KIT | KIT-Bibliothek | Impressum | Datenschutz

On the challenges of global entity-aware deep learning models for groundwater level prediction

Heudorfer, Benedikt 1; Liesch, Tanja ORCID iD icon 1; Broda, Stefan
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)

Abstract:

The application of machine learning (ML) including deep learning models in hydrogeology to model and predict groundwater level in monitoring wells has gained some traction in recent years. Currently, the dominant model class is the so-called single-well model, where one model is trained for each well separately. However, recent developments in neighbouring disciplines including hydrology (rainfall–runoff modelling) have shown that global models, being able to incorporate data of several wells, may have advantages. These models are often called “entity-aware models“, as they usually rely on static data to differentiate the entities, i.e. groundwater wells in hydrogeology or catchments in surface hydrology. We test two kinds of static information to characterize the groundwater wells in a global, entity-aware deep learning model set-up: first, environmental features that are continuously available and thus theoretically enable spatial generalization (regionalization), and second, time-series features that are derived from the past time series at the respective well. Moreover, we test random integer features as entity information for comparison. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000169100
Veröffentlicht am 05.03.2024
Originalveröffentlichung
DOI: 10.5194/hess-28-525-2024
Scopus
Zitationen: 3
Web of Science
Zitationen: 1
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1607-7938
KITopen-ID: 1000169100
Erschienen in Hydrology and Earth System Sciences
Verlag Copernicus Publications
Band 28
Heft 3
Seiten 525–543
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 08.02.2024
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page