KIT | KIT-Bibliothek | Impressum | Datenschutz

Swarm Reinforcement Learning For Adaptive Mesh Refinement

Freymuth, Niklas 1; Dahlinger, Philipp 1; Würth, Tobias ORCID iD icon 2; Reisch, Simon 1; Kärger, Luise ORCID iD icon 2; Neumann, Gerhard 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)
2 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

Adaptive Mesh Refinement (AMR) enhances the Finite Element Method, an important technique for simulating complex problems in engineering, by dynamically refining mesh regions, enabling a favorable trade-off between computational speed and simulation accuracy. Classical methods for AMR depend on heuristics or expensive error estimators, hindering their use for complex simulations. Recent learning-based AMR methods tackle these issues, but so far scale only to simple toy examples. We formulate AMR as a novel Adaptive Swarm Markov Decision Process in which a mesh is modeled as a system of simple collaborating agents that may split into multiple new agents. This framework allows for a spatial reward formulation that simplifies the credit assignment problem, which we combine with Message Passing Networks to propagate information between neighboring mesh elements. We experimentally validate our approach, Adaptive Swarm Mesh Refinement (ASMR), on challenging refinement tasks. Our approach learns reliable and efficient refinement strategies that can robustly generalize to different domains during inference. Additionally, it achieves a speedup of up to $2$ orders of magnitude compared to uniform refinements in more demanding simulations. ... mehr


Volltext §
DOI: 10.5445/IR/1000169027
Veröffentlicht am 04.03.2024
Originalveröffentlichung
DOI: 10.48550/arXiv.2304.00818
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000169027
Verlag arxiv
Umfang 36 S.
Schlagwörter Multiagent Systems (cs.MA), Machine Learning (cs.LG), Numerical Analysis (math.NA)
Nachgewiesen in Dimensions
arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page