr-Mo steels [137] noticed strong influence of confounded data (e.g., outliers),
and introduced a data cleansing strategy to improve prediction accuracy. A
model with similar in- and outputs was used by Reddy [117, 118] in a genetic
algorithm (GA) to design optimal composition of medium carbon steels.

Images pose a special challenge because input features must first be extracted
from detectable patterns. DeCost et al., therefore, applied CNNs to segment
and identify microstructures and used an SVM to predict the annealing schedule
that led to these microstructures [28, 29].

In order to predict the hardness of laser-hardened samples, temperature curves
were determined with the aid of thermal models from which effective carbon
diffusion times and cooling times were derived [105]. In a similar approach,
Lambiase [82] used a priori calculated time-temperature profile by aid of the
one-dimensional heat conduction equation as input.

Surface hardening by induction was also investigated with NNs. Stich used
motor speed and component temperature to predict the maximum hardness
increase [133], while Nguyen provided a model as input for prediction of
quality and process control [98].

NNs were also applied to welding, rolling, and squeeze casting, respectively, to
predict the Charpy toughness from chemical composition and interpass tem-
perature [108], ultimate tensile strength (UTS) and yield strength (YS) from
chemical composition and rolling parameters [129] as well as hardness, impact
energy (IE), and UTS from melt and die temperature [2].
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2.3.2 Prediction of component properties

Publications are likewise available for the prediction of component behavior.
ML methods were most commonly used for prediction of crack propagation
[27, 32, 48, 58] and lifetime under cyclic loading [4, 52, 68, 72, 131].

Fatigue crack propagation behavior has been predicted mainly from stress inten-
sity. Sample size ranged from N = 12807 for Ni-Ti-Al alloys [32], over 60 [58]
down to 8 samples of cast iron [27]. Prediction of crack length in stainless steels
based on chemical composition and welding parameters was made by [48].

Research has also been done on the prediction of various lifetime parameters
under cyclic loading. Based on 30,000 simulated parts of SAPH 440 multi-
axially stressed bodies, the most critical parameters were identified by analysis
of the dynamic behavior and then fed to a NN to predict the fatigue life. 5%
of the generated training data were sufficient for optimal training outcome [72].
Creep rupture strength of X10CrMoVNb9 was predicted based on chemical
composition and various material properties after heat treatment [52]. Using
only 5 samples, Solon-Alverez tried to predict the rolling contact fatigue [131],
while Jin was more successful with 110 samples and an input of chemical
composition, heat treatment, and contact stress [68].

An approach to predict Wöhler lines for a number of low-alloy steels was
presented by Artymiak [4]. This was carried out based on data of steel life
predictions in the low cycle fatigue (LCF) and high cycle fatigue (HCF) range,
whereby only mechanical material and stress parameters, as well as the type
of load and the notch factor in fatigue, were included as input variables. The
results were compared with synthetic Wöhler lines, which were calculated with
the help of literature references. The results prove the fundamental applica-
bility of NNs to material fatigue applications. However, the linking of heat
treatment parameters to resulting service properties has not yet been carried out
by Artymiak.

Without reference to any heat treatment procedure, a prediction of the probabil-
ity density functions for the fatigue life of the case hardening steel 20NiCrMo2
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was made on basis of the applied step stress conditions and mechanical proper-
ties [50]. Up to 20,000 simulated samples were used to predict the damage from
fatigue loading parameters [38]. Finally, the prediction of tribological perfor-
mance of highly alloyed steel based on material and applied pressure should be
mentioned [17].

Table 2.5:Meta analysis of ML applied to material science and heat treatment. The following
abbreviations are used to enhance readability.
Samples: (lit) literature, (db) database, (exp) experiment, (sim) simulated
Input & Target: (chem. comp.) chemical composition, (UTS) ultimate tensile
strength, (YS) yield strength, (ROA) reduction of area, (EL) elongation, (IE) impact
energy/strength)
Model: (NN) neural network, (RF) random forests, (GB) gradient boosting, (adB) ada
boost, (LR) linear regression, (KNN)K-nearest neighbor, (cGAN) conditional generative
adversarial network, (SVM) support vector machine, (GA) genetic algorithms, (GWO)
Grey wolf optimization

Samples Steel Treatment Input Model Target Ref

lit 788 - austenite heating rate, chem. comp. Gaussian Pro-
cess

TA,onset (530-921
◦C)

TA,complete (650-1060◦C)
[5]

lit 2277 - martensite chem. comp. NN,RF,
GB,AdB,..

TMS (200-800 ◦C) [115]

lit 247 - bainite chem. comp. NN TBS (250-700◦C) [53]

lit 300 - bainit Gibbs free energy, TI , C%, strength
austenite

NN plate thickness (25-330mm) [126]

lit 437 - bainite chem. comp. NN volume fraction (0-0.6) [127]

lit 220 - bainite chem. comp., TA,TI,∆tI NN hardness (315-760HV) [128]

exp 96 - bainite Mo%, Cu%, Mn%, Ni% TI,∆tI NN hardness (370-520HV 10) [113]

db 4000 - hardened chem. comp., TA NN hardness (Jominy) (20-65HRC) [142]

lit 3532 - hardened chem. comp., TA, cooling rate NN hardness (200-650HV) [140]

exp 104 - hardened chem. comp., YS, UTS, El NN hardness (192-224HV 10)
IE (222-353J)

[44]

exp 5 1.1191
C45E4

surface-
hardened

hysteresis loops NN, LR hardness (200-700HV) [152]

exp 33 1.1191
C45E

hardened,
tempered

TT, ∆tT NN hardness drop (2-26HRC) [135]

sim 75,
86,
221

- hardened,
welded,
casted

chem. comp., treatment parameters NN hardness (160-500HV), TShot
(40-170MPa), IE (10-170J),
ROA (9-90%)

[132]

lit,
db

600 - hardened chem. comp., heat treatment
parameters

NN + GA UTS (600-1600MPa),
StressProof (400-1400MPa),
ROA (25-75%),IE(25-150J),El(10-30)

[137]

lit 140 low alloy,
medium C

hardened chem. comp., Mn/S ratio, cooling rate,
TT)

NN + GA UTS (700-1300MPa, YS),
(550-1200MPa), El(13- 30%),
ROA (30-65%), IE (15-95J)

[117,
118]
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Samples Steel Treatment Input Model Target Ref

lit 24, 24 ultra high C hardened image CNN segment in image (of microstructure,
particle segmentation)

[29]

lit cr(600),
cr(195)

ultra
high C

hardened images micrographs (cr(600)
= 2400, cr(195) = 80 ), cooling
method

CNN+ SVM microstructures (prealite, bainite,. . . ),
Tannealing, ∆tannealing

[28]

cr(3)
=

213

1.2344
X40CrMoV5

laser cross-sectional temperature
distribution by 3-D thermal simulation

CNN+ cGAN hardness distribution [105]

exp 4
i(20)

K340 laser Tmax , cooling time NN hardness (220-700HV) [82]

45 - induction motor speed, part temperature NN hardness (87-90HR15N) [133]

sim 1200 AH32 induction model NN induction line, deformation [98]

db 5973 - welded chem. comp., T,∆t NN Charpy toughness (0-356J) [108]

lit,
db

1892 - rolling chem. comp., rolling parameters NN UTS (420-650MPa)
YS (250-550MPa)

[129]

exp 8 Al-alloy
2219

squeeze
casting

Tmelt , Tdie KNN+ GWO hardness (78-94HB), IE (3-5.7J),
UTS (60-250MPa)

[2]

12807 Ni-Ti-Al
alloys

- mechanical properties, test-specimen
characteristics, stress-intensity range
and test-frequency

NN fatigue crack growth rate
(10−8 − 10−2 mm/cycle)

[32]

60 - - stress intensity ranges (DK) NN fatigue crack growth rate
(10−7 − 10−1 m/cycle)

[58]

exp 8 cast iron - ∆K, stress intensity factor amplitude NN fatigue crack propagation
(10−10 − 10−6 m/cycle) over
(3-50MPa

√
m)

[27]

lit,
db

487 - - chem. comp., samples thickness,
welding parameters

NN, SVM total crack length (0-20mm) [48]

sim 29951 SAPH 440 defor-mation material properties, fatigue life
parameters

NN fatigue life (102 -1015 blocks) [72]

db 1396 1.4903
X10CrMoVNb9

- chem. comp., UTS, Stress,El, ROA,
heat treat. temps./dur.

NN ∆tRupture (102 -104h)

creep rupture strength (60-110MPa)

[52]

exp 5 hypereutectoid
pearlitic

- - NN rolling contact fatigue
6 · 104 -18 · 104 cycles

[131]

exp 110 chromium
alloyed

hardened,
tempered

chem. comp., heat treatment
parameters, contact stress

NN contact fatigue life
0-3 · 106 cycles

[68]

1000 (cast) steel - UTS, YA; notch factor, surface
roughness, type of loading

NN S-N curve: stress-amplitude
(180-420MPa) over (103 -106

cycles)

[4]

232 1.6523
21NiCrMo2

step-stress specimen characteristics,
stress-intensity, UTS, YS, El, ROA,
breaking strength, ...

NN probability density for stress [50]

sim 102 -2 · 104 - fatigue loading (material properties,
spectral characteristics)

NN damage [38]

exp 216 highly
alloyed

nitro-
carburizing

material, bulk hardness, rotational
speed, applied pressure

NN tribological performance [17]
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2.4 Open Questions

There has been rapid progress in material science and heat treatment concerning
the use of NNs. Bhadeshia claims, however, that it may be rather hasty to assert
that the method is established. A number of serious drawbacks result from the
often incomplete research and publication of models [9]. While the literature
already covers a wide variety of input-output prediction pairs as far as heat
treatment and material science are concerned, there is an unexplored territory
regarding the application of differing ML methods to large real-world data sets
focusing on high accuracy in a small parameter range.

• Neural Networks as one of the most prominent ML methods are able to
make use of highly nonlinear relationships and are used heavily through-
out literature and industry due to their performance capabilities, flexibil-
ity, and popularity. However, a vast body of ML methods like random
forests or gradient boosting trees seems to be fairly underrepresented,
which leaves a big gap as to which models are best suited for a particular
prediction problem in heat treatment.

• As data is at the heart of every ML prediction, an adequate number
of samples is necessary to sufficiently cover the many nonlinear maps
between input and output space. However, many of the presented papers
work with limited resources of only a few hundred samples leaving the
question open of whether (1) the actual nonlinear relationships could be
captured or (2) the problem at hand did not contain a mapping that would
have needed a NN.

• The reported prediction accuracy for most of the work was astonish-
ingly high. Classically, this can be achieved by expanding the input and
output space until the relationship can easily be detected. Indeed, a rel-
atively wide range of measurements regarding the target variables can be
observed quite frequently. There appears to be a lack of attempted pre-
dictions for much narrower ranges with much less variability in the input,
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raising whether a prediction accuracy that suffices industry standard is
achievable and what amount and kind of input data would be necessary.

• Predictions from real-world applications are inherently more complex
than literature-based models, as many more influences and mistakes hap-
pen between data generation and model ingestion. Moreover, the effort of
obtaining industry data is more costly and, yet, its acquisition can lead to
valuable insights into hidden relationships and dependencies. Given that
industrial hardening processes often contain company secrets, their data
is seldom available to public, academic research leaving the question of
how and what can be learned from these kinds of data sets.

• Machine learning algorithms mostly work well with a fixed set of uncor-
related input features, which, fortunately, are often contained in literature
and databases (e.g., chemical composition). Complete time series of
processes and necessary feature extraction are performed very seldom.
Thus, it is not known yet which feature extraction process concerning
heat treatment yields the best results, nor which resulting features can
point process developers in the direction of improvement.

• Application of data mining and machine learning requires a considerable
upfront investment, for example, data digitization, data scientists, and
IT infrastructure. The economic benefits of applying these methods to
heat treatment have not yet been reported, which raises the question of
whether these methods can achieve significant cost reductions or quality
improvements.
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In order to provide a transparent basis from which the proposed framework
can be emulated to similar processes, this chapter lifts the lid on the materials
and methods that were created and used for the analyses and predictions of
the later chapters. Section 3.1 introduces the process chains, detailing the
industrial production lines aswell as sensor, meta and quality data collected from
bainitizing Section 3.1.1 and case hardening Section 3.1.2. These data are at the
heart of the mining process outlined in Section 3.2 including data set structure,
preprocessing, feature extraction, and filtering techniques. Subsequently, we
examine the architecture of our general ML pipeline (3.3) and a custom hidden
state pipeline (3.4) that generate predictions or forecasts from the processed
data. Section 3.5 finally describes the implementation with Python.

3.1 Process Chain and Data Collection

This section briefly explains the available data pools along the process chain
from material composition, over metadata and sensor signals of the heat treat-
ment process to the assessment of the component quality that shall ultimately
be predicted.

The components subjected to heat treatment are parts of the common rail direct
fuel injection system, including a high-pressure pump, producing the desired
injection pressure and an injector, dispensing fuel in the desired amount and
frequency into the vehicle’s engine. Both are connected via rails. Figure 3.1
shows a CP4 high-pressure pump, consisting of two high-pressure elements,
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Figure 3.1: CP4 high-pressure pump (left) and CRI3 piezo injector (right) of a common-rail system
[12]

each integrated into a housing with its own camshaft, moving to generate the
required high pressure. On the opposite, the pump piston is held by the cylinder
head through which injection takes place. The component of interest regarding
the injector is the nozzle bodywhich partly extends into the engine’s cylinder. As
components differ in material and functional requirements, they are subjected
to carefully designed heat treatment procedures explained in the following.

3.1.1 Bainitizing

Material

In this study, the CP4 cylinder head is the principal object of investigation for
the heat treatment process bainitizing. All the different types of CP4 cylinder
heads are made from the bearing steel 100Cr6 (1.3505, AISI 52100) and are
processed as well as quality tested in the same way, which is why they can be
analyzed together. Hot-rolled bars of 100Cr6 in Ovako’s specification 803Q are
used for production, as they have a particularly high purity grade in terms of
size and distribution of non-metallic inclusions as well as minimal variations in
chemical composition. The chemical composition of the rawmaterial, produced
by ingot casting, is given in Table 3.1 providing upper- and lower limits as well
as an average of measurements taken from three different batches.
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3.1 Process Chain and Data Collection

Table 3.1: Chemical composition of the bearing steel 100Cr6 in wt.-% with upper and lower limits
as contracted with the supplier. The mean was calculated from three melting certificates.

Cr C Mn Si Ni Cu Al Mo P S

Upper limit 1.60 1.00 0.40 0.40 0.250 0.250 0.055 0.100 0.020 0.002

Mean 1.47 0.96 0.31 0.24 0.084 0.081 0.031 0.027 0.008 0.001

Lower limit 1.40 0.92 0.20 0.15 - - 0.020 - - -

Production line

Cylinder heads are bainitized in salt bath lines, henceforth often only referred to
as lines, for large-scale industrialized batch processes whereby several hundred
of the components are combined in multiple layers to form a batch. Eight
comparable IPSEN salt bath lines of the chamber furnace type TQA-4(5) with
subsequent low-temperature circulating air furnaces are used for the investigated
production. They are shown schematically in Figure 3.2 which also delineates
the furnace chamber and salt bath temperature curves measured in the process
steps over time. Component temperatures are not measured in daily operation
but only during routinely performed temperature uniformity surveys. Below can
be found a detailed description of the two-step bainitization process scheduled
and controlled by DEMIG’s Prosys.

After automatically being pushed into the furnace chamber, the batch is heated
to austenitizing temperature in the natural gas-driven furnace, where it remains
for a defined period. Upon completing the required soaking, the front and
middle doors are raised just enough to allow a batch to be pushed into the
next chamber and quickly lowered into the salt bath for quenching, beginning
the bainitic transformation. Consequently, the salt bath temperature rises as
components are much hotter than the salt and the bainitic transformation is an
exothermal process, requiring external cooling of the bath to achieve a steady
temperature. The slight temperature overshoot in the salt bath depends on the
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Figure 3.2: Diagram of process gas furnace with integrated salt bath and low-temperature air
circulation furnace. Three sensor systems are depicted: Prosys sensor system (purple)
as part of the feedback control system with sensors in the complete line, supply line
gas analyzer (green) to measure gas mixture that goes into the furnace, and chamber
gas analyzer (blue)

feedback controller settings. Finally, batches are lifted and moved through
a circulating air furnace in which the components are kept at an isothermal
temperature above salt bath level until the desired degree of transformation is
reached.

Metadata

Each measured cylinder head carries, in addition to its quality measurements,
relevant meta-information listed in Table 3.2, which is any information that is
not a time series from a sensor:

• The batch position points to the exact location in the batch,
• the line indicates which salt bath line was used for heat treatment,
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• date and time stem from the point when the batch is pushed into the
furnace,

• alarm type and duration are recorded from the system, and
• component type defines the cylinder head’s geometry.

The possible influences of these data points are studied in the chapters indicated
in the eponymous column. To avoid misunderstandings it is already mentioned
here that not the date itself is used as direct input for the IIR filter, but the
intervals between successive batches have to be determined. These intervals
are important because a longer interval indicates that the last input value used
to update the IIR filter may not be a good indication of the current state.

Table 3.2: Metadata and features derived for bainitization

Name Type Example Feature Chapter

Batch position categorical 9 - 4.2.2

Line categorical 26 one-hot line 5.2.2

Date ordinal 24.04.2019 IIR
5.2.3

Time production start ordinal 12:34:56 -

Alarm type categorical door defect
duration 5.2.3

Alarm duration numerical 300 seconds

Component type categorical slim line - -

Previous components1 categorical cylinder head - -

1 Indicates which kind of components are treated in the furnace prior to the actual batch. Some
components use up more of the carbon contained in the atmosphere than others. This might
have an influence for the following batches.
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Sensor signals

In order to acquire data, two different types of sensor systems are used, indicated
in Figure 3.2 by circled letters: Prosys (P) and supply line gas analyzer (S).
Whilst the two systems are described in the following paragraphs, a list of the
most important sensor signals of all systems are given in Table 3.3.

The Prosys system (P) offered by DEMIG is installed in each of the ten pro-
duction lines providing feedback for its control system. Sensors are mounted
throughout the entire line while data is stored on a central server to guarantee
traceability of possible complications (e.g., evaluating the heat treatment pro-
cess of components later failing in the field). Data is recorded and stored for
the time a batch is in a particular production step, leaving the state of empty
chambers unrecorded. Records can be exported as XMLfiles after process com-
pletion, including a unique tracking number of the batch as well as timestamps
that allow for synchronization with foreign system events.

One of these systems is the gas analyzer (S) of the pipeline, which supplies gas
to all furnaces. Analyzing the gas mixture in the supply pipeline is important
as its composition fluctuates over time, e.g., winter to summer, due to the fact
that the provider must guarantee only a minimum calorific value, not a defined
gas composition [30].

Quality Assessment

Various inspection characteristics must be fulfilled to release a batch for further
handling. That is, process limits must not have been exceeded, and hardness
measurements, as well as microstructure analysis, must indicate successful heat
treatment. For further quality assurance, periodic sampling is performed to de-
termine the carbon content. The last and, for economic reasons, least frequently
performed evaluation is a pulse test, mimicking the real-life operation.
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Table 3.3: Selection of sensor signals recorded during bainitizing

Sensor Measure Unit Sensor Measure Unit

PC Furnace temperature °C S Methane CH4 %
PC Oxygen O2 mV S Ethane C2H6 %
PC Calculated carbon level %C S Propane C3H8 %
PC Mass flow src l/h S Carbon dioxide CO2 %
PS Salt bath temperature °C
P1 Heating power left %
P1 Heating power right %

Table 3.4: Bainite: Quality data of cylinder head after bainitization

Label Type Example Scaling Chapter

Surface hardness numerical 700HV robust 4.2.1

Core hardness numerical 680HV robust 4.2.1

A minimum of one2 cylinder head of every batch is taken from a defined test
position to determine hardness and microstructure. Surface and core hardness
are assessed by averaging three HV10 indents. The former is on a partially
ground part of the surface, the latter on a microsection of the cylinder head.
After cutting, embedding, grinding, and polishing, hardness measurements are
executed automatically, consisting of indentation and optical measurement.
While the averaged core and surface hardness values are stored in a database,
the six original values are only noted in the paper version of the batch document.

Figure 3.3 schematically illustrates a longitudinal cut through a cylinder head
with three indents for core hardness measurement. Specialized staff uses

2 For quality assurance purposes, more than one cylinder head is tested if the heat treatment
process does not remain within the defined limits.
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microscopes to compare the microsection to reference images to determine
microstructural properties like needle length, internal oxidation, and carbide
formation. The resulting classifications are also entered into the database.

HV 10

Surface Hardness

Core Hardness

Figure 3.3: Schematic longitudinal cut of cylinder head with exemplary check positions

Samples chosen forGDOES are analyzed by aGDA650 fromSpectrumaGmbH.
It is equipped with a high-resolution CCD-optic with a focal spot diameter of
2.5mm. As the ablation of the sample’s layers begins on its contaminated
surface, measurements can only be relied upon from a depth of approximately
2 µm, depending on the roughness of the surface. The carbon profile is created
into a depth of about 25 µm.

3.1.2 Case hardening

Material

Injection nozzle bodies aremanufactured from the case hardening steel 18CrNi8
(1.5920) supplied by the Stahl Judenburg GmbH in a certified degree of purity.
In particular, the high proportion of nickel ensures a desired degree of harden-
ability. An inspection of the steel composition can be found in Table 3.5 along
with upper and lower bound according to BOSCH order specifications.
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Table 3.5: Chemical composition of the case hardening steel 18CrNi8 in wt.-% along with upper
and lower bound according to BOSCH order specification. The symbol "-" indicates
that no upper and/or lower bound is given

Cr Ni C Mn Si Cu Al Mo P S

Upper limit 2.100 2.150 0.220 0.640 0.300 - 0.040 0.15 0.035 0.035

Mean 2.006 2.075 0.176 0.567 0.155 0.002 0.031 0.006 0.014 0.021

Lower limit 1.700 1.750 0.130 0.360 - - 0.015 - - -

Production line

Nozzle bodies are processed in batches of several thousand pieces, not neces-
sarily of exactly the same type. They pass through a vacuum furnace, a deep
freezer, and a tempering furnace, as depicted in Figure 3.4, all governed by
the same controlling system Prosys by DEMIG. For the investigated production
the following equipment is available: Three comparable IPSEN VUTK-524
vacuum heat treatment furnaces, two deep freezers (one Linde LKS 1.0 and
one CES of type CTC-LIN-900x7000x1200-S-FL), and three IVA tempering
furnaces of type RH 966 RVE. The route on which the batches pass through the
stations is variable (e.g., after furnace #1, batches can be deep cooled in either
the Linde or CES freezer).

Vacuum furnaces are loaded by forklifts, the door is closed and evacuation
begins. After sufficient pressure reduction, the chamber is flushed with nitrogen
for initial convection. The subsequent evacuation step at elevated temperature
is followed by radiant heating in several steps to austenitization temperature,
giving pieces in the middle of the batch time to catch up with the temperature
of their colleagues closer to the heating rod. At TA1 the furnace is flooded with
hydrogen to reduce possibly existing oxides on the surface of the component,
which is pumped out shortly before the carburization phase to avoid dilution
of the carbon donor with hydrogen [89]. Austenitization takes place at a
slightly higher temperature than subsequent carburization by pulsed injection
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Figure 3.4: Diagram of vacuum furnace, deep freezer, and tempering furnace with respective
temperature profiles. Green bars indicate carburization by acetylene injection, the blue
bar quenching by nitrogen, [own representation]

of acetylene (systematic name: ethyne), indicated by the green bars in Figure
3.4. The nozzle bodies’ desired case hardening depth and the required surface
near microstructure, e.g., retained austenite or carbide formation, depend on the
number and length of acetylene pulses and the diffusion times at the end and
intermediate to the acetylene pulses. To control the surface layer properties (i.e.,
the carbon profile), the exact concentration of carbon achieved in the diffusion
stage at a certain depth must be carefully calibrated [81].

To reach the isothermal conversion stage, the temperature is lowered by mild
quenching via nitrogen injection. Soaking at a temperature for pearlitic phase
transformation, which supports refinement of grains, and subsequent heating to
austenitization temperature, which now is considerably lower for the hardening
step, takes several hours. The final quenching below TMS is achieved by high-
pressure injection of nitrogen alternating between top and bottom, indicated by
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Table 3.6: CH: Metadata and features derived

Name Type Example Feature Chapter

Batch position categorical c1 one-hot position 4.3.2

Date ordinal 24.04.2019 IIR 4.3.2

Time production start ordinal 12:34:56 - -

Vacuum furnace categorical 1 one-hot vacuum 5.3.2

Freezer categorical 2 one-hot freezer 5.3.2

Tempering furnace categorical 3 one-hot tempering 5.3.2

Component family categorical F00VW one-hot family 5.3.3

Alarm type categorical door defect
duration 5.3.3

Alarm duration numerical 300 seconds

the blue bar and balls. When a temperature close to TR is reached, the door can
be opened and the batch transferred via forklift.

Freezers are constantly kept at a temperature well below TR. The batch is, thus,
placed in an already cooled chamber – constantly controlled by liquid nitrogen –
to reach a sufficiently cold component temperature, allowing the transformation
of the retained austenite into martensite to the desired degree.

Tempering the freshly deep-frozen components is the final heat treatment step
and takes place in one of the three tempering furnaces that are already heated to
a temperature below 200 °C. After a considerable drop in furnace temperature
due to the cold batch, TT is recovered by strong counter heating and kept for
several hours to gain the desired component properties in terms of strength and
toughness.
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Table 3.7: Selection of sensor signals recorded during case hardening, deep freezing and tempering

Sensor Measure Unit Sensor Measure Unit

PV Temperature furnace °C PF Temperature freezer °C
PV Pressure Barocel mbar PT Temperature furnace °C
PV Pressure mbar PT Temp. heating rod °C
PV Acetylene C2H2 l/h PT Pressure mbar
PV Leakage rate mbar m2

s

Metadata

Table 3.6 provides an overview of the meta-information available for each tested
component of a batch of nozzle bodies. While the lines for bainitization are
cohesive heat treatment lines, a nozzle body can take different routes through
vacuum furnace, freezer, and tempering furnace. The remaining information is
similar to the bainitizing data but exhibits different behavior, as will be shown
in the upcoming chapters.

Sensor signals

All sensors are linked to the central control system Prosys that appoints a unique
identifier (Prosys ID) to each batch to allow traceability between production
steps. A selection of relevant signals is listed in Table 3.7 while all systems
includemultiple temperature sensors as a backup in case ofmalfunction. Signals
are recorded and stored only for the process-time along with the respective
Prosys ID as XML files. Due to a dissimilar design of freezer #1 and #2 location
and number of mounted temperature sensors differs considerably, leading to
slightly varying signals.
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Figure 3.5: Schematic longitudinal cut of nozzle body with an exemplary check positions for
hardness measurements

Quality Assessment

Two nozzle bodies are sampled from every batch with alternating positions (i.e.,
components from positions 1 and 2 for batch i, components from positions
3 and 4 for batch i+1). Every sampled nozzle body is longitudinally cut as
depicted in Figure 3.5, embedded, ground, and polished. A DuraScan from
Struers then performs hardness evaluation with HV1 on various positions and
distances from the surface, an excerpt of which is given in Table 3.8, depending
on the geometry of the nozzle body type.

Combined average scores were calculated for some measurement position pairs
with similar distances to the surface to mitigate measurement errors. We
subtract themean xmi of the twomeasurement position (m1 andm2) distributions
xmi , then add the values in each array3, and divide by two, see Equation (3.1).

xScore =
(xm1 − x̄m1) + (xm2 − x̄m2)

2
(3.1)

3 An array contains the labels of all samples as a column vector.
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Table 3.8: Quality data after case hardening on specific positions of the nozzle body

Position Distance Combined Position Distance Combined

Undercut 0.1mm Seat middle 0.4mm } Score 0.4Shoulder 0.1mm } Score 0.1
Shaft inside 0.4mm

Seat middle 0.1mm Shaft inside 0.7mm } Score 0.7Core
CHD (550)

3.2 Data Mining

3.2.1 Terminology

As the art of data analysis and predictive modeling is practiced in many different
scientific domains, which all contributed to the field in their own language, a
variety of terms are being used synonymously. In contrast, other terms have
miscellaneous meanings across domains. Based on [80] this thesis makes use
of the following terminology:

• Data point refers to a single value or instance of a measurement.

• Features or predictors are explanatory variables, that is, a measurable
property that ideally represents an independent and informative charac-
teristic of an observed phenomenon, on basis of which predictions are
being made. A feature is either calculated from many data points (e.g.,
mean or maximum temperature) or a single data point (e.g., production
line, day of the week)

• Input or sample refers to the set of data points (including sensor-, meta-
data, and derived features) that belong to the execution of a heat treatment
on the same batch of components. The total number of samples is equal
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to the number of heat treatments for which all necessary data points
(including the outcome) were recorded and stored.

• Outcome, target, or label refer to the value that is being predicted. In this
work mostly a measured hardness.

• Batch in the context of

– heat treatment refers to the group of components that were combined
in a multilayer structure and processed together,

– ML refers to the subset of samples that are processed by an algorithm
in one optimization pass.

• Training set is the subset of all samples that is used to develop a model
or pipeline and optimize its parameters.

• Development set or dev set is used during and/or after each training
to evaluate the generalization capacity of the trained model and detect
overfitting. The model does not learn parameters from this set.

• Test set is used only for the purpose of evaluation of the final, already
optimized model.

• ML method or algorithm refers to the set of instructions implemented in
a software package that calculate particular outputs from given inputs.

• Model is a trained instance of an ML method, that is, its parameters have
been optimized during training.

• Model training refers to the process of a model learning/optimizing its
internal parameters to make better predictions on the training set. Often
model training is repeated on different data sub sets and hyperparameter
settings.
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3.2.2 Data sets

Multiple data sets of varying sizes are used throughout the thesis in order to
be able to test multiple hypotheses regarding explainability of measurement
and process noise as well as resulting quality scatter. Table 3.9 indicates the
respective number of measurements per label4, how many batches were heat-
treated, and the number of specimens taken from each batch, as well as kind
of measurement. The sets in row 1 are historic data, that is, the three original
hardness measurements where retrieved manually from the quality inspection
files from 565 of the heat treatments. That means, these values contain the full
measurement error (incl. specimen preparation, different equipment, etc.) that
will later affect the labels to be predicted. The sets in rows 2 and 3 were created
by conducting 100 indents on a hardness comparison plate. The respective steel
manufacturer provided the material composition set as a CSV file. Labels from
the remaining sets stem from respective quality databases at Bosch. Sensor
and meta information was extracted from XML files produced by the DEMIG
system for each batch and then stored in an SQLite database on the author’s
local machine for easier access. For all machine learning and optimization
procedures, we used the training set that roughly accounts for the first 70% of
all samples, i.e., data from before 01.01.2020 for the bainite use case and before
01.01.2017 for the case hardening use case.

3.2.3 Resampling and segmentation of time series

Resampling

While the sensors continuously deliver an output signal, measurement points
are saved approximately every 60 seconds most of the time. That is, during
time-critical events like quenching, the frequency is raised. In order to be able

4 The number of labels depends on the use case. For bainitization, they can be found in Table
3.4, for case hardening in Table 3.8.
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Table 3.9: Data sets for analysis. # Label: number ofmeasurements per label, # Batches: number of
batches heat treated, Sens: (✓) if data from sensors is available for these labels, #Spec.:
number of specimens taken from each batch., Meas: type of measurement procedure
where 3·HV (three indents in same area of measurement position), B: bainitizing, C:
case hardening, Section: reference to corresponding Section in this work, Analysis:
objective of the consideration. Note: The first line contains data from daily quality
control of cylinder heads, while lines 2 and 3 were created using a hardness comparison
plate.

#Label #Batches Sens # Spec. Meas Section Analysis

3·565 1 3·HV10 B 4.2.4
Measurement error100 1 HV10 B 4.2.4

100 1 HV1 C 4.3.4

900 100 9 HV10 B 4.2.2 Position and benchmark
8600 4300 2 HV1 C 4.3.2

160 1 wt.-% B 5.2.1 Material composition
370 1 wt.-% C 5.3.1

21800 21800 ✓ 1 HV10 B 5.2, 6.2 Meta and process feature for ML
11500 6900 ✓ >=1 HV1 C 5.3, 6.3

to write all time series in one table with shared, equidistant timestamps, they
must be resampled and cut to equal length, which is necessary for multiple
reasons.

Operating on a complete table with synchronized, equidistant time series instead
of working on individual series makes their segmentation, extraction of features,
and plotting much faster, easier, and more reliable in terms of comparability
between time series. Additionally, most ML algorithms using complete times
series as input need to be provided with the same size input, although some
RNNs can work with variable length.

As measurement points are not always taken with exactly the same interval
and some batches spend more time in the furnace than others, the data must
first be brought in a processable format. To account for interval variability,
the time series tm with measurements xmeas is resampled with a fixed period
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Figure 3.6: Resampling of times series using linear interpolation between measured values

∆tr = 60 s by linear interpolation resulting in xresamp at tri shown in Figure 3.6.
During quenching∆tr is lowered to appropriately capture the cooling dynamic.
This fact needs to be considered when extracting features from the time series
later (e.g., the temperature mean should only be calculated from time series
with equidistant measurement points in order not to overweight or underweight
individual temperature measurements and to preserve comparability between
data sets). The respective time series cuts can be found in Section 5.2.4.

The interpolation stops before the lastmeasurement point cutting of the reminder
between tm,max - tr,max > 0. The true duration is stored separately and used as
feature as was explained above. The vector size is now nr = t̂r,max

Tr
where t̂r,max

is the duration of the longest sample. For samples shorter than the maximum
length the vector is filled with NaNs for feature extraction and zeros in case it
is used directly as input5.

Segmentation

In order to extract useful information from the heat treatment process, its
different phases (e.g., austenitization, quenching) must be located in the time
series. A time series always consists of a multi-column vector whose first
column contains timestamps while the remaining columns contain the sensor
measurements. The latter columns are called channels. As long as these phases
are provided in one of the channels by the control system, the segmentation is

5 ML packages generally do not accept inputs containing NaN values.
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straightforward. Unfortunately, this is not the case for our setups. Luckily, the
bainitization process can be cut at fixed intervals, as only the last segment of
each station (i.e., process gas furnace, salt bath, ..) has a variable length and
the remaining intervals are fixed6. A detailed examination of the segments is
provided in Section 5.2.4.

Partitioning the case hardening process is more demanding since its operating
plan contains, unlike the previous procedure, wait-until blocks that cause the
heating process to dwell at a specific temperature until the gap between reference
and the actual temperature has closed sufficiently. As a consequence, heat
treatments do not have the same length (∆tA1 can vary significantly frombatch to
batch)7 and process sections (e.g., acetylene pulses for carburizing or quenching
to TI) are, therefore, not to be found after the same timespan after the start. This
means that cutting the time series at predefined intervals would lead to bins
with unequal content. Consequently, intervals for cutting are either found by
specifically targeting a particular location in the time series with multiple if-
statements (firstmethod) or based on jumps in reference values (secondmethod),
see Figure 3.7.

Working with the first method assumes that it is already known through domain
knowledge which sections and metrics in a channel are of interest. Then, these
sections can be targeted by specific requests (e.g., finding the first austeniti-
zation phase using the conditions: t>ts, t<ts+1, T<TU, T>TL, with fictitiously
ts= 30min, ts+1= 120min, TU= 800 °C, and TL = 790 °C, where T can be either
the measured or target temperature). Used are then only values, that are part of
this region. In general, this method is preferred because it is easier to implement
and finds the better features, since only data of specific regions of interest is
used to extract features (e.g., mean or skew).

The second method segments the complete process. To detect changes in refer-
ence channels, the difference quotientφ(xi,xi+1)=

xti+1
−xti

ti+1−ti
between successive

6 The bainitizing program has no variable time blocks in the process gas furnace and salt bath.
7 See Figure 2.4 for the complete process.
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Figure 3.7: Principle segmentation methods for vacuum furnace process (e.g., case hardening):
a) reference temperature and pressure during heat up and austenitization, where the
gray area marks a region of special interest derived by domain knowledge for extrac-
tion of mean austenitization temperature b) respective difference quotient as basis for
segmentation without applying detailed domain knowledge

points is taken. As the jumps are vastly different in magnitude, especially be-
tween different channels (e.g., a temperature change of 50K vs. a pressure
change of 2000mbar), thresholds xth have to be calibrated for each channel and
often amended with additional conditions, like temperature or time ranges, to
correctly identify a segmentation point. As can be seen in Figure 3.7b), the
first segmentation point (i.e., s1=1 start of heat treatment) is indicated by three
points of discontinuity, one in φ(T) and two in φ(P), while start of segment
4 has only one. Segmentation points are first determined per channel, that is
every discontinuity larger than a threshold φ(φ(.))>xth is marked as possible
cutting point tc. Then further necessary conditions are tested for (e.g., is the
value before or after the tc equal to zero. With this, we sort out values that are
part of a ramp, which is the case for segment 1, 3, 5, etc.) to find or eliminate
cutting points. In a last step, cutting points are combined to a single point if
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Table 3.10: Statistical values as features extracted from resampled sensor signal xc,s of channel c
in segment s

Statistical feature Notation Statistical feature Notation

Mean value x̄c,s Standard deviation xc,s,sd
Median value xc,s,med Skew xc,s,skew
Maximum value xc,s,max Kurtosis xc,s,kurt
Minimum value xc,s,min Segment duration ∆tc,s

they lie together close enough. In sum, over 30 segments are created in this
way for the vacuum furnace, deep freezer, and tempering furnace process. The
data of each sample (i.e., process data of one batch) is processed to find the
respective segments. To determine whether the correct segments have been
found, each segment’s characteristic values (e.g., mean and length) are calcu-
lated. If for a sample either not the correct number of segments were found
or a certain amount of the characteristic values of the segments lies outside a
range of 3 standard deviations from the mode of the characteristic distribution
from all samples, then the sample is excluded. After complete segmentation, all
segments are resampled to an appropriate frequency depending on the dynamic
of each segment.

Although this method works for over 99% of the samples which stem from
a period of about 6 years, significant changes in the heat treatment procedure
intervals would likely need either a fairly complicated adaption of the segmenta-
tion determination or be incompatible with the current segmentation. Previous
data could not be used anymore, or a different segmentation would be needed
to be used for all samples. If the segmentation and resampling procedure is
successful, we can now extract statistical indicators from the respective sections.
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Figure 3.8: Feature extraction from resampled measurements xc,s of channel c in segment s

3.2.4 Process feature extraction

Given that segments s have already been defined as spanning from ts to ts+1, then
vector xc,s contains the resampled measurements in s, of channel c belonging
either to a particular sensor or other to information from the process controller.
From this vector the features given in Table 3.10 are calculated and stored
in a feature vector xf(c,s). Figure 3.8 illustrates this process exemplifying the
statistical properties of the distribution formed by the values in xc,s. In addition,
further process specific features are calculated from these statistical values
(e.g., Hollomon–Jaffe parameter from the temperature channel using T̄ and
∆t in the respective segment of the tempering furnace). Feature vectors xf(c,s)
are calculated domain knowledge specific only for the interesting segment and
channel combinations (e.g., the mass flow of acetylene is irrelevant during
quenching or temperatures far below austenitization). Feature vectors of interest
are stacked as shown in Equation 3.2 and are appended by process-specific
features like the Hollomon-Jaffe parameter HP. The matrix Xprocess

input then
should hold all potentially relevant information about the process each sample
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Xprocess
input =

1stsample︷ ︸︸ ︷

x1,1
x1,1,med
x1,1,max
x1,1,min
x1,1,sd

x1,1,skew
x1,1,kurt
∆t1,1

...
xf(c,s)

...
HP


. . .

nthsample︷ ︸︸ ︷

x1,1
x1,1,med
x1,1,max
x1,1,min
x1,1,sd

x1,1,skew
x1,1,kurt
∆t1,1

...
xf(c,s)

...
HP




features extracted from 1st

segment and 1st channel
(e.g., Tfurance when batch
is loaded into furnace)

features extracted from
channel c in sth segment

(3.2)

Each sample is then further appended by the one-hot encoded meta information
from Tables 3.2 and 3.6, respectively. Alarms are included as features as shown
inTable 3.11. If an alarmdid not occur for a particular sample it is assigned value
0 (e.g., alarm1), else the scaled alarm duration is used (e.g., in the particular
example in Tables 3.2 alarm2 occurred. It had a duration of 10% of the longest
alarm2 that occurred of all batches).

Table 3.11: Examples for duration features derived from alarm durations

feature alarm1 alarm2 alarmi . . .

duration 0 0.1 0.95 . . .

3.2.5 Filtering

Ordinarily, filtering is applied to time series of noisy sensor signals, but fortu-
nately, neither temperature nor pressure sensors are affected. Hardness mea-
surements, by contrast, are strongly affected. As will be shown in later chapters,
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the mean hardness of consecutive batches is not stationary for longer periods
but fluctuates or drifts significantly. To follow a hardness trend of consecutive
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hardness measurements over weeks, these measurements, shown in gray and
green in Figure 3.9, are fed to an IIR filter. The black line shows the closest
approximation to the true hardness trend realized by a noncausal8 filter with no
phase delay. Our goal is to follow this black line as closely as possible, however
we are limited by the information available (i.e. 1. we cannot look into the
future, 2. we do not measure all batches), elaborated on below. The small dots
show the hardness of a sample in green (if it was actually measured) and gray (if
it would have been measured) from a particular batch at the time it was made,
which is why they are not equidistant9.

If the black trend was to be evaluated over a longer period of time a noncausal
filter solution (or central rolling window) would be optimal. However, for
prediction purposes, we are interested in the immediate development of the
trend but can only look as far as the subsequent measurement. What is more,
cost reduction dictates that only every nth batch (e.g., for n= 4 at t0, t4, t8, t3n,
t4n) is tested for hardness, leaving us with fewer values to estimate the trend. As
results are needed within a fixed time frame after production, only a causal10

filter comes into consideration, introducing a phase delay which in Figure 3.9
adds up to around the time between three consecutive batches. How close the
prediction may come to the black line of the noncausal filter depends strongly
on the size of this fixed time frame.

In the following example, the goal is to predict the batch at t7. Specimens
from each 4th batch are tested and testing takes ∆tm. Predictions and filter
outputs in Figure 3.9 are drawn at the point in time (e.g., t4, t7) for which
they are approximations, not at the point in time at which they were generated.

8 Uses values from the "future". That means it can only be applied in hindsight if the measure-
ments are already available (no real-time filtering).

9 The time between individual batches produced on the same line may vary considerably. The
same line may also produce different component types.

10 Only values from past and present can be used.

78



3.2 Data Mining

Time

M
ea
su
re
m
en
t

to be predicted

Filter output  
phase delay corrected

Filter output 

∆tm

}

∆tm

∆tm

1

2
3

4

Phase delay

Value, if it had 
been measured

Measured values
1 2

3 4

t4t0 t8 t3nt7 t9

Noncausal filter

Figure 3.9: Four predictions for the batch at t7 based on a filter applied to intermittently tested
batches dependent on the available information of past and future measurements. The
colored bars on the time line indicate the time frame for which a certain prediction (1-4)
is achievable. Better predictions need more information and are, thus, only available
later. White diagonal stripes indicate a phase delay correction. The noncausal filter
(black line) applied to hardness measurements of consecutive batches is the benchmark
of best possible approximation

Doing so, the following scenarios with chronological, increasing information
availability are likely:

1. Uncorrected: Only the measurement of the last test batch at t4 is available
and the last output of the filter is used as prediction.

2. Interpolation: The measurement from the batch at t8 is available and an
interpolation between the last two filter outputs is used as prediction.

3. Phase corrected: Same circumstances as before, but a phase delay cor-
rection is "applied" by using the prediction of the batch two periods into
the future at t9. In this case the prediction for t9 is the last filter output at
t8.

4. Interpolation and phase corrected: The time frame is so long that we can
wait for the measurement at t3n. With this information we can use an
interpolation for t9 as the best prediction for t7.

The example shows that the phase delay can be mitigated by shifting the filter
results (or interpolations in between) k steps backward. If k= -2 the filter output
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at t9 is used as prediction for t7 (in the past of t9), or in other words, if we want
to have a prediction for t7 we must wait for the prediction at t9 to correct for the
phase delay. Shifting the filter results k steps forward11 (k> 0) simulates the
information delay when a prediction has to be made without the measurements
of the previous k batches available (e.g., specimen preparation is delayed during
the night shift). It can also be interpreted as forecasting the hardness of the
batch k steps into the future from the last measured batch.

To simulate this process of intermittent testing, a digital low-pass Butterworth
filter was implemented. The scipy function signal.iirfilter(N,ω) was used for
the filter design, which returns the filter coefficients b and a [144]. Its parameters
(i.e., order N and cutoff frequency ω) were optimized by Dual Annealing [149]
(scipy.optimize.dual_annealing). The results are presented in Section 6.2.1.
Optimization resulted in order N = 1 for over 99% of cases. A first-order
Butterworth filter then takes the simple form of Equation (3.3), where yi is the
filter state or output and xi a measurement (e.g., hardness) for time/batch i.
The parameter a can be interpreted as the percentage of the memorized value
yn−1 (i.e., the previous filter output) that is used for the next prediction while
b= 1- a is the proportion of the new measurement used to update the previous
state yn−1.

yn =
b

2
(xn + xn−1) + a yn−1, with b = 1− a; a, b ∈ (0, 1) (3.3)

Figure 3.10 depicts the coefficients a and b at different ω. Accordingly, a first-
order filter with ω = 0.03 uses 91% of its memorized previous state and updates
it with 9% of the averaged last and current measurements. The optimization
was restrained from using ω > 0.5, which would lead to very fast filters that
overshoot the target for a step response.

11 E.g., if k=1 the filter output at t1 is used for t2 (that is in the future of t1).
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Figure 3.10: Relationship between filter coefficients a, b, and cutoff frequency ω of first-order
Butterworth filter

Filters are often not applied to a complete series of measurements (e.g., from
2018 to 2021) but to chronologically coherent subseries, where two measure-
ments are not further away than 10 days. Otherwise, the series is cut. Filters
are initialized with the mean of the first three measurements of that subseries.
Lastly, filters are often not applied to all measurement points at once but only to
every second or nth measurement. To still make use of the complete training set,
the filter is then applied twice or n times to every other not used measurement,
see Table 3.12. Parameters are then optimized by dual annealing based on the
joined RMSE.

Table 3.12: Two rounds of filter application to every second measurement

Round Measurements→ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 update filter with x1 x3 x5 x7 x9
predict x2 x4 x6 x8 x10

2 update filter with x2 x4 x6 x8 x10
predict x3 x5 x7 x9
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3.2.6 Data analysis and visualization

Because this work is strongly supported by visualizations, the following guide-
lines shall help the reader to understand the depictions easily. All figures were
created or post-processed using Inkscape [67]. For easier recognizability, tem-
perature differences in figures are given in∆ °C in accordancewith DIN 1301-1,
not in Kelvin.

Colors, if not stated otherwise, usually carry the following meaning: blue
for surface (or surface near) hardness measurements, green for core (or surface
distant) ones; violet for prediction related results; yellow for measurement error;
rainbow for different salt bath lines, shades of red, blue, and orange for case
hardening stations.

Box plots, if not stated otherwise, show 90% of the data ranging from the
5th to the 95th quantile, with the box containing 50% ranging from the 25th to the
75th quantile being divided by the median (shown in orange). Notches around
the median usually indicate the 99.9% confidence intervals (CI), determined
by bootstrapping with 10,000 iterations. Outliers are omitted to avoid cluttering
the depiction and reduce window size for better focus on the difference of
distributions.

Histograms, if not stated otherwise, are centered around their respective
mean x̄ or median xmed and usually depict hardness distributions. That is,
from each value in the distribution x their mean x̃ = x−x̄ or median x̃med =

x−xmed are subtracted and a histogram of the shifted distribution x̃ is plotted.
Consequently, negative values in the graph are softer than the mean or median
and positive values are harder.
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3.3 General Machine Learning Pipeline

The following sections introduce theML pipeline used in Section 6.2.2 depicted
in Figure 3.11. The IIR filters are those introduced in Section 3.2.5. Training
data makes up the first 70% of all samples (before 01.01.2020 for bainite and
before 01.01.2017 for case hardening). Transformation to similar variance is
done with the robust scaler from scikit-learn. The remaining pipeline steps are
detailed from left to right below.

IIR

Optimize hyper paramterFeature
Split into
Train & Test

Remove
outlier

Label

70% Scale
(robust)

Scale
(robust)

Train ML 
algorithm

Rank 
features

X

y

r<0.8

Select top N

IIR

Figure 3.11: General machine learning pipeline

3.3.1 Outlier removal and drift correction

Before the actual train and test sets are built, outliers need to be removed from
the feature as well as the label set because the IIR filters are sensitive to those
extreme values and would falsely correct successive values. The distribution
of the individual features and labels over all samples are analyzed and samples
removed whose values lie further than 4 standard deviations away from the
median. The remaining samples are drift corrected by an IIR filter of order
N=1, ωfeature = 0.01 for features and ωfeature = 0.018 for the labels. Only each
nth measurement may be used for the label correction, where correction means
that the filter output is subtracted from the original values to remove the drift
or fluctuation. In case predictions of real hardness are of interest (e.g., serial
production), the filter output is later added back to the prediction of the pipelines.
An evaluation that only considers the predictability due to the process variation
works without this addition. Finally, after the chronological train-test split, a
robust scaler is used on the features.
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3.3.2 Feature ranking

To provide the machine learning algorithm with the most informative features,
the following algorithms were used to rank them by predictive importance:
Sequential feature forward selection (SFS) with linear regression, genetic algo-
rithms (GA) with linear regression, manual selection with domain knowledge,
feature importance attribute by random forest (RF), mutual information criteria
(MI), and F-score. The packages used can be found in Table 3.13. The RF was
trained 80 times and the mean of the feature_importances_ attribute used to
rank the features. The genetic algorithm usually does not provide a ranking but
returns a set of important features. Hence, the algorithm was deployed several
times with increasing size of the feature sets to return (i.e., max_features in
[5, 10, 15, . . . , 60]). These sets were then concatenated by adding those features
from the respective larger set that were not yet in the list of ranked features.
Each method generates a list of features sorted by their importance from most
to least predictive. Features of this list are then successively correlated with
features of a lower rank, where the latter may be removed if r > .8 . The pipeline
then uses this final list to sort the feature matrix accordingly.

3.3.3 Pipeline optimization

Pipelines were created by the following sklearn function:
make_pipeline( SelectPercentile(percentile), RobustScaler(),
<ML_method>(*args)), where percentile is an argument that determines
how many top N features are handed to the scaler and then to the ML methods
which may differ considerably in their complexity and number of tunable hy-
perparameters. While NNs have many such parameters (e.g., number of layers
and their size, learning rate, activation function, etc.) LRs possess none.

12 is an ANN
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Table 3.13: Hyperparameter settings (=) and/or their range (:) for optimization of algorithms. The
Type column indicates the usage of the algorithm, where O is the optimization of: OFe
= features, OFH = hidden states pipeline, OFi = filter parameters, OP = pipeline, and
Su = supervised learning, Un = unsupervised learning. A reference to the packages
is given in Table 3.14. The StackingRegressor, in this case, trains three NNs (i.e.,
MLPRegressor) in parallel and then averages their output. It might be though of as an
ensemble of NNs

Type Algorithm Package Hyperparameter (range)

OFe Genetic SelectionCV sklearn-genetic estimator = LinearRegression, cv = 5, max_features = [5,
10, . . . , 60], n_population = 1000, n_generations = 100,
n_gen_no_change = 20

OFe RandomForest-
Regressor

scikit-learn bootstrap =True, min_samples_leaf = 12,
min_samples_split = 10, n_estimators = 100

OFe f_regression scikit-learn k = ’all’
OFe mutual_info_

regression
scikit-learn k = ’all’

OH,
OFi

differential- evolution scipy polish=True

OH dual_annealing scipy

OP BayesSearchCV skopt cv = 5, n_iter = 100
OP TPOTRegressor tpot generations = 1000, population_size = 500, cv = 5

Su LinearRegression scikit-learn
Su MLPRegressor12 scikit-learn early_stopping =True, learning_rate = adaptive,

hidden_layer_sizes: Int(1,100), alpha: Real(1e-4, 0.5,
’log-uniform’), beta_1,2: Real(0.5, 0.9999)

Su StackingRegressor scikit-learn estimators = [MLPRegressor, MLPRegressor,
MLPRegressor ]

Su RandomForest-
Regressor

scikit-learn n_estimators: Int(10, 300), max_depth: Int(2, 15),
min_samples_split: Int(2, 30),
min_samples_leaf: Int(1, 30), min_impurity_decrease:
Real(1e-5, 0.999, ’log-uniform’)

Su GradientBoosting- Re-
gressor

scikit-learn learning_rate: Real(1e-4, 0.2, ’log-uniform’),
n_estimators: Int(10, 300), min_samples_split: Int(2, 30),
min_samples_leaf: Int(1, 30), max_depth: Int(2, 15)

Su SupportVector-
Regressor

scikit-learn C: Real(1e-6, 1e3, ’log-uniform’), tol: Real(1e-6, 0.99,
’log-uniform’), epsilon: Real(1e-6, 0.99, ’log-uniform’)

Su KNeighbors- Regressor scikit-learn n_neighbors: Int(2,100), leaf_size: Int(2,100), p:
Real(1,2)

Un PCA scikit-learn n_components = 2
Un FCM fuzzy c-means n_clusters = [ 5; 300 ]
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With growing dimensions of the hyperparameter space, tuning, and preventing
overfitting of a model become increasingly difficult. Thus, a Bayesian search
algorithmwith 5-fold cross-validation from the skopt package is used to optimize
the hyperparameters of the pipeline constituents (i.e., percentile and args of
the respective ML method), the results of which can be found in Appendix
Table A.1. In addition to the pipeline described above, one further pipeline
was created and optimized by the TPOT regressor. The respective optimization
algorithms as well as the ML methods and the parameters optimized can be
found in Table 3.13. It also lists the unsupervised algorithms implemented in
this work. For all parameters that are not listed the default of the respective
function was used.

3.4 Custom Hidden States Pipeline

3.4.1 Modeling approach

As will be discovered in the upcoming Sections 4.3.2 and 5.3.2, the long-
term behavior of different stations in the case hardening process as well as the
influence of the batch position of the specimens and their component type can
vary considerably. Because general-purpose ML pipelines can not properly
describe such behavior, a hidden states model is introduced that estimates the
influences and current states of the contributing factors from the measured
hardness of the specimens.

Influences are collected in the model below, see Equation (3.4). It rests on
the on the unconfirmed assumption that the final hardness y of a given case
hardened component at a point in time ti can be calculated as the sum of: xBase

influences prior to case hardening (e.g., material composition or annealing of
raw material), xR sum of the contribution of the individual stations (i.e., the
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route taken), ∆ the static offset caused by batch position and component type,
and ϵ noise including the measurement error.
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y[ti] = xBase[ti] + xV ac.[ti] + xFreez[ti] + xTemp[ti]︸ ︷︷ ︸
xR[ti]

+∆Pos +∆Comp︸ ︷︷ ︸
∆

+ϵ

(3.4)

For simplicity and because no other interactions are known, a simple additive
model was chosen. In order to make predictions with such a model, the dynamic
states xBase, xR as well as the offsets in ∆ need to be estimated. Fortunately,
we will see that the process parameters in industrialized operation move within
a very narrow window and the hidden states13 x are highly autocorrelated,
making them predestined for a filter application. In the following, a first-order
IIR filter algorithm is introduced that makes a prediction about the hardness y
that is expected from a given specific combination of route, component, and
position based on its hidden internal states. It then updates these hidden states
based on successive hardness measurements of batches incorporating route,
component type, and batch information. Before diving into the algorithm itself,
the subsequent paragraphs outline its individual components, with vectors v in
bold and subscripts denoting affiliation: route (R), vacuum furnace (V), deep
freezer (F), tempering furnace (T), batch position (P), and component type (C).
A superscript T indicates a transposed vector (i.e., row to column or vice versa).

For every hardnessmeasurement ymeas we have additional information encoded
in feature vectors fR, fP , and fC . For our particular case, the first three entries
of fR hold the vacuum furnace encoding, the following two the deep freezer, and
the last three which tempering furnace was used (e.g., fR = [1, 0, 0, 1, 0, 1, 0, 0]

would activate all the first stations). Congruently, the hidden states vector holds
the 8 current states of the several stations, that is xR = [xV 1, xV 2, . . . , xT3],
which represent the hardness contribution of each station at a specific point in
time. The base state xBase gets its own variable.

13 Hidden, because they can not be measured directly but must be estimated from available
measurements.
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The final ingredient are the variables to be optimized, each falling into one
of two categories: 1) filter coefficients aBase, bBase, aR, and bR, 2) offsets
cP and cC . Coefficients are used analogous14 to the notation for first-order
IIR filters or ARMA models as shown exemplary15 in Equation (3.5), where
aR = [aV , aV , aV , aF , aF , aT , aT , aT ], bR analogous, and⊙ denotes element
wise multiplication. That means, that stations of the same type share the same
filter coefficients (e.g., all vacuum furnaces are updated with aV and bV ).

xBase[n] = aBasexBase[n− 1] + bBasey

xT
R[n] = aTR ⊙ xT

R[n− 1] + bT
Ry

(3.5)

3.4.2 Model execution

The key idea to this filter pipeline is that only the offsets and states that affect
the current measurement are used for prediction and update. Optimization,
however, is done for all elements at once. If, for example, a harder component
would, by chance, take a specific route more often, it would be impossible to
find out whether the route or component contributed to the increased hardness
when only looking at the final results. By including all information in a single
model, such differences can be distilled out. The following paragraphs explain
the individual steps to be executed.

Activate respective offsets according to the current feature vector. Depend-
ing on which of the k batch positions and which of the j component types the

14 Cf. Section 2.2.2. Formally x is the signal measured and y the filter output. In our case x is
the hidden state and y the measured hardness, to be consistent with ML notation.

15 These equations demonstrate the general method and are not the exact equations later used in
the algorithm. Those are explained in Section 3.4.2 below.
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∆Pos = cP · fTP , cP = [cp1, . . . , cpk], (e.g., fP = [0, 1, . . . , 0])

∆Comp = cC · fTC , cC = [cc1, . . . , ccj ], (e.g., fC = [1, 0, . . . , 0])

Predict hardness from last states. Based on the model (3.4) given above,
the filter predicts the hardness ŷn for a given combination of route, component
type, and position based on the last states x[n− 1].

ŷ[n] = xBase[n− 1] + xR[n− 1] · fTR +∆Pos +∆Comp (3.6)

Update states with new measurement information. First, we correct the
measurement ymeas by subtracting the estimated offsets ∆Pos and ∆Comp

because we want to make the states update independent from component type
and batch position.

ycor[n] = ymeas[n]−∆Pos −∆Comp (3.7)

The update of xBase is calculated fromEquation (3.8). Additionally, we enforce
that this base state truly follows the complete amplitude of hardness drifts by
setting the filter gain aBase+bBase = 1. Otherwise, the optimization algorithm
might become unstable or attribute16 parts of the overall fluctuation toxR which
is supposed only to carry the offset between the base and individual stations
and not parts of the overall fluctuation.

xBase[n] = aBasexBase[n− 1] + bBase︸ ︷︷ ︸
=1−aBase

ycor[n] (3.8)

16 by setting aBase + bBase < 1
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Accordingly, Equation (3.9) calculates the delta between measurement and
current base state, since the remaining hidden states in xR are only updated
with this difference ∆y.

∆y = ycor[n]− xBase[n] (3.9)

Finally, Equation (3.10) updates those hidden states that contributed to the
measurement (i.e., the route taken by the batch from which the test specimen
was obtained). The remaining states stay the same. Since only onemeasurement
is used to update all the states the last term ∆y in Equation (3.10) is a scalar.

xT
R[n] = (⃗1− fTR )⊙ xT

R[n− 1]︸ ︷︷ ︸
Keep unaffected states

the same,

+aTR ⊙ xT
R[n− 1]⊙ fTR︸ ︷︷ ︸

use fraction of the
old states and..

+ (bT
R ⊙ fTR )∆y︸ ︷︷ ︸

..update with fraction
of new measurement

(3.10)

Stable optimization of the filter can be ensured by restricting all filter coeffi-
cients to be ∈ (0, 1) and aR + bR ⪯ 1. This filter is now applied to the series
of hardness measurements and supplied with information about each measure-
ment’s route, component, and position. A differential evolution algorithm then
optimizes the coefficients and offsets to minimize the MSE between ymeas and
ŷ, where xBase[0] is initialized with the mean of the first three measurements
of ymeas.

3.5 Implementation with Python

The complete framework (i.e., data conversion, databases, analysis, machine
learning, etc.) was implemented using the Python programming language in the
Anaconda ecosystem. Packages that provide specific functionalities are listed
in Table 3.14. The choice for Python is based on the following reasoning: R is
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Table 3.14: Packages used for storing, preprocessing, and plotting of data as well as supervised
(Su) and unsupervised (Un) machine learning

Package Version Applikation Citation

conda 4.7.12 Package management
python 3.7.8 -
numpy 1.19.1 - [59]
pandas 1.1.2 - [116]
xml.dom.minidom -17 Parse XML files
sqlite 3.33.0 Database
matplotlib 3.3.2 Plotting [66]
seaborn 0.11.0 Plotting [145]
tsfresh 0.17.0 Extract feature [22]
statsmodels 0.12.2 Post hoc tests [111]
fuzzy c-means 0.0.6 Un-ML [31]
sklearn-genetic18 0.3.0 GA feature ranking [15]
deap 1.3.1 GA [47]
scikit-learn 0.23.2 Su/Un-ML, scale, encode [110]
scikit-optimize (incl. skopt) 0.8.1 Optimization (Bayes search) [61]
scipy 1.5.2 Optimization and filter [144]
keras 2.3.1 Su-ML [21]
tensorflow 1.14.0 Su-ML [1]
tpot 0.11.5 Su-ML, optimization [147]

slower and has fewer ML-related packages. Matlab is not open source. C++,
C#, and Java might execute code faster but take longer to implement (i.e., rapid
prototyping). Python is the best choice since our use cases are not time-critical
(i.e., fast real-time execution necessary).

17 Is part of the standard Python library.
18 Uses the DEAP package, that implements the actual genetic algorithm, for feature subset

selection.
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4.1 Introduction

Making good predictions usually presupposes a good understanding of the target
in question, factors biasing the target, as well as the quality of the process by
which the target was quantified. Often, this quantification itself is prone to
scattering. Therefore, to explain the overall variation in the distribution of a
label, this chapter analyzes the various sources of scatter and bias individually.
It starts with an overview of the meas. pos. on the cylinder head in Section
4.2.1 and nozzle body in Section 4.3.1, followed by positional effects in the
batch, due to slightly different temperatures and gas mixtures, for bainitizing
Section 4.2.2 and case hardening Section 4.3.2, uncovering their differences
and dependencies. Subsequently, an upper limit for predictability is derived
from these dependencies Section 4.2.3 and 4.3.3. This benchmark already
points out how effectively ML methods can be expected to learn from the given
measurements and which limitations are set by irreducible measurement noise1,
which is explored in Section 4.2.4 for HV10 and Section 4.3.4 for HV1.

1 See [80] (p. 524) if the label is affected by significant measurement noise, the irreducible error
increases in severity. The R2 then has a lower upper bound due to this error.
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A list of noise generators includes, but is not limited to, the following:

- Diamond abrasion reducing edge sharpness of the indent.
- Resolution of the measurement optic limiting the precision of indent edge
detection.

- Variation in specimen preparation leading to different surface conditions
or a shift in indent position.

- Recalibration of measurement devices entailing an offset between mea-
surements of different devices and/or periods.

- Carbide formation causes the surface to be harder in some places than
others.

Although this list may appear exaggerated to the reader, the influence of these
factors on determining hardness and, therefore, its predictability can not be
understated. When considering measurement results, correlations, and pre-
dictions, one should keep in mind that hardness measurement does not equal
hardness measurement, as will be shown in the following sections. The fig-
ures in these sections generally adhere to the following color schema: Blue
for surface (or surface near) hardness measurements, green for core (or surface
distant) ones. Additional colors are explained in the respective legends.

4.2 Bainitizing

4.2.1 Measurements on the cylinder heads

For evaluation of the bainitization process, mainly two measurements on the
cylinder head are relevant, namely, core and surface hardness, as described
in Section 3.1.1, taken from a fixed position in every batch. This section
examines the distribution around their means, shown in Figure 4.1, along with
the labels’ development over time. Both histograms show a spread around
60HV. However, while the core hardness is distributed symmetrically, with
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Figure 4.1: Above) distribution of core and surface hardness around theirmean (=0), for explanation
see Chapter 3.2.6. Below) median, 50%, and 95%boundaries of the labels in a rolling
window over 25 days

50% of labels in a window of 11HV around the median, the surface hardness is
left skewed2. The maximal achievable hardness3 explains this skewness leading
to a sharp drop on the right side.

This representation can also be interpreted as error distribution using the mean
of all values as a predictor. In this case, the prediction error would already
be smaller than ± 10HV for 76.6% of measured core hardness values. The
root mean squared error (RMSE) between prediction (in this case mean) and
measured valuemay be used as a good first indication for a prediction’s accuracy.

2 Mean is to the left of the median, with a tail to the left.
3 Given the amount of carbon in the material, the process gas in the furnace, and the fixed heat

treatment parameters, it is physically impossible to realize greater hardness at the surface.
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However, to fully understand the behavior of a predictor, it is always necessary
to assess the whole error distribution as predicting labels at the edges of these
distributions (i.e., outliers that are too hard or soft) might prove challenging due
to the vast imbalance between outliers and satisfying samples.

Regarding the behavior over time, the median of the core hardness is subject to
fluctuations greater than 12HV, making up roughly 20% of the total spread.
Further investigations suggest that chemical composition4, as determined by
the steel supplier, does affect achievable hardenability elaborated on in the
upcoming Chapter 5. The frequency-of-use of the lines could not predict the
drift, which does not exclude its possible influence but, at least, diminishes
the probability. The measuring device might be ruled out since firstly, the
daily check on a hardness reference plate does not correlate with the drift,
and secondly, this behavior needed to be similar for core and surface. But, a
correlation between surface and core hardness could not be found. In contrast
to the factors mentioned above (that hardly seem to be impactful), the position
of a test specimen in the batch produces a consistent bias. While all labels
above were taken from the standard position, the following section investigates
the whole batch.

4.2.2 Position in the batch

A component’s position in a batch can significantly influence the heat treatment
result as heating behavior, and quenching characteristics are location-dependent
(e.g., components closer to the heating elements reach the target temperature
faster). Thus, regularly testing multiple pieces at specific batch locations is
necessary to ensure that all components in one batch meet the requirements
that allow a release to the customer. It also ensures that predictions made for
and learned from one position generalize well to the complete batch. Hence,

4 100Cr6 contains minor variations in its material composition for the period in question.
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Figure 4.2: Batch positions of test specimens with number 9 being the standard specimen that is
always tested

Figure 4.2 shows the specific position of each specimen tested during an ex-
tensive routine check. From 100 batches of such nine-piece measurements, the
distribution of surface and core hardness is shown in Figure 4.3. To the right,
we see the mean values of each position with their respective 95% confidence
intervals (CIs) determined by bootstrapping with 4,000 iterations. As seen from
the box plots, a certain discrepancy exists between different positions for the
mean values and variances.

The confidence intervals suggest a significant difference between test specimens’
distributions, with the ones for the surface being wider due to more substantial
measurement noise. For the surface, it is thus harder to achieve the same
significance levels for differences between positions as for the core. Tukey’s
HSD test backs up this claim, as shown in Figure 4.4 by the red asterisks.
Further properties of this figure are assessed in the next Section 4.2.3. These
results imply that, for machine learning purposes, it is important to distinguish
predictions for different positions in the batch.
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To understand why the hardness differs between batch layers and why surface
and core hardness show inverse behavior, it is helpful to have a look at the tem-
perature uniformity surveys (TUS). Thermocouples take the actual component
temperature of positions 1, 5, and 9 on their respective surface and core, the
latter by drilling into the component. Figure 4.5 shows the average temperature
per position of 35 TUSs. Position 1 and 5 (bottom to middle layers of the
batch) are associated with a higher temperature TA during austenitization for
core and surface. For quenching, the reverse is true. Position 9 (upper layer) is
not quenched as harshly (i.e., encounters higher TIa) as lower layers since it is
the last to enter the salt bath, with a clear distinction visible between core and
surface temperature.

The high core hardness of position 1, thus, can be explained by the greater TA,
as more carbon is solved and fewer carbides remain, while a faster quenching

99



4 Label Analysis

rate allows the formation of finer-grained bainite. At the component’s surface,
two effects counteract each other. While a higher TA likewise facilitates carbide
dissolution, it also might reduce the relative amount of carbon in the atmosphere
and, thereby, lessen its capacity as a carbon donor. As expected, a GDOES anal-
ysis (Figure 4.6) shows significant differences between surface5 and core carbon
content with increasing distance from the measured surface. Surprisingly, core
carbon content also seems to differ between position 1 (pos. 1) and the others.
A potential explanation might be the higher TA than pos. 9 and longer holding
period than pos. 5. Both factors possibly allow carbon to diffuse deeper into the
surface of the test component at pos. 1, thereby adding to the core hardness of
the component. Other positions of the same cluster do not differ significantly.
Consequently, pos. 9 contains the same average amount of carbon in the sur-
face as other positions but resolves less of it due to a lower TA which leads to a
slightly higher bainite start temperature. Although a faster quenchingwould (for
complete transformation) lead to a harder bainitic structure, the slightly slower
quenching of pos. 9 allows for an earlier start of the transformation process as
well as a shorter overall transformation ∆tIb. Thus, upper layer components
have a higher bainite to austenite ratio after the first transformation phase. With
bainite formed at the first transformation temperature being harder than the bai-
nite formed at the second transformation temperature, the final resulting surface
hardness is higher. Now, that the differences between positions are established,
the section below elaborates on commonalities.

4.2.3 Prediction benchmark from batch positions

To avoid fruitless continuation of optimization regarding the ML models devel-
oped later, this section establishes a benchmark that already provides an upper
bound for the best expectable prediction accuracy. After coming close to this

5 The lesser degree of carbon concentration at the very surface (i.e., 3µm) is most likely due to
decarburizing oxygen that enters the chamber when batches are pushed to the salt bath, having
just enough time to steal away a few carbon atoms from the surface.

100



4.2 Bainitizing

Distance from the Measurement Surface (μm)

C
ar

b
o

n
 (

w
t.

-%
) 

3 5 10 20

1.06

1.02

0.98

0.94

Figure 4.6:Mean carbon content for three batch positions of core and surface in increasing depths,
with 99.9%CI. Number of tested pieces per position: pos. 1 = 355, pos. 5 = 289, pos. 9
= 4958

benchmark, any further attempts to improve the models’ accuracy (e.g., bigger
model, better features or subset thereof, hyperparameter tuning) are destined
to fail. The benchmark is based on the relationship between batch positions.
Figure 4.4 from the previous section, for example, indicates the Pearson corre-
lation coefficient r between the nine positions by darkness of color. As might be
expected, generally, the distance between two positions seems to decrease their
correlation slightly. Under the assumption that two spatially close components
of the same batch should show the same hardening effect, the correlations ap-
pear to be moderate. A more detailed picture is given in the Appendix A.2. To
estimate the precision with which the hardness of one position can be predicted
by the hardness of another position from the same batch, linear regression was
used6. Figure 4.7 provides the resulting distribution of the RMSE as box plots
including their medians as well as their 95%CI based on a 4000-fold boot-
strapping. The same analysis using the R2 score can be found in the Appendix
A.1.

This analysis suggests a significant difference in the predictability between
position pairs. The Scheffe test for pairwise comparison in Appendix A.3
supports this claim. The wide distribution range between whiskers is due to the
small number of 100 data points, containing someoutliers that strongly influence

6 Relatedmodels (e.g., Huber, Lasso, Ridge, . . . ) lead to similar results even when using warping
or quantile transformation to adjust for the skewness of the surface hardness.
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Figure 4.7: RMSE distribution by 4000-fold bootstrapping for linear regression of each position
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the RMSE, depending on how often they have been drawn in a particular
bootstrap. Nevertheless, some positions clearly exhibit more similar behavior
for the resulting core hardness than others, which might partly be explainable
by spatial proximity (e.g., 4 and 7 are close with high correlation while 9 and
1 (as well as 9 and 2) are far away with low correlation). Besides the lower
correlation of opposed position pairs between the lowest and highest level,
other location patterns (e.g., front-back, left-right) are not easily distinguishable.
Hence, further attempts to explain better predictability between specific pairs
are omitted not to be fooled by randomness. However, from the means (i.e.,
RMSECore = 7.9HV and RMSESurface = 10.1HV) it is immediately clear these
predictions can not suffice as a benchmark because, first, their values are partly
worse than using the mean of the complete distribution as a predictor (conf.
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Amuch better benchmark can be established by using the mean of 8 positions as
ground truth and predicting this value with the 9th position7. Figure 4.8 shows
that there still exist significant differences between the predictive capabilities
of each position to predict the whole batch8, but the overall RMSE is much
lower (i.e., RMSECore = 5.5HV and RMSESurface = 7.2HV) compared to the
piecewise predictions. They are used as an approximation for the achievable
predictability between test specimens when drawing a test specimen randomly
from one position and generalizing its hardness measurement to the complete
batch, resulting in an R̄2

core of 0.65 and R̄2
surface of 0.58.

Interestingly, there is no clear pattern in terms of generalizability from one
position to the complete batch. Positions 4 and 6 distinctly show below-average
errors (dashed line) for surface and core hardness, which would make them the
best candidates for regular inspection in terms of generalizability to the complete

7 All positions have been centered around zero by subtracting their respective means, to account
for the offset between positions.

8 The mean of the remaining 8 positions.
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Figure 4.9: Benchmark error distribution

batch9. Especially pos. 9 seems to show one of the worst generalizations for
core and best for surface hardness predictions, rendering an explanation based
on position somewhat implausible.

To sum up, Figure 4.9 gives the desired benchmark in the form of the accumu-
lated test set prediction errors from all positions and shall serve as a yardstick
for the ML predictions from process parameters. It assumes that predicting a
component’s hardness based on the measured hardness of all remaining com-
ponents is the closest approximation to predictions from process parameters
achievable, including the noise in the process, preparation, and measurement.
The following section estimates the contribution of this measurement noise to
the overall variance of the hardness distribution.

4.2.4 Measurement error

While specimen preparation (e.g., cutting, embedding, polishing) has an in-
fluence on the measured outcome, here, the focus lies on the irreducible, not
negligible noise from indention force and measurement of diagonals. It was

9 This might not be the preferred testing strategy which usually seeks to test the worst position
in order to safeguard the complete batch.
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evaluated by 100 HV10 indents on a standardized comparison plate with a
nominal hardness of 692HV the result of which can be found in Figure 4.10 a).
Although the PDF looks like a normal distribution, both the Shapiro-Wilk and
Anderson-Darling test, reject this hypothesis. To simulate the testing practice of
taking the mean of three indents (cf. Section 3.1.1), a Monte Carlo simulation
was used resulting in Figure 4.10 b), illustrating the accuracy gain of repeated
indents10.

While this analysis shows that, in principle, someof the labels’ inaccuracy can be
attributed to the measurement procedure itself, it does not account for additional
contributors. To get a more complete picture, the original three hardness values
of 565 batches were retrieved. Figure 4.11 a shows that their estimated PDF
matches the distribution of the complete data set, compare Figure 4.1, indicating
that the samples are representative of the overall distribution. Figure 4.11 b)
then plots the three measurements (x-axis) over their mean (y-axis), where the
darkness of color indicates the mean absolute error (MAE) from their respective
mean. The upper figure also delineates the averaged MAE of the three indents
over their actual hardness. It clearly shows that the further the mean of three
indents is away from the distribution center, the larger theirMAE.Consequently,

10 PourAsiabi and colleagues [113], for example, used the mean value of 8 indents to improve the
accuracy of their labels.
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data points at the distribution edge are more prone to measurement error as the
underlying indents have a greater MAE. Vice versa, a greater MAE of the
three indents more likely pushes their mean to the distribution edge. This
phenomenon is also shown in Appendix A.4 by a Monte Carlo simulation.

The deviation from the three indents’ mean is also shown as a histogram in
Figure 4.11 c) which is wider than the distribution of the hardness compari-
son plate, suggesting that further scatter is introduced in routine testing. The
MAE is much greater for the surface measurements cS) likely due to the lower
preparation effort and uneven dispersion of carbon in the surface.

As the mean of the three indents is close to but not precisely the true hardness,
this error, which was determined in Figure 4.10 b), must be added to the MAE
of the distribution in c). The result is shown in orange in Figure 4.10 d).
It represents the closest estimate of the measurement error distribution of one
indention fromwhich now again three values are repeatedly drawn and averaged
to simulate the standard procedure. It gives rise to the red distribution as the
best estimate for the true error (or closest estimate) from 3 measurements.

In order to be able to estimate the R2 loss due to measurement noise, the
true hardness distribution (i.e., the distribution of the true hardness without
measurement noise) must be recovered. Figure 4.12 a maps the range (delta
between the minimum and maximum) of this recovered true distribution to
the measured distribution by adding11 the red measurement noise from Figure
4.11 d) to the recovered true distribution.

If there was no measurement noise, an R2 of linear regression between true
and measured distribution would be equal to 1. That is, the R2 loss would be

11 Adding the red error distribution to the true distribution can either happen randomly (dark
blue) or sorted (light blue), Figure 4.11. Sorted means that the n values are drawn from each
distribution at random, but then both arrays are sorted and added. This is done because the
MAE rises with distance from the distribution mean, as shown in Figure 4.11, and so, the
biggest negative and positive errors from the error distribution are added to the smallest and
highest values from the true distribution. As mentioned above, values at the edges are at the
edges because they most likely experienced a higher measurement error.
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Figure 4.12: a) Map of measured distribution range to estimated true distribution range without
measurement noise. b) Loss in R2 score when applying measurement noise to the
true distribution. The wider the underlying distribution, the smaller the influence of
a constant measurement error. The gray area indicates the most probable range of
distribution range (and resulting loss) inferred from the distributions in Figure 4.1

zero, because those distributions would be the same. However, to calculate the
loss of R2 due to measurement noise, it is important to know how large the
measurement noise is compared to the range of the distribution (cf. signal-to-
noise ratio). In the following, this dependence between R2 loss, measurement
error, and distribution range is explained.

Linear regression between values of the true and measured distribution results
in an R2 score which is strongly dependent on the range (delta between the
minimum and maximum) of the true and measured distribution as shown in
Figure 4.12. Because the measurement error is constant, it leads to a stronger
R2 loss for narrower distributions12. At a range of approximately 40HV, the
core hardness distribution is subject to a loss of 0.22 (indicated by the red
line) due to measurement errors, which means that the hardness prediction
by measurement reaches a benchmark of R2 = 0.78. This R2 provides an upper
limit for any prediction based on the 3-fold 10HVmeasurement procedure used
above. The prediction of core hardness from process parameters must lie below
this benchmark and most likely is below R̄2

core of 0.48 derived from multiple
position testing in Section 4.2.3.

12 An error of 2HV has a greater impact among values between 0 and 10HV (20% error) than 0
and 100HV (5% error).
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In sum, about 25% to 50% of the overall variance of the labels is explained by
the measurement procedure with another 20% due to drifts in core hardness.
In the following, the same investigation is performed for measurements after
case hardening. Further predictors for variance are explored in Chapter 5.

4.3 Case Hardening

In contrast to the cylinder head, both, more positions on a nozzle body, referred
to as measurement positions (meas. pos., Section 4.3.1), as well as more test
specimen from a single batch, referred to as batch positions (Section 4.3.2), are
evaluated (cf. Section 4.3.3). Further, hardness on a nozzle body is measured
by a single HV1 indent elaborated on in Section 4.3.4.

4.3.1 Measurements on the nozzle body

To understand the data available for selected meas. pos. on the specimen, Figure
4.13 depicts their hardness distributions, ordered by increasing mean hardness
from left to right and top to bottom. Distributions are composed of pieces from
four batch positions, explained in detail in the upcoming Section 4.3.2. All
labels in the shown histograms were corrected by their batch position medians
with their offset to the overall median to avoid a variance broadening in the
shown distribution.

Most meas. pos. seem to exhibit a comparable distribution in terms of shape
and variance, with notable exceptions for undercut, shoulder, and seat mid-
dle 0.4mm. Greater variance in the undercut measurements might be due to
the concave geometry of the nozzle body at this position, see Figure 4.14. It
exhibits less surface for carbon uptake, probably because it is shielded from the
acetylene flow by the way the rag (that holds the nozzle bodies) is constructed,
which also explains why this position is the least hard from the group measured
at 0.1mm Similar to the surface of the cylinder head, the shoulder has a left
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Figure 4.13: Hardness distribution of meas. pos. on the nozzle body with increasingmean hardness
from left to right and top to bottom. Green indicate meas. pos. >= 0.4mm away from
the surface, blue = 0.1mm

skewed13 distribution. It indicates that the distribution is close to the achievable
hardness, which is also congruent with it being the hardest measurement point.
The increased variance of seat middle at 0.4mmmight be due to several factors.

First, a slight deviation from cutting the nozzle body in its very center during
specimen preparation results in a significant displacement of the meas. pos., as
the drill hole inside the nozzle body is relatively thin. Second, the geometry of
the nozzle tip has a unique design for different customers, resulting in varied
drilling holes and carbon diffusion parameters. Lastly, the thin geometry at the
seat middle, see Figure 4.14, allows for carbon to also diffuse from the outside
of the nozzle. It has a much higher surface-to-volume ratio and penetrates as far
as to reach the carbon diffusing from the inside. It is expected that measurement

13 Mean is to the left of the median, with a tail to the left.
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Figure 4.14: Carbon content of a nozzle body after the carburization step simulated with ANSYS
CFX 18.2

points with similar carbon diffusion properties exhibit comparable hardening
effects, elaborated on in the following.

While surface and core hardness of the cylinder head were independent of each
other, the multiple measurement points of the nozzle body display clear corre-
lations, shown in Figure 4.15. Mutual distance from the surface, expectedly,
serves as a good predictor for a position pairs’ r in most cases. Also, shaft
inside and CHD exhibit a strong correlation, as the latter is estimated from the
former, while seat middle at 0.4mm generally shows decreased predictability,
most likely due to the particular carburization behavior mentioned above. Fig-
ure 4.15 additionally points towards the nonlinear relationship between r and
R2. In this case R2 ̸= r2 because R2 was calculated from a prediction using
linear regression, that is, fitting a linear regression to the data points of twomea-
surement positions and then predicting the first position from that second and
vise versa. Figure 4.15 additionally shows the RMSE from these predictions,
where the prediction is always made from y-axis to x-axis. The RMSE clearly
is unsymmetrical, that is, predicting meas. pos A (e.g., Seat middle 0.4mm)
frommeas. pos B (e.g., Shaft inside 0.4mm) leads to quite different results then
predicting B from A.
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The r = 0.81 between shaft inside 0.4mm and CHD (550) only achieves an
R2 = 0.68, while the r = 0.64 to shaft inside 0.7mmalready drops to anR2 = 0.43.
This seems like an astonishingly loose connection between two positions that are
only 0.3mm away from each other on the same test specimen and points towards
a strong potential influence of a hardness measurement error. Although a not
to be underestimated portion of scatter will be attributable to the measurement
procedure, these findings already hint at the difficulties involved in precisely
learning the hardness from process parameters, conducted in Chapter 6.

4.3.2 Position in the batch

After comparing meas. pos. on the same specimen, we now turn to the behavior
between different batch positions. Test specimens are regularly sampled from
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two alternating position pairs, including a center c1-c4 and front f3-f6 pair,
shown in Figure 4.16, where numbers indicate the layer14.

14 Bottom most layer has number 1, as it is the first layer that is filled with nozzle bodies.
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Figure 4.16: Batch position of the 4 test specimens in a case hardening batch

Since two measurement specimens are taken from every nozzle body batch,
many more data points are available for different batch positions compared
to the cylinder head, resulting in narrower confidence intervals for the mean
of every batch position, shown in Figure 4.17. Once more, a batch position-
dependent bias can be observed, especially for f3, which is significantly harder
than the other green meas. pos., except for the core. Especially the already
well-known meas. pos. seat middle 0.4mm creates a substantial difference of
10HV between c1 and f3. Since only the core shows a decreased hardness for
f3, the current hypothesis for these differences is the carbon donator distribution
behavior in the vacuum furnace. Acetylene is injected through nozzles in the
door and the three walls, see Appendix A.5. Under the assumption that spatial
closeness to the injection increases the amount of time and gas a batch position
is exhibited to the carbon donor, f3 should receive the most opportunity to
absorb carbon. Although f6 also sits close to the injectors, it likely receives
less acetylene since the injectors are mounted behind the heating bar15, while

15 The bar blocks the way for free gas flow and heats the injected gas significantly.
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c1 and c4 sit deep inside the batch. This small head start of f3 during every
injection phase could be enough to diffuse significantly more carbon into deeper
parts of the component, leading to an increased hardness for this batch position,
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except for the core. Since carbon saturation occurs at the components’ surface
(blue positions) during each acetylene supply phase for all batch positions, no
significant difference in hardness is found there.

Surprisingly, the temperatures at the various positions seem to have a lesser
impact on the resulting hardness than the carbon. The only meas. pos. readily
explained by the temperature uniformity surveys in Figure 4.18 for the vacuum
furnace and Figure 4.19 for deep freezing and tempering, is the core, which is
least affected by carburization. Position f3, in this case, has the lowest hardness
in accordance with the significantly lower quenching rate of 140 sec. compared
to approx. 88 sec. for all other positions. Besides the lower austenitization
temperature at c1, which might result in a slight loss of hardness, the remaining
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temperature conditions, except for quenching, are roughly equal for the positions
or at least seem not to affect the resulting hardness consistently. Neither final
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tempering nor deep freezing temperature warrants a hypothetical claim to have
an effect on hardness since the temperature spread between the positions in
question is too small.

In summary, carburization behavior and quenching rate seem to be more im-
pactful for a batch position’s hardness, at least for surface distant ones (green),
than the various soaking temperatures. Near-surface differences in meas. pos.
(blue) per batch position evade an immediate interpretation. Furthermore, it
can be inferred from the TUS that the intra-batch temperatures scatter much
stronger than the inter-batch ones, prompting the implication that nozzle bodies
within the same batch might have greater variance than nozzle bodies from
the same positions of consecutive batches. This variation in the measurements
position behavior over time is discussed in the following.
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Behavior over time

To uncover seasonal and temporal behavior of quality indicators, Figure 4.20
shows a smoothed trend of meas. pos.16. The curves have been shifted hori-
zontally such that the depiction in one graph is possible, which means that the
y-axis does not show the true hardness in HV but can be used to infer the fluc-
tuation in∆HV. The following three types of fluctuation may be distinguished:
first, sharp drops or ascents (↑ 2014, ↓ mid 2015, ↓ mid 2018), second, cyclic
oscillation (from mid 2015 until 2017), and last, small, fast scatter throughout
the graph which is presumably primarily attributable to measurement noise.

Drops in hardness for strongly carburized positions in 2015 are most likely due
to a rise of the initial17 tempering temperature as a countermeasure for a strong
undershoot of the target temperature. It would also explain why shaft inside
0.7 and core are not affected, since, for one, the thermal energy takes a long
time to reach deeper layers18 and, for another, much less distorted martensite by
less carbon, which could be tempered, was formed in the first place. Changing
the diamond on the indenter and recalibrating the measurement device led
to a sharp drop during 2018. Figure 4.20 a also reveals a sudden decrease
in standard deviation (SD) after the diamond change 2018 (i.e., SD ≈ 7HV
(before), SD ≈ 7HV (after)) recognizable by the much closer blue horizontal
line patterns. They emerge because themeasurement optic is not able to dissolve
more precisely. Combined with internal rounding, this leads to discretization
with a step size larger than a single Vicker, leading to the line-shaped patterns
in the depiction. Such maintenance and recalibration events demand that not all
labels be treated equally and must be corrected period-wise if used in a single
data set.

16 The graph includes measurements from all four test positions in the batch, which was corrected
for by shifting all values to the common mean.

17 While entering the furnace.
18 A change in the outside temperature affects the inside of a nozzle body much later and to a

lesser degree.
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Locating plausible hypotheses for type 2 cyclic (e.g., 2016) fluctuations is
more challenging, as no single event can be held accountable. The supply
chain is proposed as main factor as steel composition, extrusion production,
and annealing may experience changes over time. A comparison between
blue (i.e., near-surface, carburized meas. pos.) and green (i.e., surface remote
positions) lines, especially in the period around 2016, speaks for the steel
composition hypothesis, as the blue graphs show much less fluctuation due to
the carburization while the hardenability of the green graphs, ceteris paribus, is
dependent solely on steel composition. Chapter 5.3.1 will further substantiate
this hypothesis. Plant maintenance can most likely be ruled out as inspections
occur at different times for each furnace, and the fluctuation does not change
much when looking at machines individually.
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Overall, the measurement points move remarkably uniformly. The parallel
motion is reflected in the correlation described earlier, where the sharp drop
in 2018 indeed adds to that effect. Thus, part of the correlation does not stem
from physically similar behavior between positions but a recalibration of the
measurement device. The following section seeks to quantify this relationship
between batch and meas. pos. in more detail.

4.3.3 Prediction benchmark from batch positions

Similar to the cylinder head, LRwas used repeatedly to predict the two positions
in each position pair c1,4 and f3,6 from each other in a 1000-fold bootstrapping,
the result of which can be found in Figure 4.21.
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bootstrapping for each position pair. Respective RMSE distribution in red with y-axis
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While the variances of R2 distributions are much narrower because over 3000
batches were evaluated, their means are also widespread. Generally, the corre-
lation should decrease for greater hardness, as can be seen in Figure 4.21, from
left to right, because measurement precision wears off (cf., upcoming chapter).
The three outliers are explained as follows: The core hardness exhibits worse
predictability than most other positions because it does not enjoy the mitigating
effects of carburization. Forming the lower end, seat middle 0.4mm promi-
nently sits around R2 = 0.19, while the undercut averages at R2 = 0.50 marking
the upper end. Low predictability of the former is readily explained by the great
variance in degree of carburization19 as well as low repeatability20 in prepa-
ration and indention. It is more difficult to explain the high R2 of the latter.
Its distribution (cf., 4.13) has a negative kurtosis21 leading to a more uniform
distribution with more values at the edges. Such a property can enhance the R2

because the total sum of squares becomes larger.

In most cases, the centerpieces can be predicted slightly but significantly better
from each other than the two front test specimens. Although it is clearly visible
that predictability depends rather on measured position on the specimens than
position pair of test specimens in the batch. Consequently, a benchmark for
predictability was inferred for eachmeas. pos. individually as themeanR2 score
of each meas. pos. These benchmarks are strongly dependent on the precision
with which hardness is determined. An assessment of HV1 measurement
precision is given below.

4.3.4 Measurement error

The diagonals of an HV1 indent on a hardness comparison plate of about
780HV are about 48.7µm long. According to Formula 4.1, subtracting only

19 Carbon diffuses from inside and outside.
20 The very small, round geometry makes it more difficult to cut precisely in the middle and,

thereby, often leads to an offset of the indent.
21 It is more round (less peaky) than a normal distribution.
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0.1 µm leads to a decrease of 3HV indicating, that a precise hardness measure-
ment necessitates a sharp diamond and a high focus measurement optic [102].

HV = c
F

d2
,with c = 0.1891 and F = 9.806 65N (4.1)

By repeating themeasurement of the same diagonals (d1, d2) of one HV1 indent
50 times, an estimate of the measurement’s optical precision can be gained. The
smallest 8%of valuesmeasured on a hardness comparison plate of 780HVwere
d̄min = 48.6 µm=̂ 776HV and the largest 8% d̄max = 48.9 µm=̂ 785HV.
Thus, the optic alone introduces a spread of around 9HV with a resolution not
allowing to resolve single HVs but only about 3HV for this hardness.

To investigate the error between measurements, one hundred HV1 indents
were made on a standardized hardness comparison plate of 710HV. The
yellow histogram in Figure 4.22 a shows the result of these measurements,
which approximately fit a triangular distribution. Under the assumption that
the true hardness distribution (red) after heat treatment also has a triangular
shape, Figure 4.22 b) shows the resulting distribution (orange) when applying
the measurement error to the original distribution.

This result closely resembles the distribution shapes of Figure 4.13. On this
basis, theR2-loss resulting from themeasurement error can be estimated. Figure
4.22 c) maps the range of the measured distribution (x-axis) to the estimated
true distribution range (y-axis) when subtracting the measurement error. Figure
4.22 d) then shows the reduction of R2 in dependency of the range of the
distribution the error was applied on. Obviously, the larger the range of the
true distribution, the more insignificant the influence of the same measurement
error and, hence, the smaller the loss of R2. As most measured distributions
in Figure 4.13 have a range of about 65HV, the red line indicates that on
sole evaluation of the measurement error the best prediction can never exceed
R2 = 1 - 0.16 = 0.84 . After correction for the recalibration that artificially widens
the distribution around 15HV, the influence becomes much larger and drops
the achievable R2 to 0.70. The difference between this irreducible error and
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Figure 4.22: a) Histogram of 100 HV1 indents on a hardness comparison plate of 710HV with
estimated PDF (dashed line). b) red: assumed true hardness distribution, orange:
PDF after adding the yellow measurement noise to the red distribution. c) Map of
measured distribution range to estimated true distribution range without measurement
noise. d) Loss in R2 score when applying measurement noise to the true distribution

the benchmarks derived earlier points out the significance of precise specimen
preparation.

4.4 Discussion

For label analysis in general, as we have seen, it is not enough to know the
distribution of the variable under examination but also necessary to investigate
its dynamic behavior over time. Not only does it reveal drifts and fluctuations,
but it can also indicate discontinuities in the way measurements were obtained,
whether it is due to a diamond change, a new measurement device, a change
of supplier, or a changed quality of the supplied. This dynamic portion is
indispensable for a holistic understanding of the partial variations that make
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up the label distribution. In addition, a gap-free data collection, including a
log of all changes made with regards to recording and process, is imperative to
enable proper post hoc explanations. Such information can then be used, for
example, to explain the relationship between the influence of local temperature
differences on the consistent hardness offsets between batch positions. These
discrepancies are to be expected from most kinds of batch processes.

Several sets of labeled data should be collected, if possible, to capture the vari-
ance contributions due to measurement errors (including sample preparation,
instrument, and measurement optics) and derive a prediction benchmark that
cannot be exceeded based on the process used to obtain the label. This approach
allows a very early assessment of the achievable predictability and thus which
economic benefit can be maximally achieved. Such data sets may also point
out how the trustworthiness of hardness measurement drops with increasing
distance from the expected values. In addition, it is strongly recommended
to regularly check the measuring devices (especially for hardness) to obtain
comparable and usable data.

Finally, it was shown that it is not sufficient to rely upon one statistical measure
to quantify prediction capacity. Mean values, RMSE, and R2 with respective
confidence intervals are good indicators but might not tell the full truth (e.g.,
mean of unevenly split categories) of a specific research question.

In sum, a data scientist analyzing the labels belonging to a new heat treatment
process is advised to do the following: Analyze the dynamic label behavior,
including an explanation of drifts, discontinuities, and changes in variance
over time by use of rolling windows or other filters. Assess the influence
of various batch positions to understand the hardness distribution in different
locations as well as derive a benchmark for their predictability. Evaluate the
accuracy of the measurement procedure (incl. indentation, optical resolution,
and specimen preparation) to find the limitations of possible predictions and
the meaningfulness of single measurements.
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As always, the interpretation of the diagrams should bemade with great caution,
whichmeans that in the case ofminor deviations or contradictory results, prema-
ture conclusions should be avoided, as unmeasured and/or unknown influences
may well distort results. The remaining known and measured influences, in-
cluding different furnaces, routes, process parameters, and alarms, are explored
in the next chapter.
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5.1 Introduction

While some of the variances in the labels could already be attributed to the
measurement error, this chapter seeks to explain as much of the remaining
variance as possible by analyzing the various properties of the two heat treatment
processes. These, in turn, may later serve as features for the ML algorithm if
a sufficient physical explanation for their suitability as predictors could be
established. Expert knowledge thus plays a role in feature selection that should
not be underestimated.

Changes in chemical composition are uncovered in the first SectionMaterial for
the 100Cr6 (5.2.1) and 18CrNi8 (5.3.1), explainingmuch of the larger long-term
fluctuations in the label. As not all production lines are built equal, Section 5.2.2
takes a closer look at the individual lines for bainitization, while 5.3.2 examines
the different stations of the case hardening process as well as the routes a nozzle
body batch can take through these stations. Further, meta feature analyses of
alarms and component types are provided in 5.2.3 and 5.3.3, respectively. In
each of the final sections, we address the features extracted from the sensor
signals in order to show how much variance is actually caused by variations in
the process of bainitization 5.2.4 and case hardening 5.3.4 itself. Moreover, we
encounter the difficulty of selecting good features for the right reasons, since
temporal changes in one feature may cancel out the effect of another or result
in spurious correlations.
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5.2 Bainitizing

Before the results of the feature examination are discussed, the following para-
graphs set the scope detailing which analysis will and will not be included.
Previous chapters examined test specimens from all batch positions. But since
position 9 is the only component tested after every produced batch (i.e., standard
specimen) this chapter will, without loss of generality, focus on these speci-
mens, as much more data is available and predictions will be made for this test
position, exclusively.

Although the following investigations focus on the core hardness of the cylinder
head as a methodical demonstration, the analytical approach for the surface
hardness is generally the same. However, the latter exhibits three undesirable
characteristics that make analysis more difficult. First, the measurement error
is increased at the surface due to the inferior preparation and higher hardness
(smaller indent). Second, the surface is exposed to a fluctuating furnace at-
mosphere, the composition of which currently is not measured precisely but is
known to change the surface carbon content of the cylinder heads and, thereby,
influences its hardness. Third, the controlled gas flow in the furnace atmosphere
also differs for the various components produced in a particular line. These
components themselves absorb different amounts of carbon and, thus, may leave
behind different amounts of carbon in the furnace. While the hypothesis that a
cylinder head batch is decarburized if it follows a batch of components with a
lower enrichment gas flow process must currently be rejected based on the data
available, future research with more sensors may investigate such questions in
more depth. Lastly, geometric variations between the cylinder head types are
only of small magnitude and have no significant influence on the hardness at the
measurement positions, which is why no deep dive in this matter is provided.
However, the following section focuses on material composition rather than
geometry.
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Figure 5.1: a) Correlation between weight percentages of elements in 100Cr6 and core hardness,
b) share of carbon (C) and molybdenum (Mo) in 100Cr6 along with core hardness over
time, c) scatter plot of 1st and 2nd principal component (PC) of chemical composition
with color indicating respective hardness, d) weights of 1st and 2nd PC with explained
variance of 38% and 18%, respectively

5.2.1 Material

As mentioned in Section 4.2.1, a sufficient change in the chemical composi-
tion of the bearing steel 100Cr6 might influence its hardenability and cause
significant fluctuations. This section investigates these changes and their con-
sequences for the bainitization of the cylinder head’s core hardness, as well as
predictability of hardness from the chemical composition.

A steel melt usually is obtained from a mixture of particular ores and scrap
metal, each containing specific proportions of chemical elements (hereafter
referred to only as elements). Naturally, their shares in consecutive steel melts
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are, except for manganese (Mn), all positively1 correlated, as shown in Figure
5.1 a), containing a selection of elements affecting hardenability. Molybdenum
(Mo) and carbon (C) exhibit a high r suggesting a particularly strong positive
influence on resulting hardness, also visible in their partial parallel movement
to the core hardness in Figure 5.1 b). In accordance with the literature [99],
both are, in fact, generally hardness enhancing. Evidently, they are not the only
factors, as indicated by the Mo spike in mid 2020 which is not accompanied
by a corresponding peak in core hardness. Chromium (Cr), for example, is
known to increase hardenability as well but only has a small r. Yet, it must
not be concluded that it has no influence in general, but only that its weight
fraction is kept relatively constant over time, as required by high steel quality
specifications.

To investigate whether element concentration indeed may be associated with
core hardness variation, Figure 5.1 d) shows a PCA with two principal compo-
nents (PC). While the weights of the 1st PC closely resemble the correlation
coefficients to the core hardness, the 2nd PC mainly contains the uncorrelated
Mn. As can be seen in the scatter plot 5.1 c), the PCA manages quite well
to separate steel batches resulting in greater hardness, colored in green, from
the less hard, colored blue (without any knowledge of the target). Clusters
mainly form due to horizontal separation (1st PC), although the 2nd also helps
to carve out some of the red points of medium hardness. Based on these ob-
servations, the fluctuation in core hardness might be partially attributable to
changes in chemical composition. To gather further evidence for such a claim,
this fluctuation shall be predicted by the elements using ML methods.

The ML pipeline used for predictions was optimized by TPOT, consisting of
polynomial feature transformation, an AdaBoost regressor, and Least Angle
Regression, detailed in Section 3.3.3. As can be inferred from Figure 5.2,
the way in which the data is split into training and test sets makes a profound
difference. While predicting randomly sampled training points is satisfactory,

1 The addition of one element to the melt by scrap metal commonly involves the addition of
other elements with a proportional share.
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future periods from which no training data is given to the algorithm can only be
predicted with much less accuracy, also indicated by the R2 box plots. Results
from this chronological split reveal the impracticality of an ML approach for
the precise forecast of the drift from alloy composition because the remaining
drift factors are not yet known. Moreover, it shows that the confidence in the
predictions of an ML pipeline should depend on the proximity of the train-test
split to the real-world use case to prevent bias in the results due to information
leakage2. Generally, it is difficult for regression models to extrapolate if the
true underlying system structure can not be derived from the data or is even
physically unknown (i.e., no scientific model exists for the phenomenon). If
physical properties of the system are known the design of hybrid models can
advance the extrapolation capabilities [11]. The final prediction model must,
nevertheless, get information about the drift to make meaningful predictions.

2 In case of a random split, information about "future" leaks into the training set.
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Because the chemical composition does not suffice to do so, Section 6.2.1
will introduce filters to track these drifts. The following sections will analyze
further factors leading to differences in core hardness over time, starting with
the production lines.

5.2.2 Production line

Although the data was produced by lines similar in construction, slight varia-
tions are expected due to, e.g., sensor placement, isolation from environmental
influences, or maintenance cycles that impact the heat treatment process. To
capture varied output originating from such line dissimilarities, their individual
produced mean core hardness over time as well as a box plot are shown in Figure
5.3. A similar analysis for the surface can be found in the Appendix A.6.

The following three observations are immediately apparent: First, lines do
consistently produce cylinder heads with significantly different hardness but

3 A rolling window would also provide values for a day with no production using the days before
and/or behind the current day. In this case, values are set to NaN.
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mostly possess similar variance. Second, the lines experience a collective drift,
moving up and down in parallel. Third, the number of cylinder head batches
processed during the shown period differs visibly - see the columns at the bottom
of Figure 5.3 b). Reasons for the offset between lines include varying age, slight
variation in process settings, overhaul, and divergence in construction. While
the influence of process settings will be assessed in Section 5.2.4, the individual
characteristic of each line may not be separable in more detail. As the offset
between lines can not be predicted and is not constant over time, fluctuations
must be tracked individually. It also means that a desired reduction in test
parts and a replacement by prediction can only go so far, as the fluctuation is
still recoverable from the remaining test parts. Periodic fluctuations will be
discussed in the next section alongside additional (meta) information that might
prove valuable.

5.2.3 Metadata

Seasonality

Frequent changes in production circumstances like outside temperature fluctu-
ation over year and day or decreased capacity utilization of lines on weekends
might lead to cyclic hardness variation. Figure 5.4 a) shows an autocorrelation
analysis where an array of the mean core hardness of each day is correlated
with an array where these values were shifted by d days (lag in days) with the
turquoise shaded area indicating insignificant correlation. The representation
is limited to one month since the analysis yields little evidence for repeated
behavior over longer (i.e., months or years) or shorter (i.e., hours) periods. The
hypothesis that summer-winter and day-night outside temperature fluctuations
alter production outcome could be rejected on this account. For a lag of one
day, r is equal to .57, implying that the average mean hardness of today may
be a good estimate for the hardness of tomorrow (or yesterday). This claim is
supported by Figure 5.4 b) that shows the correlation between today’s hardness
and the last n batches (d days respectively). The mean hardness of the last
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20 batches produced on one line gives a good prediction about the upcoming
batches.

Figure 5.4 a) also showsweekly spikes, which likely stem frombatches produced
on Saturdays which exhibit a significant drop in hardness, see Figure 5.5 a).
Production hardness does not change over the course of a day (with a very slight
exception for 15 o’clock batches), see b). A further investigation shall reveal
the reason for this behavior as it can not be assumed that a Saturday (or the
afternoon) in and of itself is causing a diminished core hardness rather than
potential temporary irregularities, which are usually captured by alarms.

Alarms

To use alarms as features, a causal relationship must exist between a triggered
alarm and the cause for this alarm leading to a change in output quality (i.e.,
core hardness). This fact is spelled out explicitly since the mere comparison of
average hardness between batches produced, including a specific alarmand those
without, would lead to false inferences. To make this point less abstract, two
examples shall be given: If alarmAwould bemore frequently exhibited by a line
that generally produces softer parts (e.g., line 20), then, in overall comparison,
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Figure 5.5: Box plot of core hardness from batches with production start on given: a) day of the
week and b) time of the day

batches produced including A would exhibit a lower than average hardness. If
the cause for alarm A is not also causing a lower hardness, a misleading feature
would be introduced. This can be circumvented by either a) looking at the
alarms for each furnace individually but, thereby, losing explanatory power as
the data is split up and reduced, or by b) correcting the hardness values for each
line such that the median of each line is equal to the overall median. The second
example concerns the hardness fluctuation over time. If alarm A coincides with
a time interval of greater hardness (e.g., March 2020), maybe because of a
defect relief valve, then, even after the previous corrective measures, this alarm
would be associated with a greater average hardness even though the two are not
causally related. To reduce the probability for this attribution error, all hardness
values can be corrected by the joint fluctuation that occurs for all lines over
time.

In sum, the hardness values of each line are corrected by their offset to the
commonmean (correcting for line difference) resulting in Figure 5.6 a); then the
joint fluctuation (yellow line) is subtracted from each hardness value (correcting
for trends), resulting in 5.6 b). After this correction, alarm data can more safely
be examined for all furnaces at once. Unfortunately, this correction nullifies
alarms that actually occur for all furnaces at once and lead to a changed hardness
(e.g., alarms concerning the overall process gas supply system). Such events
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must be examined before, although the probability for this kind of event is quite
minimal.

The complete set of alarm types lies well beyond 200, which is why a selection
of alarms is analyzed here to showcase their properties. To include a particular
alarm A as a feature, it must occur often enough to make statistically reliable
assertions. Furthermore, its occurrence must be part of a causal chain leading
to significantly increased or decreased labels, as compared to the baseline,
examples of which are shown in Figure 5.7.

In the following, alarms are explained from left to right, sorted by associated
median core hardness, along with their occurrence rate and Scheffe’s p-value
for pairwise comparison4 to the baseline (no alarm). The box plot suggests that
AUnload furnace (3%, p= .003) leads to increased core hardness which might be
explained by prolonged austenitization, as the batch is not pushed through the
furnace to the salt bath in due time. A batch with no alarms tends to have,
on average, only a slightly higher hardness than one with at least one alarm,
indicating that the cause for most alarms does not affect production outcome
in the short term. Neither the temperature of the container from which salt
is refilled, ALowT refill (4%, p= .99), nor switching off the automatic mode,
AAutomaticmode off (1%, p< .15), seem to have detrimental effects on the batch.

4 A significant difference between alarm A and no alarm is assumed for p< .01
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The latter gives some credit to the machine operators who seem to act fast
enough with a manual override when a problem occurs.

Process interference by AExhaust flap failure (1%, p= .008) seems very unlikely
from a physical perspective and the observed significant hardness loss might
well be a false positive. The most frequent alarm AUnload tempering exceeded(20%,
p< .001), indicating that the batch has been in the tempering furnace longer
than desired, explains the aforementioned hardness drop on Saturdays. This
elongated tempering furnace dwell time of a batchwill be elaborated on in the up-
coming section. Diminished hardness occurringwithAConditioning unit power board(0.5%,
p< .07) (i.e., the cooling unit of the power control board is malfunctioning) is
most likely due to electrical signal artifacts produced by the overheated control
board which might entail any number of problems. As this alarm was only
found in line 29, it might be necessary to examine every produced batch when
such an alarm is triggered.
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Figure 5.7 b) confirms that the offset between furnaces was removed success-
fully5. It also exemplifies that, although it is possible to analyze lines individu-
ally, fewer data generally lead to larger confidence intervals which might make
detection of significant differences per line and alarm (e.g.,AUnload tempering exceeded

for line 26) difficult.

In conclusion, the decision of which alarms to include as features is foremost
based on the analysis above. If no significant influence is observed, the feature
is most likely not included. If an alarm shows significance but can be explained
by a process feature, the latter is given precedence because it more precisely
pinpoints the problem. Such process features are examined in the next section.

5.2.4 Sensor signals

Intuitively, differences in hardness between batches are predominantly attributed
to a change in the heat treatment procedure, which is captured by sensors
throughout the line. This section investigates how large these process deviations
are for each section and how they affect the resulting core hardness, beginning
with a segmentation of the heat treatment procedure.

Process sections

The segmentation intervals are based on the process stages, ideally, such that
all significant values for a prediction are extracted but not more (i.e., using
too many segments). The convection furnace for tempering is not included as
temperatures across all segments and lines are similar. Chosen segments for
process gas furnace and salt bath are shown in Figures 5.8 and 5.9, respectively.

These plots contain a condensed version of all temperature curves in the process
gas furnace and salt bath in the form of a kernel density estimation at each

5 Otherwise, all values of furnace 26 would have been much higher.
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Figure 5.8: Kernel density estimation of furnace temperature curves at each minute from∼20,000
batches along with segmentation for feature extraction from all lines

resampled point in time. Temperatures are measured with a precision of 1K
resulting in a discretization reflected in the plots, especially for the salt bath
(and more attenuated for austenitization), by the individual dark bands. Both
the interpolation step in resampling and the kernel density estimation lead to a
deviation from pure integer values and, thereby, more closely approximate the
true distribution, which has a smooth shape. The darkness of color indicates
the percentiles closest to the modal values (i.e., extreme values or most dense
regions)6.

In comparison to the temperature uniformity surveys for different batch positions
in Section 4.2.2 from 35 batches, the spread of these temperature curves from

6 The intervals for the percentiles have been calculated by using the estimated PDF. Individual
percentiles were found by shifting up and down the PDF to find its zeros until the integral
between the zeros of the CDF was equal to the percentile. Of course, multi-modal PDFs have
multiple zeros (e.g., 6 zeros for 3 modes in Figure 5.9).
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Figure 5.9: Kernel density estimation of salt bath temperature curves at each minute from∼20,000
batches along with segmentation for feature extraction from all lines

approximately 20,000 batches from all lines seems to be quite small (e.g.,∆16K
for the minimal turning point of all measured process gas furnace temperatures
and∆9K for the 90th percentile shortly before austenitization). Critical process
stages like austenitization and quenching in the salt bath have even smaller
windows indicating that intra-batch temperatures deviate more strongly than
temperatures measured at a fixed point between batches. This serial process
appears to be quite robust and stable, with such minor temperature deviations
hardly resulting in huge hardness differences.

To determine whether learning from these minimal variety temperatures is rea-
sonable, we take a closer look at different hardness buckets and their associated
salt bath temperature. Figure 5.10 sorts batches into four bins based on their
core hardness and then plots the 60th percentile temperature band of each bin in
their respective color. As expected, greater hardness is associated with a slightly
lower soaking temperature TIa for isothermal conversion at t2. Thus, including
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a temperature-related feature from segment 7 should be of predictive value even
if the variations seem to be minimal. Alternatively, the time from immersion
in the salt bath to reaching the peak temperature (approximately at t1) and the
undershoot (approximately at t2) can also serve as valuable indicators.

Process features

To include all important characteristic properties of the heat treatment process
into the prediction, 156 features from sensors throughout the lines have been
extracted, as described in Section 3.2.4. As a demonstration, this section
assesses three selected features: mean salt bath temperature T̄ salt bath,7 in section
7, maximal mass flow of the enrichment gas Mass flowfurnace,3,max in section 3,
and temperature skew in the furnace Tfurnace,3,skew also in section 3. Analyzed are
their dependency on line, development over time, and correlation to associated
hardness (i.e., label to be predicted).

Feature T̄ salt bath,7 is depicted over the course of a two and a half year period for
every line in Figure 5.11 a). Hardly any significant changes can be noted over
time, except for line 23 that undergoes a drop of 3K in 2019. More significant
are the differences between lines (e.g., 2.5K between the means of line 20 and
26), as shown in the box plots b) that contain the distribution of all T̄ salt bath,7
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Figure 5.11: a) T̄ salt bath,7 of individual batches per line over time, b) box plot per line of T̄ salt bath,7
with 99%CI, c) scatter plot of T̄ salt bath,7 and core hardness for each batch

per line. Notably, this feature seems to be quite stable for each line with very
little variance such that the boxes (25th to 75th percentile) are often barely
overlapping. The minimal correlation of -0.04 with the core hardness, shown in
c), hardly allows any conclusion to be drawn. Nonetheless, the accumulation of
chronologically stable differences between the lines might be a reason for the
hardness offset between the lines, which itself is due to a multitude of possible
reasons: different temperature settings for each line, temperature sensor bias
(e.g., orientation (correct T at wrong position) or calibration (correct position
but wrong T )), or unmeasured influences like paneling.

To examine correlations between features that appear to be mostly stable over
time for each line and a label that is susceptible to measurement error, we take
the mean of each month for both feature and label. In this way, we can alleviate
the measurement error and might capture changes in core hardness that are
explained by slow changes in the mean of a feature in a particular line.

As shown in Figure 5.12 a), the correlation between T̄ salt bath,7 and core hard-
ness now becomes r = -.24. It does still barely support a salt bath influence
hypothesis. Although the points of one color (i.e., same line) do lie closer to the
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imagined negative correlation line7, it seems unreasonable to attribute a specific
change in core hardness to a change in T̄ salt bath,7.

The maximal enrichment gas flowMass flowfurnace,3,maxshortly before austeniti-
zation is a paragon of spurious correlation with core hardness (r = -.46), since
there exists no causal link between the mass flow and core hardness of the
component. It just so happens that line 26 (red), which produces the parts
with the highest core hardness, also has the lowest mass flow. Line 27 (orange)
follows at some distance, while the remaining lines cluster in the lower right
corner. It is essential to be aware of such associations (or the lack thereof)
since ML algorithms do not learn cause-effect relationships but use inputs that
they can map to a specific output. If a model learns the correlation in (d) and
is used for predictions, it would likely give incorrect results in time. Espe-
cially if the mass flow of line 26 is increased, resulting in a decreased core
hardness prediction but having no actual effect on core hardness. Incidentally,
the reverse is true for the surface hardness with an r = .6. Here, more gas can
deliver more carbon resulting in greater surface hardness. Thus, caution must
be exercised when correlating features with labels, always considering other
influential factors (measurable and immeasurable).

As a last example we investigate c) Tfurnace,3,skew which is a feature of true
predictive power. Higher skewmeans that TA is reached faster, in turn leading to
a longer austenitization time which leads to greater core hardness as suggested
by the positive correlation of r = .38. Compared to minimum or maximum
temperatures, in general, features related to dwell time are more promising
indicators of hardness. Especially, the length between the last8 segments (i.e.,
4, 7, and convection furnace9) of each process step varies substantially between
batches. These differences in dwell time evoke a change in hardness with clear
physical explanation, as shown in the next section.

7 upper left to lower right
8 All other segments are fixed in length for bainitizing.
9 It comprises one large segment of its own.
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the past. Colors indicate line association, see Figure 5.11

Dwell time

Although the heat treatment procedure is conducted by awell-controlled system,
the process step durations (i.e., dwell time in furnace, salt bath, and tempering
furnace) are subject to fluctuation. This elongated or shortened austenitization
or soaking time has an effect on resulting hardness, depicted in Figure 5.13.

Remaining in the process gas furnace longer10 increases time spent for austen-
itization which is known, under otherwise identical conditions, to increase the
resulting hardness. No apparent effect is found for the salt bath. The dwell time
was reduced about 5min in the middle of 2019, see Appendix A.7, resulting
in an uneven distribution of bins but not in a drop or increase in hardness.
Surprisingly, an increased soaking time in the tempering furnace significantly
reduces hardness. Most likely, the transformation to bainite leading to increased
hardness at some point tips into a kind of tempering that softens the bainitic
structure again. From this inspection, the lower hardness coinciding with alarm
AUnload tempering exceeded is readily understood. It turns out that batches produced

10 Could also partly be due to a longer time necessary to reach TA.

142



5.3 Case Hardening

Time (𝚫min)

0

+5

+10

C
o

re
 H

ar
d

n
es

s 
(𝚫

H
V

)

-10

-5

-20

-15

8-6 -4 -2 0 2 4 6 -6 -3 0 3 6 4-1 0 1 2 3 5 10 15 20 25

Time (𝚫min) Time (𝚫h)

Process gas furnace Salt bath Tempering  furnace

Figure 5.13: Core hardness over differences in dwell time between batches in process gas furnace,
salt bath, and tempering furnace, along with histogram of respective bin size in green

late Saturday stay in the tempering furnace until they are unloaded early Mon-
day morning, rendering Saturday batches lower in hardness due to increased
soaking time that effectively tempers the cylinder heads.

5.3 Case Hardening

Generally, the analytical approach for case hardening features is similar in struc-
ture to bainitization, with exceptions detailed in the following. As discussed in
the previous chapter, the four batch positions from which two test specimens
are sampled alternatingly cause a constant bias. In order to be able to use labels
from all positions, they have been corrected by their respective median. Fur-
ther, the features are primarily analyzed with respect to the scores (i.e., Score
0.1/0.4/0.7), where surface near measurement positions (meas. pos.) are more
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important because carburization has a more significant influence here and the
result is more critical for the nozzle bodies’ expected mean time to failure. The
last Section 5.3.4 will also give a justification for the suitability of these scores.

5.3.1 Material

Variations in chemical composition of the case hardening steel 18CrNi8 were
proposed to cause fluctuations in the core hardness in Section 4.3.2 based
on Figure 4.20. In the following, this hypothesis is investigated by partial
correlation and regression analysis.

Unlike the 100Cr6, correlations between core hardness and weight fractions
of specific elements in the 18CrNi8 are time-dependent for the period under
consideration12. Thus, instead of a correlation heat map, Figure 5.14 a) shows
the correlation coefficients of the usual suspects C, Cr, andNiwith core hardness
over time along with the time series they were derived from shown in Figure
5.14 b). The congruent shape of their curves suggests a strong influence of C

11 r is calculated for all value pairs in the corresponding window.
12 A time dependency might also very likely be found for the 100Cr6 if observed over a more

extended period.
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on core hardness during 2016/17. This finding is reflected in a high r during
that period. It is also observable for Ni, although to a smaller degree. In
fact, a similar synchronous movement is displayed by Mn and Si for 2016,
see Appendix A.8. Such coincidental synchronous changes of elements likely
intensify oscillation of core hardness. An awareness of such interdependence
might prevent an investigation of fluctuations in the wrong hypothesis space.
However, as correlations change over time, chemical composition’s exact cause
and effect relations are more challenging to quantify. They are mitigated by
several unmeasured effects13 from any other process step (e.g., annealing or
carbide formation).

Figure 5.15 a) demonstrates such a quantification attempt via linear regression14,
based on the elements in 5.15 b). A complete regression fitted to the whole
curve serves as a benchmark for achievable predictability, simulating complete
knowledge availability. The 5-fold regression learns from 4 years and then
predicts the respective fifth year. Neither of the curves predicts the one large

13 A partially negative r like for Cr might also result from a simultaneous increase of Cr and
decrease of C, thereby dropping hardenability although Cr was rising.

14 It may be assumed, that the small changes in chemical composition under consideration are
locally linear.

145



5 Feature Analysis

down and upward trend that the green curve (Measured) displays (i.e., starting
at nearly +10HV before 2016, droppping to -10HV in 2017 and recovering to
0HV in 2020), which presumably is not due to chemical composition but could
be a drift of a measurement device. In contrast, in almost all cases, the model
accurately predicts the direction of a short up- or downward trend but regularly
misestimates the magnitude of the amplitude. From the weights, it may also be
inferred that C is the only reliable predictor, with Cr aiding a little. None of the
remaining elements contributes consistent weights and should, therefore, not be
used for prediction as their influence is too small or nonlinear to be captured.

In sum, the relatively small fluctuations of C seem to affect hardenability (re-
spectively hardness) more deeply and consistently than either Cr or Ni. While
an accurate prediction seems out of reach, at least a trend direction might be
forecastable in some cases. Finally, the fluctuations in 2016/17 can confidently
be attributed to the material composition. More fluctuations are to come in the
next section.

5.3.2 Production line

In contrast to the bainitization in a single line, nozzle body batches are pro-
cessed in three different stations (cf., 3.1.2). This section investigates individual
furnaces, freezers, and the effect of routes taken through these stations. To eval-
uate the difference between stations, Figure 5.16 plots the drift corrected15 mean
hardness of batches produced with a given station over time along with their
overall CIs. The following three observations can be made.

1) Stations mostly, but not always, behave consistently for different scores (i.e.,
if vacuum furnace 1 has the highest mean hardness for Score 0.1, it most likely
also does so for Score 0.4 and 0.7) with a notable exception for the deep freezers.

15 The long-term drifts (e.g., Section 5.2.1 and 4.3.2 were approximated by a first-order IIR filter
and, then, subtracted from the respective measurement score, to make differences in stations
visible.
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2) In contrast, scores are affected differently by the various stations. Scores 0.4
and 0.7 vary strongly for the vacuum furnace, while tempering affects 0.1 and
0.4 more strongly. These observations support a temperature-based hypothesis
where the temperature influence is mitigated by carburization for the surface-
near Score 0.1 but has a much more substantial impact during tempering on
these same surface near layers. These claims will be further strengthened in the
upcoming process feature section. 3a) Variance between stations seems to have
decreased over the years, presumably as production was optimized stepwise.
3b) Although overall variance was reduced, there are still significant differences
between stations that change over time (e.g., Score 0.4 in the vacuum furnace).
While vacuum furnace 1 during 2015 produced at a level being around 7HV
higher than furnace 2, in 2018, the reverse was true. This example underlines
the importance of time-depended inspections since an analysis of the CIs might
have led to the wrong conclusion, that 1 always produces harder than 2. Thus,
passing a feature such as a station to an ML algorithm can lead to undesirable
predictions, especially when the training and test sets are separated in time16.
Although such individual deltas might seem relatively small, they might add up
to noticeable differences when taking specific routes through the stations, see
Figure 5.17. It shows how the combination of different vacuum and tempering
furnaces leads to divergent mean hardness over time. For Score 0.4, this
divergence averages at 10HV underlining the greater effect caused by adding
up seemingly small differences in stations. Careful planing of routes could
help to prevent undesirable deviations from the target hardness. Balancing the
effects of individual vacuum furnaces by changing the parameters of freezing or
tempering furnaces for a particular combination seems too complex and would
probably not yield the desired result. Instead, the furnace parameters should
be optimized to approach a common mean behavior (i.e., all vacuum furnaces,
freezer, etc. behave in the same way).

It will be difficult to determine which part of the fluctuation can be attributed
to process parameter differences and which are due to maintenance or other

16 They should be chronologically separated to prevent data leakage from the present to the future.
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unmeasured external circumstances. In the latter case, it might also be necessary
to track the hardness level of each station individually for each score to identify
actual adverse routes and detect stations’ divergence. To understand the hardness
variance, in addition to the difference between stations, it is also important to
know what type of component was heat treated, as explained below.

5.3.3 Metadata

Components

Batches contain nozzle bodies of different component families (e.g., X2, X4)
that are further divided into types (e.g., 6, 8), each with slight geometrical
variations in particular at the nozzle itself (cf., Section 3.1.2). These, in turn,
slightly influence the absorption behavior of heat and carbon. A strong influence
of such geometrical differencesmanifests in hardness of the Seatmiddle 0.4mm,
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shown in Figure 5.18, most likely due to carburization behavior as the walls
are thinnest here (other meas. pos. are not significantly different). Components
of family 6204 are consistently 20HV harder over time17 than the remaining
families, which means that most of the spread of the particularly wide Seat
middle 0.4mm distribution can be attributed to component family differences.
No difference is observed between the components of the same family, with
a notable exception for X4: type 5 is harder than type 22 and 23, which is
likely due to the fact that the latter two are made of a different grade of steel
(i.e., electroslag remelting (ESU)18). Thus, whether a component type or family
serves as a valuable predictor and whether types should be combined into a
single feature must be judged on a case-by-case basis but need not be tracked
over time. The last meta-information that may serve as a feature is the alarms,
briefly discussed below.

17 Thus, it is not necessary to track differences between families over time. Also, there would be
no physical explanation to do so, because the geometry does not change over time.

18 Elektroschlacke-Umschmelzverfahren
19 The ω must be adjusted for each component type because each has a different "sampling rate".

Otherwise, components produced less frequently would be smoothed more than if the same
filter were applied to a more common component.
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Alarms

The author was not able to derive helpful information from the occurrence of
an alarm and link it to a particular hardness measure of a batch. Although
some alarms are correlated with reduced or increased quality measures, these
effects vanish when correcting for the collective trend meaning that they most
likely co-occurred with a time span when the overall hardness was higher or
lower. Second, significant alarms usually stem from mechanical failure of the
production line. Since there are very few moving parts in the case hardening
stations (as compared to the bainitization line), barely any alarms of this type
occur. Third, no causal link could be established between such alarms and
indicated deviation of the quality measure. In the words of Prof. Mikut: "There
is not much to be found in a competent process."

Discussion

Despite the fact that some interesting effects were found in the data presented
above, claims of causal effects should be made tentatively. Fluctuations over
time, uneven distribution, or unmeasured influences on a particular feature, be it
station, component, route, alarm, or measurement position, can lead to spurious
correlations and imply significant differences where none exist. It could be, for
example, that more components of family A took route 1 and more of family
B route 3. It is now difficult to attribute a deviation from the mean to either
the component family or the route. The same goes for shifts due to material
composition, possibly resulting in a hardness drop of a certain component type.
It leaves open the question of which of both caused the drop or even if a third
factor was involved. On that score, although potentially valuable, these analyses
must also be taken with a sufficient amount of skepticism and must not replace
well-controlled experiments. With these words of caution in mind, we now turn
to the influences of process fluctuations as measured by the sensor signals.
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5.3.4 Sensor signals

The information of the sensor signals is analyzed in featurized form, the ex-
traction process of which is described in Section 3.2.4, which already contains
the heat treatment’s key values in condensed form. As the number of extracted
features may be sizable, this section first investigates which features are actually
of predictive value not to feed useless or redundant information to the algorithm
later and better understand which differences between the process actually lead
to dissimilar results over time. Second, it is useful to confirm that the additional
labels created (i.e., Score 0.1/0.4/0.7) are predictable by the same input features
as the meas. pos. they were derived from (i.e., are influenced by the same
physical phenomena during the process).

Feature over time and label correlation

A first impression of a feature’s usefulness can be gained by its correlation
coefficient with the respective label, calculated for every extracted feature and
label combination. Among the features with the highest |r| are those shown in
Figure 5.19. It contains the feature values and their correlation with the labels
over time as well as a scatter plot of feature and label, respectively.

Neither of the features remains continuous over time, nor are they similar for the
stations they were measured in. Vacuum furnace 3, for example, was not able to
generate the same maximal quenching pressure leading to a higher temperature
25 sec after quenching before maintenance of the system at the beginning of
2017. During this period, the rolling r drops remarkably, indicating the expected
negative correlation, where a lower temperature is associated with a greater
hardness of Score 0.4, also inferable from the scatter plot. When a single
line is stationary (e.g., after 2018), the rolling r fluctuates around zero for all
stations, suggesting that the process is so stable (with respect to this feature)
and/or the measurement error is so high that inference of hardness influence
seems almost impossible, with one exception for the freezer. Although the
mean cooling temperature of deep freezer 2 is rock stable, its rolling r decreases
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continuously. Further, the scatter correlation claims a positive r, which would
contradict the expected behavior, where lower freezing temperatures lead to
more transformation of the remaining austenite leading to higher hardness.
This phenomenon (i.e., a drift of rolling r and positive scatter r) occurs because
the label Score 0.1 was not shift corrected. As was shown in Figure 4.20, the
hardness drops during 2018 (diamond change) and 2015 (rise of initialTT)while,
coincidentally, the freezing temperature was also lowered in 2016. Omitting
such a shift correction, thus, may lead to the appearance of an erroneous
correlation. On the other hand, shift correction may also erase effects like the
one visible for theHollomon–Jaffe parameter (HP), cf. Section 2.1.2. Due to the
temperature increase between batches of the tempering furnace in 2015, nozzle
bodies experience a slightly stronger tempering effect resulting in a higher
HP. A lower HP naturally results in a harder martensitic surface, especially
exhibited by tempering furnace 2, which incidentally was the one that generally
produced harder components (cf. Figure 5.16). Again, this correlation effect is
only visible during the large discontinuity as indicated by the deflection of the
rolling r at these points as well as the shifted hardness values in the scatter plot.

In sum, larger feature discontinuities for a single station (e.g., vacuum furnace
3) or all stations (e.g., tempering furnaces) show visible effects on hardness
while stationary fluctuations are not noticeably reflected in the rolling r. Some
feature-label correlations are only visible when shift correcting the label; others
are not or exhibit erroneous relations. The complete tracking of each station
(proposed above) will provide a feature that accounts for larger changes in each
line. In turn, the ML algorithm might not be able to learn something from these
changes, raising how to optimally present features to the ML algorithm during
training. This matter will be analyzed in the upcoming chapter.

Correlation between features

Redundant information between features as well as their integrity are shown
in Figure 5.20 by the correlation between selected features of the deep freezer,
vacuum furnace, and the shift corrected label Score 0.1. In linewith expectation,
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Figure 5.20: Heat map of correlation coefficient r between features

mean and minimal freezing temperature are prominently positively correlated
as well as all features belonging to the tempering furnace, where the time spent
at tempering temperature has the most substantial influence on the HP. Since
the HP (calculated from ∆tT and T̄T) is the best predictor for hardness among
the three, it should be the one included in the feature set while dropping the
other two as redundant. The same would be valid for the deep freezer (i.e., only
keeping one) if the ML algorithm can actually use one of them. This might
be difficult due to their low correlation, which now is negative as expected due
to the shift correction, as compared to Figure 5.19. In- and exclusion of other
features will, thus, be determined by a feature selection algorithm.

Surprisingly, correlations between features of freezer and tempering furnace are
negative suggesting that lower deep freezing leads to higher tempering, which
in fact is not the case. Deep freezer temperatures were indeed lowered at the
time when initial TT was risen, resulting in a negative correlation, but no causal
connection could be found (i.e., the temperature of freezer and tempering are
independent).
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Figure 5.21: Each dot represents one extracted feature from vacuum furnace (red), deep freezer
(blue) or tempering furnace (orange). The scatter plot shows the correlation coeffi-
cients r of that feature with the respective labels (i.e., position on piece - lines and
columns). The heat map in turn gives the correlation coefficient r of the scatter plot.
If the individual r between vacuum-, tempering furnace, and deep freezer are greater
than 0.2 then their individual values are shown

Conformity between meas. pos. regarding feature

To evaluate whether the same features are predictive of different labels, we turn
to Figure 5.21. For each label-feature combination, the correlation coefficient r
was calculated. Now each of the 8 meas. pos. has features with which it is more
or less correlated. Figure 5.21 then shows whether the same feature, represented
by one dot, is highly correlated with two different labels. If a high correlation
between the feature rankings of two labels exist (e.g., r = 0.99 between features
of Shoulder 0.1mm and Seat middle 0.1mm), it can be expected that the same
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specific physical conditions influence those labels in the process. Between most
meas. pos. (with exception to Undercut 0.1mm) this is true, expectedly more
so in clusters of similar depth (i.e., 0.1mm vs. 0.4mm vs deeper). Thus,
the scores derived previously are meaningful aggregations of meas. pos. and
input features do not have to be optimized individually for all labels but these
groups of label scores. Most features of vacuum furnace and deep freezer are
of little use indicated by the peak around r = 0 of the distributions shown along
the diagonal of Figure 5.21. This is also due to the much higher number of
features extracted from the vacuum furnaces, containing many more segments
and channels, many of which are useless byproducts. Conversely, features of
the tempering furnace are more often found at the edges of the distribution and
scatter plots, indicating a higher r and, therefore, more significant influence.

5.4 Discussion

Generally, even seemingly small percentage changes in material composition
(especially carbon concentration) can lead to severe deviations in measured
hardness, especially for measuring positions and processes where little or no
carburization occurs. Both the models obtained from empirical data and those
known from the literature support this claim. However, the resulting hardness
variance usually cannot be predicted directly from the proportion of the respec-
tive elements since too many other influences are at work. For example, the line
or route through different furnaces and freezers may result in an offset. That is,
a heat treatment program applied to similar batches in two seemingly identical
furnaces can lead to consistently different results. Moreover, the high stabil-
ity of industrial processes makes the influence analysis of the heat treatment
itself laborious since the differences between lines are more significant than
between successive batches of the same line. Part of the problem may be that
measurements of absolute temperature or absolute pressure are not accurate.
While the internal feedback controller achieves a minimal error between mea-
sured and reference temperature, the measurement may be off by a few degrees
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from the true temperature—a problem to be expected in any heat treatment pro-
cess. Consequently, long-term changes (e.g., change of salt bath temperature)
are more indicative than minor variations in the same furnace. Interestingly,
regarding hardness prediction, the alarms do not provide any additional infor-
mation beyond the process measurements (i.e., at least as long as the operator
performs his job well)20. In contrast, an influence of the measuring procedure
and the measuring position on the hardness result can very well be recognized,
especially when the geometry of a component is slightly changed at a critical
position (e.g., nozzle tip of a nozzle body or tooth of a gear).

Higher-level domain knowledge is essential for a variance breakdown of heat
treatment processes in general since only meaningful and not all possible fea-
tures should be extracted from the process in order to avoid spurious correlations
and possibly resulting unfavorable measures as a consequence. It is to be ex-
pected that the influences examined above will be found in most heat treatment
processes, and it may be difficult to disentangle their intertwined nature.

20 There are cases when alarms may be necessary if the operators do not work cleanly. For
instance, the salt bath loses salt over time. If it is not refilled in time, the top layer of the batch
is no longer completely covered with salt. These parts will then not be quenched correctly. The
salt bath temperature does not capture this mishap. To prevent such ill-fortune from happening,
there is an alarm that is triggered when the salt bath level is too low.
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6.1 Introduction

To put the proposed data mining framework to the test, we investigate how
much of the variance studied in the previous chapters can actually be learned
and predicted by our machine learning and hidden states pipeline. The results
determine which cost reduction strategy (e.g., reduced testing) is applicable.
First, optimal fluctuation tracking by filters and their ability to forecast hardness
of upcoming batches under various information restrictions is discussed in
Sections 6.2.1 and 6.3.1. For bainitization, we proceed with 6.2.2 to investigate
the predictive power of process features, explain what the models learned and
what the optimal learning strategy is. In 6.2.3 we access the difficulties arising
from process outliers. For case hardening, we focus on a complete percental
breakdown of variance contributors in 6.3.2.

6.2 Bainitizing

6.2.1 Forecasting and label tracking

To account for unknown, not measured, and immeasurable influences (e.g.,
material composition, modifications through maintenance, etc.) that present
changing influences over time, the hardness level of each line needs to be
tracked continuously, as was hinted at in Section 5.2.2.
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Figure 6.1: Average RMSE between label and output of causal first-order IIR filter applied to
individual lines for a) different a using every 2nd, 4th, 8th, and 16th batch as filter
input, b) for every nth batch as filter input to predict the remaining batches with a= 0.9.
Predictions were shifted by k batches before RMSE calculation to simulate information
delay (k > 0) or advance (k < 0)

This section elaborates on the optimal filter parameters to track the mean pro-
duced core hardness of each line. Since the goal is to reduce test specimens, in
a first step, we investigate how the fraction of tested to predicted pieces influ-
ences the RMSE between label and filter output. Of course, the ultimate intent
is to sample as little as possible (only every nth sample) while still achieving
acceptable filter performance.

As described in Section 3.2.5, we use a causal first-order Butterworth IIR
filter. Because parameter optimization led to N = 1 in over 99% of cases,
the filter could be reduced to a function of only one parameter, that is, the
retaining percentage1 a. Figure 6.1 a) shows the RMSE between label and filter
output for different a, number of test specimens used as filter input (i.e., 1
out of n, or every nth)2, and time-related measurement information availability
(i.e., k > 0 forecasting hardness k batches into the future, k < 0 phase delay
correction possible). Three conclusions may be drawn from this figure: first,
a retaining percentage a of around 0.9 seems to strike a good balance between

1 yn =a yn-1 + 1−a
2

(xn +xn-1)
2 The higher n, the more costs can be saved by not having to test n-1 pieces.
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6.2 Bainitizing

forecasting and phase delay correction. A faster filter (smaller a) may perform
better when phase delay correction is possible (i.e., measurements from batches
produced after the current batch are available)3 but is worse for forecasting.
Second, forecasting (k > 0) accuracy is worse than phase delay correction (k < 0).
Consequently, if the measurement of test specimens takes a long time and a
prediction is needed rapidly4, the prediction will suffer. Third, using fewer
test specimens as input also leads to worse performance. Thus, for prediction
purposes, it would be important to wait for the information that can correct
the phase delay (optimal correction lies at k ≈ -1, that is, waiting for the next
batch), where testing less than every 8th batch seems unreasonable. With these
preconditions, it should be possible to follow the trend closely enough.

Figure 6.1 b) shows prediction accuracy when using a= 0.9 and every nth batch
as input. If fewer batches are tested, they need to be shifted slightly further back
for optimal phase correction. On the one hand, testing fewer batches might
take less time (although probably mitigated by the decreased staff situation
due to the reduced testing). On the other hand, the time between tested batches
increases, stretching the amount of time until information about "future" batches
is available for phase delay correction and, thereby, possibly delaying the release
of a batch for further processing. In practice, therefore, the consequences of
information delay must be factored into the trade-off between accuracy and cost
reduction when deciding how many batches to test ultimately. Moreover, this
decision may be different for various lines.

The following optimization looks at lines individually and assumes that every
second batch is tested and every other batch predicted. Figure 6.2 a) shows
a heatmap of optimal retaining percentages a per k revealing that, although a

3 This is possible because a prediction is not required immediately after production of a batch.
Thus, the test result of a batch produced after the batch for which a prediction is to be made
can be used to correct the filter phase delay.

4 In some cases, the components are supposed to be further processed as fast as possible to
prevent a pileup of stock.
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number displayed to the left of a)

varies, in general, the sensitivity of a seems very small (i.e., a big change in a
leads to a small change in RMSE)5.

In the case of forecasting, filters prefer an increased a (corresponding to slower
updating), as the best prediction for the future is the current mean production
hardness. A small a would give too much weight to the most recent mea-
surements and, thus, most likely deviate from the best estimate for the current
mean, though could be helpful to capture small trends as seen in the phase delay
corrected outputs6.

In b), the corresponding RMSE is shown per line. Interestingly, prediction
accuracy between different lines is significantly different because the stability
(i.e., the hardness variance produced) is dependent on line age, maintenance,
and charging. Larger hardness variations per line (i.e. quality instability per

5 This is important since the design process of a robust IIR filter is thereby drastically simplified.
All lines could use the same filter, independent of k and n.

6 Cf. Table 3.12: For the optimization, only uneven numbers of phase delay shifts k are
considered because every second batch is given to the filter in order to predict every second+
kth batch. If k were even, then the filter would have to predict the batch it was given (e.g.,
k = 2) two steps before and try to optimize for that by a high order. However, it should only
predict the uneven batches it has not used to update its state.

162



6.2 Bainitizing

Time

H
ar

d
n

es
s

 (
𝚫

H
V

)

29
23

27
26

20
25

24
28

Jul 18 Jul 19 Jul 20Jan 19 Jan 20

0

-10

+10

6

5

7

8

9

10

Time

S
D

 o
f 

H
a

rd
n

es
s 

(H
V

)

Jul 18 Jul 19 Jul 20Jan 19 Jan 20

aC) aS)

bC) bS)

Figure 6.3: Rolling window (50 days) using a) mean and b) standard deviation (SD) of core (C)
and surface (S) hardness per line

product) could be due to the higher number of different products produced on
the same line.

The standard deviation (i.e., produced quality scatter) changes unusually uni-
formly over time for the different lines, as can be seen in Figure 6.3. Con-
sequently, the RMSE between filter output and label fluctuates to the same
extent7. The long-term hardness fluctuation does not quite seem to explain the
changes in variance. It would have been expected that periods of large changes
in hardness would result in greater variance, but this seems to be true only occa-
sionally (e.g., core hardness middle of 2020, surface hardness end of 2019). The
uniformity of the variance movement suggests that external factors affecting all
lines cause these production instabilities (e.g., the ramp down during the corona

7 The formula for RMSE and SD is similar (
√

1
n

∑n
i (yi − µ)2) with the only difference that

in the former case µ is the filter output yn and in the latter µ is the mean over the samples inside
the rolling window used (i.e., dummy predictor output).
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6 Machine Learning

crisis, starting in Q1 2020, most likely led to worse production conditions). It
also means that a prediction outcome must always be compared to the actual
variance for the predicted period to assess whether it is valuable and compare it
to other periods (i.e., train test splits). The following section attempts to predict
the part of this variance that may be explained by the features collected in the
previous chapters using data from before 2020 for training and optimization of
different pipelines and the remaining 30% (after 2019) as the test set.

6.2.2 Prediction from features

IIR correction and scaling

As we have seen in the previous sections, for each line, both the labels and
the process features fluctuate around individual quasi-stationary points that are
subject to change over time. Therefore, the following correction and learning
strategies are proposed in order to achieve optimal predictions, see Table 6.1.
Training of theMLmodel might be donewith all lines together (i.e., one training
set containing data from all lines) or for each line individually (i.e., the number
of training sets is equal to the number of lines). The latter might be necessary
if the physical line properties differ significantly (e.g., higher temperature leads
to lower hardness in one line but higher hardness in another line). The hardness
drift is corrected for all conditions by the IIR filter proposed above, which
means that, first, the ML model is only learning to predict the deviation from
the corrected hardness and, second, the impact of long-term feature fluctuations
are already included in this correction. As a consequence, feature fluctuations
should be corrected by a filter as well, such that a deviation from the current
feature-mean can be learned as a deviation from the current hardness-mean,
which is reflected in the strategy Xy-all.
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6.2 Bainitizing

All four strategies were applied to the pipelines explained in the upcoming
sections. The test set results are the R2 score distributions shown in the box
plots of Figure 6.4, which confirms that Xy-all is the best strategy for feature and
label corrections. Accordingly, results in the following paragraphs are based on
the Xy-all approach.

Strategy Data correction Training

Xy-all X and y corrected train with all lines

y-all only y corrected train with all lines

Xy-indiv. X and y corrected train lines individually

y-indiv. only y corrected train lines individually

Table 6.1: Four strategies for data correction
and training

R
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Xy-all Xy-indiv.y-all y-indiv.

Figure 6.4: Distribution of R2-scores from 48
optimized pipelines for each strat-
egy

Feature selection and correlation

Different ranking methods were used to provide the ML algorithm with an
optimal feature subset to sort the features according to their predictive power
regarding the core hardness. Table 6.2 provides the top 11 features calculated
by each method, where the manual selection was made with knowledge of the
results of the other algorithms by domain expertise. The percental contribution
of each additional feature to an overall prediction score calculated by linear
regression8 (LR) is provided in Figure 6.5 a).

Undoubtedly, the time spent in the convection furnace tisothermal has the strongest
predictive power (due to the previously discussed tempering effect), accounting
already for about 75% of the total score. The second place is occupied by the
mean austenitization temperature T̄ furn,4 closely followed by the median starting

8 Is equivalent to the results of each successive round of SFS.
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Table 6.2: Top 11 features as ranked by the feature selection algorithms: Sequential feature forward
selection (SFS) with linear regression, genetic algorithms (GA) with linear regression,
manual selection, feature importance by random forest (RF), mutual information criteria
(MI), and F-score. Color code indicates affinity to line segment: process gas furnace,
salt bath, isothermal convection furnace

Rank SFS GA Manual RF MI F-score

1 tisotherm tisotherm tisotherm tisotherm tisotherm tisotherm
2 T furn,4 T furn,4 T furn,4 Aunload iso Aunload iso Aunload iso

3 Tfurn,1,med Tfurn,1,med Tfurn,1,med T furn,2 T furn,2 T furn,4

4 Tfurn,2,med T furn,2 T furn,2 T furn,4 Tfurn,3,min Tfurn,2,min

5 T salt,6 Tsalt,1,med T salt,6 Tfurn,2,min tfurn T furn,2

6 tfurn Tfurn,2,med tfurn Tfurn,2,med Tfurn,3,med Adefect door

7 Parttype A Parttype A Tfurn,1,med Tfurn,2,sd Tfurn,1,med

8 Aflamemissing Aflamemissing Tfurn,4,min tsalt Tfurn,2,med

9 Tsalt,6,sd Tsalt,6,sd Tfurn,2,max Tsalt,7,min Tfurn,1,min

10 Tsalt,5,min Tsalt,5,min tfurn Tfurn,4,max Tfurn,4,max

11 Tsalt,5,max T salt,6 Tfurn,4,max Tsalt,7,sd Tfurn,2,sd

temperature Tfurn,1,med, jointly contributing another 15%. With a salt bath
feature in fifth place, the SFS, GA, and manual set already contain information
of all line segments in the first hand full of features, where any additional
information seems to be only of marginal importance. Further, the top features
are remarkably uncorrelated, as can be seen in Figure 6.5 b), indicating a sound
feature ranking.

To achieve optimal predictions, the hyperparameters of eight plus one different
ML pipelines were optimized on the training set by 5-fold cross-validation, as
specified in Section 3.3.3. Eight of the pipelines, composed of a robust scaler,
percentile selection, and ML algorithm, were optimized by Bayesian search
(see Appendix Table A.1), while the ninth was created by tree-based genetic

166



6.2 Bainitizing

P
er

ce
n

ta
g

e 
o

f 
m

ax
 s

co
re

 (
%

)

40

20

60

100

0
F-score
MI
RF

SFS

Selection 
Method

Additional Feature

tisotherm

Tfurn,1,med

Tfurn,2,med

tfurn

Parttype A

Aflame missing

Tsalt,6,sd

Tsalt,5,min

80
0.5

0.0

-0.5

-1.0

1.0

t iso
th

er
m

T fu
rn

,1
,m

ed
T fu

rn
,2

,m
ed t fur
n

Par
t ty

pe
 A

A fla
m

e 
m

iss
in

g
T sa

lt,
6,

sd
T sa

lt,
5,

m
in

GA
Manual

0 1 2 3 4 5 6 7 8 9 10

Feature

a) b)

Tfurn,4

T fu
rn

,4

Tsalt,6

T sa
lt,

6

Figure 6.5: a) Performance development of LR when adding the next best additional feature from
each subset selection method b) correlation between features of SFS set

programming using TPOT. Each of the eight pipelines was optimized for every
feature subset presented above, leading to 48 combinations plus the TPOT
pipeline optimized only on the SFS set due to the expensive computational
resources. Figure 6.6 provides four types of information for each pipeline: a)
R2-scores during optimization, b) number of optimal features, as well as R2

scores for c) training and d) test set. The following paragraphs first discuss the
properties of the feature sets, move on to the number of features selected, and
finally elaborate on the different algorithms.

SFS, GA, and manual selection (referred to as the purple set) require far fewer
rounds of Bayesian search to reach an optimum than RF, MI, and F-score
(referred to as the pink set) for most pipelines. This fact is also reflected in
the number of features chosen from each set. While the number of features
selected from the purple set, averaging around 15, is quite similar for the various
pipelines, two different strategies emerge for the pink set. One could either take
many features and then evaluate importance (embedded methods) or only use
the most important feature(s), as can be seen for NNs, SVR, and KNN, to
avoid redundant information. It seems that algorithms try to compensate for
the suboptimal features in the pink set by adjusting their hyperparameters but
in most cases can not catch up (especially salient for the F-score) with the
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purple set, except for the tree-based ensemble methods that possess an internal
evaluation method to evaluate feature importance. Consequently, the purple
set is associated with better scores on the training set than the pink one, with
particularly bad results for the F-score. It may thus be inferred that a good
set of features facilitates pipeline optimization and robustness during training.
Unfortunately, in this case, it does not imply better generalization to the test set,
which might well be a particular problem with this entire data set, as the overall
R2 scores are very low and strongly dependent on the ML algorithm used.

The implemented ML methods can be loosely divided into three and a half
categories which are discussed below from left to right: 1a) LR, 1b) NNs (i.e.,
1-layer NN, 3-layer NN, and stacked NN), 2) ensemble trees (i.e., GB, RF,
TPOT), and 3) other (i.e., SVR, KNN).
Compared to its nonlinear bigger brothers, LR performs astonishingly well
during training and subsequent generalization to the test set, possibly due to
its inability to overfit the data. The comparison also suggests that the relation
between features and label is primarily of linear nature, and more complex
models like the NNs can barely make use of their ability to discover and learn
non-linearities. While NNs may perform slightly better on the purple training
set, they are much more prone to overfitting, as seen from the corresponding
test set. In fact, the opposite is true as well. Underfitting the pink training
set (comprised of only one feature) may lead to better results in the test set.
Overall, the stacked NN retains the best generalization score, most likely due to
its ensemble nature.

The popularity of ensemble trees is readily understood when considering the
minimal amount of hyperparameter optimization required to achieve excellent
training and test results (with slight overfitting for the RF), regardless of which
feature set they run through. Due to their embedded feature selection, they
smoothly handle the pink set, although they choose to use fewer features when
given a better-ranked set. However, using trees for regression comes at the cost
of accepting unsmooth prediction boundaries, as we will see in the upcoming
section.
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6.2 Bainitizing

The remaining methods generally exhibit the same behavior for the pink set
as the NNs did and have a slightly worse performance. They do not or barely
overfit the purple training set. Excuses for this shortfall for the SVR may be
its concentration on points further away from the mean that it uses as support
vectors but are most likely affected by stronger measurement noise9. The KNN
simply is not constructed for regression tasks in the first place.

Sensitivity analysis

For deeper comprehension of the relationships that the model has actually
learned on the training set, a sensitivity analysis is performed by holding all
but one input constant (i.e., median of the respective feature distribution) and
varying this feature from its smallest to its largest occurring value10. Because
the resulting inputs are partially artificial, the feature space is additionally
clustered using fuzzy c-means. The centroids of these 300 clusters can then be
used as prototypical inputs to the model to gain further understanding of the
true sensitivity of a particular feature variation. In the left column of Figure
6.7, 95% of the feature distribution lies within the dark blue line, while the
right column contains only these 95%. Additionally, the shaded areas show
where 50% (darker blue) and 100% (lighter blue) of the learned input-output
mappings lie when retraining the model 111 times by sliding a window of
1000 samples chronologically over the input of the training set. Learning from
training and test set results in the dashed line. Using Gradient Boosting for
prediction is indicated in orange.

Undoubtedly, the feature tisotherm (i.e., deviation from reference duration of
isothermal conversion in the convection furnace) exhibits the most considerable
variance explainingmore than 10HV of the hardness deviation from the median
with two particular outliers to the left and right. The prediction of hardness loss

9 These points are less useful
10 Based on the assumption that the model output is close to a linear combination of its inputs

around the median.
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with increasing dwell time in the convection furnace seems justified, though
the extrapolation for the converse is certainly not valid (i.e., shortening tisotherm
leads to increasing hardness), underscoring the dilemma of trustworthiness in
ML models. Since the algorithm has never seen (or at least not seen enough)
batches that were in the convection oven for too short a time, it cannot learn
the second bainite conversion behavior properly and, therefore, extrapolates
incorrectly. Consequently, the confidence in a particular prediction depends on
which part of the feature space the input originates. Boundary regions with few
data points may need to be made impermissible for prediction (this statement
naturally generalizes to the remaining features as well).

While the relationship above was physically explainable, the remaining features
have a narrow variance and contribute only single Vickers to the overall pre-
diction. Thus, the following explanatory attempts are merely hypotheses that
need to be validated by further research. Three of the four furnace features
(i.e., Tfurn,1,med, T̄ furn,2, and tfurn) support the hypothesis that a longer austeni-
tizing period leads to increased core hardness11. More carbides are resolved,
resulting in higher carbon content in solid solution, which increases the overall
hardenability, given that the microstructure had enough time for homogeniza-
tion. Conversely, reducing temperature T̄ furn,4 should decrease carbide solution,
which, according to the model, has the effect of also increasing hardness. It
may be speculated that slightly longer austenitization allows for a more homo-
geneous microstructure, whereas higher temperature at median time only leads
to locally increased carbide solution, which might prolong the transformation
start to bainite. Less austenite would then locally be transformed to the harder
stage-1 bainite, leading to slightly more stage-2 bainite. This line of reasoning
would be congruent with the salt bath feature T̄ salt,6, where higher salt bath
temperatures lead to slightly increased hardness by shortening the bainite trans-
formation start point of stage-1, although the prototypical cluster inputs seem
not to follow the sensitivity lines.

11 A higher temperature in sections 1 or 2 indicates that the final austenitizing temperature can be
reached more quickly, thereby prolonging austenitization. In this case, a better feature would
be the time spent over austenitization onset above 780 °C [26] S.55

173



6 Machine Learning

We can conclude that some of the core hardness variance can be reasonably pre-
dicted by a physically congruent ML model, with one feature doing most of the
work. Yet, the low variance of most features indicates either i) that the process
does indeed not generate more variance (i.e., it stems from prior processes, for
instance), ii) that unmeasured process properties affect the resulting hardness,
and/or iii) that the measurement error does not allow for better learning and
prediction.

From Figure 6.7 it may also be inferred that different algorithm families (e.g.,
NNS and GB), learn more or less physically reasonable feature-label mappings.
While NNs generally learn smooth functions12, as would be expected locally
for most physical relations, the tree family learns buckets that do not appear
physically meaningful for either inter- or extrapolation, as shown by the orange
line. The right column of this figure also shows how the mapping may change
over time, see 50% and 100% areas. Although the mapping direction is
almost always similar, the gradient can vary greatly due to feature correlation,
real physical changes, or initialization of model training, among other factors.
Whether it is necessary to incorporate these temporal changes in the model
training over time and to forget old data is discussed in the next section.

Rolling prediction

To understand the temporal behavior of the data-model interaction, Figure
6.8 illustrates three different training-prediction scenarios by comparing their
RMSE with the SD of the measured hardness, used as a baseline:

1. Blue scenario: rolling-retrain-from-start (rollstart) mimics retraining the
model every 500 batches with all previously collected data and predicts
the upcoming 500 batches Then it is retrained again. The complete
process was done three times.

12 Is dependent on the activation function.
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Figure 6.8: a) Standard deviation (SD) of core hardness and RMSE of hardness prediction in a
rolling window of 30 days, b) difference between RMSE and SD

2. Red scenario: rolling-retrain-window (rollwindow) uses only the last 1500
batches to predict the upcoming 500, also done three times.

3. Purple scenario: (trainonce) uses all data before the start of 2021 and then
predicts 2021 without retraining.

The RMSE of the predictions is highly dependent on the current SD. As we
have seen during sensitivity analysis, models learn slightly different feature-
label mappings over time, but depending on the training initialization, they may
also learn different mappings on the same data set. In some cases (e.g., Q4 2018,
Q2 2020), it might be slightly more beneficial to forget the old data and relearn
from newer data because some dependencies indeed changed (i.e., red curves
mostly below blue curves in these cases). However, for more extended periods,
it seems advantageous to use the entire data history for training (i.e., blue below
red). Once themodel has seen enough data, it seems there is nothing to be gained
from training on more data (i.e., purple is very similar to blue. It matches the
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observation in the sensitivity analysis Figure 6.7 of minimal difference between
training and training + test set). Regarding the implementation of such a pipeline
in an actual use case, retraining seems unnecessary if a particular data threshold
is exceeded, which is only valid if no process changes are anticipated in the
future.

The better than usual prediction performance (i.e., comparison of blue and
purple to SD) between April and July 2020 can be explained by the ramp
down due to the corona crisis, which led to short-time work and lower line
utilization. More batches, therefore, exceeded the usual dwell time in the
convection furnace and experienced a tempering effect (explaining the higher
SD) that can be predicted particularly well by the ML model.

Error distribution and ROC curve

Our final evaluation reveals what can and can not be expected from the pipeline
optimized above. Figure 6.9 shows a test set evaluation including a scatter plot
between predicted and measured hardness, their error distribution compared
to the benchmark derived in Section 4.2.3, and a ROC analysis, which are
discussed in that exact order below. Scatter plot and error distribution show that
a solid 88% of predictions lie in a band of ±10HV around the main diagonal,
which in and of itself is a satisfying result. Further, when averaging predictions
belonging to one cluster (introduced during sensitivity analysis), the maximal
error from the diagonal drops to ±12HV suggesting that a majority of outliers
are due to measurement error or unknown influences. The closeness between
the error distribution of prediction and benchmark also indicates that further
optimization might be intricate.

Although these results may justifiably be called decent, assertions regarding
their implication should be made with the utmost caution. This is because the
exciting action takes place at the edges of the distribution where predictability
plummets (e.g., for benchmark 99% of the error lie within∼30HV, for predic-
tion it is ∼42HV). Ultimately, the algorithm is supposed to predict outlieres,
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Figure 6.9: Left: scatter plot of predicted versus measured test set hardness. Right: resulting error
distribution compared to derived benchmark and ROC curve for various thresholds (i.e.,
deviation from the distribution mean) with respective areas under the curve (AUC)

that is, solve the classification problem between good head treatments and bad
ones (i.e., hardness of components is to soft (below a given threshold in shades
of red) or to high (above a given treshhold in shades of blue), see the left of
Figure 6.9). ROC curves for the harder distribution part point in a problematic
direction: the further the threshold (i.e., values beyond the threshold are de-
fined as outliers) is from the overall mean, the more the AUC decreases. A risk
assessment via the ROC curve suggests that, depending on the threshold value
between 20% and 60% of test specimen results with measurements beyond
that threshold would not be classified as outliers13. In sum, this means that
while most predictions are quite good, those that should indicate outliers do
not accomplish this task consistently, including the impossibility of knowing
whether these outliers are due to measurement artifacts or truly deviate in core
hardness due to unknown influences. The last section shall shed some light on
at least those outliers due to process deviations.

13 When accepting a 10% false positive rate and ignoring the uppermost threshold with very view
samples.
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Figure 6.10: Box plot of a) core and b) surface hardness for each cluster found by fuzzy c-means.
Colored points in cluster 99 represent the hardness of the 78 individual samples that
belong to this noise cluster, c) heat map that shows the percental composition of each
cluster by line along with the absolute number of samples in braces below

6.2.3 Clustering and anomaly detection

As we have seen above, accurately predicting hardness values is rather difficult,
and the imbalance of good to near-tolerance parts, as well as measurement error,
makes finding parts that are out of specification an evenmore daunting endeavor.
This section approaches the task by unsupervised clustering of process data
using fuzzy c means. Outliers may then be identified as those samples that are
too far away from any cluster centers.

The clustering is applied to the resampled time series of temperature, mass
flow, and C-level in the furnace as well as temperature in the salt bath. Five
groups were determined by increasing the number of clusters incrementally
until the algorithm sorts significantly fewer samples in the marginal cluster.
Samples whose highest probability of belonging to a cluster was less than
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Figure 6.11: Centroids of the 5 clusters found by using the inputs temperature, mass flow, and
C-level in the furnace as well as temperature in the salt bath

p< .24 were sorted into outlier14 cluster 99. The box plots in Figure 6.10
display the core and surface hardness distributions along with line affiliation as
heat map of every cluster. Two observations immediately catch the eye. First,
unexpectedly, the distribution of the outlier cluster is similar in variance and
even closer to the overall average than the five main clusters. Because this
cluster contains samples that went through a process maximally dissimilar to
the common procedure, it would have been expected to have much broader
variance15 with hardness values much closer to the tolerance limit. Based on
this observation, the process robustness may be considered remarkably high,
which is also evidence for the impracticality of finding outliers based on the
process data assessed to date. Second, clusters are strongly associated with

14 The value of p was chosen based on the distribution of all p values, where values smaller
p< .24 visually displayed an outlier set.

15 Or even show a bimodal distribution with peaks at "good" and "bad".
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particular lines, as indicated by corresponding colors. While cluster 3 (yellow)
consists of 96% line 20 and 23, cluster 1 (red) even entirely consists of line
26 samples. Thus, the box plots mainly show the joint hardness distribution of
two lines, respectively, which are very similar in their process behavior (conf.
Section 5.2.2). Furthermore, it can be clearly seen once again that the process
variation between lines is much higher than within individual lines over time.
In this case, a precise hardness prediction within a single line is more difficult or
rather the prediction of the deviation from the current mean hardness of a line.
In order to evaluate whether hardness differences between clusters may still
be attributable to process dissimilarities, their centroids are shown in Figures
6.11 and 6.12 along with the outliers in cluster 99, suggesting that non-arbitrary
differences between lines exist.

The hardness distribution of core and surface may be explainable by focusing
on the five main centroids. Comparing the yellow and red clusters, the latter
shows the lowest quenching temperature, which may lead to greater hardness in
the core but also slows down transformation to bainite16 at the surface, thus, the
lowest hardness there. This resembles the effect found for different test piece
positions in Section 4.2.2, where pieces lower in the batch are quenched faster
and become harder in the core and less hard at the surface. The lower enrichment
gas flow in the red cluster presumably also contributes to its decreased surface
hardness. Although it also measures the highest C-level, the difference between
carbon content per cluster is much smaller than mass flow.

While the outliers support the mass flow hypothesis (i.e., darker outliers are
harder and have an increased mass flow), they strongly contradict the quenching
hypothesis. Higher salt bath temperatures are associated with both higher core
and surface hardness samples from cluster 99. Nevertheless, it should be safe
to assume that the findings above are valid despite the outlier behavior because
these samples are anomalies and few in number. In summary, although it is
relatively easy to find these process-related outliers, predicting their behavior

16 Although lower quenching temperatures can lead to greater hardness at the surface, this is only
the case for a complete transformation to bainite at that temperature.
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Figure 6.12: Centroids of the 5 clusters found by using temperature in the furnace and in the salt
bath

in terms of hardness is not feasible at this time, reinforcing the previously
proposed guideline that predictions may only bemade for a batch whose process
parameters fall within a defined confidence window. Our second use case poses
a quite different challenge regarding process influences, as will be discussed
below.

6.3 Case Hardening

6.3.1 Forecasting and label tracking

In the following, the generalizability of the modeling approach from the pre-
vious section to the case hardening use case is investigated. Analogous to the
bainitization use case, data were divided into training and test set (i.e., training
data from before 2017 (70%), test data thereafter), then feature and label cor-
rection, selection, and optimization of several models was performed. Among
the most important were always features related to quenching and categorical
features such as station or component type. When given the opportunity, se-
lection algorithms rarely selected features that were corrected by a filter. While
training scores ranged from R2 = 0.1 to 0.2, the test set did not even hit the
dummy regression mark of zero, clearly exposing the non-generalizability of
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the models to newer data. As seen in the last chapter, stations change their
behavior over time which the standard ML algorithms could not capture. Track-
ing fluctuations of influences on the case-hardening process necessitates a more
elaborate approach since batches may take different routes, components geome-
try has an impact onmeasured hardness, and test specimens come from different
batch positions. However, hardness differences due to component type or batch
position may be assumed to be static (i.e., barely change over time).

Model Selection

Hence, a custommodelwas created (detailed in Section 3.4) that accounts for the
dynamic behavior of the stations by tracking their hidden states and correcting
for component and position offsets with respective variables. Interpretability of
such model parameters is then much better and optimization time reasonable.
At this point, the interested reader may already speculate about the possible
use of RNNs known for their ability to handle dynamic time series, which
were also tested and could in no way match the performance of well-calibrated
filters with additional offsets accounting for categorical influence. Accordingly,
this chapter will elaborate on the hidden states pipeline’s optimization and
evaluation, ending on a surprising note concerning the station’s influence.

Optimization

Close to the supposed use case, only every second measurement was used as
input during training of the model to then predict its respective successor, as was
specified in Table 3.12. Therefore, it is a forecasting model that uses its actual
state to predict the hardness outcome when a specific component at a specific
batch location takes a particular route through the stations before undergoing
heat treatment.

Optimization of the custom hidden states pipeline was performed on the training
set in the following way:
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• Row 1, 7, 13: Optimization of Score (0.1, 0.4, 0.7) via dual annealing
• Row 2-4, 8-10, 14-16: Optimization of Score (0.1, 0.4, 0.7) via differen-
tial evolution. That is, a total of three times per score

• Row 5+6: Optimization of Seat middle 0.1 and Shoulder 0.1 via differ-
ential evolution

• Row11+12: Optimization of Seatmiddle 0.4 and Shaft 0.4 via differential
evolution

• Row 17+18: Optimization of Shaft 0.7 and Core via differential evolution

Table 6.3: Optimal parameters for the custom hidden states pipeline, introduced in Section 3.4.
Optimization was performed via differential evolution and dual annealing(∗) on training
data. Sea: Seat middle, Sho: Shoulder, Sha: Shaft inside. V: vacuum furnace, F: deep
freezer, T: tempering furnace, pi and cj are in ∆HV. The color is intended to aid the
reader in recognizing the different magnitude of values within each parameter group
(i.e., a, b, p and c), where darker color generally indicates smaller or negative values

Filter Parameter Positions Components
RMSE aBase aV aF aT bV bF bT p1 p3 p4 p6 cA1 cA2 cB1 cB2 cC1 cC2 cD1 cD2 cD3

6.47∗ 0.95 0.99 0.45 0.99 0.01 0.04 0.01 -0.9 0.2 0.5 0.2 0.7 -1.3 -0.3 -0.5 -0.3 -0.4 -0.4 2.0 1.3
6.47 0.95 0.99 0.43 0.99 0.01 0.04 0.01 -0.9 0.1 0.5 0.2 0.7 -1.2 -0.3 -0.5 -0.3 -0.4 -0.5 1.9 0.7
6.57 0.98 0.24 0.56 0.94 0.05 0.02 0.03 -0.9 0.6 0.1 0.3 1.2 -1.0 -0.4 0.4 -0.2 -1.1 0.7 1.6 0.8

Sc
or

e
0.

1

6.58 0.96 0.48 0.26 0.98 0.07 0.04 0.01 -1.1 0.0 0.9 0.2 0.2 -1.9 -0.6 -1.4 1.1 -0.2 -0.5 5.6 -1.4
Sea1 8.18 0.97 0.82 0.38 0.92 0.03 0.04 0.04 0.1 0.8 1.2 -2.1 1.7 -1.7 -0.6 -1.4 1.8 0.2 1.9 4.8 4.1
Sho1 8.72 0.96 1.00 0.18 1.00 0.00 0.01 0.00 -2.2 -0.8 0.4 2.5 -0.1 -0.2 -0.3 -0.4 -0.3 -1.1 -2.1 4.6 -0.6

9.01∗ 0.95 0.96 0.39 0.34 0.04 0.05 0.05 -4.0 5.0 -0.8 -0.2 8.7 -5.5 -2.8 -3.4 -2.9 -3.4 5.9 -1.0 -1.6
9.02 0.94 0.98 0.28 0.27 0.02 0.05 0.05 -4.0 5.0 -0.8 -0.2 8.7 -5.5 -2.8 -3.4 -2.9 -3.4 5.9 -1.0 -1.6
9.07 0.94 0.98 0.29 0.79 0.02 0.08 0.02 -4.1 5.0 -1.0 0.1 8.3 -5.8 -2.7 -4.1 -4.1 -3.5 4.1 -2.3 -1.0

Sc
or

e
0.

4

9.07 0.97 0.95 0.41 0.35 0.04 0.06 0.07 -3.4 5.1 -1.3 -0.5 8.6 -4.9 -2.6 -4.3 -2.6 -3.3 8.2 -1.4 -4.1
Sea4 11.73 0.96 0.97 0.42 0.39 0.03 0.01 0.05 -5.2 5.0 -0.7 1.0 18.2 -9.1 -6.4 -6.5 -6.0 -9.9 9.9 -1.0 -2.4
Sha4 9.80 1.00 0.90 0.58 0.58 0.07 0.08 0.05 -3.5 4.5 -0.6 -0.4 -1.1 -2.1 -0.5 -0.8 0.5 1.0 1.5 1.9 0.9

7.80∗ 0.87 0.99 0.18 0.04 0.01 0.04 0.02 -0.9 1.1 -0.4 0.3 -0.4 -0.3 2.6 3.2 -0.5 0.2 -0.2 0.3 -0.8
7.80 0.87 0.99 0.17 0.04 0.01 0.04 0.02 -0.9 1.1 -0.4 0.3 -0.4 -0.3 2.6 3.2 -0.5 0.2 -0.3 0.2 -0.8
7.83 0.88 0.99 0.30 0.18 0.01 0.06 0.01 -0.8 1.1 -0.4 0.1 -0.4 2.0 2.5 2.6 0.2 -0.3 -0.7 0.8 -2.8

Sc
or

e
0.

7

7.92 0.91 0.51 0.15 0.53 0.10 0.06 0.01 -1.5 1.8 -0.2 -0.1 -0.2 -1.1 2.4 3.5 -2.5 -1.6 0.2 0.0 0.0
Sha7 8.60 0.90 0.98 0.44 0.00 0.02 0.03 0.04 -2.2 4.2 -1.7 -0.3 -1.3 -1.4 5.2 5.7 -0.6 -0.1 -0.4 0.0 -0.8
Core 9.62 0.90 0.56 0.18 0.15 0.02 0.04 0.00 0.3 -2.0 0.8 0.8 0.5 0.7 0.0 0.8 -0.3 0.6 -0.1 -0.1 -0.9
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The resulting parameterization is shown in Table 6.3 which is examined in the
following from left to right. Generally, dual annealing takes longer17 but is
always as good or better as the best differential evolution result, where optimal
parameters for the best results (i.e., first two lines of each score) are almost
equal, despite the very different optimization approaches. Interestingly, the
model performance often barely changes for parameter deviations from that
optimum (e.g., aV = 0.24 for Score 0.1), hinting at the slow sensitivity of some
features explored in the upcoming section. Tracking the base variation (e.g.,
influences by the material composition or processes previous to heat treatment)
is best done with a slow filter (i.e., high aBase), as expected, where Score 0.7
exhibits the fastest version, likely because material composition leads to the
most substantial fluctuations in that depth. Also, decreased hardness in that
depth may lead to less distorted measurements such that the filter does not have
to rely on memorized values as much to smooth out errors. Filter parameters18

of the stations give a mixed picture. The influence of the vacuum furnace
seems ambiguous (i.e., mostly high with some outliers) while tracking the
freezer seems hardly worthwhile. Surface near measurements are affected
significantly by the tempering furnace behavior, while deeper layers largely
remain unaffected.

Position and component parameters reveal one major drawback of using com-
bined scores. While the scores consistently have smaller RMSEs than the
measurement positions they were calculated from (mostly due to mitigation of
measurement error), they lose the ability to account for the partially very differ-
ent behavior of the underlying measurement position. For example, component
type affects hardness very differently for seat middle 0.4 cA1 = 18.2∆HV and
shaft inside 0.4 cA1 = -1.1∆HV. Expectedly, individual geometries in particular
influence Score 0.4, mainly because of the shape of the nozzle tips, as shown

17 Strongly dependent on the setting of the optimization algorithm, including the maximal number
of iterations, initial conditions, and convergence criteria.

18 As a reminder: the base state is updatedwith aBase and b= 1 - aBase, while the sumof coefficients
for each station type may be < 1, thereby indicating the relative importance of a specific station
type (i.e., when ai +bi is small, relative contribution of station type i is small).
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in the last chapter. To see how these parameters generalize to unseen data, the
following section evaluates training and test set.

Evaluation

Results of training and test predictions using the custom hidden states pipeline
are shown in Figure 6.13. Again, combined scores have lower RMSEs for all
depths then the original measurement positions, where overall lower RMSE
is generally coupled with a higher R2, as expected. Contrary to intuition, test
results often show better performance (i.e., higher R2 and lower RMSE) than
their corresponding training sets. This behavior is readily explained by the
chronological train-test split where the test set includes the diamond change
(leading to less scatter) and recalibration of the measurement devices (leading
to a large change in mean hardness)19, cf. Section 4.3.2.

For a better interpretation of the model performance, we compare it with the
results from measuring two components in one batch and then predicting one
component from the other, cf. Section 4.3.3, shown in the figure as triangles,
pointing in the direction of the better performance. Overall, model predictions
are as good or better than the triangle benchmark which means, that knowing
the approximated immediate past mean hardness of a meas. pos. might be better
than the measurement of one test specimen of a batch to make a prediction about
the hardness of the second test specimen20. Admittedly, it is not an entirely fair
comparison because theLRwas given no information about the component type,
which is particularly apparent for depths of 0.4mm, where model predictions
are much better than measurement predictions and components type has a

19 The spread between measurement values is artificially enlarged by this recalibration. Small
process or component type errors do now have a smaller share in the overall distribution.
Because filters can track this change, they reach a higher R2 score because what they can
measure (fluctuation) now has a bigger contribution to the hardness variance.

20 The reason for this is that the large drifts over time can be tracked by the filter and used for
prediction. The LR, on the other hand, needs to deal with all of the measurement errors and
has no information about the local temporal state of a meas. pos. Such findings further worsen
the trustworthiness of a single HV1 measurement.
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Figure 6.13: Prediction results (i.e., RMSE in red with y-axis on the left and R2 score in purple on
the right y-axis) for training and test set for different measurements position as well
as associated scores

significant influence. It also explains why the model on average exhibits a
higher R2 score for 0.4mm, because it can make good use of the component
type information, as compared to 0.1 and 0.7, which is also apparent in the
behavior over time shown in the next section.

Rolling prediction

A comparison of the models’ RMSE with the SD of the labels over time reveals
what can actually be predicted apart from the base variation. Figure 6.14
shows the dynamic behavior of the measurements’ scatter over time with no
particular correlation between labels but a clear drop in 2018 (i.e., diamond
change), explaining the lower RMSE of the test sets from above. It turns out
that for Score 0.1, there is nothing much to be predicted, most likely because
the carburization levels the playing field (i.e., very low influence of material
composition), the SD is already low, and the measurement positions have the
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Figure 6.14: a) Standard deviation (SD) of scores and RMSE of hardness predictions in a rolling
window of 100 days, b) difference between RMSE and SD

greatest hardness, increasing the probability of high measurement error. On the
other hand, for Score 0.4, component type and position give huge leverage for
better predictions. It also starts from a much worse SD, leaving plenty of room
for improvement.

Seemingly, models generalize well from training to test, although the end of
2019 foments some skepticism, with strongly degrading performance. While
the influence of the component type can be assumed to be stationary for some
time, we also saw in Section 5.3.3 that the hardness drifts slightly over time,
likely explaining the decreased performance in 2019. If components react
differently to changes in one of the stations, this offset has to be relearned, or
the component type be made a hidden state in the model21. Generally, it seems
like sound advice to continuously access performance when running models for

21 In fact, this seems unreasonable and may not even improve the performance of the model due to
the large number of different component types and the then irregular updating of these states.
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a prolonged period of time (e.g., over a year) and recalibrate parameters in case
of degradation. Lastly, performance loss may also be experienced when further
reducing the number of test parts or predicting too far into the future, as shown
in the next paragraph.

Reducing parts

Figure 6.15 assesses the information availability influence on model perfor-
mance. Two trends are immediately visible. Predicting further into the fu-
ture worsens performance, while some amount of phase delay correction (i.e.,
knowing the hardness of a successor batch before predicting the previous one)
increased the R2 score. Performance also deteriorates for higher n when only
testing each nth component or batch. However, the loss seems to be relatively
moderate even after quartering the testing efforts22 which might, therefore, be a
reasonable cost reduction strategy.

Moreover, even after reducing the tests to each eighth sample for the combined
score (e.g., score 0.7) is better than using every second sample with only the in-
dividual measurement positions. Still, caution should be exercised when using

22 Which would be equivalent to testing one nozzle body of every second batch.
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6.3 Case Hardening

such a method (i.e., skipping test specimens) because components of different
types may then be tested at different batch locations that may not be generaliz-
able to other types. Lastly, faster filters (a= 0.75) exhibit a higher vulnerability
to improper phase delay correction, and the recommended action derived there-
from might be to use a slower filter at the cost of a slight performance loss, as
was suggested by the optimization algorithms.

6.3.2 Analysis of variance

Finally, this section breaks down the variance into contributing factors and their
relative importance to the deviation from the mean of the label distribution for
each score, see Figure 6.16. The bars show the total contribution in HV, that is,
how much of the error can be better predicted than using a dummy regression
(predicting the mean of the label distribution). Pie charts show the relative
contribution to the variance with the predictable R2 score in the center. The
R2 itself is not coherent (i.e., R2(A) +R2(B) ̸=R2(A&B), which means that
contributions may be overlapping and should be seen as rough estimates23.

The measurement error (yellow) with an RMSE of 4.5 is taken from Section
4.3.4 and gives a lower bound of the measurement and specimen preparation
influence. It may be assumed to be comparable for the different scores and,
therefore, has the same size in every bar, although its relative contribution
changes significantly depending on the size of the remaining influences. Sta-
tion (i.e., the heat treatment process itself) has the smallest predictive power
explaining why the RMSE scores in Table 6.3 are insensitive to changes in filter
parameters of the freezer, vacuum, and tempering furnace. After all these anal-
yses, it turns out that the process is so stable that label variation does stem from
everything but heat treatment. For this reason, the use of a complicated hidden
states model, besides being interesting, is not necessary to obtain accurate pre-
dictions. Batch position and component type are better predictors. They have

23 Shares were determined by calculating the R2 score after using all but one specific feature and
by only using that specific feature.
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24 It goes without saying that not position and component type per se are responsible for the
differences, but differences in local temperature, process gas composition, and local quenching
intensity. In this respect, the local process is responsible but can only be represented here by
position and type. If the local data were available for each process, other predictions would
certainly be possible.
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more influence than process variations between batches themselves24. In most
cases, however, knowing the baseline fluctuation provides the most explanatory
power for label variation, although its relative contribution might vary quite
strongly over time, as can be seen between training and test set for Score 0.4. In
sum, most of the variance can be explained, with about half being predictable
by the model. The last chapter presents the respective recommendations and
conclusions that may be drawn from these analyses, as well as their applicability
in daily work.



6.4 Discussion

6.4 Discussion

While it is relatively easy to track the average hardness state influenced by
the line or furnace and the alloy composition over time using an IIR filter, in
industrialized stable heat treatment processes, it is generally difficult or even im-
possible to predict the hardness changes caused by the small random variations
in heat treatment parameters from day to day. If a prediction (or forecast) is to
be made for the process, a few well-corrected features are the best choice, with
a chronological train-test split being mandatory to detect overfitting. Predic-
tive performance must then always be reported over time to capture differences
between train and test set, changes in measurement (or process) variance af-
fecting the RMSE, and changes in long-term fluctuation affecting the R2 value
(a better score not always implies a more accurate prediction). Regarding the
potential for improvement in hardness prediction, either there are too few well-
calibrated, high-resolution sensors mounted in the line to detect these changes,
or, more likely, the process itself really does not contribute significantly to
hardness variance (with the exception of increased convection oven dwell time
on weekends). More meaningful are the component type, batch position, and
the number of samples used to update the filter, which means that hardness
testing can never be replaced entirely by predictions since too many factors are
involved that influence the hardness result. Furthermore, hardness tests not
only indicate successful heat treatment but can also reveal irregularities in the
preceding process chain from which no data are (or even can be) available, such
as the accidental mixing up of material. Ultimately, the measurement error
determines the upper bound on prediction accuracy, as it is itself one of the
most significant contributors to the overall variance.

Machine learning models must be trained with caution as their tendency to
overfit the data may lead to erroneous predictions for future unseen data. As
counteraction, initially, simple models are to be trained with a chronological
train-test split and few, well-selected, physically understood features. Although
ensemble methods (e.g., random forest or boosting tree) may lead to slightly
better predictions, training a simple NN and a linear regression model may be
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the better choice. The NN is preferable to the LR only when its performance
is significantly better in the test set. Compared to ensemble methods, NN and
LR have better interpretability and learn smoother functions with respect to the
true physical system properties. Predictions that extrapolate from the learned
distribution, particularly for such nonlinear processes as heat treatment, should
be averted. In short, machine learning is a sharp sword to be employed carefully.

These findings beg the question of whether an economically viable cost reduc-
tion strategy can be derived that trades-off the savings from reduced testing
with the consequences of producing out-of-spec components multiplied by the
probability of not detecting them (due to reduced testing). Empirical risk as-
sessment is quite problematic because none of the labels in the data set were
out of specification (in terms of hardness), and the measurement error is higher
for near-tolerance values (i.e., it is difficult to know if a measured hardness is
really out of specification or only very poorly measured). The answer to this
question depends, as so often, on the individual risk aversion of the production
manager and the quality department. The results suggest that halving the testing
effort is well worth it in our specific use cases. The methods presented above
may not find the outliers, but then there are also no outliers to be found. What
the methods can and should be used for is to track the individual features and
labels. As a result, critical trends are easy to identify, deviations from the norm
are immediately visible25, and the influence of line, type, and batch position
can be handily taken into account when evaluating a particular measurement
result. In order to reap the fruits of the preceding endeavors, some final hurdle
must be overcome, that is, deploying the methodology into daily production.

25 When a bad part is found, it is relatively easy to determine the likelihood of whether a defect
occurred during heat treatment or whether the problem lies elsewhere.
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7 Deployment

An industrial machine learning project may generally distinguish between three
phases: development, deployment, and operation, see Figure 7.1. While the
development cycle, a.k.a. CRISP-DM (CRoss-Industry Standard Process for
DM) [107] was the primary focus of this thesis up to this point, addressing the
business case, data collection, analysis, and understanding, as well as model
development and validation, the latter two are elaborated on in this chapter. They
are concernedwithmodel integration into day-to-day operations, requiring an IT
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Figure 7.1: Schematic development-, deployment-, and operations-cycle as used in the current
project, based on [107,136]
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infrastructure that enables easy access, monitoring, error logging, maintenance,
and scalability. These three stages are often referred to as MLOps when the
primary goal is to use machine learning models.

Often enough, specifically, the integration efforts are underestimated because
necessary resources such as clean data, knowledge of deployment platforms,
databases, source code management, and versioning, as well as continuous data
flow, are rarely covered by the data scientist who developed the model, and
should be consummated by an information or computer scientist [92].

For this thesis the systemwas fully implemented (including platform preparation
and pipeline automation) up to the Pipeline validation in shadow mode. That
is, the system can be monitored already and runs on the production system, but
release to replace test specimens has not yet been granted. The following sec-
tions dive into the deployment, explaining which steps were taken to implement
the models developed in previous chapters into daily business.

Platform preparation lies at the heart of a successful deployment for contin-
ued stable operation. The IT infrastructure used for this project is explained
in more detail below and shown in Figure 7.2. Choosing an integrated devel-
opment environment (IDE) certainly is a matter of personal preference. For a
tight budget Spyder seems better suited for the data sciences task due to its easy
access to variables and layout proximity to Matlab and R Studio, PyCharm and
Visual Studio might be the better choice for deployment since debugging and
including a source code repository is easier. If affordable PyCharm Professional
seems to be the best choice. This IDE is also used more often by computer
scientists. For versioning and traceability of code changes, any major Git-based
repository is sufficient (most companies have a subscription to the professional
version of the major brands).

Choosing a deployment environment (e.g., local machine, virtual machine, or
a container platform — in our use case OpenShift by Red Hat) requires a little
more thought as it depends on the available resources project scope and require-
ments for the future. While deployment on a local machine is relatively easy
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to accomplish, maintenance, stable operation, and scalability are horrendous
(e.g., system updates, accessibility for programmers, and hardware stability are
just a few of many caveats), thus this choice is only suggested as a stopgap
solution for a temporary rapid prototype or when resources are scarce. Virtual
machines (VMs) and container platforms alleviate most of these pain points,
with their own pros and cons: VMs are a well-understood industry standard that
emulate an entire computing environment and provide more security through
this encapsulation. Unfortunately, they take longer to boot, backup, or migrate
between platforms. In addition, their images typically consume gigabytes (i.e.,
a physical server can support fewer VMs than containers). Containers are more
lightweight (i.e., image in the megabyte range), spin up in milliseconds, and
require fewer IT resources to deploy, run, and manage. On the other hand, all
containers must run on the same operating system, are somewhat less secure,
and operate in an evolving ecosystem due to the novelty of the technology.

Database selection should be application-dependent but is commonly dictated
by available resources. For both use cases, a non-SQL database (i.e., Mongo
DB) was used for bainitization and an SQL DB (i.e., Microsoft SQL Server)
for case hardening. While deleting entries, creating new collections (e.g., using
Robo 3T), and dumping data in any format into a Mongo DB is fairly easy, its
speed (i.e., retrieving and filtering data) seems comparably slow. In contrast, an
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SQL DB enforces certain data types and structures, enhancing their integrity
and considerably speeding up retrieval. That means more thought must be put
into how to store the data into an SQL DB, but this may save a lot of time
later on. In addition, SQL is widely known and well documented, making it
easier to put the query burden on the database than loading more data and then
filtering with Python commands. Both DBs allow to either store the complete
model as a binary file or their weights. However, due to higher speed, data type
enforcement, and tabular structure, the SQL version is recommended, as it often
also makes visualization much easier, as most such tools (e.g., tableau) expect
tabular data or even have their own SQL interface. For this thesis, 4 tables
(resp. collections in the MongoDB) were created: Label, Feature, Prediction
and model.

The Label table holds one measurement value per row along with measurement
type, unit, the component type tested, time stamp, and unique ID that links to
a specific batch. In addition, it holds the filter output calculated1 from previous
labels of the same component type and salt bath line (or furnace) as an indication
of the current hardness state. Although it increases the table size, it is essential
to have each measurement in a single row because data can be processed and
filtered much easier. Moreover, new types of components and measurements
can easily be entered into the table, making the generalizability of the concept
to new components, measurements, or furnaces much easier.

Generally, the samewould be valid for the Feature table, but putting each feature
in an individual row would overload the database. Consequently, the number
of features to be stored in the DB must be known beforehand for the SQL
Database. Here, MongoDB can play out its full advantage since new features
can be added to a collection at any point. However, this functionality should
not be overused, as dissimilar structures between categories (e.g., components,
furnaces) lead to more complicated, error-prone processing.

1 These values are calculated by microservices explained in the upcoming section.
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The Prediction table is similar in structure to the Label table, with one prediction
in each row. Additionally, it holds the information with which model the
prediction was made.

The Model table holds the models used for prediction, along with a timestamp
of its last training, a timestamp of expiration (i.e., if retraining is necessary
every six months, it is reflected in this timestamp), as well as the features used
for the model and the training scores.

Pipeline automation involves several tasks. Splitting the tasks at hand (i.e.,
preprocessing, model training, and prediction) into microservices (i.e., indepen-
dent applications) and running them on the OpenShift platform provides a most
resource-efficient and stable deployment. It already integrates monitoring and
logging as well as scheduling (i.e., each microservice - except for model train-
ing - is executed every 15min), see Figure 7.3. This makes the maintenance of
individual modules much more effortless and enhances overall system stability.
In order to find out which data to process next (each heat treated batch has its
unique identifier), each microservice possesses its own table or collection2 in
a database and compares the entries it has already made to its designated table
with any new data available. This way, even if a service breaks down, it can
easily be reloaded and take of from the last new ID.

In contrast to the data mining process, where samples can be handled in batches,
daily business automation requires that IDs be handled individually, resulting
in rewriting the code to overcome the following challenges. Knowledge about
distributions or distinct values that previously was inferred from the data must
now be stored beforehand and then retrieved (e.g., detecting outlier). Failures
during the processing of a particular ID (e.g., missing entry or new categorical
value) must be caught by try-except statements, and their ID still be entered
into the database to acknowledge that the processing of this ID failed and to
prevent the application from trying to reprocess the same ID again and again.

2 In a non-SQL database a collection is the equivalent of a table in an SQL DB.
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Figure 7.3: Screenshot of OpenShift console used as deployment and operations framework

IIR filters need the last N values they calculated. Thus, either these values need
to be stored away (e.g., into a states table) and then retrieved during prediction,
or an FIR filter approximates it, and only the last measured values need to be
retrieved. Both strategies worked fine.

Finally, microservices are ideally written generically enough to handle differ-
ent types of components that are heat treated similarly. For our specific use
cases, only a few parameters (i.e., window size and temperature conditions)
are component-specific, such that the feature extraction task for solenoid valve,
camshaft, and roller shoe bainitization can be handled by the same task as for
the cylinder head with the given parameter changes. Of course, an individual
model must be trained for each label-component combination, but since all data
have the same format, the same microservice can be used for all combinations,
with the same being true for the predictions.

By setting the system up using this structured modularity, it is easy to retrain
models (i.e., by triggering the resp. microservice) and add new components
or salt bath lines. For a new component the respective feature extractions
parameters have probably to be adjusted (e.g., points in time for quenching,
maximal or minmal tempetures, etc.). This problem can also be solved by
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using ontologies between similar heat treatment processes [134]. As soon as
a sufficient amount of data is available in the data base for either one, the
respective microservice will pick up the additional component or line and start
making predictions for it.

A completely new heat treatment technique (e.g., carbonitriding) would require
more implementation effort since feature extraction could be wildly different
from the bainitizing procedure. The overall concept would stay the same, but
a good amount of analysis would be required before deployment. To ensure
that these services and pipelines are functioning properly, the entire framework
must be audited, as described below.

Pipeline validation and release are the finalmilestones to be achieved before
operations cash in the promised benefits. Therefore, three requirements must be
fulfilled to pass the system qualification test: Successful completion of shadow
mode, comprehensive Failure Mode and Effects Analysis (FMEA), and training
of and restriction to personnel allowed to interact with the system.

During shadowor testmode, the system is running as if used for daily operations,
but its output is still continuously compared to the physical measurements of
the label. It may not only reveal modeling mistakes but any data processing
difficulties (i.e., database connection, system speed, empty- or wrong database
entries) that may break the system. Malicious database entries can also be made
deliberately to test the system’s reaction and validate or restrict the manual
insertion of data upon entry into the database (e.g., drop-down menus for
categorical entries, check for number format and range if a numeric value is
expected).

An FMEA’s goal is to avoid defects from the outset instead of discovering and
correcting them later. For this purpose, possible causes of defects, severity,
and probability of their occurrence, as well as the probability of detecting them,
should be identified and evaluated already in the development phase, along with
respective countermeasures.
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Often the most significant source of trouble sits between the keyboard and the
back of the chair. Therefore, it is essential to train all persons who interact with
the system and have a small circle of administrators who can make changes
to any subparts. Adjustments to the system structure should only be made
after consultation with all users (i.e., defined responsibilities). Non-compliance
causes maintenance costs to skyrocket.

Monitoring and maintenance are essential tasks for continuous daily oper-
ation. This is true for the system status itself (i.e., are the services running as
scheduled, cf. Figure 7.3) as well as for the output the system generates (i.e.,
extracted features and predictions for the individual components, cf. Figure
7.4). Such monitoring provides the ability to continuously assess how much
discrepancy exists betweenmeasured and predicted values in order to respond to
trends promptly, Figure 7.4 (a). Color-coded confidence (based on the number
of available past data points and proximity to the main cluster) of the prediction
can also aid interpretation. Figure 7.4 (b) shows all the models for different
components, batch and measurement positions, as well as the R2 score they
achieve on the test set and the number of samples available for training. With
the exception of one component (with negative R2 value, colored red), the mod-
els show some predictive power, with the most informative legacy feature3 being
the dwell time in the convection furnace. Although predictive performance and
the number of samples are not directly correlated, too small a number of sam-
ples impairs predictive performance. Expectedly, the prediction of the surface
hardness is much more error-prone and may not be used as a reliable source for
true hardness, see Figure 7.4 (c).

3 The features used are displayed in the column LstFeat and have been calculated by SFS.
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(a) Prediction (circles) vs. measurements (lines) for the solenoid valve

(b)Models used for different components along with R2 score

(c) Scatter plot: prediction vs. measurement for solenoid valve

Figure 7.4: Screenshot of Tableau dashboards to monitor system status
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Heat treatment of batches is a rather intricate process, the result of which is
influenced by many parameters, starting from the material composition of the
components and preceding process steps, through the position of the batch,
the temperatures, and the gas mixture, to the measuring method. Over the
life cycle of a component being produced, these steps are optimized in terms
of stability and cost efficiency, starting with the low-hanging fruits such as
increased batch size, moving on to shortening process step duration until only
small improvements with minor economic benefits can be realized. During this
period of diminishing marginal improvements, the datasets continue to grow,
paving the way to discover previously undetected relationships through data
mining. Thesemethods allow to quantitatively estimate the relative contribution
of each influencing factor to the final heat treatment result (with the focus on
hardness in this work), thus highlighting the area with the highest potential for
improvement and cost reduction effects. Raising profit margins by replacing
destructive end-of-line testing with machine learning predictions is the primary
focus here.

From two use cases, bainitizing of cylinder heads (100Cr6, 20 000 batches)
and case hardening (CH) of nozzle bodies (18CrNi8, 7 000 batches), data
were collected and merged, including steel manufacturers’ material compo-
sition, meta- and sensor data from the processes, hardness measurements of
components, and hardness comparison plates. Preparation and analysis were
performed according to the framework for batch heat that treatment developed
in this work, consisting of data preprocessing (merging and cleaning sources,
extracting features, and correcting drifts), label and feature analysis, as well as
machine learning.
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Label analysis reveals that highly optimized industrialized heat treatment
achieves a quite narrowqualitywindow for both processes (bainitizing: ± 35HV,
SD= 8.6HV, CH: ± 40HV, SD= 9 - 15HV), with almost no hardness values
out of tolerance. A significant portion of variance is caused by measurement
noise (RMSE to hardness comparison plate reference: 2.2 - 3.9HV for baini-
tizing (HV10), 4.4 - 5.5HV for CH (HV1)) which is further amplified by test
specimen preparation. These additional effects were quantified by testing mul-
tiple specimens from the same batch and using one to predict the mean value
of the remaining positions. We can see that the current measurement and pro-
cessing procedure alone limits the predictive capacity to a maximum score of
0.5 - 0.7 resulting in a predictability benchmark that is batch and measurement
position-dependent (bainitizing: RMSEcore = 5 - 6HV, RMSESurface = 6 - 8HV,
CH:RMSE= 9 - 10HV). The offset between different batch positions (up to:
15HV (bainitizing), 10HV(CH)) could be largely explained by temperature
uniformity studies for bainitization but could hardly be explained for CH. Mea-
surement positions on the same component for bainitization were uncorrelated,
while those of equal depth for CH were predictable from each other with
R2 = 0.3 - 0.42. To mitigate the imprecise HV1 hardness test, measurement
positions of the same depth were combined to the scores 0.1, 0.4, and 0.7mm.
Lastly, the large drifts over time account for another 10 - 20HV sometimes at-
tributable to changes in measurement procedure (like recalibration or diamond
changes of hardness testers) and sometimes to the features elaborated on below.

Feature analysis shows that most of the long-term hardness fluctuations
can be readily explained by the material composition, where even slight carbon
fluctuations (± 0.01wt.-%) in the rawmaterial lead to significant hardness drifts.
Both data-driven machine learning approaches and established physical models
(e.g., Maynier) arrive at comparable weights for the individual elements and can
predict the direction of hardness change as the material composition varies, but
oftenmisestimate the amplitude because alloy composition is not the only factor
contributing to fluctuations. That is, reacting to future material changes with,
for example, modified quenching pressure is possible but certainly not easy.
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Changes in process parameter settings (e.g., tempering furnace temperature
between batches) also explain some of the hardness jumps over time with
correlation coefficients up to r = .3-.4. These correlations must be examined
with utmost caution and sound domain expertise to avoid falling for spurious
correlations. Measured temperatures and pressures generally have very limited
predictive power. The extracted process features from these measurements
show minimal variation (e.g., ± 2 °C during austenitization for both bainitizing
and CH) and are barely correlated with hardness r < .05. This is true even
after correcting for all other known influences (long-term fluctuations, offsets,
etc.). Effectively, the process or feedback controller does a marvelous job
where the difference between successive batches on the same furnace or line
is much smaller than between different lines. Consequently, depending on the
station(s) used for production at the same time, hardness difference caused by
route, line, or component may be up to 7HV (bainitizing) and 20HV(CH).
Alarms either do not provide any predictive information regarding hardness
or hint at process deficiencies that are easily visible from process parameters,
like a prolonged dwell time of the second bainitization stage over weekends.
Employing this holistic influence quantification through data mining (incl. time,
material, process, batch position, plant, measuring equipment, etc.), statistically
robust, generalizable statements can be made about the source of variance,
and recommendations can be derived as to where intervention would be most
beneficial in order to reduce the variance and further optimize the process.
The prediction of this hardness variance using machine learning methods is
summarized below.

Machine learning based on process parameters produces quite different re-
sults for the two use cases, except for fluctuations. Fortunately, these can reliably
be tracked with a first-order Butterworth filter that uses weights around b= 0.1
from newly measured values to update its state. It loses about 0.7 RMSE points
when the number of support points used to track trends and predict the next
values is repeatedly halved.
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For bainitization label driftsmust be corrected for each individual line (which
also differ in the hardness variance produced), as well as their features, which
should be calculated based on domain knowledge about the process. Generally,
sequential feature forward selection and genetic algorithms then deliver themost
predictive uncorrelated subsets. After comprehensive pipeline optimizations
with Bayes search, small, robust ML models that can learn minor nonlinearities
are best suited for predictions as they barely overfit and still capture the relevant
relationships. Although tree-based ensembles generally perform well, a sensi-
tivity analysis also revealed that they can only learn buckets and may not be
adept at extrapolation. This analysis also shows that prediction from minimal
variance features does not explain a lot of final hardness variance attributable
to the process variation itself (R2 = 0.11). Unsupervised analysis with fuzzy
c-means mainly found clusters representing single lines and demonstrates that it
is almost impossible to detect hardness outliers based on the heat treatment pa-
rameters themselves. This is also reflected in a ROC analysis, which can reach
an AUC of up to 0.9 for some thresholds, but also shows that between 20 - 60%
of the outliers would not be detected. These thresholds do not represent the
true tolerance limits, as there were almost no true outliers to begin with.

For case hardening the classical ML approach does not work because the
process variations are too small and the measurement noise too large. Instead,
predicting the hardness of subsequent batches can be accomplished with a hid-
den state pipeline that considers material variation by tracking routes through
various stations and the position of the test specimens in the batch and its
component family. This forecast is as good as testing two specimens from
the same batch and then predicting one from the other. The resulting RMSE
and R2 depend strongly on measurement position. Further, a rolling prediction
over time shows that parameters seem to be not time-invariant and should be
relearned each year. This pipeline may explain up to 80% of the variance,
with an individual breakdown showing that the largest scatter is caused by mea-
surement error, followed by general fluctuations mainly due to alloy changes.
Interestingly, the station seems to have almost no influence here.
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8 Summary

Deployment in daily operation was done on an OpenShift platform and works
for bainitization of various component categories. A cost reduction strategy
(e.g., halving the number of test specimens) may then be implemented based
on the known factors contributing to the variance by monitoring all features
and label drifts, making predictions from the analyzed features, excluding those
batcheswith properties that are too far from themain cluster, and hedging against
poor predictions by adding an additional safety band around the prediction that
must not exceed the limits for the measurements.

To summarize, the proposed framework shows how to collect and preprocess
data, derive a benchmark for maximum achievable predictability, break down
the variance into its contributing factors, and apply state-of-the-art machine
learning methods to predict the hardness of heat treated batches. Furthermore,
it is shown how to launch a use case in daily operation and transfer the findings
to another component. Although many relations could be discovered by data
mining and explained by material science, the data-driven models are unusable
for extrapolation and the development of new heat treatment processes. Hybrid
models, which have inherited their internal structure from physical models and
use machine learning methods only for complicated relationships, have the
potential to further increase process understanding and open up a whole new
avenue for process development.
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Batch Position Pairs
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Figure A.1: Bainite: Estimated R2 score distribution by 4000-fold bootstrapping for each position
pair. Whiskers indicate the 5th and 95th percentiles of the distribution, boxes the 2nd
and 3rd quartile, notches the 95% confidence interval of the median
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Figure A.2: Bainite: Scatterplot between batch positions regarding core and surface hardness.
Upper left corner indicates the mean square error e for the normalized data, while
the lower right corner contains the correlation coefficient r. Each point depicts the
hardness measurement of two test specimens’ positions from the same batch with the
hardness of one position on the x- and the other position on the y-axis. The deviation
from identity (i.e., same hardness), indicated by the grey diagonal line, is due to
several reasons including, position bias, measurement errors, different hardness and
hardenability of the blanks and process noise (e.g. convection in the furnace and salt
bath). The lower left corner of each subplot contains the correlation coefficient
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Figure A.3: Bainite: Scheffetest for pairwise comparison of all position pairs showing their signif-
icant difference
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Figure A.4: Bainite: Histogram of mean absolute error in HV between the three imprints and
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Figure A.5: CH: Picture of IPSEN vacuum furnace used for case hardening nozzle bodies. Black
rods are used for heating and white nozzles inject the acetylene
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Figure A.6: Left: Mean surface hardness over time per furnace smoothed by a centered rolling
window of 31 days (± 15 d). Lines are only shown for production (A rolling window
would also provide values for a day with no production using the days before and or
behind the current day. In this case values are set to NaN). Right: boxplot of surface
hardness with median and its 99.9% CI
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Figure A.7: Bainite: Rolling window over dwell time and core hardness per line for salt bath. No
effect can be found for reduced salt bath dwell time
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Table A.1: Bainite: Optimization results of Bayes search of different pipelines and feature subset
selections

model name select by cv5 mean cv5 median percentile n feature

LR SFS 0.12 0.120 87 52
LR GeneticAlgo 0.118 0.114 37 22
LR manual 2 0.116 0.121 100 6
LR RandomFor 0.11 0.113 6 10
LR Mutual Inform 0.11 0.111 20 36
LR F score 0.087 0.084 1 1

model name select by cv5 mean cv5 median percentile n feature alpha beta 1 beta 2 layer size
NN single SFS 0.127 0.125 20 12 0.005 0.500 1 100
NN single GeneticAlgo 0.127 0.133 26 15 0.006 0.878 0.876 86
NN single manual 2 0.127 0.133 100 6 0 0.500 0.751 100
NN single RandomFor 0.108 0.108 1 1 0 0.753 1 100
NN single Mutual Inform 0.102 0.099 1 1 0.062 0.500 0.500 100
NN single F score 0.068 0.072 2 3 0.5 0.85 0.799 4

model name select by cv5 mean cv5 median percentile n feature layer 1 size layer 2 size layer 3 size
NN 3 layer SFS 0.13 0.135 19 11 100 2 45
NN 3 layer GeneticAlgo 0.121 0.122 23 13 21 100 62
NN 3 layer manual 2 0.126 0.132 100 6 100 30 42
NN 3 layer RandomFor 0.105 0.107 1 1 100 45 100
NN 3 layer Mutual Inform 0.105 0.110 1 1 100 100 100
NN 3 layer F score 0.051 0.048 3 5 83 2 72

model name select by cv5 mean cv5 median percentile n feature layer size layer size layer size
NN stacked SFS 0.127 0.133 14 8 100 1 100
NN stacked GeneticAlgo 0.132 0.136 28 16 83 27 72
NN stacked manual 2 0.126 0.130 100 6 3 67 23
NN stacked RandomFor 0.108 0.115 8 14 1 27 45
NN stacked Mutual Inform 0.099 0.092 7 12 99 10 100
NN stacked F score 0.072 0.103 5 9 30 94 80

model name select by cv5 mean cv5 median percentile n feature learning rate max depth min samp. leaf min samp. split n estim.
GB SFS 0.124 0.133 54 32 0.015 4 30 26 254
GB GeneticAlgo 0.124 0.133 30 18 0.200 2 1 30 78
GB manual 2 0.122 0.126 100 6 0.065 2 1 30 207
GB RandomFor 0.121 0.125 100 183 0.042 2 1 2 300
GB Mutual Inform 0.122 0.127 99 181 0.038 2 30 15 244
GB F score 0.122 0.128 41 75 0.082 2 16 21 86

model name select by cv5 mean cv5 median percentile n feature min impur. decr. max depth min samp. leaf min samp. split n estim.
RF SFS 0.124 0.135 40 24 0.029 8 12 2 200
RF GeneticAlgo 0.123 0.133 54 32 0.043 9 12 16 274
RF manual 2 0.119 0.125 100 6 0.063 14 1 30 300
RF RandomFor 0.121 0.129 72 131 0.013 7 17 30 191
RF Mutual Inform 0.121 0.130 100 183 0.001 11 7 2 300
RF F score 0.122 0.131 86 157 0.001 8 22 2 300

model name select by cv5 mean cv5 median percentile n feature C epsilon tol
SVR SFS 0.116 0.116 19 11 0.068 0.084 0
SVR GeneticAlgo 0.114 0.113 17 10 0.019 0.9 0.002
SVR manual 2 0.114 0.118 100 6 0.017 0.016 0
SVR RandomFor 0.094 0.099 1 1 0.008 0.404 0
SVR Mutual Inform 0.094 0.098 1 1 0.003 0.9 0
SVR F score -5.735 -0.954 1 1 0.001 0.088 0.001

model name select by cv5 mean cv5 median percentile n feature leaf size n neighbors p
KNN SFS 0.119 0.117 19 11 35 92 1.561
KNN GeneticAlgo 0.119 0.114 29 17 100 100 2.000
KNN manual 2 0.116 0.118 100 6 100 100 1.663
KNN RandomFor 0.101 0.102 1 1 87 96 1.043
KNN Mutual Inform 0.101 0.101 1 1 2 97 1.048
KNN F score 0.08 0.081 37 67 62 100 1.000
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