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Abstract
We propose a general and relatively simple method to construct goodness-of-fit tests
on the sphere and the hypersphere. The method is based on the characterization of
probability distributions via their characteristic function, and it leads to test criteria that
are convenient regarding applications and consistent against arbitrary deviations from
the model under test. We emphasize goodness-of-fit tests for spherical distributions
due to their importance in applications and the relative scarcity of available methods.

Keywords Goodness-of-fit test · Characteristic function · Resampling methods ·
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Mathematics Subject Classification 62H15 · 62H11 · 62G20

1 Introduction

In this paper, we consider the problem of testing goodness-of-fit for distributions
defined on the surface of the sphere S2 or of the hypersphere Sd−1, where d ≥ 3. In
this respect, there is a plethora of such tests for distributions defined on R

d , even in

Norbert Henze and Simos Meintanis have contributed equally to this work.

B Bruno Ebner
bruno.ebner@kit.edu

Norbert Henze
norbert.henze@kit.edu

Simos Meintanis
simosmei@econ.uoa.gr

1 Institute of Stochastics, Karlsruhe Institute of Technology (KIT), Englerstr. 2, Karlsruhe 76131,
Baden-Württemberg, Germany

2 Department of Economics, National and Kapodistrian University of Athens, Athens, Greece

3 Pure and Applied Analytics, North-West University, Potchefstroom, South Africa

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00362-024-01529-1&domain=pdf
http://orcid.org/0000-0003-4329-8794


B. Ebner et al.

the multivariate case d > 1. Besides, also goodness-of-fit tests on the circular domain
S1 is a relatively well-explored area. For the latter case we refer, e.g., to García-
Portugués and Verdebout (2018, Chaps. 6 and 7), Jammalamadaka et al. (2019), and
Jammalamadaka et al. (2020).

On the other hand, the same problem for data taking values on Sd−1, where d ≥ 3,
has been mostly confined to testing for uniformity. Nevertheless, and while the notion
of a “non-preferred direction” (Provide proper quotationmark) and hence of testing for
uniformity is certainly central to (hyper)spherical data analysis, there are several more
flexible distributionswhich, in fact, often have the uniform as a special case. The reader
is referred to the monographs (Ley and Verdebout 2017, Sect. 2.3; Mardia and Jupp
2000, Sect. 9.3), for such non-uniform models for (hyper)spherical data. At the same
time, it seems that goodness-of-fit tests specifically tailored to (hyper)spherical laws
are scarce, certainly in the case of a composite null hypothesis, where parameters need
to be estimated from the data at hand, but also for a completely specified hypothesis
with fixed (known) parameter values. For the latter case, the test based on nearest
neighbors proposed in Ebner et al. (2018) seems to be one of the few tests available,
while to the best of our knowledge, there is much need for research in the case of a
composite hypothesis.

In view of these lines, we suggest a procedure for testing the goodness-of-fit of
distributions defined on Sd−1, where d ≥ 3.1 The suggested test is innovative in that
it is general-purpose suitable for arbitrary (hyper)spherical distributions, either with
fixed or with estimated parameters, and it is straightforwardly applicable, provided
that we can easily draw Monte Carlo samples from the distribution under test.

To be specific, let ‖ · ‖ be the Euclidean norm in R
d , d ≥ 2, and write Sd−1 :=

{x ∈ R
d : ‖x‖ = 1} for the surface of the unit sphere in R

d . Suppose X is a random
(column) vector inRd taking on values inSd−1 with a density f with respect to surface
measure.

We start our exposition with the simple null hypothesis

H0 : f = f0, (1)

where f0 is some given density on Sd−1, which should be tested against the general
alternative HA that the distributions pertaining to f and f0 are different.

Most of the approaches for testing goodness-of-fit depend on some discrepancy
measure between a given distributional quantity, such as the density, the distribution
function or the characteristic function (CF), and a corresponding empirical counterpart,
and thereby typically assume that the functional form of this distributional quantity
is known under the null hypothesis. Here, we focus on using the CF rather than the
density or distribution function in constructing our test. The functional form of the CF,
however, is available only for distributions on the real line R1 and for a few selected
cases of multivariate distributions, such as themultivariate normal and themultivariate
stable distributions; see Ebner and Henze (2020) and Meintanis et al. (2015).

In order to circumvent this obstacle,which is evenmore challenging for distributions
taking on values on Sd−1, in addition to the data at hand we also consider a Monte

1 The new test also applies to circular distributions (d = 2), but hereinwe emphasize the higher dimensional
cases.

123



A unified approach to goodness-of-fit testing…

Carlo sample from the distribution under test and thereafter formulate our test as a
two-sample test that incorporates a pair of empirical quantities obtained from the two
samples, i.e., one quantity from the data at hand and the other from the aforementioned
Monte Carlo sample.

This idea also applies to the problem of testing the composite null hypothesis

H0,ϑ : f (·) = f0(·, ϑ) for some ϑ ∈ �, (2)

against general alternatives. Here, { f0(·, ϑ) : ϑ ∈ �} is a given family of densities
on Sd−1 that is parameterized in terms of ϑ ∈ �, where � ⊂ R

s for some s ≥ 1. In
this case, the Monte Carlo sample should be drawn from the specific member of the
family under test that corresponds to an estimate of the parameter ϑ , obtained on the
basis of the data at hand.

In this connection, we note that the idea of a goodness-of-fit method that makes use
of an artificial sample from the distribution under test seems to date back to Friedman
(2003), at least for independent data and simple hypotheses. Recently, Chen and Xia
(2023) employ artificial samples for a test ofmultivariate normality in high dimensions
using nearest neighbors, whileArboretti et al. (2021) applies a test procedure formixed
data by means of artificial samples.

The remainder of this work unfolds as follows: In Sect. 2, we formulate our test
statistic, and in Sect. 3 we obtain its limit null distribution as well as the corre-
sponding law under fixed alternatives to H0. In Sect. 4, the validity of a bootstrap
resampling scheme necessary for actually carrying out the test for simple hypothe-
ses with fixed parameters is established, while in Sect. 5 a corresponding bootstrap
resampling scheme is suggested for the composite hypothesis test statistic. Section6
contains an extensiveMonte Carlo study of the finite-sample behavior of the new tests,
including comparisons, while Sect. 7 illustrates real-data applications. The final Sect. 8
provides some discussion. All proofs of the theorems of Sects. 3 and 4 are provided
in Appendix 1.

2 Test statistic

Let ϕ(t) = E(eit
�X ), t ∈ R

d , denote the CF of X , where � denotes transpose, and
i = √−1 stands for the imaginary unit.

We start our exposition with the simple null hypothesis (1) and note that, if X0 has
density f0 and CF ϕ0(t) = E(eit

�X0), t ∈ R
d , say, the standard CF-based statistic for

testing H0 versus HA is given by

Dn,w =
∫

|ϕn(t) − ϕ0(t)|2w(t) dt . (3)

Here,

ϕn(t) = 1

n

n∑
j=1

exp(it�X j ), t ∈ R
d , (4)
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is the empirical CF of X1, . . . , Xn , and X1, . . . , Xn are independent and identically
distributed (i.i.d.) copies of X . In (3), the domain of integration as well as the non-
negative weight function w(·) will be specified below in a way that Dn,w is amenable
to computation and so that a test that rejects the null hypothesis H0 for large values
of Dn,w is consistent against each alternative. Notice that Dn,w is an estimator of the
population Fourier-type discrepancy measure

Dw( f , f0) =
∫

|ϕ(t) − ϕ0(t)|2w(t) dt (5)

between f and f0.
As already mentioned in the Introduction, a test statistic formulated by (3) is only

feasible if the null CF ϕ0(·) is known and if integration, as indicated in Dn,w, can
be performed in general dimension for some suitable weight function w(·). These
prerequisites, however, are rarely fulfilled, and in order to circumvent this obstacle we
suggest to replace ϕ0(t) occurring in (3) by

ψm(t) = 1

m

m∑
j=1

exp(it�Y j ), t ∈ R
d . (6)

Here, Y1, . . . ,Ym are i.i.d. random vectors, which are independent of X1, . . . , Xn and
have the same distribution as X0. Notice that ψm(t) is the empirical CF of Y1, . . . ,Ym
and thus an estimator of ϕ0(t). Of course, realizations of Y1, . . . ,Ym are generated
via Monte Carlo. In the spirit of meanwhile time-honored weighted L2-statistics (see,
e.g., Ebner and Henze (2020) for an overview of weighted L2-statistics in the context
of testing for multivariate normality), we therefore replace ϕ0(t) in (3) by ψm(t) and
thus arrive at the test statistic

Tn,m,w = mn

m + n

∫
|ϕn(t) − ψm(t)|2w(t) dt . (7)

Notice that Tn,m,w is reminiscent of a CF-based test for a two-sample problem, one
sample being the data X1, . . . , Xn at hand, while the other consists of artificial data
generated under the null hypothesis H0. For more details on weighted L2-statistics for
the two-sample problem which are based on the empirical CF, the reader is referred
to Meintanis (2005) and Alba Fernández et al. (2008).

In the setting of the composite null hypothesis H0,ϑ figuring in (2), the test statistic
in (7) should be modified accordingly in order to take into account the extra variability
introduced by the presence of the unknown parameter ϑ and its estimator. Specifically
for the composite null hypothesis we suggest the test statistic

T̂n,m,w = mn

m + n

∫
|ϕn(t) − ψ̂m(t)|2w(t) dt, (8)
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with ϕn(t) defined in (4) and

ψ̂m(t) = 1

m

m∑
j=1

exp(it�Ŷ j ), t ∈ R
d , (9)

where Ŷ j , j ∈ {1, . . . ,m}, are i.i.d. copies of a randomvector having density f0(·; ϑ̂n).
Here, ϑ̂n := ϑ̂n(X1, . . . , Xn) is some estimator of ϑ computed from X1, . . . , Xn .

We close this section by noting that CF-based methods for goodness-of-fit using
the notion of artificial samples have been recently proposed in Chen et al. (2022) and
Karling et al. (2023), the first within the family of multivariate elliptical distributions
and the latter for skewed families of distributions.

3 Asymptotics

In this section, we provide the limit distribution of Tn,m,w defined in (7). To be flexible
with respect to both the region of integration and to the weight function w, let M
be some nonempty Borel set in R

d , and let μ be some finite measure on (the Borel
subsets of) M . Thus, M could be R

d itself, and μ could be absolutely continuous
with respect to the Lebesgue measure in R

d , or M could be Sd−1, and μ could be
absolutely continuous with respect to the spherical measure. Notably, M could also
be some countable subset T of Rd , with μ having a probability mass with respect to
the counting measure on T .2

In this setting, let X , X1, X2, . . . and Y ,Y1,Y2, . . . be independent M-valued
random vectors that are defined on some common probability space (�,A,P).
Moreover, let X , X1, X2, . . . be i.i.d. with density f with respect to μ and CF
ϕ(t) = E[exp(it�X)], t ∈ R

d . Furthermore, let Y ,Y1,Y2, . . . be i.i.d. with density g
with respect to μ and CF ψ(t) = E[exp(it�Y )], t ∈ R

d . Recall that

ϕn(t) := 1

n

n∑
j=1

exp(it�X j ), ψm(t) = 1

m

m∑
j=1

exp(it�Y j ), t ∈ R
d ,

are the empiricalCF’s of X1, . . . , Xn andY1, . . . ,Ym , respectively. This section tackles
the limit distribution of

Tn,m := nm

n + m

∫
M

∣∣ϕn(t) − ψm(t)
∣∣2 μ(dt)

as m, n → ∞, under each of the conditions ϕ = ψ and ϕ 
= ψ . Putting

C(x) :=
∫
M
cos

(
t�x

)
μ(dt), S(x) :=

∫
M
sin

(
t�x

)
μ(dt), x ∈ R

d , (10)

2 A counting measure would be sufficient for circular distributions; see for instance Jammalamadaka et al.
(2019).
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and noting that
∣∣ϕn(t) − ψm(t)

∣∣2 = (
ϕn(t) − ψm(t)

)(
ϕn(t) − ψm(t)

)
, where z stands

for the complex conjugate of a complex number z, straightforward algebra yields

m + n

mn
Tn,m = 1

n2

n∑
j,k=1

(
C(Xk − X j ) + i S(Xk − X j )

)

− 1

mn

m∑
k=1

n∑
j=1

(
C(X j − Yk) + i S(X j − Yk)

)

− 1

mn

m∑
k=1

n∑
j=1

(
C(Yk − X j ) + i S(Yk − X j )

)

+ 1

m2

m∑
j,k=1

(
C(Yk − Y j ) + i S(Yk − Y j )

)
.

Since S(−x) = −S(x) and S(0d) = 0, where 0d is the origin in R
d , the sum of the

imaginary parts vanishes, and we obtain

m + n

mn
Tn,m = 1

n2

n∑
j,k=1

C(X j −Xk) − 2

mn

n∑
j=1

m∑
k=1

C(X j −Yk)

+ 1

m2

m∑
j,k=1

C(Y j −Yk). (11)

Since the computation of the test statistic Tm,n requires the evaluation of the integrals
C(x) and S(x) occurring in (10), it seems to be indispensable to impose some restric-
tions on the setM and themeasureμ in order to render the test feasible. To this end, we
assume that M – likeRd , Sd−1 or the grid Zd – is symmetric with respect to the origin
0d , i.e., we have −M = M , where −M := {−x : x ∈ M}. Moreover, we suppose
that μ is invariant with respect to the reflection T (x) := −x , x ∈ R

d , i.e., we have
μ = μT , where μT is the image ofμ under T . The condition that the set M should be
symmetric with respect to the origin is directly related to the uniqueness of CF’s, since
this uniqueness only holds if two such functions coincide for each possible argument
t . Thus typically we take M = R

d , although simplifications may occur, e.g., when
testing for a distribution on the real line, in which case we may take M = (0,∞) or
for a circular distribution for which M = Z

1 suffices. Invariance of the measure μ is
another natural requirement since the discrepancy measure

∣∣ϕn(t) − ψm(t)
∣∣2, which

is integrated with respect to μ, also remains invariant under sign changes.
By transformation of integrals, we then obtain

S(x) =
∫
M
sin(t�x) μ(dt) = −S(x), x ∈ R

d ,
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which, together with S(−x) = −S(x), x ∈ R
d , implies

S(x) = 0, x ∈ R
d . (12)

Putting

CS(ξ) := cos ξ + sin ξ, ξ ∈ R,

we now use the addition theorems cos(α −β) = cosα cosβ + sin α sin β and sin(α +
β) = sin α cosβ + cosα sin β. In view of (12), we thus have

∫
M
CS(t�X j )CS(t�Xk) μ(dt) =

∫
M
cos(t�(X j − Xk)) μ(dt) = C(Xk − X j ),

( j, k ∈ {1, . . . , n}). In this way, some algebra yields

Tn,m = mn

m + n

∫
M

⎛
⎝1

n

n∑
j=1

CS(t�X j ) − 1

m

m∑
k=1

CS(t�Yk)

⎞
⎠

2

μ(dt). (13)

Now,writingB(M) for theσ -field ofBorel sets onM , letH := L2(M,B(M), μ)be the
separable Hilbert space of (equivalence classes of) measurable functions u : M → R

satisfying
∫
M u2 dμ < ∞, equipped with the inner product 〈u, v〉 = ∫

M uv dμ and
the norm ‖u‖H = 〈u, u〉1/2, u ∈ H.

Theorem 3.1 Suppose that ϕ = ψ . If M is symmetric with respect to 0d and μ is
invariant with respect to reflections at 0d , then there is a centered Gaussian random
element W of H having covariance kernel K (s, t) = E

[
W (s)W (t)

]
, where

K (s, t) = Cov
(
CS(s�X),CS(t�X)

)
, s, t ∈ M, (14)

such that Tn,m
D−→ ‖W‖2

H
as n,m → ∞.

The next result gives the almost sure limit of (m + n)Tn,m/(mn) as m, n → ∞.

Theorem 3.2 Let

�(t) := E[CS(t�X)], b(t) := E[CS(t�Y )], t ∈ M . (15)

Under the conditions on M and μ stated in Theorem 3.1, we have

lim
n,m→∞

m + n

mn
Tn,m =

∫
M

(
�(t) − b(t)

)2
μ(dt) P-almost surely.
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Let

� :=
∫
M

|ϕ(t) − ψ(t)|2 μ(dt).

It is readily seen that � equals the almost sure limit figuring in Theorem 3.2. Thus, �
is the measure of deviation between the distributions of X and Y , expressed in form
of a weighted L2-distance of the corresponding CFs, and this measure of deviation
is estimated by Tn,m . As the next result shows, the statistic Tn,m , when suitably nor-
malized, has a normal limit distribution as n,m → ∞ if � > 0. To prove this result,
we need a technical condition which sometimes is called the usual limiting regime in
two-sample problems (see, e.g., Henze and Penrose 1999), namely

lim
m,n→∞

m

m + n
= τ (16)

for some τ ∈ [0, 1].
In contrast to Theorems 3.1 and 3.2, this condition is needed now to assess the

asymptotic proportions of the X - sample and the Y -sample. In what follows, put

K1(s, t) = Cov(CS(s�X),CS(t�X)), K2(s, t) = Cov(CS(s�Y ),CS(t�Y )),

(17)

and let

K ∗(s, t) = τK1(s, t) + (1 − τ)K2(s, t), s, t ∈ M . (18)

Furthermore, let

z(t) = �(t) − b(t), (19)

where �(t) and b(t) are given in (15).

Theorem 3.3 Suppose the standing assumptions on M and μ hold. If � > 0, then

√
mn

m + n

(
Tn,m
mn
m+n

− �

)
D−→ N(0, σ 2)

under the limiting regime (16), where

σ 2 = 4
∫
M

∫
M
K ∗(s, t)z(s)z(t) μ(ds)μ(dt).

Remark 3.4 Compared to Chen et al. (2022), who address the problem of composite
hypotheses, the limit results of this section are obtained for simple hypotheses without
estimated parameters. However, the results obtained herein hold for artificial sample
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size m 
= n, which is much more general and thus flexible than the case m = n
treated in Chen et al. (2022). Moreover, our setting is different from that of elliptical
distributions on the classical Euclidean spaceRd . In the following section, we suggest
a resampling version of the test, and we prove its asymptotic validity.

4 Resampling under a simple hypothesis

Since, under H0, both the finite-sample and the limit distribution of Tn,m as n,m → ∞
depend on the unknown underlying distribution of X1, we use a bootstrap procedure
in order to carry out a test that rejects H0 for large values of Tn,m . The bootstrap
distribution of Tn,m is the conditional distribution of Tn,m given the pooled sam-
ple X1, . . . , Xn,Y1, . . . ,Ym , and a test of H0 at nominal level α rejects H0 if Tn,m

exceeds the (1 − α)-quantile of this bootstrap distribution. Since the bootstrap dis-
tribution is difficult to compute, it is estimated by a Monte Carlo procedure that
repeatedly samples from the empirical distribution of the pooled sample. To be
specific, one first computes the observed value tn,m of Tn,m based on realizations
x1, . . . , xn, y1, . . . , ym of X1, . . . , Xn,Y1, . . . ,Ym , respectively. In a second step,
one generates b independent samples by Monte Carlo simulation. Here, for each
j ∈ {1, . . . , b}, the j th sample consists of x1( j), . . . , xn( j), y1( j), . . . , ym( j), where
these values have been chosen independently of each other with a uniform distribu-
tion over {x1, . . . , xn, y1, . . . , ym} (which means, in particular, that x1( j) can also
be taken from any of y1, . . . , ym). For each j ∈ {1, . . . , b}, one then computes the
value tn,m( j) = Tn,m(x1( j), . . . , xn( j), y1( j), . . . , ym( j)) of the test statistic Tn,m .
Letting cn,m;1−α denote the (1− α)-quantile of the b values tn,m(1), . . . , tn,m(b), the
hypothesis H0 is rejected if tn,m > cn,m;1−α .

To prove that this bootstrap procedure yields a test of H0 of asymptotic level α, we
use a Hilbert space central limit theorem for triangular arrays (see Kundu et al. 2000).
This theorem reads as follows.

Theorem 4.1 Let {e j : j ≥ 1} be a complete orthonormal basis of the separa-
ble Hilbert space H with inner product 〈·, ·〉 and norm ‖ · ‖H. For each m ≥
1, let Xm1, Xm2, . . . , Xmm be independent H-valued random elements such that
E(〈Xmj , e�〉) = 0 and E‖Xmj‖2H < ∞ for each j ∈ {1, . . . ,m} and each � ≥ 1.
Put Sm = ∑m

j=1 Xmj , and let Cm be the covariance operator of Sm. Assume that the
following conditions hold:

(i) limm→∞〈Cmek, e�〉 = ak� (say) exists for each k ≥ 1 and � ≥ 1,
(ii) limm→∞

∑∞
k=1〈Cmekek〉 = ∑∞

k=1 akk < ∞,
(iii) limm→∞ Lm(ε, ek) = 0 for each ε > 0 and each k ≥ 1, where

Lm(ε, h) :=
m∑
j=1

E
(〈Xmj , h〉21{|〈Xmj , h〉| > ε

})
, h ∈ H.
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Then Sm
D−→ G as m → ∞, where G is a centered random element of H with

covariance operator C characterized by 〈Ch, e�〉 = ∑∞
j=1〈h, e j 〉a j� for each h ∈ H

and each � ≥ 1.

To apply Theorem 4.1 in our situation of the Hilbert space H := L2(M,B(M), μ)

let, in greater generality than considered so far, Xm,n
1 , . . . , Xm,n

n ,Ym,n
1 , . . . ,Ym,n

m be
i.i.d. M-valued random vectors with common distribution, and put

�m,n(t) = E
[
CS

(
t�Xm,n

1

)]
, t ∈ M .

Moreover, let

Um,n(t) := 1√
n

n∑
j=1

{
CS

(
t�Xm,n

j

) − �m,n(t)
}
,

Vm,n(t) := 1√
m

m∑
k=1

{
CS

(
t�Ym,n

k

) − �m,n(t)
}
, t ∈ M

(cf. (27)), and write Um,n = Um,n(·), Vm,n = Vm,n(·) as well as

W̃n,m := am,nUm,n − bm,nVm,n, (20)

where am,n and bm,n are defined in (26).

Theorem 4.2 In the setting given above suppose that, under the limiting regime (16),

we have Xm,n
1

D−→ X∞ for some M-valued random vector X∞ with distribution H∞.
Put �∞(t) := E[CS(t�X∞)], t ∈ M, and W∞(t) := CS(t�X∞) − �∞(t), t ∈ M.
Moreover, let W∞ := W∞(·) be the random element of H = L2(M,B(M), μ) with
covariance operator C∞ that is associated with the covariance function

c∞(s, t) = E
[
CS(s�X∞)CS(t�X∞)

] − �∞(s)�∞(t), s, t ∈ M,

via

〈C∞g, h〉 =
∫
M

∫
M
c∞(s, t) g(s)h(t) μ(ds)μ(dt).

We then have W̃n,m
D−→ W∞.

Notice that the test statistic Tn,m occurring in (13), computed on the random vari-
ables Xm,n

1 , . . . , Xm,n
n ,Ym,n

1 , . . . ,Ym,n
n , equals ‖W̃n,m‖2

H
, where W̃n,m is given in (20).

From Theorem 4.2, we thus have the following corollary.

Corollary 4.3 The limit distribution of the test statistic Tn,m under the limiting regime
(16) is that of ‖W∞‖H2.
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Let Fn and Gm denote the empirical distributions of X1, . . . , Xn and Y1, . . . ,Ym ,
respectively, and write Hn,m := n

m+n Fn + m
m+n Gm for the empirical distribution of

the pooled sample X1, . . . , Xn,Y1, . . . , Ym . By the Glivenko–Cantelli theorem, Hn,m

converges weakly to H∞ := (1− τ)F + τ F = F with probability one under the lim-
iting regime (16), and thus the bootstrap distribution of Tn,m converges almost surely
to the distribution of ‖W∞‖2

H
. The latter distribution coincides with the distribution

of ‖W‖2
H
, where W is given in Theorem 3.1. This shows the asymptotic validity of

the bootstrap.

Remark 4.4 The resampling bootstrap procedure applied herein may also be replaced
by a permutation procedure. The validity of the exhaustive permutation (that includes
all possible permutations) may be directly obtained by observing that, under the null
hypothesis H0, the observations (x1, . . . , xn, y1, . . . , ym) are exchangeable. Another
potential resampling scheme may be that of weighted bootstrap; see Alba-Fernándes
et al. (2017).

5 Resampling under a composite hypothesis

Analogously to Tn,m,w, the limit null distribution of T̂n,m,w

= T̂n,w(x1, . . . , xn, ŷ1, . . . , ŷm) depends (in a very complicated way) on unknown
quantities, and hence it cannot be used to compute critical values and actually carry
out the test. To this end, we consider a parametric bootstrap procedure involving the
test statistic in (8) computed on the basis of bootstrap observations from f0(·;ϑ),
where the parameter ϑ is replaced by estimators.

More precisely, let T̂n,m,w,obs denote the observed value of the test statistic. For
given α ∈ (0, 1), write t∗n,m,α for the upper α-percentile of the bootstrap distribution
of Tn,m,w. We then define the test function as

�∗
n,m =

{
1, if Tn,m,w,obs ≥ t∗n,m,α,

0, otherwise.
(21)

In practice, the bootstrap distribution of Tn,m,w,obs is approximated as follows:

1. Generate a bootstrap sample x∗
1 , . . . , x

∗
n from f0(·; ϑ̂n).

2. Calculate the estimator ϑ∗
n = ϑn(x∗

1 , . . . , x
∗
n )

3. Generate a bootstrap sample y∗
1 , . . . , y

∗
m from f0(·;ϑ∗

n ).
4. Compute T ∗

n,m,w = Tn,m,w(x∗
1 , . . . , x

∗
n , y

∗
1 , . . . , y

∗
m).

5. Repeat steps 1–4 a number of times, say b, and thus obtain T ∗
n,m,w,1, . . . , T

∗
n,m,w,b.

Then we approximate the upper α–percentile t∗n,m,α in (21) of the null dis-
tribution of Tn,m,w by the upper α-percentile of the empirical distribution of
T ∗
n,m,w,1, . . . , T

∗
n,m,w,b.

Although we provide no asymptotic theory for the resampling under a composite
hypothesis, our simulations show that the above method works well. Nevertheless, it
remains an open problem to formally prove that this bootstrap is asymptotically valid.
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6 Simulations

In this section we provide results of competitive Monte Carlo simulations for the case
of both a simple and a composite hypothesis. We throughout restrict the simulation to
the spherical setting for the dimension d = 3 and, for computational feasibility, to the
sample size n = 50. All simulations are performed using the statistical programming
language R, see R Core Team (2022). We implement the test statistic by fixing the
measure μ(dt) to be the density of the zero-mean spherical stable distribution. Then
the test may be computed as in Eq. (11) with C(x) = e−γ ‖x‖ξ

. Specifically, we have

T {ξ}
n,m,γ = 1

m+n

×
(
m

n

n∑
j,k=1

e−γ ‖X j−Xk‖ξ − 2
n∑
j=1

m∑
k=1

e−γ ‖X j−Yk‖ξ + n

m

m∑
j,k=1

e−γ ‖Y j−Yk‖ξ

)
,

(22)

where the notation T {ξ}
n,m,γ is used to emphasize the flexibility of the test with respect

to the tuning parameters (ξ, γ ) ∈ (0, 2] × (0,∞), which are at the disposal of the
practitioner and may be employed in order to obtain better power against different
alternatives.

Another option, although not yielding a proper measure, is to apply the so–called
energy statistic suggested by Székely and Rizzo (2013), which again results from (11)
with C(x) = −‖x‖ξ , ξ ∈ (0, 2). The explicit formula for this statistic is obtained
from (22) by replacing e−γ ‖·‖ξ

with −‖ · ‖ξ . This test statistic will be denoted by
SR{ξ}

n,m .
The spherical distributions were generated using the package Directional, see

Tsagris et al. (2021), and the uniformity tests by the package sphunif, see García-
Portugués and Verdebout (2020).

6.1 Testing the simple hypothesis of uniformity

We test the hypothesis

H0 : f (·) ≡ 1/|Sd−1|,

where |Sd−1| = 2πd/2/�(d/2) is the surface area of the (d − 1)-sphere. Hence we
test whether f is the density of the uniform law U(Sd−1), which is a classical testing
problem in directional statistics. For an overview of existing procedures we refer to
García-Portugués andVerdebout (2018). As competing tests we consider the following
procedures:

• The modified Rayleigh test Rn , see Mardia and Jupp (2000, Sect. 10.4.1) based
on the mean of the directions,

• The Ebner et al. (2018) test NN J
a based on volumes of the J nearest neighbor

balls with power a,
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• The Bingham test Bn , see Bingham (1974), based on the empirical scatter matrix
of the sample,

• The Sobolev test, see Giné (1975), Gn based on Sobolev norms, and
• The test of Cuesta-Albertos et al. (2009) CAn , which is based on random projec-
tions that characterize the uniform law,

• The test XMn in Xu and Matsuda (2020), based on a U -statistic representation of
a directional kernel Stein discrepancy with fixed tuning parameter κ = 1.

Empirical critical values for each testing procedure have been obtained by a Monte
Carlo simulation study under H0 with 100,000 replications each.

We considered the following alternatives to the uniform distribution onSd−1. These
alternatives are chosen to simulate different uni-, bi- and trimodal models. For details
on the hyperspherical von Mises–Fisher distribution, see Sect. 9.3 in Mardia and Jupp
(2000).

• The density of the vonMises–Fisher distribution in dependence of the mean direc-
tion θ ∈ Sd−1 and concentration parameter κ ≥ 0 is given by

f (x) = (κ/2)d/2−1

�(d/2)Id/2−1(κ)
exp(κx�θ), x ∈ Sd−1.

Here, Id/2−1 is the modified Bessel function of the first kind and order d/2 − 1.
This class is denoted with vMF(θ, κ).

• We simulate amixture of two vonMises–Fisher distributions with different centers
by the following procedure. Simulate U ∼ U(0, 1) and, independently, Yi ∼
vMF(θi , κi ) with corresponding location and concentration parameters for i =
1, 2, and choose p ∈ (0, 1). Then we generate a member X of the random sample
according to

X = Y11{U < p} + Y21{U ≥ p}.

We denote this alternative class by MMF((p, 1 − p), (θ1, θ2), (κ1, κ2)).
• In a similar manner as for the mixture of two vMF distributions, we simulate a
mixture of three von Mises–Fisher distributions with different centers, by addi-
tionally simulating independently a third random vector Y3 ∼ vMF(θ3, κ3) and
generating the member X by

X = Y11{U < p} + Y21{p ≤ U < 2p} + Y31{U ≥ 2p}, p ∈ (0, 1/2).

We denote this class with MMF((p, p, 1 − 2p), (θ1, θ2, θ3), (κ1, κ2, κ3)).

In each of the alternatives, we put 1 = (1, . . . , 1)/
√
d, μ1 = (1, 0, . . . , 0), and

μ2 = (−1, 1, . . . , 1)/
√
d. The results of the simulation study for the new test applied

at ξ = 2, as well as the stated competitors are displayed in Tables 1 and 2. In this
section, for the sake of simplicity, we suppress the sample size n and the Monte Carlo
sizem in the notation of the new test and write T {ξ}

γ . As can be seen, the suggested tests
perform well in comparison, although they are never the best performing procedures.
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This behavior might be explained by the approximation of the true CF under the null
hypothesis. To investigate the impact of the sample size m of the simulated data set
Y1, . . . ,Ym , we simulated the empirical power of the test for four vMF distributions
and for different values of m, see Fig. 1. Clearly, the choice of m has an impact on
the estimation, and larger values of m are desirable, but increasing m leads to longer
computation time. Table 3 exhibits the impact of the weighting measure μ and hence
of the choice of the function C(·). In this regard, we compare our test with the energy
test of Székely and Rizzo (2013), denoted by SR{ξ}, for different combinations of
the tuning parameters (γ, ξ). In terms of power for the uni- and bimodal alternatives
considered, the choice of C(·) has nearly no influence on the empirical power, with the
exception of the MMF((0.5, 0.5), (−μ1, μ1), (2, 2)) alternative, where T {1}

γ , T {1.5}
γ

and T {2}
γ outperform the SR{ξ}-procedures for some values of the tuning parameter γ .

6.2 Testing the fit to the vonMises–Fisher distribution

For the case of a composite hypothesis we consider the hypothesis that the underlying
density belongs to the family of von Mises–Fisher distributions vMF(κ, θ), i.e., we
test the hypothesis

H0 : f (·) = (κ/2)d/2−1

�(d/2)Id/2−1(κ)
exp(κ ·� θ), for some κ ≥ 0 and θ ∈ Sd−1, (23)

against general alternatives. The main difference to subsection 6.1 is that we consider
a test to a family of distributions, where the parameters are unknown and hence have to
be estimated. To test the hypothesis we chose T {2}

γ in Eq. (22), for different values of
the tuning parameter γ , and we implemented the parametric bootstrap procedure from
Sect. 5. To approximate the unknown parameters we calculated the maximum likeli-
hood estimates for κ and θ , as proposed in Sect. 10.3.1 of Mardia and Jupp (2000).
As far as we know, testing composite hypotheses for spherical or hyperspherical dis-
tributions with estimated parameters has not been considered before in the literature.
As alternative models we chose the same distributions as described in Subsection 6.1.

In viewof the extensive computation timedue to the parametric bootstrap procedure,
we considered the simulation setting n = 50, m = 200, a sample size of 500 in the
bootstrap algorithm, and 5000 Monte Carlo replications. Throughout the study, we
fixed the significance level to 0.05. The results are reported in Table 4. Notably, the
novel test maintains the nominal significance level very closely, and its power with
respect to bimodal alternatives increases the more these two modes are pronounced.

6.3 Testing the fit to the angular central Gaussian distribution

In this subsection, we consider testing the fit to an angular central Gaussian model,
i.e., we test the hypothesis

H0 : f (·) = |�|−1/2(·��−1·)−d/2, for some �, (24)
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Fig. 1 Simulated empirical rejection rates for T {2}
1 and different values of 10 ≤ m ≤ 500 and concentration

parameters κ ∈ {0.25, 0.5, 0.75, 1} (n = 50, α = 0.05, 10,000 replications)

where� is a symmetric positive definite (d×d)-parametermatrix,which is identifiable
up to multiplication by a positive scalar. For information regarding this model, see
Mardia and Jupp (Mardia and Jupp 2000, Sect. 9.4.4), and for a numerical procedure
to approximate the maximum likelihood estimator of the unknown parameter matrix
�, see Tyler (1987). To the best of our knowledge, testing the fit to the angular central
Gaussian family has not been considered in the literature.

The simulation parameters match the ones of Sect. 6.2. In complete analogy with
previous simulations, we considered T {2}

γ in Eq. (22), for different values of the tuning
parameter γ , and we implemented the parametric bootstrap procedure from Sect. 5.
To simulate different models under the null hypothesis, we generated a realization of
a random matrix
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A =
⎛
⎝−0.846 −0.531 −0.779

0.609 −0.096 0.761
0.851 0.133 −0.666

⎞
⎠

and computed the covariance matrices �� = (A�)�A�, � ∈ {1, 2, 3, 4}, where the
power matrix A� = (a�

i j )i, j=1,2,3 is defined component-by-component, and �0 =
diag(1, 2, 3). The corresponding alternatives are denoted by ACG�, � = 0, . . . , 4.
Results are presented in Table 5. In this case the bootstrap testing procedure controls
the type I error, while performing well for most of the alternatives considered.

7 Real data

We revisit the paleomagnetic data in Scealy and Wood (2019), which is an exam-
ple of spherical data. Paleomagnetic data consist of observations on the direction of
magnetism in either rocks, sediment, or in archeological specimens. These data are
measured at various geological points in time and spatial locations. The directions are
usually measured as declination and inclination angles based on strike and dip coor-
dinates, see Scealy and Wood (2019) and the references therein for more information.
The data considered are taken from the GEOMAGIA50.v3 database, see Brown et al.
(2015). For simplicity, we analyze the data provided in the supplementary material
of Scealy and Wood (2019). The full data set consists of n = 1137 entries (variables
are age, dec, inc, lat, and lon) collected at a single spatial location, which is
the Eifel maars (EIF) lakes in Germany with relocated nearby data, for details see
Scealy and Wood (2019). The analyzed directions are given by the variables declina-
tion D (dec defined on [0◦, 360◦]) and inclination I (inc defined on [−90◦, 90◦]).
They are converted to Cartesian coordinates by x1 = sin(I ), x2 = cos(I ) cos(D), and
x3 = cos(I ) sin(D), ensuring x = (x1, x2, x3) ∈ S2. For a plot of the data, see Fig. 2
(left).

We test the composite hypothesis (23) of a vonMises–Fisher distribution by T {2}
n,m,γ

of Eq. (22), for different values of the tuning parameter γ , and we fix m = 500 with a
bootstrap sample size b = 1000. The bootstrap p-values are reported in Table 6. With
the exception of the tuning parameter γ = 0.5, the p-values indicate that we are not
able to reject the hypothesis of fit of an underlying von Mises–Fisher distribution at
any level. For their analysis, the authors in Scealy and Wood (2019) consider rocks of
age 1250 and hence determine a subset of the data of sample size n = 50, for a plot
see Fig. 2 (right). They propose to use a new spherical model, namely a distribution of
Kent type, by applying a transformation to the von Mises–Fisher density. The results
of our test of fit to the von Mises–Fisher law for the subset are displayed in the second
row of Table 6. For all significance levels and each choice of the tuning parameter, the
tests reject the null hypothesis, indicating a poor fit of the von Mises–Fisher family
for the subset of the data.
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Table 4 Empirical rejection rates for testing the fit to a von Mises–Fisher distribution (n = 50, m = 200,
α = 0.05, 500 bootstrap sample size, 5000 replications)

Alternative T {2}
.1 T {2}

.5 T {2}
.75 T {2}

1 T {2}
2 T {2}

3

vMF(μ1, 0) = U(S2) 5 6 6 6 6 6

vMF(μ1, 0.25) 5 5 6 6 6 6

vMF(μ1, 0.5) 5 5 6 5 5 6

vMF(μ1, 0.75) 5 5 6 5 6 6

vMF(μ1, 1) 5 5 6 6 5 6

MMF((0.25, 0.75), (μ1, μ1), (0, 2)) 6 7 7 7 7 6

MMF((0.25, 0.75), (−μ1, μ1), (2, 2)) 21 31 30 27 19 13

MMF((0.5, 0.5), (μ1, μ1), (0, 2)) 6 7 8 8 7 6

MMF((0.5, 0.5), (−μ1, μ1), (2, 2)) 36 49 47 45 30 20

MMF((0.75, 0.25), (μ1, μ1), (0, 2)) 5 7 7 7 6 6

MMF((0.75, 0.25), (−μ1, μ1), (2, 2)) 21 31 31 29 20 14

MMF((0.25, 0.75), (−μ1, μ1), (5, 0)) 16 18 17 16 12 9

MMF((0.25, 0.75), (−μ1, μ1), (5, 1)) 36 42 41 38 25 16

MMF((0.25, 0.75), (−μ1, μ1), (5, 2)) 59 73 72 69 54 37

MMF((0.25, 0.75), (−μ1, μ1), (5, 3)) 80 92 92 91 82 65

MMF((0.25, 0.75), (−μ1, μ1), (5, 4)) 92 98 98 98 94 87

MMF((0.25, 0.75), (−μ1, μ1), (0, 3)) 10 13 13 12 9 8

MMF((0.25, 0.75), (−μ1, μ1), (1, 3)) 23 32 31 29 20 15

MMF((0.25, 0.75), (−μ1, μ1), (2, 3)) 41 59 57 55 39 26

MMF((0.25, 0.75), (−μ1, μ1), (3, 3)) 60 78 78 75 59 44

MMF((0.25, 0.75), (−μ1, μ1), (4, 3)) 25 34 32 30 19 13

As a second parametric family of distributions, we consider the Kent distribution,
defined by the density

f (x) = 1

c(A, κ)
exp(κ x�θ + x�Ax), x ∈ Sd−1. (25)

Here, κ > 0 is a concentration parameter and θ ∈ Sd−1 is the mean direction.
Moreover, A is a symmetric (d × d)-matrix with tr(A) = 0 and Aθ = 0 that depends
on an ‘ovality’ parameter β, seeMardia and Jupp (2000). Hence we test the hypothesis
that the data stems from a density of type (25), where the parameters κ, θ and β

are unknown. These parameters have been estimated by the method of maximum-
likelihood, and the same bootstrap parameters are applied as above. The bootstrap
p-values are reported in Table 6. Interestingly, the full data set is rejected by each of
the tests on every significance level. We thus conclude that the Kent distribution is not
a suitable model. However, we obtain a different impression for the subset of the data
with age fixed to 1250. For this data set, none of the tests can reject the hypothesis of
an underlying Kent distribution
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Table 5 Empirical rejection rates for testing the fit to an angular central Gaussian distribution (n = 50,
m = 200, α = 0.05, 500 bootstrap sample size, 5000 replications)

Alternative T {2}
.1 T {2}

.5 T {2}
1 T {2}

3

ACG0 4 4 4 3

ACG1 5 4 4 4

ACG2 4 6 4 5

ACG3 4 3 5 5

ACG4 6 6 5 4

vMF(μ1, 0) = U(S2) 3 3 1 1

vMF(μ1, 0.25) 12 15 14 12

vMF(μ1, 0.5) 23 34 26 18

vMF(μ1, 0.75) 45 74 60 50

vMF(μ1, 1) 74 91 91 79

MMF((0.25, 0.75), (μ1, μ1), (0, 2)) 95 100 100 95

MMF((0.25, 0.75), (−μ1, μ1), (2, 2)) 41 69 66 47

MMF((0.5, 0.5), (μ1, μ1), (0, 2)) 60 83 72 67

MMF((0.5, 0.5), (−μ1, μ1), (2, 2)) 4 3 3 1

MMF((0.75, 0.25), (μ1, μ1), (0, 2)) 6 17 11 9

MMF((0.75, 0.25), (−μ1, μ1), (2, 2)) 54 59 58 76

MMF((0.25, 0.75), (−μ1, μ1), (5, 0)) 25 23 41 46

MMF((0.25, 0.75), (−μ1, μ1), (5, 1)) 2 2 2 0

MMF((0.25, 0.75), (−μ1, μ1), (5, 2)) 28 44 39 28

MMF((0.25, 0.75), (−μ1, μ1), (5, 3)) 46 62 63 49

MMF((0.25, 0.75), (−μ1, μ1), (5, 4)) 76 91 84 80

MMF((0.25, 0.75), (−μ1, μ1), (0, 3)) 98 100 99 99

MMF((0.25, 0.75), (−μ1, μ1), (1, 3)) 95 99 98 98

MMF((0.25, 0.75), (−μ1, μ1), (2, 3)) 83 94 92 86

MMF((0.25, 0.75), (−μ1, μ1), (3, 3)) 69 86 81 74

MMF((0.25, 0.75), (−μ1, μ1), (4, 3)) 100 100 100 100

The results obtained in this section confirm the statements about the data sets made
in Scealy and Wood (2019).

8 Discussion

We have studied goodness-of-fit tests for spherical data. Our tests apply to both sim-
ple hypotheses with all parameters assumed known and to composite hypotheses, with
parameters estimated from the data at hand. Limit theory is developed under the null
hypothesis as well as under alternatives, while the asymptotic validity of a resampling
version of the tests is established. The new procedures perform well in finite samples,
and they are competitive against other methods, whenever such methods are available.
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Fig. 2 Full data set (n = 1137) of archeomagnetic directions (left) and subsample (n = 50) consisting of
directions the same age 1250 (right)

An application illustrates the usefulness of the new tests for data-modelling on the
sphere. In closing we note that, despite the fact that our study focuses on spherical
distributions, the method suggested herein also applies to higher dimensions, provided
that one can draw samples from the distribution under test and, in the case of composite
hypotheses, one is able to estimate the distributional parameters. This remark notwith-
standing, we acknowledge that computational problems become progressively more
involved with increasing dimension, and thus the feasibility of our method should be
assessed on a case-by-case basis.
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Appendix A: Proofs

Proof of Theorem 3.1 Let �(t) := E[CS(t�X)], t ∈ R
d . Notice that �(t) =

E[CS(t�Y )] since ϕ = ψ . Let

am,n =
√

m

m + n
, bm,n =

√
n

m + n
, (26)

and put

Un(t) = 1√
n

n∑
j=1

{
CS(t�X j )−�(t)

}
, Vm(t) = 1√

m

m∑
k=1

{
CS(t�Yk)−�(t)

}
,(27)

t ∈ M . ThenUn = Un(·) and Vm = Vm(·) are centered random elements ofH, and by
the central limit theorem in separable Hilbert spaces (see, e.g., Theorem 2.7 of Bosq

2000), we have Un
D−→ U as n → ∞ and Vm

D−→ V as m → ∞, where U and V
are centered random elements of H having covariance kernel K given in (14). From
(13), we obtain

Tn,m = ‖Wn,m‖2
H
, (28)

where Wn,m = am,nUn − bm,nVm . Since Un and Vm are independent for each pair

(n,m), alsoU and V are independent, and we have (Un, Vm)
D−→ (U , V ) as n,m →

∞ (see, e.g., Theorem 2.8. of Billingsley 1999). Notice that n,m → ∞means that, as
s → ∞, we have n = n(s) → ∞ and m = m(s) → ∞ in an arbitrary manner. Now,
if some subsequence of the bounded sequence (am,n) converges to some τ ∈ [0, 1]
then, because of the continuous mapping theorem and a2m,n + b2m,n = 1, it follows

that Wn,m
D−→ √

τU − √
1 − τV as n,m → ∞. This limit random element has

the same distribution as W , irrespective of τ . Consequently, we have Wn,m
D−→ W

as n,m → ∞ (see, e.g., Theorem 2.6 of Billingsley 1999). In view of (28) and the
continuous mapping theorem, the assertion follows. ��
Proof of Theorem 3.2 Let

An(t) = 1

n

n∑
j=1

CS(t�X j ), Bm(t) = 1

m

m∑
k=1

CS(t�Yk) (29)

and, regarded as random elements of H, put An = An(·) and Bm = Bm(·). Likewise,
write a = �(·) and b = b(·) for the degenerate random elements of H that are the
expectations of An and Bm , respectively. By the strong law of large numbers in Banach
spaces (see, e.g., Hoffmann-Jørgensen and Pisier (1976)), we have ‖An − a‖H → 0
as n → ∞ and ‖Bm − b‖H → 0 as m → ∞ P-almost surely. It follows that

m + n

mn
Tn,m = ‖An − Bm‖2

H
→ ‖a − b‖2

H
P-almost surely as n,m → ∞.
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��
Proof of Theorem 3.3 The proof follows the lines of the proof of Theorem 3 of Bar-
inghaus et al. (2017). In view of Theorem 3.2, condition (22) of Baringhaus et al.
(2017) holds. Let An and Bm as in (29), and put Zn,m := An − Bm . Furthermore,
write z = z(·) for the degenerate random element of H, where z(t) is given in (19),
and define

cm,n =
√

mn

m + n
.

Notice that

cm,n
(
Zn,m − z

) = am,n
√
n(An − a) − bm,n

√
m(Bm − b),

where am,n and bm,n are given in (26). By the central limit theorem for H-valued

random elements, we have
√
n(An − a)

D−→ A as n → ∞ and
√
m(Bm − b)

D−→ B
asm → ∞, where A and B are independent centered Gaussian random elements ofH
with covariance kernels K1 and K2, respectively, where K1 and K2 are given in (17).

In view of (16), the continuous mapping theorem yields cm,n(Zn,m − z)
D−→ Z , where

Z := √
τ A−√

1 − τ B is a centred Gaussian random element ofH having covariance
kernel K ∗ given in (18). Thus, also condition (23) of Baringhaus et al. (2017) holds,
and the proof of Theorem 3.3 follows in view of

cm,n

(
Tn,m

c2n,m
− �

)
= 2〈cm,n(Zn,m − z), z〉 + 1

cm,n
‖cm,n(Zn,m − z)‖2

H
.

Notice that the second summand on the right-hand side is oP(1) in view of the tightness
of (cm,n(Zn,m − z)), and the first summand converges in distribution to 2〈Z , z〉, which
has the stated normal distribution N(0, σ 2). ��
Proof of Theorem 4.2 The proof is similar to that of Theorem 2 of Baringhaus and
Kolbe (2015) and will thus only be sketched. Notice that

Xm,n, j := 1√
n

(
CS(·�Xm,n

j ) − ρm,n(·)
)

, j ∈ {1, . . . , n}, (30)

are i.i.d. centered random elements of the Hilbert space H = L2(M,B(M), μ) that,
for a fixed complete orthonormal system of H, satisfy E(〈Xm,n, j , e�〉) = 0 and
E‖Xm,n, j‖2H < ∞ for each j ∈ {1, . . . , n} and each � ≥ 1. The covariance func-
tion of the process Um,n = Um,n(·) is given by

cm,n(s, t) := Cov(Um,n(s),Um,n(t))

= E[CS(s�Xm,n
1 )CS(t�Xm,n

1 )] − �m,n(s)�m,n(t), s, t ∈ M,
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and the covariance operator Cm,n (say) of Um,n satisfies

〈Cm,ng, h〉 =
∫
M

∫
M
cm,n(s, t) g(s)h(t) μ(ds)μ(dt), g, h ∈ H.

Since the function CS is bounded and continuous, Xm,n
1

D−→ X∞ yields cm,n(s, t) →
c∞(s, t), s, t ∈ M . By dominated convergence, we obtain 〈Cm,ng, h〉 → 〈C∞g, h〉
(g, h ∈ H), which shows that condition (i) of Theorem 4.1 holds. The proof of condi-
tion (ii) of Theorem 4.1 follows the reasoning given on p. 603 of Baringhaus andKolbe
(2015) by replacing J0(2

√
t ·) with CS(t�·),Hm,n with �m,n ,H∞ with �∞, ν with μ,

and the region of integration with M . To prove condition (iii) of Theorem 4.1, notice
that, with Xm,n, j defined in (30), the fact that |CS(·)| ≤ 2 and Hölder’s inequality
give

∣∣〈Xm,n, j , h〉∣∣ ≤ 2√
n
(μ(M))1/2‖h‖2

H
, h ∈ H.

Consequently,

n∑
j=1

E
(〈Xm,n, j , h〉21{|〈Xm,n, j , h〉| > ε

}) ≤ 4μ(M)‖h‖2
H
P(|〈Xm,n,1, h〉| > ε),

and thus also condition (iii) of Theorem 4.1 holds. According to Theorem 4.1, we have

Um,n
D−→ W∞. In the same way, Vm,n

D−→ W̃∞, where, due to the independence of
Um,n and Vm,n , W̃∞ is an independent copy ofW∞. In view of (20) and the continuous

mapping theorem, it follows that W̃n,m
D−→ √

τW∞ − √
1 − τ W̃∞. The latter limit

has the same distribution as W∞. ��
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