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Abstract: The increasing demand for personalized products and the lack of skilled workers, in-
tensified by demographic change, are major challenges for the manufacturing industry in Europe.
An important framework for addressing these issues is a digital twin that represents the dynamic
behavior of machine tools to support the remaining skilled workers and optimize processes in virtual
space. Existing methods for modeling the dynamic behavior of machine tools rely on the use of expert
knowledge and require a significant amount of manual effort. In this paper, a concept is proposed for
individualized and lifetime-adaptive modeling of the dynamic behavior of machine tools with the
focus on the machine’s tool center point. Therefore, existing and proven algorithms are combined
and applied to this use case. Additionally, it eliminates the need for detailed information about the
machine’s kinematic structure and utilizes automated data collection, which reduces the dependence
on expert knowledge. In preliminary tests, the algorithm for the initial model setup shows a fit of
99.88% on simulation data. The introduced re-fit approach for online parameter actualization is
promising, as in preliminary tests, an accuracy of 95.23% could be reached.

Keywords: machine tool; digital twin; dynamics; simulation; lifecycle

1. Introduction

Machine tools are used to manufacture high-precision products. The trend towards
individualization and an aging society in Europe creates new challenges for production [1].
As part of the megatrend of individualization, more and more product variants are re-
quired from production. At the same time, the quantities per variant are decreasing [1].
Skilled workers have extensive knowledge of their machines [2] and can therefore make
an important contribution to meeting these requirements. However, a major problem in
Europe is the shortage of skilled workers, which is exacerbated by demographic change [3].
To meet the challenges of increasing production demands and skilled labor shortages,
intelligent systems and machines are needed to support the few remaining skilled workers.
An important framework for addressing these issues is a digital twin that represents the
dynamic behavior of a machine tool. This can be used, for example, in combination with a
process model for preliminary process optimization in virtual space.

Different approaches exist to characterize the dynamic behavior of machine tools.
There are approaches that derive models from modal analysis and other approaches that
estimate the parameters of already existing models to match real-world behavior. Even
modeling through machine learning algorithms is possible. In the sections below, all
approaches are presented. Finally, the drawbacks are discussed and the requirements for a
new concept are derived.

1.1. Estimation of Modal Parameters

The most prominent way to characterize the dynamic behavior of a machine tool is
to conduct a modal analysis. The frequency response function (FRF) can be calculated
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and modal parameters can be obtained by applying multi degree of freedom (MDOF)
fitting algorithms, such as Non-Linear Least Squares or the Rational Fraction Polynomial
methods [4]. Contemporary approaches, such as the Complex Frequency-domain Least-
Squares method, offer improved performance in handling closely spaced modes during the
identification process [5].

There are different approaches to modal analysis. The essential way to conduct
modal analysis is by applying force excitation either through impact hammer or shaker
excitation while the machine tool remains stationary. By measuring the input force and
the system’s response (e.g., the displacement or acceleration) the FRF can be obtained.
However, the dynamic behavior of a machine tool under real operating conditions slightly
differs from the results that are obtained by impact hammer or shaker tests. Therefore,
alternative ways to conduct modal analysis have emerged to better reflect the dynamic
behavior of a machine tool under real cutting conditions [6].

In industrial applications, it can sometimes be difficult to measure the process forces
when performing modal analysis during milling. Therefore, output-only methods have
emerged that simulate the process force. Or, as with Operational Modal Analysis (OMA),
ignore the process force and focus solely on the system response [6]. However, OMA
methods are often limited to white noise, such as force excitation. This results in difficulties
when estimating modal parameters under real process conditions such as milling forces,
which do not represent a white-noise signal. Therefore, Devriendt and Guillaume [7]
propose the Transmissibility Function-based Operational Modal Analysis (TOMA), where
the form of the force excitation does not matter. The force excitation signal just has to be
able to excite the structure in the frequency range of interest. The system response has to be
measured at two different points and the force must be applied at two other points on the
structure. A transmissibility function is calculated by using the vibration spectra of the two
different points where the system response is measured. Here, it is important to note that it
is assumed that the mode shapes show a linear behavior between both measuring points.
The transmissibility function allows one to calculate the natural frequencies of the system.
However, the TOMA is not suitable for machine tool applications. This is because machine
tools are only excited at one point during operation, the Tool Center Point (TCP). In order
to make the method practicable for these applications, Liu and Altintas [8] performed a
mode shape compensation of the TOMA. As a result, only one force excitation point is
needed. In order to achieve mode shape compensation, the mode shape is assumed to be
linear along the structure. Mode shapes used for the compensation of the transmissibility
function are obtained through a classic modal analysis. Since the modal parameters of
machine tools are pose-dependent, the method cannot be used when the axes of a machine
tool are moving. Liu et al. [9] built a mode shape database by conducting classical modal
analysis at different points in the workspace of the machine tool. Between the measuring
points, they use linear interpolation. The mode shape compensation TOMA proposed by
Liu and Altintas [8] is then conducted with the mode shapes from the pre-built database at
the respective point of the machine tool workspace.

There are methods which take the input force from the simulation rather than measur-
ing it. Ostad Ali Akbari et al. [10] estimate the FRF at the tool tip by using in-process data
and receptance coupling. The cutting forces are simulated at different spindle speeds by
using a two Degrees-of-Freedom (DoF) milling model. The system response is measured
by a non-contact displacement sensor mounted at the spindle flange. In order to get the
FRF at the tool tip, the Receptance Coupling Substructure Analysis (RCSA) proposed by
Schmitz et al. [11,12] is applied. The coupling parameters between the machine tool–spindle
substructure and the tool holder–tool substructure are estimated using optimization. Altun,
Çalıskan and Özsahin 2023 [13] identify the FRF of the workpiece–fixture system by using
a similar approach. The cutting forces are simulated using a two DoF milling model. Two
acceleration sensors mounted on the workpiece measure the system’s response. In contrast
to Ostad Ali Akbari et al. [10], the milling force coefficients are unknown. Instead, they esti-
mate the milling force coefficients by using a least-squares algorithm. After the estimation
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of the cutting force coefficients, the milling forces can be used alongside the measurements
of the acceleration sensors to calculate the FRF.

Also, methods exist where the force excitation is measured during the milling process.
Iglesias et al. [14] propose a method where a sweep milling force is used to excite the
machine tool. Interrupted cuts are performed, during which the spindle speed is steadily
varied to create a frequency sweep over the frequency area of interest. The excitation
forces are measured with a dynamometric tool holder. The system’s response is measured
with three accelerometers mounted on the spindle head. As expected, the obtained FRFs
through sweep milling force excitation differ slightly from the FRFs obtained through
impact hammer excitation. However, the calculated stability lobes obtained through the
sweep milling force FRF show a better match to the real cutting limits than the ones
calculated from the FRF obtained through the impact hammer testing.

1.2. Estimation of Parameters for Existing Models

Other ways to determine the dynamic behavior of a machine tool can be conducted
if a parametric model exists and the parameters need to be identified.

Methods such as those proposed by Zollo et al. [15] employ direct approaches to
deduce the equation of motion (EOM) for a multi-body model. The resolution for stiffness
parameters involves simplifying and linearizing the EOM, followed by employing linear
regression techniques.

Ellinger et al. [16] conducted a Global Sensitivity Analysis (GSA) to obtain a dimen-
sionality reduction of models, such as a position-flexible multi-body system model. Only
the model parameters that significantly influence the model’s behavior are retained for
the following parameter estimation. In this way, the dimensionality problem is mitigated.
In subsequent research, Ellinger and Zaeh [17] used the GSA in combination with an
iterative approach to estimate the parameters of complex models of machine tool struc-
tures. The parameter optimization is conducted by minimizing the difference between the
measured behavior of the machine tool and the simulated behavior of its model. Here,
the challenge is to manage local optima and a sparse high-dimensional input space. How-
ever, for the method to work, parameter boundaries must be narrowly defined. If this is
not the case, it performs poorly. In addition, high computing resources are required.

1.3. Machine Learning Approaches to Model the Dynamic Behavior

In addition to physical modeling, it is also possible to model systems with deep neural
networks. Barton and Fleischer [18] propose a concept that uses operational data to reduce
the modeling effort through machine learning. The proposed approach comprises two
sub-models: a process model and a machine model, both represented in the frequency
domain. For regression tasks in machine learning, suitable algorithms include Random
Forests, Artificial Neural Networks, and Support Vector Machines. To train the models, it
is necessary to have a dataset that is representative of the machines and processes to which
the approach is applied.

Modeling dynamic behavior through machine learning has also been demonstrated
in other disciplines, such as civil engineering. Wu and Jahanshahi [19] showed that deep
convolutional neural networks can be used to accurately predict the acceleration response
at the roof of a building modeled as a MDOF system given the ground motion as input.
However, with this approach, no modal parameters can be estimated, as is the case with all
the presented machine learning approaches.

1.4. Review of the State-of-the-Art Methods

In Sections 1.1–1.3, several approaches to the characterization of the dynamic behavior
of machine tools have been presented. The challenges and drawbacks of these methods are
discussed in the following section. Finally, the requirements for a new concept are derived.

Methods that incorporate a force simulation model into modal analysis require the
force model to closely resemble real-world behavior [10,13]. Also, either the parameters of
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the tool system and workpiece must be known [10] or the milling force model has to be
adjusted, if different tools are used [13].

Methods that conduct modal analysis under operating conditions often require specific
toolpaths or force excitation to be executed [13,14]. Therefore, this makes these methods
not practicable to observe the dynamic behavior of machine tools in industry.

It can be shown that modal parameters are dependent on the axis positions of ma-
chine tools [13]. However, this is often not considered or not investigated in proposed
methods [7,8,10,14,18].

Although TOMA methods mitigate the problems of both the need for force simulation
and the need for a specific force excitation, not all modal parameters can be estimated [9].
In fact, only natural frequencies and damping ratios can be estimated. The mode shapes
cannot be estimated.

Methods to identify the parameters of existing models require user expertise and are
not fully automated, making them impractical for non-experts [15,17,20]. Furthermore,
they often require digital models of the machine components. Additionally, the quality of
these models directly affects the quality of the final simulation results [16,17].

Approaches that use machine learning technologies show good results in modeling a
system’s dynamic behavior. However, they require extensive training data and are fixed to
use cases they are trained for [18,19].

In conclusion, current approaches need extensive expert knowledge for data collection
and model creation. Going forward, the data needed for modeling must be captured
automatically by each machine. The model itself must also be built independently by each
machine using these data. In addition, there should be no need for detailed information
about the kinematic structure of the machine, such as CAD data or other prior information.
The influence of the position dependency of the axis positions must be taken into account
to ensure realistic modeling. Also, due to manufacturing tolerances, variations in dynamic
behavior can occur between machine tools of the same series. Furthermore, over the life of a
machine tool, factors such as component wear cause an increasing discrepancy between the
original model of the machine and its actual operating behavior [2]. Corresponding models
must therefore be individual and lifetime-adaptive models of the machine’s dynamic
behavior. In order to meet these requirements, a novel concept is presented. The concept
consists of a combination of existing and already proven algorithms and their application
to the presented use case. Furthermore, the presented algorithms could be easily applied to
a wide range of machine kinematics.

2. Materials and Methods

As presented in Section 1.4, the current methods for modeling the dynamic behavior of
machine tools often require expert knowledge as well as comprehensive manual effort. This
makes it especially impractical for industrial use if the dynamic behavior is to be captured
throughout the entire lifetime of a machine tool. In order to ensure industrial applicability,
both the data acquisition and the subsequent model setup should be fully automated. This
provides the foundation for updating the model over the lifetime of a machine tool without
manual effort. It also paves the way for modeling machines individually, since the dynamic
behavior of machine tools produced in the same series differs slightly. The presented
concept aims to fulfil these requirements by modeling the dynamic behavior of the machine
tool as a linear time-invariant (LTI) system. Here, the focus is to investigate the dynamic
behavior of the machine tool’s TCP. Figure 1 illustrates the methodology of the approach
presented in this paper. First, the machine tool’s a priori FRF is autonomously measured
at various positions within the workspace (Section 2.1). The transfer function of the a
priori LTI model is then estimated by solving a least-squares problem (Section 2.2). The
interpolation between the measuring points within the machine tool’s workspace is carried
out according to Baumann et al. [21]. Using operational data, a local re-fit of the dynamic
behavior of the LTI model is performed to match the lifetime-changing behavior of the
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machine tool (Section 2.3). This re-fit is carried out continuously throughout the machine
tool’s lifetime to model changes.

Machine tool

Autonomously 

measure a priori FRF

Estimate

 a priori LTI model LTI model

measured

force

Difference
above

threshold?

measured

displacement

calculated

displacement

Generate

intermediate FRF

Estimate

new LTI model

Update

Initialize
parameters

Yes

No

t = 0

Machine tool
t > 0

Legend:

Process flow

Data flow

Information flow

In operationInitial setup / before operation

Figure 1. Methodology of the approach for modeling the dynamic behavior. The initial setup of the
machine tool LTI model is performed at t = 0 (Section 2.2). During the machine tool’s lifetime t > 0,
its dynamic behavior changes and the update procedure is conducted (Section 2.3).

2.1. Autonomous Frequency Response Measurement

The primary objective here is to investigate the dynamic behavior of the machine
tool’s TCP. Therefore, a measurement setup is implemented with a triaxial accelerometer
positioned on the spindle housing in close proximity to the rotating part of the spindle.
This sensor measures the system’s response. Through double integration, the displacement
of the spindle is determined. The force excitation is simultaneously measured using a
dynamometric spindle sensor. In future work, it is planned to incorporate an alternative,
more cost-efficient system that enables a measurement without interrupting the machine
tool’s stiffness, and therefore, better replicates the dynamic behavior. In addition to the
force and acceleration measurements, the axis positions are taken from the machine control
system. This is necessary because the dynamic behavior of the machine tool is dependent
on the axis positions.

The initialization of the LTI model (Section 2.2) involves a FRF measurement, facilitated
by force excitation at various points in the workspace of the machine tool. This approach
takes care of the position-dependent nature of modal parameters. To streamline this often
time-consuming task for practical implementation, an ongoing project aims to develop
a specialized tool. This tool is designed to automate the FRF measurement, ensuring
efficiency and consistency in the acquisition of dynamic behavioral data across the machine
tool’s workspace. This involves measuring the force excitation (input) and the system
response. The modalfrf function in the Matlab® Signal Processing Toolbox is then used to
compute the FRF, a key element in establishing the LTI model.

Table 1 shows the measurement setup used for the initial model estimation (Section 2.2)
and for the model update (Section 2.3).
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Table 1. Data acquisition for initial model estimation (before operation) and for model update
(in operation).

Initial Setup / Before
Operation In Operation

Force excitation Specialized tool for
autonomous impact testing

Process forces during milling
of a workpiece

Measurement of force Dynamometric spindle sensor
Measurement of displacement Triaxial accelerometer *
Measurement of axis positions Machine control system

* Through double integration, the displacement of the spindle is determined.

2.2. Estimation of the a Priori Model of the Machine Tool

The detailed procedure for estimating the a priori LTI model for each measured
point in the workspace of the machine tool is shown in Figure 2. First, the number of
poles of the measured FRF is determined by evaluating the output of the Matlab® Signal
Processing Toolbox (Version 23.2 R2023b) function modalsd. This function computes the
natural frequencies of the measured FRF that are stable between successive model orders.
The transfer function of the a priori LTI model is then estimated by using the Matlab®

System Identification Toolbox (Version 23.2 R2023b) algorithm tfest.

Measured

FRF

Number
of poles

modalsd A priori
LTI model

tfest

Figure 2. Procedure for estimating the transfer function of the a priori LTI model.

The inputs of the tfest algorithm are the measured FRF F(ωk) at frequency points
ωk, k = 1, . . . , N f , as well as the number of poles and a frequency-dependent weight
factor W(ωk). The factor W(ωk) provides the ability to weight certain frequencies in the
optimization. The resulting LTI model obtained by the tfest algorithm consists of a
time-discrete transfer function of the following shape:

H(z−1) =
a0 + a1z−1 + · · ·+ anz−n

1 + b1z−1 + · · ·+ bmz−m (1)

In order to obtain this transfer function, the following least-squares problem is solved
by performing S-K iterations [22–24]:

min
H(ω)

N f

∑
k=1

|W(ωk)(H(ωk)− F(ωk))|2 (2)

where H(ω) is the estimated transfer function in frequency space.

2.3. Updating Model Parameters Using Operating Data

To keep the built LTI model up to date throughout the machine’s lifetime, an update
algorithm is required that uses operational measurement data. With the transfer function
(Equation (1)) of the a priori LTI model, it is possible to calculate the estimated displacement
ŷ given a measured force input u at time step k:

ŷ[k] = a0u[k] + · · ·+ anu[k − n]− b1ŷ[k − 1]− · · · − bmŷ[k − m] (3)

A least-squares problem is established by comparing the estimated displacement ŷ to
the measured displacement y.
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Under operating conditions, the milling force does not excite the machine tool struc-
ture in all the frequencies of the interested frequency range to be modeled. Therefore,
determining a complete FRF for updating the LTI system, as presented in Section 2.2, is
not possible. However, as machine tool components wear unevenly, the entire FRF does
not change significantly, but only part of it. Thus, the existing LTI system can be used
in combination with the newly measured data for a local re-fit procedure. A detailed
description of the update process for the parameters of the LTI systems is provided below.
The right-hand side of Figure 1 illustrates this update process.

First, the measured force is used as an input for the LTI model to calculate the expected
displacement ŷ according to Equation (3). Then, the deviation between the measured
displacement y and the calculated displacement ŷ is calculated. If the difference is above a
threshold value, the update process is started.

The starting point for the initial update is the initially measured FRF and the transfer
function of the a priori LTI model (Section 2.2). During the initial update, the parameters
of the LTI model are updated to match the behavior of the machine tool under operat-
ing conditions. Once the initial update of the LTI model to the operating behavior has
been made, further updates of the model are carried out based on the model and the
FRF of the respective previous update step. This allows for the dynamic behavior to be
continuously monitored.

During the operation of the machine tool, the force and displacement are measured
and the Power-Spectral-Density (PSD) of the measured data is calculated. The ratio of
the displacement PSD and the force PSD is then calculated to obtain data points for an
intermediate FRF. These data points are combined with the FRF from the previous update
step. The data points of the FRF from the previous update step are replaced with the
new data points from the measured operating data at the same frequencies. This results
in an intermediate FRF that contains steps at the points where the new data points were
inserted. Figure 3 shows the FRF obtained in a previous time step and the newly measured
data points.

Figure 3. Comparison of the FRF obtained from the previous update step and the newly measured
data points used for construction of the intermediate FRF. Also, the concept for constructing the
frequency-dependent weight factor W(ωk) is shown.
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The tfest algorithm is applied to this intermediate FRF in a comparable way to the
estimation of the a priori LTI model. But this time, the algorithm is initialized by using the
parameters for numerator and denominator from the previous update step. Here, it must be
noted that, when performing the initial update to match the behavior of the a priori model
to operating conditions, the algorithm is initialized with the parameters from the a priori
LTI model. As there are steps in the intermediate FRF, the frequency-dependent weighting
factor W(ωk) (Equation (2)) is also defined preliminary to the optimization. As shown in
Figure 3 the factor is set to one at the frequencies where the newly measured data points
are inserted and where the values of the previous FRF are maintained. An uncertainty
range around the measured data points and at the frequency 0 Hz is defined. There,
the frequency-dependent weight factor is selected to be less than one. The uncertainty
range could be determined by examining the influence of the eigenmodes that could be
identified as significantly different from the current LTI model based on the measured data.
The frequency-dependent values for W(ωk) are selected such that the new data points that
generate the step in the intermediate FRF are smoothly faded in. Figure 3 illustrates how
W(ωk) could look like. The exact construction of the frequency-dependent weighting factor
W(ωk) is investigated in further research.

The update process of the LTI model described above is carried out by using operating
data only for the point in the machine tool’s workspace at which they were measured.
However, changes in machine tool components also affect the observed dynamic behavior
at other points in the workspace. For this reason, we propose an interpolation of the
transfer function, so that surrounding positions are also updated. The interpolation to
obtain this position update is performed with descending weighting on the surrounding
points. The exact weighting of the position update is also part of future research.

3. Results

The main focus of this paper is the introduction of a concept for the individual and
lifetime-adaptive modeling of the dynamic behavior of machine tools. Initial tests have
been conducted in virtual space to get a first impression of the application of the concept
explained in Sections 2.1–2.3 and to validate its capabilities. In this section, the results of
these preliminary tests are presented. For this purpose, a simplified three-DoF model was
used as a reference model within the simulation, as shown in Figure 4. It is important to
note that this three-DoF model does not represent an actual machine tool. However, this
model should be sufficient enough for testing the algorithm under controlled conditions.

m1 m2 m3

k1 k2 k3

d1 d2 d3

F(t)

Figure 4. The three-DoF model used for the simulation to obtain an FRF validation.

3.1. Estimation of the a Priori Model of the Machine Tool

First, the FRF has to be simulated. This is performed by exciting mass m3 with a chirp
signal that contains frequencies that are in the frequency range of interest. By simulating
the displacement of m3, the response of the system is obtained.

With the simulated FRF, the natural frequencies for successive model orders are
determined by the modalsd algorithm. The results of this algorithm are saved into a matrix.
The number of poles is determined by evaluating the number of natural frequencies that
differ only slightly across the different model orders. In the presented example, we obtain
three poles. But, as every pole of a system has a corresponding complex conjugate, six
poles are considered for the tfest algorithm. After setting up the frequency-dependent
weight factor W(ωk) (Equation (2)), the tfest algorithm is able to estimate a time-discrete
transfer function of the a priori LTI model. In the case of the simulation of the three DoF
system, we choose W(ωk) = 1, k = 1, . . . , N f to be constant across all frequencies. For a
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sample time of Ts = 0.01 s, the resulting transfer function consists of eleven free coefficients
and can be expressed as follows:

H(z−1) =
0.9874z−1 − 3.715z−2 + 5.424z−3 − 3.635z−4 + 0.9461z−5

1 − 5.704z−1 + 13.78z−2 − 18.06z−3 + 13.54z−4 − 5.504z−5 + 0.9485z−6 × 10−5 (4)

Figure 5 shows that a good fit of the estimated transfer function to the simulated FRF
is reached. In order to obtain an accurate quantification of the accuracy of the estimated
transfer function, the fit is calculated by using the complex FRF values of the simulated
data F and the estimated data H [25]:

fit =
(

1 − ∥F − H∥
∥F − mean(F)∥

)
× 100% (5)

For the three DoF example presented above, we calculate a fit of 99.88%.

Figure 5. Comparison of the simulated FRF of the three-DoF model (Figure 4) and the FRF obtained
through estimation.

3.2. Updating Model Parameters Using Operating Data

Once the a priori model of the machine has been built, the machine behavior may
change during the operation of the machine tool. This section illustrates how the updated
process described in Section 2.3 could be performed in practice. Here, the same three-DoF
model, as discussed in Section 3.1, is used. In order to induce a change in its dynamic
behavior, the stiffness parameter k1 is intentionally reduced by ten percent.

To validate the update process, the model is excited with real measured milling forces,
as shown in Figure 6, because simulated milling forces may not fully capture the complexi-
ties present in real-world scenarios. This allows one to validate the updating process in a
more realistic scenario. The displacement of mass m3, representing the system’s response,
is simulated. To identify the frequencies where the system is significantly excited by these
milling forces, the displacement PSD is calculated as shown in Figure 7. A threshold
value is set and the frequencies that exceed this threshold value are determined. In this
example, this threshold is set to 10−9. It is important to note that the choice of the threshold
value plays a key role in determining the frequencies, as it directly affects the subse-
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quent construction of the intermediate FRF. Once the frequencies have been determined,
the measured data points to be inserted into the intermediate FRF are calculated. This is
performed by calculating the Fourier transform of the measured force and displacement at
the determined frequencies.

Figure 6. Milling force excitation used for simulation of the In operation-phase of the proposed concept
introduced in Section 2.3.

Figure 7. Simulated PSD of the displacement of mass m3 and the selected threshold for the selection
of the measured data points to be used in the intermediate FRF. All points at frequencies where the
PSD is above the selected threshold 10−9 are selected as measured data points for the use in the
intermediate FRF.

Next, the intermediate FRF is constructed. The data points of the previously deter-
mined FRF in Section 3.1 are substituted with the newly calculated data points from the
measurement. Figure 8a shows the calculated data points from the measurement at the
frequencies identified by using the PSD threshold. Figure 8b shows the intermediate FRF
with the already inserted measured data points and the resulting steps in the FRF.

With the intermediate FRF established, the tfest algorithm is applied to update the
parameters of the a priori LTI system determined in Section 3.1. The algorithm is initialized
with parameter values from section Section 3.1, and the weight factor W(ωk) is determined.
Here, a weight factor of one is selected at all frequencies where the measured data points are
inserted. Between these frequencies, the weight factor is set to zero. Choosing a non-zero
weight factor between these points could cause the algorithm to misinterpret the steps in
the intermediate FRF (Section 2.3) as a pole. At a distance from the last inserted measured
data point, the weight factor returns to one as the influence of the eigenmode decreases in
this region.
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(a) (b)
Figure 8. (a) Initial FRF obtained in Section 3.1 and the selected measured data points for the use in
(b) the intermediate FRF.

Figure 9 displays the result of the parameter update, showing the FRF of the updated
transfer function. In addition, the weight factor is visually represented by color coding
the frequency ranges. For comparison, a complete FRF of the system with the stiffness
parameter k1 changed by 10% was simulated (theoretical FRF at t > 0). The FRF of the
updated transfer function shows a fit to the theoretical FRF at t > 0 of 95.23%. Better results
could be achieved by further optimizing the weighting factor W(ωk) in future research.

Figure 9. Result of the parameter update process. The FRF of the updated transfer function shows a
fit to the theoretical FRF at t > 0 of 95.23%.

4. Discussion

The estimation of the a priori LTI model using modalsd and tfest shows promising
results for simple systems. However, it is important to review the capabilities of this
approach for real system behavior. These more complex cases can present challenges that
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are not apparent in simpler ones such as the presented three-DoF model. High modal
density can be an example of such challenges.

Furthermore, it is crucial to investigate the reliability and effectiveness of the concept
for the parameter update. It is necessary to validate this approach by demonstrating its
functionality and its ability to match the dynamic behavior of the updated LTI model to the
behavior observed in the real world.

Also, the proposed update interpolation at various points in the machine tool’s
workspace could lead to insufficient modeling.

In addition, the proposed concept relies on the reliability of the automatic measurement
of force and acceleration. As a result, this automatic measurement is critical for the concept
to work as intended.

In the following, we also evaluate the advantages and disadvantages of the proposed
concept compared to the state of the art, focusing on the following key aspects:

4.1. Computational Efficiency

Compared to methods like Ellinger’s [16,17], which require extensive optimizations,
our approach has a significantly faster computation time. The reason for this is that the
parameter space is smaller, and the expected displacement is calculated analytically instead
of performing a time-consuming numerical simulation. In fact, we achieve results within
seconds, improving the real-time applicability.

4.2. Model Independence and Accuracy

The presented approach does not rely on the accuracy of a manually constructed model.
As opposed to relying on precise parameter selection, as proposed by Ellinger [16,17],
the presented approach captures all effects and considers flexible bodies and axes. However,
the presented approach limits the optimization efforts in understanding component-specific
vibrations due to the lack of insight into the machine structure.

4.3. Direct Force Measurement

Measuring force directly, as opposed to simulating [10,13], eliminates the inaccuracies
associated with simulating force. However, there are additional challenges, such as mea-
surement uncertainties and increased sensor requirements, which have an impact on the
measurement quality, costs and installation space.

4.4. Autonomous Measurement

The presented approach has the potential for autonomous operation without requiring
user expertise. However, thoughtful design considerations for the excitation tool are needed
to ensure that the quality of autonomous measurements meets certain standards.

4.5. Lifetime Applicability

The proposed concept is suitable for continuous use throughout the lifetime of the
machine. In contrast to the re-fit approach presented in this work, the other methods
require the entire process to be restarted, which involves a considerable amount of time
and effort.

4.6. Versatility across Machines

Ideally, even with more complex cinematic systems, the presented approach should
be easily transferable to a wide variety of machine tools. For the transferability to work, it
is necessary to install the necessary measurement technology. The acceleration sensor is
unproblematic, but the force measurement unit is not. An ongoing project is working on a
solution that is as easy to retrofit as possible.

In summary, our proposed concept excels in several aspects, including computational
efficiency, model independence and lifetime applicability. While there are challenges such
as increased sensor requirements and retrofitting for transferability to different types of
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machines, our approach represents a promising leap forward in the direction of autonomous
and versatile machine diagnosis.

5. Conclusions and Outlook

In this contribution, a concept is proposed for the individual and lifetime-adaptive
modeling of the dynamic behavior of machine tools. The proposed concept consists of the
following elements:

• A measurement setup that enables the autonomous measurement of the frequency
response at different positions in the machine tool workspace.

• A modeling approach that models the machine tool as a LTI system.
• An estimation procedure that estimates the transfer function of the LTI model.
• A concept for the lifetime accompanying update of the LTI model.

The approach for estimating the transfer function of an a priori LTI model of the
machine tool shows promising results for simple systems. In preliminary tests conducted
in virtual space using a simplified model, a fit of 99.88% could be reached. The concept
for updating the parameters of the LTI model introduces a new approach into the lifetime-
adaptive observation of the dynamic behavior of machine tools. In preliminary tests
performed in virtual space where one stiffness value was reduced by ten percent, a fit of
95.23% was obtained between the FRF of the updated transfer function and the theoretically
correct FRF of the simulated model. However, better results could be obtained by further
optimizing the weighting factor W(ωk) used for the re-fit process. The exact construction
of the frequency-dependent weighting factor W(ωk) is investigated in further research.

In future work, also, an alternative, more cost-efficient system that enables a measure-
ment without interrupting the machine tool’s stiffness is developed. To streamline the often
time-consuming task for the practical implementation of FRF measurement, an ongoing
project aims to develop a specialized tool. In addition, the capabilities of the LTI transfer
function estimation approach will be verified using real machine tool data. Further investi-
gations will be carried out to explore the practical implementation of the transfer function
update procedure as well as the interpolation of the position update.
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