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1. Introduction

Let ∥ · ∥ be the Euclidean norm in Rd, d ≥ 2, and write Sd−1 := {x ∈ Rd :

∥x∥ = 1} for the surface of the unit sphere in Rd. In this paper, we consider the

problem of testing goodness-of-fit for distributions defined on the sphere S2 or

on the hypersphere Sd−1, where d > 3. In this respect, there is a plethora of

such tests for distributions defined on Rd, even in the multivariate case d > 1.

Besides, also goodness-of-fit tests on the circular domain S1 is a relatively well-

explored area. For the latter case we refer, e.g., to [16] (Chapters 6 and 7), [20]

and [21].

On the other hand, the same problem for data taking values on Sd−1, where

d ≥ 3, has been mostly confined to testing for uniformity. Nevertheless, and

while the notion of “non-preferred direction” and hence testing for uniformity

is certainly central to (hyper)spherical data analysis, there are several more

flexible distributions, which in fact often have the uniform as a special case.

The reader is referred to the monographs of [23], Section 2.3, and [24], Section

9.3, for such non-uniform models for (hyper)spherical data. At the same time, it

seems that goodness-of-fit tests specifically tailored to hyper(spherical) laws are

scarce, certainly in the case of a composite null hypothesis, where distributional

parameters need to be estimated from the data at hand, but also for a completely

specified hypothesis with fixed (known) parameter values. For the latter case,

the test based on nearest neighbors proposed in [13] seems to be one of the

few tests available, while to the best of our knowledge, there is much need for

research in the case of a composite hypothesis.

In view of these lines, we suggest a procedure for testing goodness-of-fit for

distributions defined on Sd−1, where d ≥ 3.1 The suggested test is novel in

that it is general-purpose suitable for arbitrary (hyper)spherical distributions,

either with fixed or estimated parameters, and it is straightforwardly applicable

1The new test also applies to circular distributions (d = 2), but herein we emphasize the

higher dimensional cases.
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provided that one can easily draw Monte Carlo samples from the distribution

under test.

Suppose X is a random (column) vector in Rd taking values in Sd−1 with

a density f with respect to surface measure and characteristic function (CF)

φ(t) = E(eit⊤X), t ∈ Rd, where ⊤ denotes transpose, and i =
√
−1 stands for

the imaginary unit. We start our exposition with the simple null hypothesis

H0 : f = f0, (1)

where f0 is some given density on Sd−1, which should be tested against the

general alternativeHA that the distributions pertaining to f and f0 are different.

If X0 has density f0 and CF φ0(t) = E(eit⊤X0), t ∈ Rd, say, the standard CF-

based statistic for testing H0 versus HA is given by

Dn,w =

∫
|φn(t)− φ0(t)|2w(t) dt. (2)

Here,

φn(t) =
1

n

n∑
j=1

exp(it⊤Xj), t ∈ Rd, (3)

is the empirical CF of X1, . . . , Xn, and X1, . . . , Xn are independent and iden-

tically distributed (i.i.d.) copies of X. In (2), the domain of integration as well

as the nonnegative weight function w(·) will be specified below in a way that

Dn,w is amenable to computation and that a test of H0 that rejects H0 for large

values of Dn,w is consistent against each alternative to H0. Notice that Dn,w is

an estimator of the population Fourier-type discrepancy measure

Dw(f, f0) =

∫
|φ(t)− φ0(t)|2w(t) dt (4)

between f and f0.

The starting point of this paper is that the approach outlined above assumes

that the functional form of the CF φ0 is known. Such knowledge, however, is

only available for distributions on the real line R1 and for a few selected cases of

multivariate distributions, such as the multivariate normal and the multivariate

stable distribution; see [12] and [26].
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In order to circumvent this obstacle, which is even more challenging for dis-

tributions taking values on Sd−1, we suggest the test statistic

Tn,m,w =
mn

m+ n

∫
|φn(t)− ψm(t)|2w(t) dt. (5)

Here,

ψm(t) =
1

m

m∑
j=1

exp(it⊤Yj), t ∈ Rd, (6)

is the empirical CF of Y1, . . . , Ym, where, independently of X1, . . . , Xn, the

random vectors Y1, . . . , Ym are i.i.d. copies of X0. Of course, realizations of

Y1, . . . , Ym are generated via Monte Carlo. Notice that ψm is an estimator of

the CF φ0. In this way, the functional form of φ0 is not needed in the test statis-

tic Tn,m,w in (5), which is reminiscent of a CF-based test for the two-sample

problem, one sample being the data X1, . . . , Xn at hand, while the other con-

sists of artificial data generated under the null hypothesis H0. For more details

on CF-based tests for the two-sample problem the reader is referred to [25] and

[14].

This idea also applies to the problem of testing the composite null hypothesis

H0,ϑ : f(·) = f0(·, ϑ) for some ϑ ∈ Θ, (7)

against general alternatives. Here, {f0(·, ϑ) : ϑ ∈ Θ} is a given family of densities

on Sd−1 that is parameterized in terms of ϑ ∈ Θ, where Θ ⊂ Rs for some s ≥ 1.

In this setting, the test statistic in (5) is modified according to

T̂n,m,w =
mn

m+ n

∫
|φn(t)− ψ̂m(t)|2w(t) dt, (8)

with φn(t) defined in (3) and

ψ̂m(t) =
1

m

m∑
j=1

exp(it⊤Ŷj), t ∈ Rd, (9)

where Ŷj , j ∈ {1, ...,m}, are i.i.d. copies of a random vector having density

f0(·; ϑ̂n). Here, ϑ̂n := ϑ̂n(X1, ..., Xn) is some estimator of ϑ computed from

X1, . . . , Xn.



B. Ebner, N. Henze and S. Meintanis/Goodness-of-fit testing for hyperspherical data 5

In this connection, we note that the idea of a goodness-of-fit method that

employs an artificial sample from the distribution under test seems to date back

to [15], at least for independent data and simple hypotheses. Recently, [9] pro-

posed a CF-based method using the notion of artificial samples for goodness-of-

fit within the family of multivariate elliptical distributions, [10] employ artificial

samples in order to specifically test multivariate normality in high dimensions

using nearest neighbors, while [2] applies a test procedure for mixed data by

means of artificial samples.

The remainder of this work unfolds as follows. In Section 2 we obtain the

limit null distribution of Tn,m,w as well as the corresponding law under fixed

deviations from H0. In Section 3, the validity of a bootstrap resampling scheme

necessary for actually carrying out the test for simple hypotheses with fixed pa-

rameters is established, while in Section 4 a corresponding bootstrap resampling

for the composite hypothesis test statistic T̂n,m,w is suggested. Section 5 con-

tains an extensive Monte Carlo study of the finite-sample behavior of the new

tests including comparisons, while Section 6 illustrates real-data applications.

The final Section 7 provides some discussion.

2. Asymptotics

In this section, we provide the limit distribution of Tn,m,w defined in (5). To be

flexible with respect to both the region of integration and to the weight function

w, letM be some nonempty Borel set in Rd, and let µ be some finite measure on

(the Borel subsets of)M . Thus,M could be Rd itself, and µ could be absolutely

continuous with respect to the Lebesgue measure in Rd, orM could be Sd−1, and

µ could be absolutely continuous with respect to spherical measure. Notably,M

could also be some countable subset T of Rd, with µ having a probability mass

with respect to the counting measure on T .2

In this setting, let X,X1, X2, . . . and Y, Y1, Y2, . . . be independent M -valued

random vectors that are defined on some common probability space (Ω,A,P).
Moreover, let X,X1, X2, . . . be i.i.d. with density f with respect to µ and CF

φ(t) = E[exp(it⊤X)], t ∈ Rd. Furthermore, let Y, Y1, Y2, . . . be i.i.d. with density

2A counting measure would be sufficient for circular distributions; see for instance [20].
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g with respect to µ and CF ψ(t) = E[exp(it⊤Y )], t ∈ Rd. Recall that

φn(t) :=
1

n

n∑
j=1

exp(it⊤Xj), ψm(t) =
1

m

m∑
j=1

exp(it⊤Yj), t ∈ Rd,

are the empirical CF’s of X1, . . . , Xn and Y1, . . . , Ym, respectively. This section

tackles the limit distribution of

Tn,m :=
nm

n+m

∫
M

∣∣φn(t)− ψm(t)
∣∣2 µ(dt)

as m,n→ ∞, under each of the conditions φ = ψ and φ ̸= ψ.

Putting

C(x) :=

∫
M

cos
(
t⊤x

)
µ(dt), S(x) :=

∫
M

sin
(
t⊤x

)
µ(dt), x ∈ Rd,

straightforward algebra yields

m+ n

mn
Tn,m =

1

n2

n∑
j,k=1

(
C(Xk −Xj) + i S(Xk −Xj)

)
− 1

mn

m∑
k=1

n∑
j=1

(
C(Xj − Yk) + i S(Xj − Yk)

)
− 1

mn

m∑
k=1

n∑
j=1

(
C(Yk −Xj) + i S(Yk −Xj)

)
+

1

m2

m∑
j,k=1

(
C(Yk − Yj) + i S(Yk − Yj)

)
.

Since S(−x) = −S(x) and S(0d) = 0, where 0d is the origin in Rd, the sum of

the imaginary parts vanishes, and we obtain

m+ n

mn
Tn,m =

1

n2

n∑
j,k=1

C(Xj−Xk)−
2

mn

n∑
j=1

m∑
k=1

C(Xj−Yk)+
1

m2

m∑
j,k=1

C(Yj−Yk).

(10)

A further simplification is obtained if we assume that the set M – like Rd,

Sd−1 or the grid Zd – is symmetric with respect to the origin 0d, i.e., we have

−M = M , where −M := {−x : x ∈ M}. Furthermore, we suppose that the

measure µ is invariant with respect to the reflection T (x) := −x, x ∈ Rd, i.e.,

we have µ = µT , where µT is the image of µ under T . By transformation of
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integrals, we then obtain

S(x) =

∫
M

sin(t⊤x)µ(dt) = −S(x), x ∈ Rd,

and thus S(x) = 0, x ∈ Rd. Putting

CS(ξ) := cos ξ + sin ξ, ξ ∈ R,

and using the addition theorem cos(α − β) = cosα cosβ + sinα sinβ, some

algebra yields

Tn,m =
mn

m+ n

∫
M

 1

n

n∑
j=1

CS(t⊤Xj)−
1

m

m∑
k=1

CS(t⊤Yk)

2

µ(dt). (11)

Now, writing B(M) for the σ-field of Borel sets on M , let H := L2(M,B(M), µ)

be the separable Hilbert space of (equivalence classes of) measurable functions

u : M → R satisfying
∫
M
u2 dµ < ∞, equipped with the inner product ⟨u, v⟩ =∫

M
uv dµ and the norm ∥u∥H = ⟨u, u⟩1/2, u ∈ H.

Theorem 2.1 Suppose that φ = ψ. If M is symmetric with respect to 0d and µ

is invariant with respect to reflections at 0d, there is a centred Gaussian random

element W of H having covariance kernel K(s, t) = E
[
W (s)W (t)

]
, where

K(s, t) = Cov
(
CS(s⊤X),CS(t⊤X)

)
, s, t ∈M, (12)

such that Tn,m
D−→ ∥W∥2H as n,m→ ∞.

Proof. Let ϱ(t) := E[CS(t⊤X)], t ∈ Rd. Notice that ϱ(t) = E[CS(t⊤Y )]

since φ = ψ. Let

am,n =

√
m

m+ n
, bm,n =

√
n

m+ n
, (13)

and put

Un(t) =
1√
n

n∑
j=1

{
CS(t⊤Xj)−ϱ(t)

}
, Vm(t) =

1√
m

m∑
k=1

{
CS(t⊤Yk)−ϱ(t)

}
, (14)

t ∈ M . Then Un = Un(·) and Vm = Vm(·) are centred random elements of H,

and by the central limit theorem in separable Hilbert spaces (see, e.g., Theorem



B. Ebner, N. Henze and S. Meintanis/Goodness-of-fit testing for hyperspherical data 8

2.7 of [7]), we have Un
D−→ U as n → ∞ and Vm

D−→ V as m → ∞, where U

and V are centred random elements of H having covariance kernel K given in

(12). From (11), we obtain

Tn,m =
∥∥Wn,m

∥∥2
H, (15)

where Wn,m = am,nUn − bm,nVm. Since Un and Vm are independent for each

pair (n,m), also U and V are independent, and we have (Un, Vm)
D−→ (U, V ) as

n,m → ∞ (see, e.g., Theorem 2.8. of [5]). Notice that n,m → ∞ means that,

as s→ ∞, we have n = n(s) → ∞ and m = m(s) → ∞ in an arbitrary manner.

Now, if some subsequence of the bounded sequence (am,n) converges to some

τ ∈ [0, 1] then, because of the continuous mapping theorem and a2m,n+b
2
m,n = 1,

it follows that Wn,m
D−→

√
τU −

√
1− τV as n,m → ∞. This limit random

element has the same distribution as W , irrespective of τ . Consequently, we

have Wn,m
D−→ W as n,m → ∞ (see, e.g., Theorem 2.6 of [5]). In view of (15)

and the continuous mapping theorem, the assertion follows.

The next result gives the almost sure limit of (m+n)Tn,m/(mn) asm,n→ ∞.

Theorem 2.2 Let

ϱ(t) := E[CS(t⊤X)], b(t) := E[CS(t⊤Y )], t ∈M. (16)

Under the conditions on M and µ stated in Theorem 2.1, we have

lim
n,m→∞

m+ n

mn
Tn,m =

∫
M

(
ϱ(t)− b(t)

)2
µ(dt) P-almost surely.

Proof. Let

An(t) =
1

n

n∑
j=1

CS(t⊤Xj), Bm(t) =
1

m

m∑
k=1

CS(t⊤Yk) (17)

and, regarded as random elements of H, put An = An(·) and Bm = Bm(·).
Likewise, write a = ϱ(·) and b = b(·) for the degenerate random elements of H

that are the expectations of An and Bm, respectively. By the strong law of large

numbers in Banach spaces (see, e.g., [19]), we have ∥An − a∥H → 0 as n → ∞
and ∥Bm − b∥H → 0 as m→ ∞ P-almost surely. It follows that

m+ n

mn
Tn,m = ∥An −Bm∥2H → ∥a− b∥2H P-almost surely as n,m→ ∞.
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Let

∆ :=

∫
M

|φ(t)− ψ(t)|2 µ(dt).

It is readily seen that ∆ equals the almost sure limit figuring in Theorem 2.2.

Thus, ∆ is the measure of deviation between the distributions of X and Y ,

expressed in form of a weighted L2-distance of the corresponding characteristic

functions, and this measure of deviation is estimated by Tn,m. As the next

result shows, the statistic Tn,m, when suitably normalized, has a normal limit

distribution as n,m→ ∞ if ∆ > 0. To prove this result, we need the condition

lim
m,n→∞

m

m+ n
= τ (18)

for some τ ∈ [0, 1]. In contrast to Theorem 2.1 and Theorem 2.2, this condition

is needed now to assess the asymptotic proportions of the X- sample and the

Y -sample. In what follows, put

K1(s, t) = Cov(CS(s⊤X),CS(t⊤X)), K2(s, t) = Cov(CS(s⊤Y ),CS(t⊤Y )),

(19)

and let

K∗(s, t) = τK1(s, t) + (1− τ)K2(s, t), s, t ∈M. (20)

Furthermore, let

z(t) = ϱ(t)− b(t), (21)

where ϱ(t) and b(t) are given in (16).

Theorem 2.3 Suppose the standing assumptions on M and µ hold. If ∆ > 0,

then √
mn

m+ n

(
Tn,m
mn
m+n

−∆

)
D−→ N(0, σ2)

under the limiting regime (18), where

σ2 = 4

∫
M

∫
M

K∗(s, t)z(s)z(t)µ(ds)µ(dt).

Proof. The proof follows the lines of the proof of Theorem 3 of [3]. In view

of Theorem 2.2, condition (22) of [3] holds. Let An and Bm as in (17), and
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put Zn,m := An − Bm. Furthermore, write z = z(·) for the degenerate random

element of H, where z(t) is given in (21), and define

cm,n =

√
mn

m+ n
.

Notice that

cm,n

(
Zn,m − z

)
= am,n

√
n(An − a)− bm,n

√
m(Bm − b),

where am,n and bm,n are given in (13). By the central limit theorem for H-valued

random elements, we have
√
n(An−a)

D−→ A as n→ ∞ and
√
m(Bm−b) D−→ B

as m→ ∞, where A and B are independent centred Gaussian random elements

of H with covariance kernelsK1 andK2, respectively, whereK1 andK2 are given

in (19). In view of (18), the continuous mapping theorem yields cm,n(Zn,m −
z)

D−→ Z, where Z :=
√
τA −

√
1− τB is a centred Gaussian random element

of H having covariance kernel K∗ given in (20). Thus, also condition (23) of [3]

holds, and the proof of Theorem 2.3 follows in view of

cm,n

(
Tn,m
c2n,m

−∆

)
= 2⟨cm,n(Zn,m − z), z⟩+ 1

cm,n
∥cm,n(Zn,m − z)∥2H.

Notice that the second summand on the right hand side is oP(1) in view of the

tightness of (cm,n(Zn,m − z)), and the first summand converges in distribution

to 2⟨Z, z⟩, which has the stated normal distribution N(0, σ2).

Remark 2.4 Compared to [9], who address the problem of composite hypothe-

ses, the limit results of this section are obtained for simple hypotheses without

estimated parameters. However, the results obtained herein hold for artificial

sample size m ̸= n, which is much more general and thus flexible than the case

m = n treated by [9]. Moreover, our setting is different from that of elliptical

distributions on the classical Euclidean space Rd. In the following section, we

suggest a resampling version of the test, and we prove its asymptotic validity.

3. Resampling under a simple hypothesis

Since, under H0, both the finite-sample and the limit distribution of Tn,m as

n,m → ∞ depend on the unknown underlying distribution of X1, we use a
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bootstrap procedure in order to carry out a test that rejects H0 for large val-

ues of Tn,m. The bootstrap distribution of Tn,m is the conditional distribution

of Tn,m given the pooled sample X1, . . . , Xn, Y1, . . . , Ym, and a test of H0 at

nominal level α rejects H0 if Tn,m exceeds the (1 − α)-quantile of this boot-

strap distribution. Since the bootstrap distribution is difficult to compute, it

is estimated by a Monte Carlo procedure that repeatedly samples from the

empirical distribution of the pooled sample. To be specific, one first computes

the observed value tn,m of Tn,m based on realizations x1, . . . , xn, y1, . . . , ym of

X1, . . . , Xn, Y1, . . . , Ym, respectively. In a second step, one generates b inde-

pendent samples by Monte Carlo simulation. Here, for each j ∈ {1, . . . , b},
the jth sample consists of x1(j), . . . , xn(j), y1(j), . . . , ym(j), where these values

have been chosen independently of each other with a uniform distribution over

{x1, . . . , xn, y1, . . . , ym}. For each j ∈ {1, . . . , b}, one then computes the value

tn,m(j) = Tn,m(x1(j), . . . , xn(j), y1(j), . . . , ym(j)) of the test statistic Tn,m. Let-

ting cn,m;1−α denote the (1−α)-quantile of the b values tn,m(1), . . . , tn,m(b), the

hypothesis H0 is rejected if tn,m > cn,m;1−α.

To prove that this bootstrap procedure yields a test of H0 of asymptotic level

α, we use a Hilbert space central limit theorem for triangular arrays (see [22]).

This theorem reads as follows.

Theorem 3.1 Let {ej : j ≥ 1} a complete orthonormal basis of the separable

Hilbert space H with inner product ⟨·, ·⟩ and norm ∥ · ∥H. For each m ≥ 1,

let Xm1, Xm2, . . . , Xmm be independent H-valued random elements such that

E(⟨Xmj , eℓ⟩) = 0 and E∥Xmj∥2H < ∞ for each j ∈ {1, . . . ,m} and each ℓ ≥ 1.

Put Sm =
∑m

j=1Xmj, and let Cm be the covariance operator of Sm. Assume

that the following conditions hold:

(i) limm→∞⟨Cmek, eℓ⟩ = akℓ (say) exists for each k ≥ 1 and ℓ ≥ 1,

(ii) limm→∞
∑∞

k=1⟨Cmekek⟩ =
∑∞

k=1 akk <∞,

(iii) limm→∞ Lm(ε, ek) = 0 for each ε > 0 and each k ≥ 1, where

Lm(ε, h) :=

m∑
j=1

E
(
⟨Xmj , h⟩21

{
|⟨Xmj , h⟩| > ε

})
, h ∈ H.

Then Sm
D−→ G as m → ∞, where G is a centred random element of H with

covariance operator C characterized by ⟨Ch, eℓ⟩ =
∑∞

j=1⟨h, ej⟩ajℓ for each h ∈
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H and each ℓ ≥ 1.

To apply Theorem 3.1 in our situation of the Hilbert spaceH := L2(M,B(M), µ)

let, in greater generality than considered so far,Xm,n
1 , . . . , Xm,n

n , Y m,n
1 , . . . , Y m,n

m

be i.i.d. M -valued random vectors with common distribution, and put

ϱm,n(t) = E
[
CS
(
t⊤Xm,n

1

)]
, t ∈M.

Moreover, let

Um,n(t) :=
1√
n

n∑
j=1

{
CS
(
t⊤Xm,n

j

)
− ϱm,n(t)

}
,

Vm,n(t) :=
1√
m

m∑
k=1

{
CS
(
t⊤Y m,n

k

)
− ϱm,n(t)

}
, t ∈M

(cf. (14)), and write Um,n = Um,n(·), Vm,n = Vm,n(·) as well as

W̃n,m := am,nUm,n − bm,nVm,n, (22)

where am,n and bm,n are defined in (13).

Theorem 3.2 In the setting given above suppose that, under the limiting regime

(18), we have Xm,n
1

D−→ X∞ for some M -valued random vector X∞ with dis-

tribution H∞. Put ϱ∞(t) := E[CS(t⊤X∞)], t ∈M , and W∞(t) := CS(t⊤X∞)−
ϱ∞(t), t ∈ M . Moreover, let W∞ := W∞(·) be the random element of H =

L2(M,B(M), µ) with covariance operator C∞ that is associated with the covari-

ance function

c∞(s, t) = E
[
CS(s⊤X∞)CS(t⊤X∞)

]
− ϱ∞(s)ϱ∞(t), s, t ∈M,

via

⟨C∞g, h⟩ =
∫
M

∫
M

c∞(s, t) g(s)h(t)µ(ds)µ(dt).

We then have W̃n,m
D−→W∞.

Proof. The proof is similar to that of Theorem 2 of [4] and will thus only

be sketched. Notice that

Xm,n,j :=
1√
n

(
CS(·⊤Xm,n

j )− ρm,n(·)
)
, j ∈ {1, . . . , n}, (23)
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are i.i.d. centred random elements of the Hilbert space H = L2(M,B(M), µ)

that, for a fixed complete orthonormal system of H, satisfy E(⟨Xm,n,j , eℓ⟩) = 0

and E∥Xm,n,j∥2H < ∞ for each j ∈ {1, . . . , n} and each ℓ ≥ 1. The covariance

function of the process Um,n = Um,n(·) is given by

cm,n(s, t) := Cov(Um,n(s), Um,n(t))

= E[CS(s⊤Xm,n
1 )CS(t⊤Xm,n

1 )]− ϱm,n(s)ϱm,n(t), s, t ∈M,

and the covariance operator Cm,n (say) of Um,n satisfies

⟨Cm,ng, h⟩ =
∫
M

∫
M

cm,n(s, t) g(s)h(t)µ(ds)µ(dt), g, h ∈ H.

Since the function CS is bounded and continuous,Xm,n
1

D−→ X∞ yields cm,n(s, t) →
c∞(s, t), s, t ∈M . By dominated convergence, we obtain ⟨Cm,ng, h⟩ → ⟨C∞g, h⟩
(g, h ∈ H), which shows that condition (i) of Theorem 3.1 holds. The proof of

condition (ii) of Theorem 3.1 follows the reasoning given on p. 603 of [4] by

replacing J0(2
√
t·) with CS(t⊤·), Hm,n with ϱm,n, H∞ with ϱ∞, ν with µ, and

the region of integration with M . To prove condition (iii) of Theorem 3.1, no-

tice that, with Xm,n,j defined in (23), the fact that |CS(·)| ≤ 2 and Hölder’s

inequality give ∣∣⟨Xm,n,j , h⟩
∣∣ ≤ 2√

n
(µ(M))1/2∥h∥2H, h ∈ H.

Consequently,

n∑
j=1

E
(
⟨Xm,n,j , h⟩21

{
|⟨Xm,n,j , h⟩| > ε

})
≤ 4µ(M)∥h∥2HP(|⟨Xm,n,1, h⟩| > ε),

and thus also condition (iii) of Theorem 3.1 holds. According to Theorem 3.1,

we have Um,n
D−→ W∞. In the same way, Vm,n

D−→ W̃∞, where, due to the

independence of Um,n and Vm,n, W̃∞ is an independent copy of W∞. In view of

(22) and the continuous mapping theorem, it follows that W̃n,m
D−→

√
τW∞ −

√
1− τW̃∞. The latter limit has the same distribution as W∞.

Notice that the test statistic Tn,m figuring in (11), computed on the ran-

dom variables Xm,n
1 , . . . , Xm,n

n , Y m,n
1 , . . . , Y m,n

n , equals ∥W̃n,m∥2H, where W̃n,m

is given in (22). From Theorem 3.2, we thus have the following corollary.
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Corollary 3.3 The limit distribution of the test statistic Tn,m under the limit-

ing regime (18) is that of ∥W∞∥H2.

Let Fn andGm denote the empirical distributions ofX1, . . . , Xn and Y1, . . . , Ym,

respectively, and write Hn,m := n
m+nFn+

m
m+nGm for the empirical distribution

of the pooled sample X1, . . . , Xn, Y1, . . . , Ym. By the Glivenko-Cantelli theorem,

Hn,m converges weakly to H∞ := (1−τ)F +τF = F with probability one under

the limiting regime (18), and thus the bootstrap distribution of Tn,m converges

almost surely to the distribution of ∥W∞∥2H. The latter distribution coincides

with the distribution of ∥W∥2H, where W is given in Theorem 2.1. This shows

the asymptotic validity of the bootstrap.

Remark 3.4 The resampling bootstrap procedure applied herein may also be re-

placed by a permutation procedure. The validity of the exhaustive permutation

(that includes all possible permutations) may be directly obtained by observing

that, under the null hypothesis H0, the observations (x1, ..., xn, y1, ..., ym) are

exchangable. Another potential resampling scheme may be that of weighted boot-

strap; see [1].

4. Resampling under a composite hypothesis

Analogously to Tn,m,w, the limit null distribution of T̂n,m,w

= T̂n,w(x1, ..., xn, ŷ1, ..., ŷm) depends (in a very complicated way) on unknown

quantities, and hence it cannot be used to compute critical values and actually

carry out the test. To this end, we consider a parametric bootstrap procedure in-

volving the test statistic in (8) computed on the basis of bootstrap observations

from f0(·;ϑ), where the parameter ϑ is replaced by estimators.

More precisely, let T̂n,m,w,obs denote the observed value of the test statistic.

For given α ∈ (0, 1), write t∗n,m,α for the upper α-percentile of the bootstrap

distribution of Tn,m,w. We then define the test function as

Ξ∗
n,m =

 1, if Tn,m,w,obs ≥ t∗n,m,α,

0, otherwise.
(24)

In practice, the bootstrap distribution of Tn,m,w,obs is approximated as fol-

lows:
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1. Generate a bootstrap sample x∗1, . . . , x
∗
n from f0(·; ϑ̂n).

2. Calculate the estimator ϑ∗n = ϑn(x
∗
1, . . . , x

∗
n)

3. Generate a bootstrap sample y∗1 , . . . , y
∗
m from f0(·;ϑ∗n).

4. Compute T ∗
n,m,w = Tn,m,w(x

∗
1, . . . , x

∗
n, y

∗
1 , . . . , y

∗
m).

5. Repeat steps 1–4 a number of times, say b, and thus obtain (conditionally

on ϑ̂n) iid replications of T ∗
n,,m,w, namely T ∗

n,,m,w,1, . . . , T
∗
n,m,w,b.

Then we approximate the upper α–percentile t∗n,m,α in (24) of the null dis-

tribution of Tn,m,w by the upper α-percentile of the empirical distribution of

T ∗
n,m,w,1, . . . , T

∗
n,m,w,b.

Although we provide no asymptotic theory for the resampling under a com-

posite hypothesis, our simulations show that the above method works well. Nev-

ertheless, it remains an open problem to formally prove that this bootstrap is

asymptotically valid.

5. Simulations

In this section we provide results of competitive Monte Carlo simulations for

the case of both a simple and a composite hypothesis. We throughout restrict

the simulation to the spherical setting for the dimension d = 3 and, for com-

putational feasibility, to the sample size n = 50. All simulations are performed

using the statistical programming language R, see [29]. We implement the test

statistic by fixing the measure µ(dt) to be the density of the zero-mean spher-

ical stable distribution. Then the test may be computed as in eqn. (10) with

C(x) = e−γ∥x∥ξ

, where (ξ, γ) ∈ (0, 2] × (0,∞) denote tuning parameters which

are at our disposal and provide a certain flexibility of the test with respect to

power against different alternatives. Another option, although not yielding a

proper measure, is to adopt the approach taken in [28], which again results in

the test statistic given in (10) with C(x) = −∥x∥ξ, ξ ∈ (0, 2).

The spherical distributions were generated using the package Directional,

see [30], and the uniformity tests by the package sphunif, see [17].
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5.1. Testing the simple hypothesis of uniformity

We test the hypothesis

H0 : f(·) ≡ 1/|Sd−1|,

where |Sd−1| = 2πd/2/Γ(d/2) is the surface area of the (d−1)-sphere. Hence we

test whether f is the density of the uniform law U(Sd−1), which is a classical

testing problem in directional statistics. For an overview of existing procedures

we refer to [16]. As competing tests we consider the following procedures:

• The modified Rayleigh test Rn, see [24], Section 10.4.1 based on the mean

of the directions,

• the [13] test NNJ
a based on volumes of the J nearest neighbor balls with

power a,

• the Bingham test Bn, see [6], based on the empirical scatter matrix of the

sample,

• the Sobolev test, see [18], Gn based on Sobolev norms, and

• the test of [11] CAn, which is based on random projections that charac-

terize the uniform law.

Empirical critical values for each testing procedure have been obtained by a

Monte Carlo simulation study under H0 with 100000 replications.

We considered the following alternatives to the uniform distribution on Sd−1.

These alternatives are chosen to simulate different uni-, bi- and trimodal models.

For details on the hyperspherical von Mises–Fisher distribution, see Section 9.3

in [24].

• The density of the von Mises–Fisher distribution depends on the mean

direction θ ∈ Sd−1 and a concentration parameter κ ≥ 0, and it is given

by

f(x) =
(κ/2)

d/2−1

Γ(d/2)Id/2−1(κ)
exp(κx⊤θ), x ∈ Sd−1.

Here, Id/2−1 is the modified Bessel function of the first kind and order

d/2− 1. This class is denoted with vMF(θ, κ).

• We simulate a mixture of two von Mises–Fisher distributions with different

mean directions by the following procedure. Simulate U ∼ U(0, 1) and,
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independently, Yi ∼ vMF(θi, κi), i ∈ {1, 2}, with corresponding location

and concentration parameters, and choose p ∈ (0, 1). Then we generate a

member X of the random sample according to

X = Y11{U < p}+ Y21{U ≥ p}.

We denote this alternative class with MMF((p, 1− p), (θ1, θ2), (κ1, κ2)).

• In a similar manner as for the mixture of two vMF distributions, we

simulate a mixture of three von Mises–Fisher distributions with different

centers, by additionally simulating independently a third random vector

Y3 ∼ vMF(θ3, κ3) and generating the member X by

X = Y11{U < p}+ Y21{p ≤ U < 2p}+ Y31{U ≥ 2p}.

We denote this class with MMF((p, p, 1− 2p), (θ1, θ2, θ3), (κ1, κ2, κ3)).

In each of the alternatives, we put µ1 = (1, 0, . . . , 0), 1 = (1, . . . , 1)/
√
d, and

µ2 = (−1, 1, . . . , 1)/
√
d. Here and in the following, T

{ξ}
n,γ stands for the test

in eqn. (10) with C(x) = e−γ∥x∥ξ

, where (ξ, γ) ∈ (0, 2] × (0,∞) as well as

TSR
n,a for the test with C(x) = −∥x∥a. The result of the simulation is displayed

in Tables 1 and 2 for the choice ξ = 2 and the stated competitors. As can

be seen, the suggested tests perform well in comparison, although they are

never the best performing procedures. This behavior might be explained by the

approximation of the true characteristic function under the null hypothesis. To

investigate the impact of the sample sizem of the simulated data set Y1, . . . , Ym,

we simulated the empirical power of the test for four vMF distributions and for

different values of m, see Figure 1. Clearly, the choice of m has an impact on

the estimation, and larger values of m are desirable, but increasing m leads to

longer computation time. Table 3 exhibits the impact of the weighting measure

µ and hence of the choice of the function C(·). In terms of power for the uni- and

bimodal alternatives considered, the choice of C(·) has nearly no influence on

the empirical power, with the exception of the MMF((0.5, 0.5), (−µ1, µ1), (2, 2))

alternative, where T
{1}
n,γ , T

{1.5}
n,γ and T

{2}
n,γ outperform the TSR

n,a -procedures for

some values of the tuning parameter γ.
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Table 1
Empirical rejection rates for testing uniformity for the test T

{2}
n,γ and competitors (n = 50,

m = 500, α = 0.05, 10000 replications)

Alternative T
{2}
n,5 T

{2}
n,2 T

{2}
n,1 T

{2}
n,.5 T

{2}
n,.25 T

{2}
n,.17 Rn NN15

.5 Bn Gn CA

vMF(µ1, 0) = U(S2) 5 5 5 5 5 4 5 4 5 5 5
vMF(µ1, .25) 8 11 11 11 11 11 12 8 5 12 11
vMF(µ1, .5) 20 31 32 32 33 33 37 21 5 36 32
vMF(µ1, .75) 44 63 64 66 67 66 72 49 7 71 64
vMF(µ1, 1) 71 88 89 89 90 89 93 77 9 92 89
MMF((.25, .75), (µ1, µ1), (0, 2)) 95 99 99 99 99 99 99 96 39 99 99
MMF((.25, .75), (−µ1, µ1), (2, 2)) 78 83 81 80 77 75 77 78 64 85 81
MMF((.5, .5), (µ1, µ1), (0, 2)) 60 75 76 76 76 75 80 61 18 81 75
MMF((.5, .5), (−µ1, µ1), (2, 2)) 37 23 16 12 8 7 6 48 63 18 13
MMF((.75, .25), (µ1, µ1), (0, 2)) 17 23 23 24 24 23 26 16 8 26 23
MMF((.75, .25), (−µ1, µ1), (2, 2)) 76 83 82 80 76 75 77 78 63 85 82
MMF((.25, .75), (−µ1, µ1), (5, 0)) 48 54 55 52 50 49 52 48 32 57 51
MMF((.25, .75), (−µ1, µ1), (5, 1)) 35 21 15 12 9 7 7 44 53 17 13
MMF((.25, .75), (−µ1, µ1), (5, 2)) 88 83 76 70 59 53 51 93 93 81 74
MMF((.25, .75), (−µ1, µ1), (5, 3)) 100 100 99 98 91 88 83 100 100 99 98
MMF((.25, .75), (−µ1, µ1), (5, 4)) 100 100 100 100 98 97 94 100 100 100 100
MMF((.25, .75), (−µ1, µ1), (0, 3)) 100 100 100 100 100 100 100 100 86 100 100
MMF((.25, .75), (−µ1, µ1), (1, 3)) 99 100 100 100 99 99 99 99 90 100 100
MMF((.25, .75), (−µ1, µ1), (2, 3)) 98 99 98 98 97 96 96 99 96 99 98
MMF((.25, .75), (−µ1, µ1), (3, 3)) 99 99 98 97 94 92 91 99 99 99 98
MMF((.25, .75), (−µ1, µ1), (4, 3)) 100 100 100 100 100 100 100 100 76 100 100
MMF((.5, .5), (−µ1, µ1), (5, 0)) 98 99 99 99 99 98 99 98 89 99 99
MMF((.5, .5), (−µ1, µ1), (5, 1)) 93 89 85 81 72 68 66 94 95 88 84
MMF((.5, .5), (−µ1, µ1), (5, 2)) 96 90 81 68 42 34 25 99 100 85 71
MMF((.5, .5), (−µ1, µ1), (5, 3)) 99 98 93 82 36 22 11 100 100 96 76
MMF((.5, .5), (−µ1, µ1), (5, 4)) 100 100 99 95 46 23 8 100 100 100 89
MMF((.5, .5), (−µ1, µ1), (0, 3)) 85 93 93 93 93 92 94 86 48 95 92
MMF((.5, .5), (−µ1, µ1), (1, 3)) 60 58 53 51 45 42 43 63 64 58 52
MMF((.5, .5), (−µ1, µ1), (2, 3)) 69 53 38 29 17 14 11 80 90 44 31
MMF((.5, .5), (−µ1, µ1), (3, 3)) 89 77 59 42 17 11 6 96 99 65 41
MMF((.5, .5), (−µ1, µ1), (4, 3)) 100 100 100 100 100 100 100 100 71 100 100
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Fig 1. Simulated empirical rejection rates for T
{2}
n,1 and different values of 10 ≤ m ≤ 500 and

concentration parameters κ ∈ {0.25, 0.5, 0.75, 1} (n = 50, α = 0.05, 10000 repetitions)

5.2. Testing the fit to the von Mises–Fisher distribution

For the case of a composite hypothesis, we consider the hypothesis that the un-

derlying density belongs to the family of von Mises–Fisher distributions vMF(κ, θ),

i.e., we test the hypothesis

H0 : f(·) = (κ/2)
d/2−1

Γ(d/2)Id/2−1(κ)
exp(κ ·⊤ θ), for some κ ≥ 0 and θ ∈ Sd−1, (25)
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Table 4
Empirical rejection rates for testing the fit to a von Mises–Fisher distribution (n = 50,

m = 200, α = 0.05, 500 bootstrap sample size, 5000 replications)

Alternative T
{2}
n,.1 T

{2}
n,.5 T

{2}
n,.75 T

{2}
n,1 T

{2}
n,2 T

{2}
n,3

vMF(µ1, 0) = U(S2) 5 6 6 6 6 6
vMF(µ1, .25) 5 5 6 6 6 6
vMF(µ1, .5) 5 5 6 5 5 6
vMF(µ1, .75) 5 5 6 5 6 6
vMF(µ1, 1) 5 5 6 6 5 6
MMF((.25, .75), (µ1, µ1), (0, 2)) 6 7 7 7 7 6
MMF((.25, .75), (−µ1, µ1), (2, 2)) 21 31 30 27 19 13
MMF((.5, .5), (µ1, µ1), (0, 2)) 6 7 8 8 7 6
MMF((.5, .5), (−µ1, µ1), (2, 2)) 36 49 47 45 30 20
MMF((.75, .25), (µ1, µ1), (0, 2)) 5 7 7 7 6 6
MMF((.75, .25), (−µ1, µ1), (2, 2)) 21 31 31 29 20 14
MMF((.25, .75), (−µ1, µ1), (5, 0)) 16 18 17 16 12 9
MMF((.25, .75), (−µ1, µ1), (5, 1)) 36 42 41 38 25 16
MMF((.25, .75), (−µ1, µ1), (5, 2)) 59 73 72 69 54 37
MMF((.25, .75), (−µ1, µ1), (5, 3)) 80 92 92 91 82 65
MMF((.25, .75), (−µ1, µ1), (5, 4)) 92 98 98 98 94 87
MMF((.25, .75), (−µ1, µ1), (0, 3)) 10 13 13 12 9 8
MMF((.25, .75), (−µ1, µ1), (1, 3)) 23 32 31 29 20 15
MMF((.25, .75), (−µ1, µ1), (2, 3)) 41 59 57 55 39 26
MMF((.25, .75), (−µ1, µ1), (3, 3)) 60 78 78 75 59 44
MMF((.25, .75), (−µ1, µ1), (4, 3)) 25 34 32 30 19 13

against general alternatives. The main difference to subsection 5.1 is that we

consider a test to a family of distributions, where the parameters are unknown

and hence have to be estimated. To test the hypothesis we chose T
{2}
n,γ in eqn. (10)

with C(x) = e−γ∥x∥2

, for different values of the tuning parameter γ, and we im-

plemented the parametric bootstrap procedure from Section 4. To approximate

the unknown parameters we calculated the maximum likelihood estimates for κ

and θ as proposed in Section 10.3.1 of [24]. As far as we know, testing composite

hypotheses for spherical or hyperspherical distributions with estimated param-

eters has not been considered before in the literature. As alternative models we

chose the same distributions as described in Subsection 5.1.

In view of the extensive computation time due to the parametric bootstrap

procedure, we considered the simulation setting n = 50, m = 200, a sample size

of 500 in the bootstrap algorithm, and 5000 Monte Carlo replications. Through-

out the study, we fixed the significance level to 0.05. The results are reported

in Table 4. Notably, the novel test maintains the nominal significance level very

closely, and its power with respect to bimodal alternatives increases the more

these two modes are pronounced.
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5.3. Testing the fit to the angular central Gaussian distribution

In this subsection, we consider testing the fit to an angular central Gaussian

model, i.e., we test the hypothesis

H0 : f(·) = |Σ|−1/2(·⊤Σ−1·)−d/2, for some Σ. (26)

Here, Σ is a symmetric positive definite (d × d)-parameter matrix, which is

identifiable up to multiplication by a positive scalar. For information regarding

this model, see [24], Section 9.4.4, and for a numerical procedure to approximate

the maximum likelihood estimator of the unknown parameter matrix Σ, see [31].

To the best of our knowledge, testing the fit to the angular central Gaussian

family has not been considered in the literature.

The simulation parameters match the ones of Subsection 5.2. In complete

analogy, we considered T
{2}
n,γ in eqn. (10) with C(x) = e−γ∥x∥2

, for different

values of the tuning parameter γ, and we implemented the parametric boot-

strap procedure from Section 4. To simulate different models under the null

hypothesis, we generated a realisation of a random matrix

A =


−0.846 −0.531 −0.779

0.609 −0.096 0.761

0.851 0.133 −0.666


and computed the covariance matrices Σℓ = (Aℓ)⊤Aℓ, ℓ ∈ {1, 2, 3, 4}, where the
power matrix Aℓ = (aℓij)i,j=1,2,3 is defined component-by-component, and Σ0 =

diag(1, 2, 3). The corresponding alternatives are denoted by ACGℓ, ℓ = 0, . . . , 4.

Results are presented in Table 5. In this case the bootstrap testing procedure

controls the type I error, while performing well for most of the alternatives

considered.

6. Real data

We revisit the paleomagnetic data in [27], which is an example of spherical data.

Paleomagnetic data consist of observations on the direction of magnetism in ei-

ther rocks, sediment, or in archeological specimens. These data are measured

at various geological points in time and spatial locations. The directions are
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Table 5
Empirical rejection rates for testing the fit to an angular central Gaussian distribution

(n = 50, m = 200, α = 0.05, 500 bootstrap sample size, 5000 replications)

Alternative T
{2}
n,.1 T

{2}
n,.5 T

{2}
n,1 T

{2}
n,3

ACG0 4 4 4 3
ACG1 5 4 4 4
ACG2 4 6 4 5
ACG3 4 3 5 5
ACG4 6 6 5 4
vMF(µ1, 0) = U(S2) 3 3 1 1
vMF(µ1, .25) 12 15 14 12
vMF(µ1, .5) 23 34 26 18
vMF(µ1, .75) 45 74 60 50
vMF(µ1, 1) 74 91 91 79
MMF((.25, .75), (µ1, µ1), (0, 2)) 95 100 100 95
MMF((.25, .75), (−µ1, µ1), (2, 2)) 41 69 66 47
MMF((.5, .5), (µ1, µ1), (0, 2)) 60 83 72 67
MMF((.5, .5), (−µ1, µ1), (2, 2)) 4 3 3 1
MMF((.75, .25), (µ1, µ1), (0, 2)) 6 17 11 9
MMF((.75, .25), (−µ1, µ1), (2, 2)) 54 59 58 76
MMF((.25, .75), (−µ1, µ1), (5, 0)) 25 23 41 46
MMF((.25, .75), (−µ1, µ1), (5, 1)) 2 2 2 0
MMF((.25, .75), (−µ1, µ1), (5, 2)) 28 44 39 28
MMF((.25, .75), (−µ1, µ1), (5, 3)) 46 62 63 49
MMF((.25, .75), (−µ1, µ1), (5, 4)) 76 91 84 80
MMF((.25, .75), (−µ1, µ1), (0, 3)) 98 100 99 99
MMF((.25, .75), (−µ1, µ1), (1, 3)) 95 99 98 98
MMF((.25, .75), (−µ1, µ1), (2, 3)) 83 94 92 86
MMF((.25, .75), (−µ1, µ1), (3, 3)) 69 86 81 74
MMF((.25, .75), (−µ1, µ1), (4, 3)) 100 100 100 100

usually measured as declination and inclination angles based on strike and dip

coordinates, see [27] and the references therein for more information. The data

considered are taken from the GEOMAGIA50.v3 database, see [8]. For simplic-

ity, we analyse the data provided in the supplementary material of [27]. The

full data set consists of n = 1137 entries (variables are age, dec, inc, lat, and

lon) collected at a single spatial location, which is the Eifel maars (EIF) lakes

in Germany with relocated nearby data, for details see [27]. The analysed di-

rections are given by the variables declination D (dec defined on [0◦, 360◦]) and

inclination I (inc defined on [−90◦, 90◦]). They are converted to Cartesian co-

ordinates by x1 = sin(I), x2 = cos(I) cos(D), and x3 = cos(I) sin(D), ensuring

x = (x1, x2, x3) ∈ S2. For a plot of the data, see Figure 2 (left).

We test the composite hypothesis (25) of a von Mises–Fisher distribution

by T
{2}
n,γ in eqn. (10) with C(x) = e−γ∥x∥2

, for different values of the tuning

parameter γ, and we fix m = 500 with a bootstrap sample size b = 1000. The
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Fig 2. Full data set (n = 1137) of archeomagnetic directions (left) and subsample (n = 50)
consisting of directions the same age 1250 (right) .

bootstrap p-values are reported in Table 6. With the exception of the tuning

parameter γ = 0.5, the p-values indicate that we are not able to reject the

hypothesis of fit of an underlying Mises–Fisher distribution at any level. For

their analysis, the authors in [27] consider rocks of age 1250 and hence determine

a subset of the data of sample size n = 50, for a plot see Figure 2 (right). They

propose to use a new spherical model, namely a distribution of Kent type, by

applying a transformation to the von Mises–Fisher density. The results of our

test of fit to the von Mises–Fisher law for the subset are displayed in the second

row of Table 6. For all significance levels and each choice of the tuning parameter,

the tests reject the null hypothesis, indicating a poor fit of the von Mises–Fisher

family for the subset of the data.

As a second parametric family of distributions, we consider the Kent distri-

bution, defined by the density

f(x) =
1

c(A, κ)
exp(κ x⊤θ + x⊤Ax), x ∈ Sd−1. (27)

Here, κ > 0 is a concentration parameter and θ ∈ Sd−1 is the mean direction.

Moreover, A is a symmetric d × d-matrix with tr(A) = 0 and Aθ = 0 that

depends on an ’ovality’ parameter β, see [24]. Hence we test the hypothesis
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Table 6
MLE estimates (κ̂n, θ̂n) of the parameters of the von Mises–Fisher distribution and

bootstrap p-values of the test T
{2}
n,γ applied to the paleomagnetic data set.

model sample κ̂n θ̂n β̂n T
{2}
n,0.1 T

{2}
n,0.5 T

{2}
n,0.75 T

{2}
n,1 T

{2}
n,2 T

{2}
n,3

vMF
full sample 0.131 (0.947, -0.319, 0.039) 0.99 0.024 0.264 1 1 1
subsample 0.587 (0.282, -0.930, 0.237) 0 0 0 0 0 0

Kent
full sample 0.131 (0.947, -0.319, 0.039) 0.070 0 0 0 0 0 0
subsample 0.597 (0.282, -0.930, 0.237) 1.043 0.206 0.376 0.287 0.19 0.291 0.419

that the data stems from a density of type (27), where the parameters κ, θ

and β are unknown. These parameters have been estimated by the method of

maximum-likelihood, and the same bootstrap parameters are applied as above.

The bootstrap p-values are reported in Table 6. Interestingly, the full data set is

rejected by each of the tests on every level of significance. We thus conclude that

the Kent distribution is not a suitable model. However, we obtain a different

impression for the subset of the data with age fixed to 1250. For this data set,

none of the tests can reject the hypothesis of an underlying Kent distribution.

The results obtained in this section confirm the statements about the data

sets made in [27].

7. Discussion

We have studied goodness-of-fit tests for spherical and hyperspherical data. Our

tests apply to both simple hypotheses with all parameters assumed known and to

composite hypotheses, with parameters estimated from the data at hand. Limit

theory is developed under the null hypothesis as well as under alternatives, while

the asymptotic validity of a resampling version of the tests is established. The

new procedures perform well in finite samples, and they are competitive against

other methods, whenever such methods are available. An application illustrates

the usefulness of the new tests for data-modelling on the sphere.
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