

CALIBRATING AIMSUN NEXT AND PTV VISSIM FOR THE ASSESSMENT OF TRAFFIC FLOW QUALITY ON TWO- AND THREE-LANE RURAL HIGHWAYS

Claude Marie Weyland¹

Institute for Transport Studies

Karlsruhe Institute of Technology, Karlsruhe, Germany, 76131

Email: claude.weyland@kit.edu

ORCID iD: 0000-0002-2936-1067

H. Sebastian Buck

Institute for Transport Studies

Karlsruhe Institute of Technology, Karlsruhe, Germany, 76131

Email: sebastian.buck@kit.edu

ORCID iD: 0000-0002-2460-9510

Justin Geistefeldt

Institute for Traffic Engineering and Management

Ruhr University Bochum, Bochum, Germany, 44801

Email: justin.geistefeldt@rub.de

ORCID iD: 0000-0002-2596-8398

Peter Vortisch

Institute for Transport Studies

Karlsruhe Institute of Technology, Karlsruhe, Germany, 76131

Email: peter.vortisch@kit.edu

ORCID iD: 0000-0003-1647-2435

Word Count: 6327 words + 1 table(s) = 6577 words

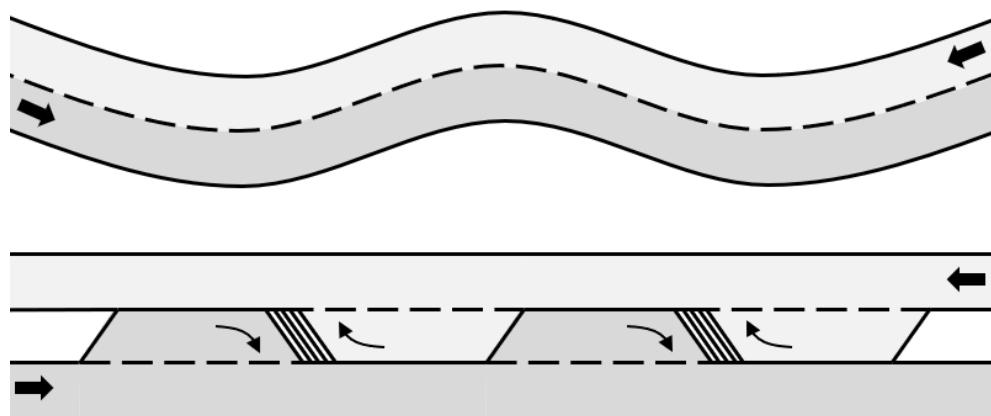
Submission Date: August 1, 2021

¹Corresponding Author

1 ABSTRACT

2 The German Highway Capacity Manual HBS provides analytical evaluation procedures to assess
3 the quality of service of rural highways. Microscopic traffic flow simulation can be applied as an
4 alternative method if the constraints of the analytical evaluation procedures are not fulfilled.

5 In this study, practical guidelines and standard parameter sets for the microscopic traffic
6 flow simulation of two- and three-lane rural highways were developed for Aimsun Next and PTV
7 Vissim. For this purpose, artificial rural highway segments, comparable to the models used to
8 develop the procedures in the HBS, are replicated and calibrated based on the speed-flow relation-
9 ships given in the HBS. The resulting standard parameters can be applied as starting values for
10 calibrating rural highway models in practice.


11 Both software tools mostly reproduce the speed-flow relationships of the HBS well. The
12 calibration process revealed that the desired speeds, the acceleration behavior and the speed behav-
13 ior in curves are most relevant for the traffic flow simulation of rural highways in accordance with
14 the analytical evaluation procedure of the HBS. The best results are achieved with low longitudinal
15 gradients and low percentages of heavy vehicles.

16 The validation of the derived standard parameters with field data showed that the simulation
17 results represent the observed speed-flow relationships well. Deviations between the measured
18 and simulated speeds mainly result from local influences, particularly speed limits. If these local
19 influences are modeled, the simulation results represent real traffic flow well.

20 **Keywords:** Microscopic traffic flow simulation, rural highway, highway calibration,
21 speed-flow diagram, HCM, HBS

1 INTRODUCTION

2 Two-lane rural highways account for the highest share of the total road network length in most
 3 countries worldwide. They have a single carriageway with two lanes for both driving directions
 4 and mainly serve to connect towns and villages. The design and operational characteristics of
 5 rural highways, including the cross-section width, the horizontal and vertical alignment, as well
 6 as the posted speed limit, usually depend on their function in the highway network and the traffic
 7 volume. For highways carrying mainly long-distance traffic and/or high traffic volumes, three-lane
 8 cross-sections are increasingly used in many countries to avoid passing maneuvers in the opposing
 9 traffic lane and hence improve traffic safety. Three-lane rural highways have alternating secured
 10 passing sections in both travel directions (see Figure 1).

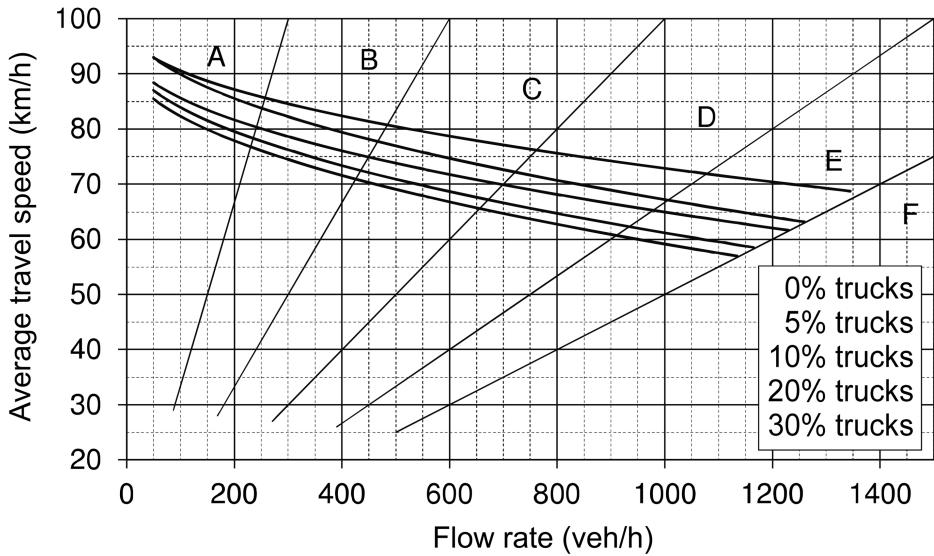


FIGURE 1 : Design of a Two- and Three-lane Rural Highway

11 Traffic flow on two- and three-lane rural highway segments is mainly characterized by
 12 • the effect of the design parameters (including grade, curvature, and cross-section width)
 13 on the drivers' speed behavior,
 14 • the impact of platooning behind slow vehicles, particularly heavy vehicles, and
 15 • the opportunity to pass slow vehicles by using either the opposing lane of two-lane sec-
 16 tions (in case of a sufficient sight distance and no opposing vehicles) or the passing lane
 17 of three-lane sections.

18 Based on empirical data from rural roads in Germany as well as microscopic traffic simula-
 19 tion, Brilon and Weiser (1) demonstrated that the speed-flow relationship of two-lane highways has
 20 a concave shape. A theoretical model by Wu (2) also revealed a concave shape of the speed-flow
 21 diagram for roads with one lane per direction. This specific characteristic of traffic flow on rural
 22 highways can be explained by the impact of heavy vehicles on the average speed of all vehicles. At
 23 low volumes, a few slow heavy vehicles in the traffic stream already lead to a significant reduction
 24 of the average travel speed. At higher volumes, the further reduction of the average travel speed
 25 is smaller because most vehicles already travel in platoons behind heavy vehicles or other slow
 26 vehicles.

27 For the planning of new highways or the enhancement of existing highways, a quality of
 28 service assessment is performed. Similar to the U.S. HCM (3), the German Highway Capacity
 29 Manual HBS (4) provides analytical evaluation procedures to estimate the level of service of dif-
 30 ferent types of road facilities. If the constraints of the analytical evaluation procedures are not

FIGURE 2 : Speed-flow Relationships for Two-lane Highways with Longitudinal Gradient < 3% and Curvature < 50 gon/km According to the German Highway Capacity Manual HBS (4)

1 fulfilled, alternative methods like microscopic traffic flow simulation must be used for the assessment.
 2 This is particularly the case if there are strong interactions between traffic flow on adjacent
 3 segments or intersections, and hence a holistic traffic flow analysis is required.

4 In this study, microscopic traffic flow models in Aimsun Next and PTV Vissim are cal-
 5 ibrated based on the speed-flow relationships given in the German Highway Capacity Manual
 6 HBS. The aim is to develop practical guidelines for performing and evaluating microscopic traf-
 7 fic flow simulations of two- and three-lane rural highways consistent with the HBS assessment
 8 procedure. The calibration of the models focuses on consistency with the results of the analytical
 9 procedures of the HBS. The objective is to enable a standardized application of microscopic traffic
 10 flow simulations for quality of service assessment. Therefore, recommendations on the methodol-
 11 ogy and standard parameter sets for the simulation tools Aimsun Next and PTV Vissim are derived.
 12 Such standard parameter sets and practical guidelines were already developed for multi-lane free-
 13 ways (5, 6). The results are to be incorporated into the German guideline for microscopic traffic
 14 flow simulation for both freeways and rural highways.

15 ASSESSMENT OF RURAL HIGHWAYS ACCORDING TO THE GERMAN HIGHWAY 16 CAPACITY MANUAL

17 The procedure of the German Highway Capacity Manual HBS (4) for the assessment of traffic flow
 18 quality on rural highways is applicable to two- and three-lane highways with single carriageways
 19 as well as four-lane highways with separated carriageways for each direction. The traffic density
 20 per lane is used as the measure of effectiveness. This traffic density is a fictitious value as it is
 21 calculated as the ratio of the total traffic volume (including heavy vehicles) and the average travel
 22 speed of passenger cars only. Different from the assessment methodology for rural highways in the
 23 U.S. HCM (3), follower density or percent time spent following were not considered as measures of
 24 effectiveness in Germany because platooning of vehicles is regarded as an inevitable consequence
 25 of traffic flow on a single directional lane. Therefore, traffic flow parameters addressing the pla-

1 tooning of vehicles are not considered to be appropriate measures of highway performance (1).

2 To estimate the traffic density, speed-flow relationships for different geometric and traffic
3 parameters are provided. The geometric parameters that are considered in the HBS procedure for
4 two-lane rural highways are the curvature, measured in gon per kilometer, and the longitudinal
5 gradient in %. Both parameters are binned in four classes each. For three-lane rural highways,
6 only the gradient is considered as an influencing parameter because the curvature of three-lane
7 highways is usually low. Other geometric parameters like the lane width or the lateral clearance are
8 not considered to significantly influence traffic flow as long as the standards of the German Rural
9 Highway Design Guidelines (7) are met. To account for the nonlinear influence of heavy vehicles
10 on the average speed, the traffic volumes are not transferred into passenger car units. Instead,
11 different speed-flow relationships are provided for 0, 5, 10, 20, and 30% heavy vehicles. As an
12 example, Figure 2 shows the speed-flow diagram for two-lane rural highways with a longitudinal
13 gradient less than 3% and curvature less than 50 gon/km.

14 The speed-flow relationships for two- and three-lane highways given in the HBS originate
15 from simulations of artificial highway segments with a simulation tool called LASI. LASI was
16 developed explicitly for modeling traffic flow on single segments of German rural highways, which
17 were calibrated based on field data (8–10). The documentation of the simulation tool is available
18 in German, but the tool itself is not accessible and cannot be used for rural highway simulation
19 applications. Hence, there is a need to replicate the HBS speed-flow relationships with modern,
20 available simulation tools.

21 **MODELING RURAL HIGHWAYS IN AIMSUN NEXT AND PTV VISSIM**

22 To simulate traffic flow on rural highways consistent with the HBS assessment procedure, a sim-
23 ulation tool needs to replicate the effects of the longitudinal gradient, curvature, heavy vehicles,
24 and passing maneuvers. Aimsun Next and PTV Vissim were chosen for this study because they
25 are two of the most used commercial software tools on the market, and both contain the necessary
26 components for simulating rural highways. Aimsun Next uses the Gipps car following model (11)
27 for traffic flow modeling. For the simulation of rural highways, a model for passing maneuvers
28 in the opposing lane of traffic is included (12). PTV Vissim is based on the psycho-physical car
29 following model, according to Wiedemann (13). A model for replicating overtaking in the oppos-
30 ing lane of traffic on rural highways is also implemented (14). Aimsun Next version 20 and PTV
31 Vissim version 2020 are used in this study.

32 The HBS assessment procedures are based on the simulation results obtained with the sim-
33 ulation tool LASI. For the simulations with LASI, different artificial highways segments repre-
34 senting typical curvatures and longitudinal gradients in Germany were modeled. To replicate the
35 HBS as accurately as possible, it is useful to model the assumptions made in LASI in Aimsun
36 Next and PTV Vissim. The artificial highway segments and other basic assumptions of LASI are
37 presented in the Section *Simulation Setup*. Section *Calibration* describes how to transfer the indi-
38 vidual components to Aimsun Next and PTV Vissim. The calibration results are compared with the
39 HBS speed-flow diagrams in Section *Calibration Results*. Finally, empirical data is used to verify
40 whether the simulation results agree with measured traffic flow on rural highways (Section *Valida-
41 tion with Field Data*).

1 Literature Review

2 When microscopic traffic flow simulations are applied for quality of service assessment, the cali-
3 bration of the models is of great importance.

4 Research on the simulation of rural highways in Germany had its peak in the 1970s and
5 1980s. Based on many studies, the simulation tool LASI was developed and used to simulate the
6 speed-flow diagrams in the HBS. LASI 2+1 refers to further development of LASI and is used to
7 model three-lane rural highways. LASI and LASI 2+1 are based on empirical data. (8–10)

8 The TWOPAS (TWO-lane PASSing) microscopic traffic flow model plays an important
9 role in simulating two-lane rural highways (15, 16). Initially developed by the Midwest Research
10 Institute between 1971 and 1974, TWOPAS was used in the Highway Capacity Manual 1985 (17)
11 to analyze capacity and level of service for two-lane rural highways. TWOPAS has been updated
12 several times since then to include the ability to simulate passing sections, longitudinal gradients,
13 and short four-lane sections. TWOPAS is used in some research studies on rural highways. (18–20)

14 Bessa et al. (21) generated "Percent-time-spent-following" (PTSF) from simulations with
15 the simulation tool CORSIM. PTSF is an evaluation parameter of the design procedure for rural
16 roads of the U.S. HCM. Caliendo and De Guglielmo (22) used microscopic traffic flow simula-
17 tions in Aimsun Next to study speeds in the transition zone between rural roads and populated
18 areas. Munehiro et al. (23) dealt with 2+1 rural roads in snowy regions of Japan using the SIM-R
19 simulation tool. Cafiso et al. (24) evaluated traffic safety of three-lane rural highways using vehicle
20 trajectories from microscopic traffic flow simulations in PTV Vissim. Romana et al. (25) analyzed
21 existing research on the use of rural 2+1 highways with 2+1.

22 Simulation Setup

23 Based on the information available on LASI, models comparable to those used to develop the
24 procedures in the HBS at that time were built. The artificial highway segments include four two-
25 lane rural highways representing different curvatures and one three-lane rural highway segment.

26 The two-lane models represent a change of angle of 25 gon/km (2 curves with 450 m
27 radius), 75 gon/km (6 curves with 350 m radius), 125 gon/km (9 curves with 200 m radius), and
28 200 gon/km (12 curves with 160 m radius). They have the following characteristics:

- 29 • road length of 4 km to evaluate
- 30 • additional one kilometer preceding and subsequent road length
- 31 • different longitudinal gradients over the entire segments: 1%, 3%, 4%, and 5%
- 32 • vehicle input starting at 50 and reaching a maximum of 1200 vehicles per hour, with an
33 increase of 50 vehicles per hour per direction every hour (identical traffic volume in both
34 directions)
- 35 • different percentages of heavy vehicles: 0%, 5%, and 20%

36 The three-lane model has the following properties:

- 37 • no curves
- 38 • four sections of 1.2 km each with alternating passing sections (see Figure 1)
- 39 • additional 500 m preceding and subsequent road length
- 40 • vehicle input starting at 200 and reaching a maximum of 1550 vehicles per hour, with an
41 increase of 150 vehicles per hour per direction every hour
- 42 • different longitudinal gradients over the entire segments: 2.5%, 5%, 7%, and 8%
- 43 • different percentages of heavy vehicles: 0%, 5%, and 20%

44 These artificial segments were modeled in both simulation tools. Based on these models, the char-

1 characteristics of rural highway traffic were calibrated in several steps to investigate the corresponding
2 effects on the simulation results. The calibration target is to reproduce the speed-flow relationships
3 given in the HBS.

4 **Calibration**

5 Implementing the components of rural highways is partly done differently in Aimsun Next and
6 PTV Vissim. In the calibration steps, trade-offs were made between the available information about
7 the former rural highway simulations, the modeling possibilities in the software tools, reasonable
8 simulation results, and usability.

9 *Model Setup*

10 The longitudinal gradient is defined in Aimsun Next and PTV Vissim as an argument of the mod-
11 eled section. It affects the traffic flow by reducing the maximum acceleration of each vehicle.
12 We recommend activating the TWOPAS model in Aimsun Next to determine the acceleration on
13 slopes. The TWOPAS model is based on empirical data. It calculates the maximum acceleration
14 of a vehicle on a slope based on the vehicle' speed, the longitudinal gradient, the ratio between
15 weight and power, and the ratio between weight and frontal area of the vehicle (26). The activation
16 of the TWOPAS model leads to a significant reduction in car and heavy vehicle speeds due to the
17 longitudinal gradients. In Vissim, the longitudinal gradient has a similar effect. The maximum
18 acceleration is calculated from the slope and the ratio of weight and power.

19 Traffic volumes are assumed to be equal in both travel directions. In Aimsun Next, traffic
20 volumes and vehicle compositions are set using OD matrices separately for cars and heavy vehi-
21 cles. In PTV Vissim, vehicle inputs and static vehicle routes are created for both travel directions.

22 In both software tools, the distribution of the vehicle lengths has little influence on the
23 simulation results. Therefore, in general, the default settings can be used.

24 For the evaluation of each calibration step, three simulation runs are performed. Due to the
25 low stochastic variability (almost exclusively free driving or following), the long distance and the
26 long simulation time, very stable results are obtained after only three simulation runs. The results
27 of individual simulation runs hardly differ from each other.

28 *Speed Behavior in Curves*

29 The curvature of a road is represented by its geometry. However, this geometry does not affect the
30 drivers' behavior in both simulation tools. Instead, the maximum speed in curves can be reduced in
31 Aimsun Next. In PTV Vissim, the desired speed distributions can be adjusted by modeling reduced
32 speed areas in curves. It is assumed that vehicles decelerate before a curve, drive through the curve
33 at their reduced curve speed, and then accelerate again to their original desired speed if the traffic
34 situation permits this. The length of the reduced speed area depends on a vehicle's safety need, the
35 angle change, and the curve's radius.

36 *Desired Speed Distributions*

37 The desired speed distributions are modeled separately for cars and heavy vehicles. On two-lane
38 rural highways, the desired speeds depend on the radius of the curves (see Figure 3). For three-
39 lane rural highways, reduced desired speed distributions for cars are defined for segments with
40 longitudinal gradients. Based on empirical data, passenger cars are assumed to drive slower on
41 segments with slopes, although it is not due to a lack of engine power.

FIGURE 3 : Desired Speed Distributions for Cars (left) and Heavy Vehicles (right) on Two-lane Highways

1 In Aimsun, each vehicle is assigned a maximum desired speed and a speed acceptance,
 2 which remain unchanged throughout a vehicle's lifetime. Maximum speeds are defined for each
 3 section and they are multiplied by the individual speed acceptance for each vehicle. The desired
 4 speed is the minimum of the maximum desired speed and the accepted section speed for each
 5 vehicle. To replicate lower desired speeds in curves and on slopes, the maximum speed on the
 6 respective section is reduced.

7 In PTV Vissim, desired speed decisions or reduced speed areas are created at locations
 8 where desired speeds change due to curves or longitudinal gradients. The vehicles are individually
 9 assigned a new desired speed from the corresponding distribution at each desired speed decision
 10 or reduced speed area.

11 *Driving Behavior*

12 The driving behavior in LASI is based on Wiedemann 74 (13) car following model. Cars and heavy
 13 vehicles have separate driving behavior.

14 In both software tools, vehicle classes with different driving behavior can be created for cars
 15 and heavy vehicles. In Aimsun Next, the default parameter values of the Gipps model are applied
 16 for the cars and heavy vehicles, which lead to comparable results. In PTV Vissim, Wiedemann 74
 17 is selected with the corresponding parameter values as driving behavior (see Table 1).

18 *Maximum Acceleration*

19 In LASI, a distinction is made between a vehicle' maximum acceleration and the driver's desire to
 20 accelerate. Cars and heavy vehicles have a separate acceleration behavior.

21 As the TWOPAS model is activated in Aimsun Next, the parameters *ratio between weight*
 22 *and power* and *ratio between weight and frontal area* influence on the maximum acceleration
 23 and thus the speeds of heavy vehicles on slopes. By calibrating these parameters, the resulting
 24 TWPAS maximum accelerations approximate the maximum acceleration distribution from LASI.
 25 In PTV Vissim, the functions for maximum and desired acceleration can be transferred from LASI.

TABLE 1 : Parameter Values for the Wiedemann 74 Driving Behavior

Vehicle Class	Veh Class of the Leading Vehicle	W74ax	W74bxAdd	W74bxMult	IncrsAccel
Two-lane Rural Highway					
Car	Car	2.0	2.0	5.00	100 %
	Heavy Vehicles			4.00	
Heavy Vehicles	Car	2.0	2.0	5.80	100 %
	Heavy Vehicles			5.00	
Three-lane Rural Highways					
Car	Car	2.0	0.8	2.00	100 %
	Heavy Vehicles			1.60	
Heavy Vehicles	Car	2.0	0.8	2.32	100 %
	Heavy Vehicles			2.00	

1 *1 Overtaking*

2 On two-lane rural highways, overtaking is possible in the opposing lane. The overtaking model dis-
 3 tinguishes between a overtaking desire and the final overtaking decision. In addition, the visibility
 4 in a curve is decisive for the actual feasibility of an overtaking maneuver.

5 The following parameter values lead to a plausible overtaking behavior in Aimsun Next:

- 6 • The *visibility distance* should be selected depending on the length of the overtaking sec-
 7 tion. A visibility distance of 800 m is set if the visibility is clear.
- 8 • The *visibility factor* is 1.0.
- 9 • The *overtaking speed enhancement factor* is 1.2.
- 10 • Overtaking maneuvers should not be possible in curves.
- 11 • Heavy vehicle overtaking maneuvers should be prevented in the simulation. For this pur-
 12 pose, the *safety margin for the overtaking maneuver* for the vehicle type heavy vehicle is
 13 increased significantly ($\mu = 150$ s, $\sigma = 3$ s) to discourage heavy vehicles from overtaking.

14 The following parameter values lead to a plausible overtaking behavior in PTV Vissim:

- 15 • The *look ahead distance* should be selected depending on the length of the overtaking
 16 section. A look ahead distance of 800 m is set if the visibility is clear.
- 17 • The *overtaking speed factor* is 1.2.
- 18 • The *assumed speed of oncoming traffic* is 120 km/h.
- 19 • Overtaking maneuvers should not be possible in curves.
- 20 • The *lane change distance* of the connector at the end of an overtaking section should be
 21 200 m.
- 22 • Heavy vehicle overtaking maneuvers should be prevented in the simulation. For this
 23 purpose, the opposing lane is blocked for heavy vehicles.
- 24 • The factor for *reduced safety distance* is 0.3.

25 When evaluating overtaking maneuvers, it should be ensured that aborted overtaking maneuvers
 26 are not included in the overtaking rate.

27 On three-lane rural highways, overtaking is possible in secured passing sections. LASI
 28 defines behavior as follows: The desired speed of an overtaking vehicle increases by 3 m/s during
 29 the overtaking process. 300 m before the end of the passing section, a lane change request to the
 30 right is triggered and carried out if possible. If a vehicle has not carried out this lane change up
 31 to 80 m before the end of the passing section, it may go below the defined minimum following
 32 distance in order to enter a smaller gap. Overtaking on two-lane sections adjusts well in Aimsun
 33 Next and PTV Vissim without further calibration. Only overtaking for heavy vehicles must be

1 prevented.

2 This is achieved in Aimsun Next by reducing the *Overtake Speed Threshold* to a value
 3 of 20%. In PTV Vissim, the *slow lane rule* is activated on the two-lane sections of three-lane
 4 highways. The *lane change distance* of the connector at the end of an overtaking section is set
 5 to 300 m. In addition, the left lane is blocked for heavy vehicles. The factor for *reduced safety*
 6 *distance* is 0.3.

7 Calibration Results

8 Highway segments of two- and three-lane rural highways were calibrated in Aimsun Next and
 9 PTV Vissim. An assessment of the traffic flow of rural highways using microscopic traffic flow
 10 simulations requires determining the same measure of effectiveness as in the analytical evaluation
 11 procedure of the HBS, the traffic density per lane. To investigate the accuracy of the calibration,
 12 the simulated speed-flow relationships are compared to those given in the HBS. To determine this
 13 density, an accurate simulation of the average travel speed of passenger cars is required. The first
 14 step is to review the speed-flow diagrams visually. For example, for two-lane rural highways, the
 15 characteristic concave shape of the speed-flow diagrams must be replicated.

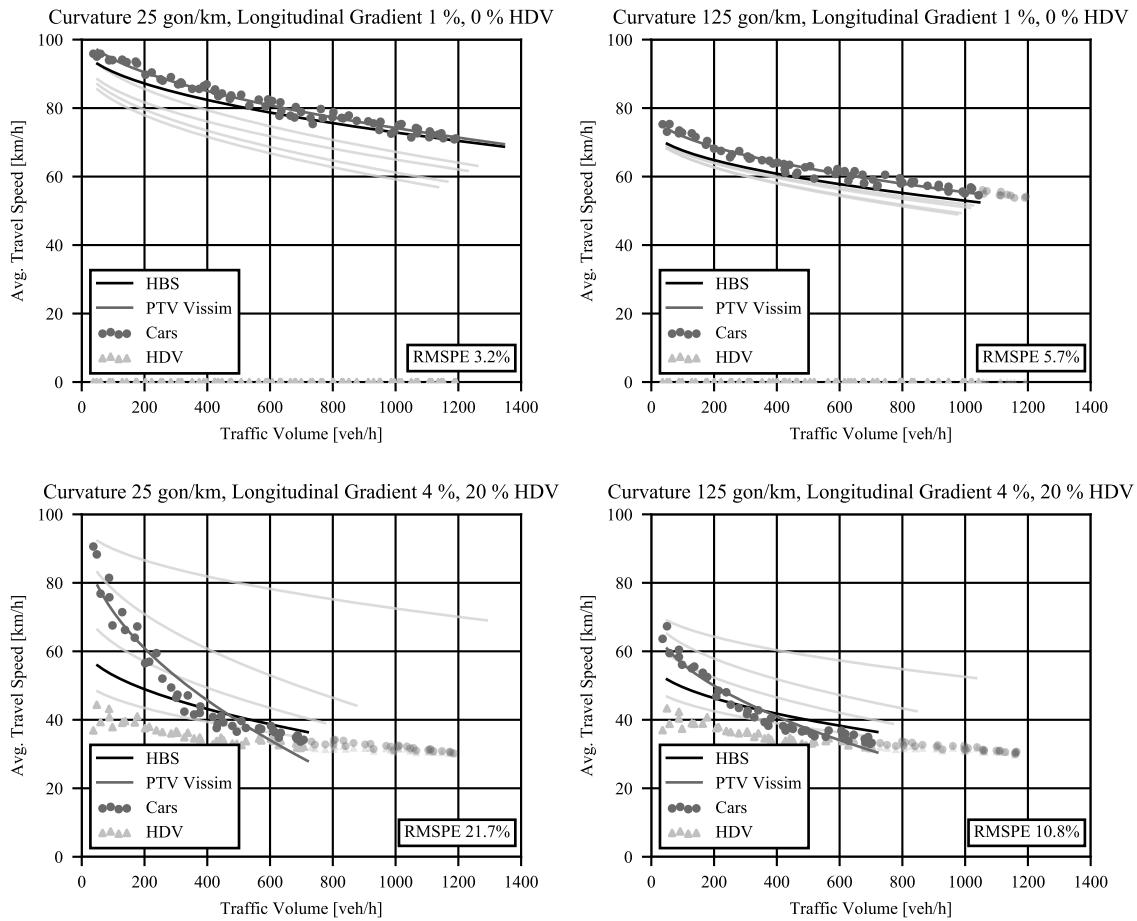

16 Additionally, the Root Mean Square Percentage Error (RMSPE) (27) is used to evaluate the
 17 deviation between the simulation results and the HBS quantitatively. The RMSPE indicates how
 18 significant the error is relative to the mean value and is calculated using the following equation.

$$RMSPE = \sqrt{\frac{1}{N} \sum_{n=1}^N \left(\frac{x_n^{sim} - x_n^{obs}}{x_n^{obs}} \right)^2}$$

19 x_n^{obs} and x_n^{sim} describe the mean travel speed of the passenger cars of the empirical and the
 20 simulation data at a particular traffic volume.

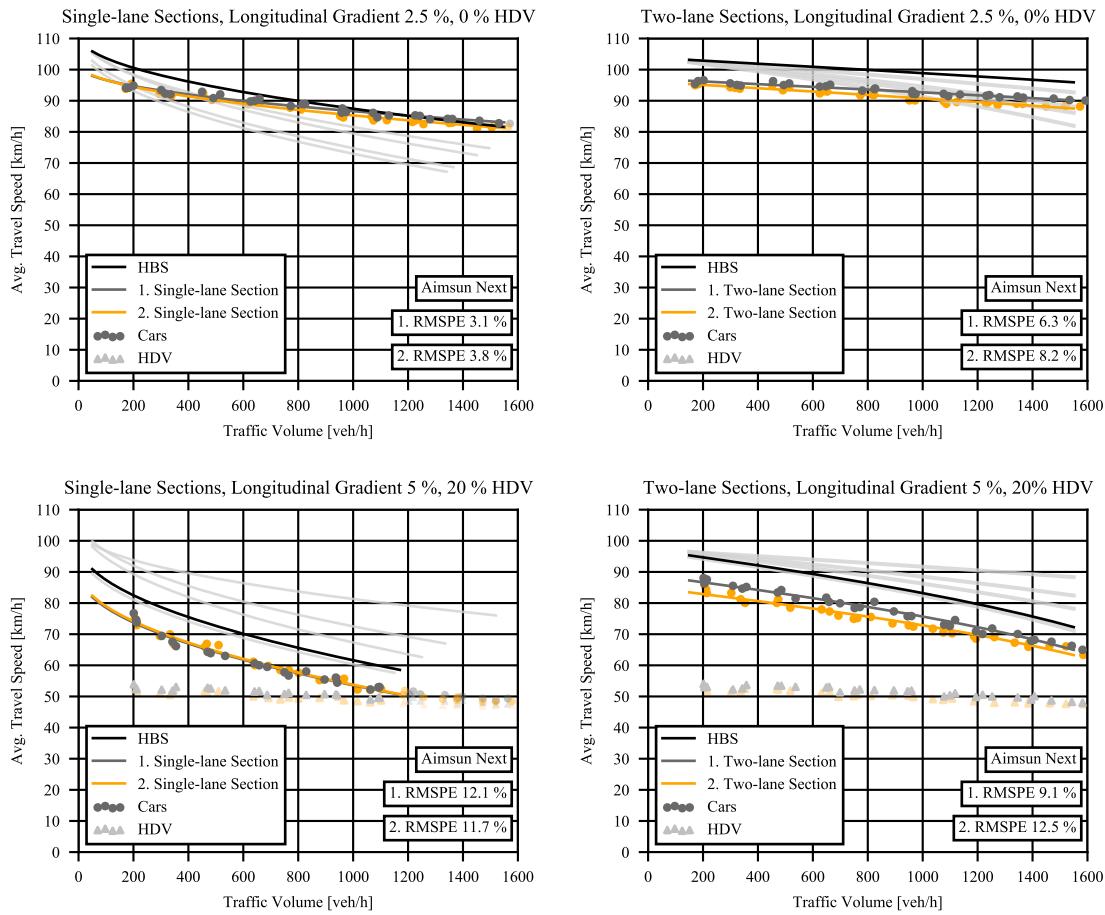
21 Figures 4 and 5 show selected results for two-lane rural highways and Figures 6 and 7 for
 22 three-lane rural highways. Overall, the results are very similar for both software tools and show that
 23 the speed-flow relationships of the HBS are mostly well reproduced. For a perfect replication, the
 24 fitted curve based on the simulation data (dark gray) match precisely the HBS curve (black). The
 25 light gray curves show the HBS speed-flow relationships for other percentages of heavy vehicles
 26 for comparison (same longitudinal gradient and curvature).

27 For two-lane rural highways, the simulation results show that the RMSPE is small for
 28 the simulations with 0% heavy vehicles and low longitudinal gradient regardless of the curvature
 29 (Figures 4 and 5 top). The speed level is slightly higher than in the HBS, but the concave shapes
 30 of the speed-flow relationships match. Rural highways with little longitudinal gradient and few
 31 heavy vehicles frequently occur in reality and are most relevant. The simulation results deviate
 32 more for high percentages of heavy vehicles and high longitudinal gradients (Figures 4 and 5
 33 bottom). The simulated traffic is faster at low traffic volumes, and at high traffic volumes, the
 34 simulated traffic is slower than assumed in the HBS. For low traffic volumes, both software tools
 35 underestimate the impact of heavy vehicles compared to the HBS. However, it is interesting that
 36 both Aimsun Next and PTV Vissim produce very similar results. The calibration steps have shown
 37 that overtaking in the oncoming traffic lane only causes a slight increase in average travel speeds.
 38 It can therefore be concluded that overtaking does not cause this effect. Unfortunately, this study
 39 cannot conclusively clarify where these differences come from. However, rural highways with


FIGURE 4 : Speed-Flow Diagrams for Cars and Heavy-duty Vehicles on Two-lane Rural Highways in Aimsun Next after Calibration

1 high longitudinal gradients and high percentages of heavy vehicles rarely occur in reality and are
2 therefore of little relevance in practice.

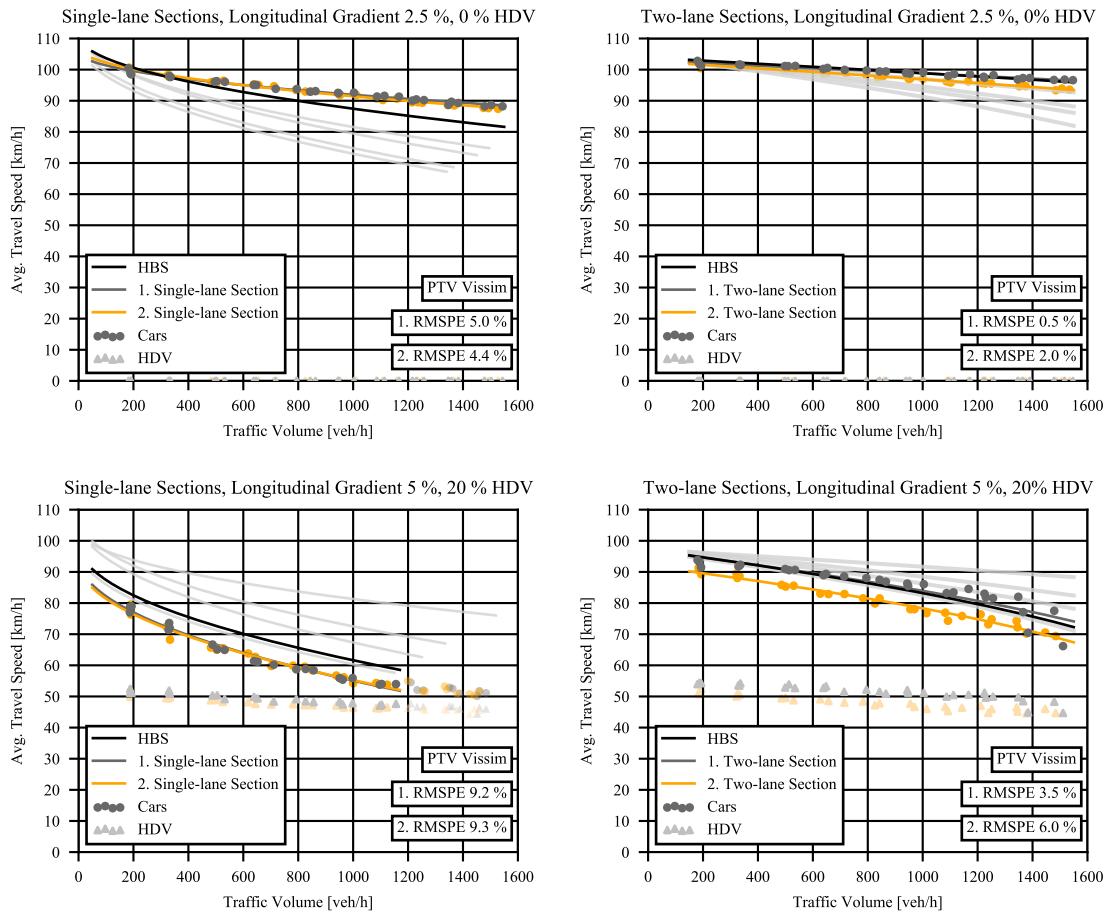
3 For three-lane rural highways, single-lane and two-lane (secured passing) sections were
4 evaluated separately. Furthermore, a distinction are made between the first and second single-lane
5 and two-lane sections.


6 On single-lane sections, the RMSPE is low for simulations without heavy vehicles and little
7 longitudinal gradient. For high longitudinal gradients and high percentages of heavy vehicles, the
8 traffic is increasingly slower in the simulation than assumed in the HBS. The concave shapes
9 correspond to the HBS speed-flow diagrams for all combinations of percentages of heavy vehicles
10 and longitudinal gradients. A comparison between the first and second single-lane sections only
11 shows minimal deviations.

12 On two-lane passing sections, the RMSPE is consistently low, and the HBS speed-flow
13 relationships are well reproduced. The shapes of the speed-flow diagrams match for all combina-
14 tions of longitudinal gradient and percentage of heavy vehicles. A comparison between the first
15 and second two-lane sections shows differences. As the percentage of heavy vehicles increases,
16 average passenger car travel speeds increasingly deviate from the HBS. The cars are consistently

FIGURE 5 : Speed-Flow Diagrams for Cars and Heavy-duty Vehicles on Two-lane Rural Highways in PTV Vissim after Calibration

1 slower in the second two-lane section than in the first section. The difference is that the single-lane
 2 section upstream of the first two-lane passing section is 500 m long and the single-lane section up-
 3 stream of the second two-lane passing section is 1200 m long. A sensitivity analysis shows that the
 4 length of the single-lane section upstream influences the speeds on the following two-lane section.
 5 Platooning behind slow vehicles is more advanced on a longer single-lane section. Therefore, the
 6 speeds at the beginning of the two-lane section are lower, and accelerating to overtake takes more
 7 time. This reduces the average speed on the two-lane section.
 8 Comparing the speed-flow relationships between each calibration step revealed that
 9 • the desired speeds of passenger cars and heavy vehicles,
 10 • the acceleration behavior (mainly of heavy vehicles), and
 11 • the reduced speeds in curves
 12 are the most relevant components for the replication of the HBS speed-flow relationships. The
 13 modeling of overtaking maneuvers in the simulation mainly influences the travel speeds on three-
 14 lane highways. The calibration results show that the speed-flow relationships of the HBS can be
 15 well represented with the developed parameter sets. The question arises, however, whether the
 16 simulated travel times also correspond to reality.


FIGURE 6 : Speed-Flow Diagrams for Cars and Heavy-duty Vehicles on Three-lane Rural Highways in Aimsun Next after Calibration

1 Validation with Field Data

2 For validation, the derived standard parameters are used to simulate real rural highway segments.
 3 For these rural highways, empirical data are analyzed and compared to the simulation results.

4 Extensive empirical data are collected for the validation procedure. The measurements
 5 cover seven rural highway segments that comply and three rural highway segments that do not
 6 comply with the constraints of the HBS. The field data include both two- and three-lane rural
 7 highways segments. For all highway segments, speed-flow relationships are observed using local
 8 measurements with loop or radar detectors. In addition, travel times on the segments are collected
 9 based on bluetooth detectors and automatic number plate recognition.

10 All segments are replicated in Aimsun Next and PTV Vissim. The horizontal alignments
 11 are modeled based on aerial photographs, and the longitudinal gradients are approximated from the
 12 elevation data in aerial photographs. For the traffic volumes and percentages of heavy vehicles, the
 13 field data (between 6 a.m. and 10 p.m.), aggregated to 5-minute intervals, are used. The simulations
 14 have a lead time of 15 minutes and a preceding road segment with a length of 2 km. An investi-
 15 gation on the platoon formation in the simulation showed that platooning behind slow vehicles
 16 is completed after 2 km. The preceding road segment is single-lane, level and passing maneuvers

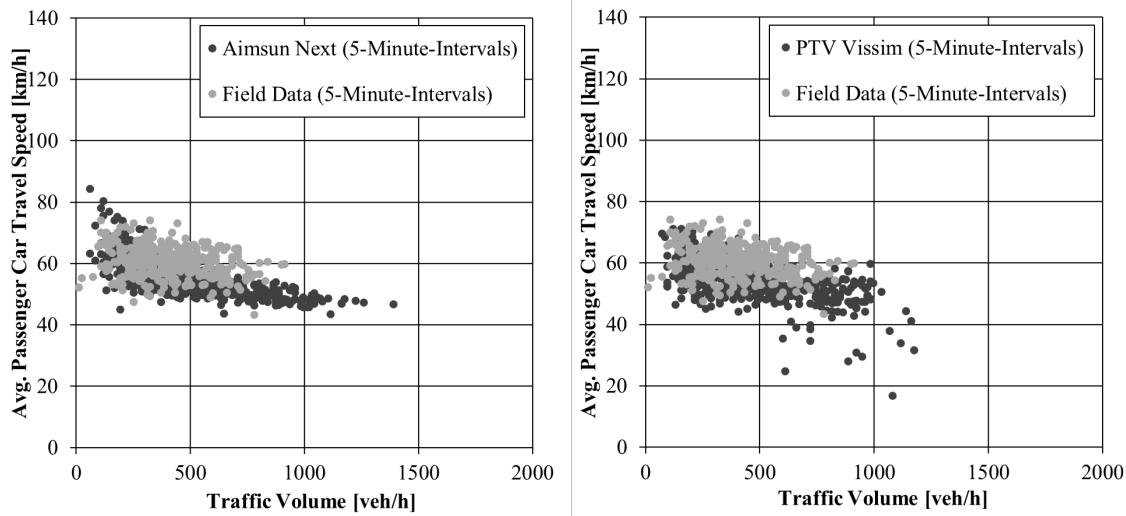


FIGURE 7 : Speed-Flow Diagrams for Cars and Heavy-duty Vehicles on Three-lane Rural Highways in PTV Vissim after Calibration

1 are prohibited. If a signal-controlled intersection is located upstream of the investigated segment,
 2 platooning mainly depends on the signal control. Therefore, signal-controlled intersections are
 3 also modeled.

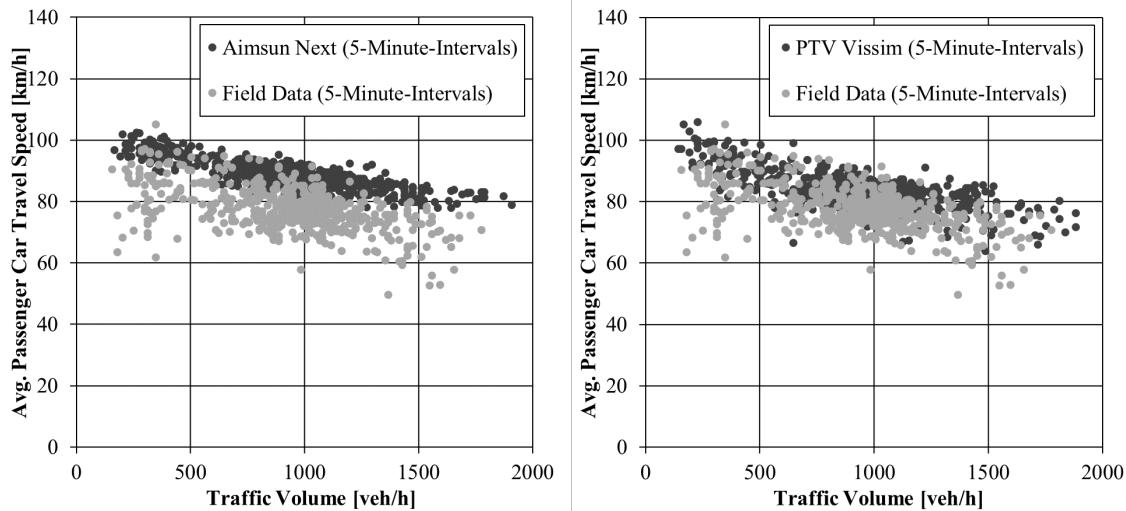
4 The traffic volume of oncoming traffic significantly affects overtaking opportunities if pass-
 5 ing maneuvers in the opposing lane of traffic are allowed. Therefore, both travel directions are
 6 modeled for the two-lane segments. The local conditions such as overtaking prohibitions and sight
 7 distances are adopted in the models. The standard set of parameters derived in the calibration pro-
 8 cess is used without any further calibration using the field data. For the evaluation, three simulation
 9 runs are performed. The results of individual simulation runs hardly differ from each other.

10 The measured travel speeds of the passenger cars as well as the simulation based travel
 11 speeds are aggregated to 5-minute-intervals. Figures 8 and 9 show selected results for two- and
 12 three-lane highways. Comparing the empirical data and the simulation results shows that the sim-
 13 ulation can represent the observed speed-flow relationships quite well. The differences between
 14 the measured and simulated speeds are noticeable for some segments, but they mainly result from
 15 local influences, particularly speed limits. Speed limits are not considered in the methodology of
 16 the HBS and are therefore not represented by the standard parameters. By using empirically de-

FIGURE 8 : Validation of Two-lane Rural Highway *L138 Duisburg* in Aimsun Next and PTV Vissim

1 terminated desired speed distributions for those segments, the simulation results fit well. The rural
 2 highway *L138 Duisburg* has, for example, a speed limit of 70 km/h. By using empirically de-
 3 termined desired speed distributions of the segment under investigation, the simulated speed-flow
 4 diagram replicates the field data (see Figure 8). The rural highway *B10 Landau* does not have
 5 any local specifics. The simulated speed-flow diagram replicates the field data without any further
 6 calibration (see Figure 9).

7 Even when modeling highway segments that do not comply with the constraints of the
 8 HBS, the simulation can represent the real traffic flow quite well. In these cases, too, local influ-
 9 ences have to be modeled. For example, two three-lane rural highways with high curvature have
 10 been analyzed in this study. Although curves on three-lane highways are not considered in the
 11 analytical assessment procedure, it is useful to model the speed behavior in curves in the same way
 12 as for two-lane highways.


13 CONCLUSIONS

14 In this study, standard parameter sets and recommendations for the microscopic simulation of traf-
 15 fic flow on two- and three-lane rural highways were developed, which can be used for the quality
 16 of service assessment of rural highway designs in practice. All simulations were performed for
 17 both Aimsun Next and PTV Vissim, and the calibration was based on the speed-flow relationships
 18 given in the German Highway Capacity Manual HBS.

19 Both software tools mostly reproduce the speed-flow relationships of the HBS well. The
 20 calibration process revealed that the representation of

- 21 • the desired speeds of passenger cars and heavy vehicles,
- 22 • the acceleration behavior (mainly of heavy vehicles) and
- 23 • the reduced speeds in curves

24 are most relevant for the traffic flow simulation of rural highways in accordance with the analytical
 25 evaluation procedure of the HBS. The best results are achieved with low longitudinal gradients and
 26 low percentages of heavy vehicles. The simulations show that both software tools underestimate

FIGURE 9 : Validation of the Three-lane Rural Highway *B10 Landau* in Aimsun Next and PTV Vissim

1 the impact of heavy vehicles compared to the HBS.

2 Validation of the derived standard parameters with field data showed that the simulation
 3 results represent the observed speed-flow relationships well. Deviations between the measured
 4 and simulated speeds mainly result from local influences, particularly speed limits. If these local
 5 influences are modeled in the simulation, the simulation results represent real traffic flow well.
 6 These results apply both for two- and three-lane rural highways that do and those that do not
 7 comply with the constraints of the analytical assessment procedure.

8 The results of this study enable a standardized application of microscopic traffic flow sim-
 9 ulations for the quality of service assessment of rural highways. The standard parameters can be
 10 applied as starting values for the calibration, but they do not replace the calibration process. The
 11 results are to be incorporated into the German guideline for microscopic traffic flow simulation.

12 In the calibration steps, trade-offs were made between the available information from the
 13 artificial rural highway simulations, the modeling possibilities in the software tools, reasonable
 14 simulation results, and usability. At some points, it can be questioned whether the assumptions
 15 from the HBS still reflect today's rural highway traffic. One example is the modeling of heavy
 16 vehicles in the simulation, which could be subject to further research. Updated values for the
 17 maximum acceleration of heavy vehicles might reveal that the influence of the gradient on traffic
 18 flow performance is less than assumed so far. Furthermore, the speed behavior in curves needs to be
 19 explicitly adjusted by the user in both software tools. Development towards the incorporation of the
 20 influence of road design parameters into the driver behavior model would be useful. In addition, the
 21 overtaking models in Aimsun Next and PTV Vissim could be revised. Both simulation tools do not
 22 include the acceleration of the leading vehicle in the overtaking decision. In the simulations, this
 23 problem causes overtaking maneuvers to be aborted because the maneuvers cannot be completed
 24 due to the leading vehicle accelerating (for example, behind a curve).

1 ACKNOWLEDGMENTS

2 This paper is based on research sponsored by the German Federal Ministry for Transport, Building
3 and Urban Development, represented by the Federal Highway Research Institute, under project no.
4 02.0418/2017/FRB. The contents of this paper solely reflect the views of the authors.

5 AUTHOR CONTRIBUTION

6 The authors confirm contribution to the paper as follows: study conception and design: C.M. Wey-
7 land, H.S. Buck, J. Geistefeldt, P. Vortisch; literature review: C.M. Weyland, J. Geistefeldt; mod-
8 eling and simulation: C.M. Weyland, H.S. Buck; analysis and interpretation of results: C.M. Wey-
9 land, H.S. Buck, J. Geistefeldt; draft manuscript preparation: C.M. Weyland, H.S. Buck, J. Geiste-
10 feldt, P. Vortisch. All authors reviewed the results and approved the final version of the manuscript.

11 REFERENCES

- 12 1. Brilon, W. and F. Weiser, Two-Lane Rural Highways: The German Experience. *Transportation Research Record: Journal of the Transportation Research Board*, Vol. 1988, No. 1, 2006, pp. 38–47, <http://dx.doi.org/10.1177/0361198106198800105>.
- 13 2. Wu, N., A new approach for modeling of Fundamental Diagrams. *Transportation Research Part A: Policy and Practice*, Vol. 36, No. 10, 2002, pp. 867–884, [http://dx.doi.org/10.1016/S0965-8564\(01\)00043-X](http://dx.doi.org/10.1016/S0965-8564(01)00043-X).
- 14 3. Transportation Research Board, *Highway Capacity Manual 6th Edition: A Guide for Multi-modal Mobility Analysis*. National Academies Press, Washington, D.C., 2016.
- 15 4. Forschungsgesellschaft für Straßen- und Verkehrswesen, *Handbuch für die Bemessung von Straßenverkehrsanlagen: HBS 2015. Teil L: Landstraßen*. FGSV, FGSV Verlag, Köln, 2015.
- 16 5. Geistefeldt, J., S. Giuliani, P. Vortisch, U. Leyn, R. Trapp, F. Busch, A. Rascher, and N. Celiikkaya, Assessment of Level of Service on Freeways by Microscopic Traffic Simulation. *Transportation Research Record: Journal of the Transportation Research Board*, Vol. 2461, No. 1, 2014, pp. 41–49, <http://dx.doi.org/10.3141/2461-06>.
- 17 6. Leyn, U. and P. Vortisch, Calibrating VISSIM for the German Highway Capacity Manual. *Transportation Research Record: Journal of the Transportation Research Board*, Vol. 2483, No. 1, 2015, <http://dx.doi.org/10.3141/2483-09>.
- 18 7. Forschungsgesellschaft für Straßen- und Verkehrswesen, *Richtlinien für die Anlage von Landstraßen RAL*. No. 201 in FGSV, FGVS-Verl, Köln, 2012.
- 19 8. Brannolte, U. and Holz S., *Simulation des Verkehrsablaufs auf Landstraßen - Modellerweiterung* -, Vol. 402 of *Forschung Straßenbau und Straßenverkehrstechnik*, 1983.
- 20 9. Baselau, C., *Entwicklung eines Verfahrens zur Beurteilung der Verkehrsqualität auf Straßen mit 2+1-Verkehrsführung*. Bauhaus-Universität Weimar, 2005.
- 21 10. Weiser, F., S. Jäger, C. Riedl, and J. Lohoff, *Verkehrstechnische Bemessung von Landstraßen: Weiterentwicklung der Verfahren*, Vol. V 263 of *Berichte der Bundesanstalt für Straßenwesen Unterreihe Verkehrstechnik*. Bergisch-Gladbach, 2016.
- 22 11. Gipps, P. G., A behavioural car-following model for computer simulation. *Transportation Research Part B*, Vol. 1981, No. Vol. 15, 1981.
- 23 12. Llorca, C., A. T. Moreno, A. Lenorzer, J. Casas, and A. Garcia, Development of a new mi-
24 croscopic passing maneuver model for two-lane rural roads. *Transportation Research Part C: Emerging Technologies*, Vol. 52, , 2015, <http://dx.doi.org/10.1016/j.trc.2014.06.001>.

1 13. Wiedemann, R., *Simulation des Straßenverkehrsflusses*. Ph.D. thesis, Institute for Transport
2 Studies, University of Karlsruhe, Karlsruhe, 1974.

3 14. Lohmiller, J., J. Schlaich, and A. Leonhardt, Modeling of Overtaking in the Opposing Traffic.
4 In *TRB 95th Annual Meeting*, Washington, D.C., 2016.

5 15. Archilla, A. R., Test and Evaluation of the TWOPAS rural traffic simulation model, 1996.

6 16. Dixon, M., Using TWOPAS simulation model to provide design and operations information
7 on the performance of Idaho's two-lane highways, 2003.

8 17. Transportation Research Board, *Highway Capacity Manual*. Washington, D.C., 1985.

9 18. Maldonado, M. O., M. Herz, and J. Galarraga, Modelacion de operación en carreteras ar-
10 gentinas y recomendaciones de ajustes al manual de capacidad HCM2010. *TRANSPORTES*,
11 Vol. 20, No. 3, 2012, pp. 51–61, <http://dx.doi.org/10.4237/transportes.v20i3.556>.

12 19. Li, J. and S. S. Washburn, Improved Operational Performance Assessment for Two-Lane High-
13 way Facilities. *Journal of Transportation Engineering*, Vol. 140, No. 6, 2014, p. 04014017,
14 [http://dx.doi.org/10.1061/\(ASCE\)TE.1943-5436.0000666](http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000666).

15 20. Moreno, A. T., C. Llorca, S. S. Washburn, J. E. Bessa, D. K. Hale, and A. Garcia, Mod-
16 ification of the Highway Capacity Manual two-lane highway analysis procedure for Span-
17 ish conditions. *Journal of Advanced Transportation*, Vol. 50, No. 8, 2016, pp. 1650–1665,
18 <http://dx.doi.org/10.1002/atr.1421>.

19 21. Bessa, J. E., J. R. Setti, and S. S. Washburn, Evaluation of Models to Estimate Percent Time
20 Spent Following on Two-Lane Highways. *Journal of Transportation Engineering, Part A: Systems*, Vol. 143, No. 5, 2017, p. 04017010, <http://dx.doi.org/10.1061/JTEPBS.0000032>.

22 22. Caliendo, C. and M. L. De Guglielmo, Road Transition Zones between the Rural and Ur-
23 ban Environment: Evaluation of Speed and Traffic Performance Using a Microsimulation
24 Approach. *Journal of Transportation Engineering*, Vol. 139, No. 3, 2013, pp. 295–305,
25 [http://dx.doi.org/10.1061/\(ASCE\)TE.1943-5436.0000495](http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000495).

26 23. Munehiro, K., A. Takemoto, N. Takahashi, M. Watanabe, and M. Asano, Performance Eval-
27 uation for Rural Two-Plus-One–Lane Highway in a Cold, Snowy Region. *Transportation Re-
28 search Record: Journal of the Transportation Research Board*, Vol. 2272, No. 1, 2012, pp.
29 161–172, <http://dx.doi.org/10.3141/2272-19>.

30 24. Cafiso, S., C. D'Agostino, R. Bak, and M. Kiec, The assessment of road safety for passing
31 relief lanes using microsimulation and traffic conflict analysis. *Advances in Transportation
32 Studies*, Vol. 2, , 2016, p. 55–64.

33 25. Romana, M., M. Martin-Gasulla, and A. Moreno, 2 + 1 Highways: Overview and Future
34 Directions. *Advances in Civil Engineering*, Vol. 2018, , 2018.

35 26. Aimsun SLU, *Aimsun Next 8.4 Help*. Barcelona, 2019.

36 27. Forschungsgesellschaft für Straßen- und Verkehrswesen, *Hinweise zur mikroskopischen
37 Verkehrsflussimulation*, 2006.