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ABSTRACT

Recently, computer-aided disease detection from chest radio-
graphs made considerable progress by using convolutional
neural networks but issues like insufficient data quality or data
availability remain. Informed machine learning (IML) com-
bines domain knowledge and data-driven approaches and has
been shown to improve results in many applications. How-
ever, there is limited research comparing and combining mul-
tiple IML approaches. This paper tackles this issue by im-
plementing, combining, and evaluating three IML approaches
for cardiomegaly detection. We find that curriculum learning
and cropping images to regions of interest can improve pre-
diction performance. With these results, we provide a refer-
ence for both implementing and evaluating multiple IML ap-
proaches as well as demonstrating methods to combine IML
approaches.

Index Terms— informed machine learning, cardiomegaly,
CheXpert, curriculum learning

1. INTRODUCTION

Cardiomegaly, an abnormal enlargement of the heart, is a
frequent indicator for other pathologies, like coronary artery
disease, myocardial infarction, and ischemia [1]. Previously,
clinicians investigated X-rays manually to identify these con-
ditions. Machine learning (ML) and especially convolutional
neural networks (CNNs) allowed for considerable progress in
early and accurate disease detection from chest X-rays over
the last years [2, 3].

However, challenges remain when using CNNs in prac-
tice. In particular, the models often perform badly if train-
ing data is limited [4]. Informed ML (IML) addresses this
and other issues by incorporating external prior knowledge
into ML models. Currently, however, practitioners do not
know which IML approaches are best suited for their task
[5]. Previous research implementing IML approaches only
evaluated the approaches individually or compared them to a
purely data-driven baseline [4]. Due to differences in knowl-
edge, data, or model architectures [6], it is difficult to com-
pare results across papers. This motivates the need for a de-
tailed comparison between approaches on the same dataset

using the same model architecture. Additionally, since dif-
ferent types of knowledge are incorporated into IML models,
leveraging different approaches by combination could further
improve performance. Therefore, we pose the following re-
search question:

How do different IML approaches and their combination
compare to each other?

To answer this question, we implement three different
IML approaches and a purely data-driven baseline model and
evaluate them on the CheXpert dataset [3]. The first approach
is based on calculating the cardiothoracic ratio (CTR). CTR
is the ratio of the heart diameter to the internal chest diameter
on a posterior-anterior radiograph or computed tomography.
Cardiomegaly is present when CTR is ≥ 0.5 [1, 7]. Here,
the heart and lung diameters are segmented from X-ray im-
ages to predict an abnormal heart-to-lung diameter ratio. The
second approach is curriculum learning where models are
trained on easier examples first [8]. We use the predicted
CTR as a proxy to score the difficulty of training samples.
Our third approach investigates only the image region rel-
evant to cardiomegaly diagnosis. To achieve that, we train
a CNN on images cropped to bounding boxes extracted by
generated lung segmentation masks. Finally, we implement
a model combining curriculum learning and image crop-
ping. Afterward, we evaluate all IML approaches’ predictive
performance for cardiomegaly detection on varying training
dataset sizes.

With this study, we demonstrate new ways to combine
IML approaches and provide meaningful comparisons be-
tween approaches allowing for easier future comparison.
Furthermore, the used methods may provide a reference for
future research implementing and evaluating IML methods.

2. BACKGROUND

IML is defined as ”learning from a hybrid information source
that consists of data and prior knowledge” [6]. This contrasts
traditional ML approaches, where the model only learns from
available data. The prior knowledge needs to stem from an
independent source and is given by formal representation [6].
This prior knowledge is often referred to as domain knowl-
edge (DK) [4].



An existing taxonomy of IML differentiates between
three sources of knowledge, eight different representations,
and four integration possibilities [6]. The sources of knowl-
edge might stem from scientific, world, or expert knowledge,
although previous research on IML in medicine found a
predominant use of expert knowledge [5]. Different represen-
tations include algebraic equations like heart rhythms [9], or
spatial invariances such as the proximity of predictions and
ground truths [10]. This DK might be included as additional
training data, with adapted ML models (either as hypothesis
set or as learning algorithms), or as constraints in the final
hypothesis.

In our research, we identified three promising approaches
incorporating DK into ML models for cardiomegaly detec-
tion. The first is CTR calculation, where the diameter of lung
segmentation masks is compared to the diameter of heart seg-
mentation masks. Several papers implement automatic CTR
calculation using CNNs. One approach used a modified U-
Net architecture trained on a dataset of 5,000 images with
heart and lung segmentation masks to predict novel masks and
subsequently calculate CTR, achieving an accuracy of 95.3%
for cardiomegaly detection [11]. A similar approach trained
on the JSRT and Montgomery datasets augmented by 50 ad-
ditional heart masks achieved an accuracy of 69.8% [7].

Various papers implement curriculum learning for car-
diomegaly detection. In curriculum learning, ML models are
presented with ”easy” data points first and ”difficult” data
points later in the training process [8]. [12] used severity
labels from radiology reports for cardiomegaly prediction to
rank the difficulty of training samples. Another approach first
trained a model on image patches close to lesions, which were
considered easier. The model was then fine-tuned on whole
images, which was considered a more difficult task [13].

The third approach focuses on regions where cardiomegaly
usually occurs. One approach is implementing a two-stream
collaborative network where, first, a segmentation model ex-
tracting lung regions is trained. The extracted lung regions
and whole images are then fed into two distinct branches
of the network, whose predictions are then fused for a final
prediction [14].

3. METHODOLOGY

3.1. Dataset Description

We used three open-source datasets for our experiments,
which all contain a sufficient amount of images. As our
main dataset, we relied upon the CheXpert dataset containing
224,316 chest X-rays [3]. The data points contain either pos-
itive, negative, or uncertain labels for 14 conditions including
cardiomegaly. In line with the results of [3], we found intro-
ducing a novel class as the best-performing policy to leverage
uncertainty labels for cardiomegaly detection. Further, we
used two datasets with segmentation masks. We relied upon

the JSRT database of 247 X-ray images [15] in conjunction
with heart and lung masks segmented by [16]. In addition, we
used the Montgomery County Chest X-ray database contain-
ing 138 images with corresponding lung segmentation masks
[17, 18].

3.2. Data Augmentation & Processing

Before training the classification models, we resized the im-
ages to 320x320 pixels. To ensure comparability between ap-
proaches, we only used frontal X-rays, since CTR can only
be calculated using those [1]. Because of the limited number
of training samples for segmentation masks, we adapted the
data processing pipeline of [7] and augmented our datasets by
randomly applying the following modifications during train-
ing:

• Random rotation between -8 and +8 degrees
• Gaussian blur with kernel size 5, randomly applied with

probability p = 0.3
• Gaussian noise N∼(0, 1) randomly applied with p = 0.3
• Random horizontal flip of lung masks with p = 0.5
• Random image scaling with a factor between 0.7 and 1.3
• Random horizontal or vertical image shift (max. 20%)

Furthermore, we applied histogram equalization to all images
to normalize their intensity [7] and resized them to 512x512
pixels. For data post-processing, we adopted the pipeline of
[7] and applied binary erosion followed by binary dilation to
the outputs to fill holes in the masks [7]. We then designated
the largest two connected components from the lung segmen-
tation model’s output as the lung masks and discarded the rest
[7]. For heart segmentation, we selected the largest connected
component and designated it as the heart.

3.3. Implementation & Hyperparameter Optimization

We implemented our approaches using PyTorch [19] and
trained all models on the high-performance computing BwU-
niCluster2.0. We tuned the learning rate and batch size for all
models with the Optuna library [20] using a tree-structured
Parzen estimator algorithm [21]. The search space for the
learning rate spanned from 10−6 to 10−2, with batch sizes
ranging from 8 to 256 for the classification model and from 1
to 64 for the segmentation models. Each model ran 25 trials
which resulted in the optimal parameter shown in Table 1.

Model Learning rate Batch size
DenseNet-121 7.3261e-05 42

Heart Segmentation 2.9436e-04 2
Lung Segmentation 3.5304e-05 5

Table 1. Best hyperparameters found



4. MACHINE LEARNING MODELS

4.1. Classification Model

We first implemented a purely data-driven baseline model
as an evaluation reference. We adopted DenseNet-121 pre-
trained on ImageNet as baseline model architecture due to
previous performance evaluations [3].

We extended the DenseNet-121 implementation provided
by PyTorch [19] by replacing the classification layer with a
linear layer with three output neurons, corresponding to the
positive, negative, and uncertain labels, with a softmax activa-
tion function. We used cross-entropy loss and an Adam opti-
mizer with the default parameters β1 = 0.9, and β2 = 0.999.
Building on previous approaches [3], we trained the model for
three epochs, which we found to be sufficient in initial tests.

We applied an 85-14-1 split for the training, hyperparam-
eter validation, and checkpoint validation set. As established
by [3], we trained each model three times, saved model check-
points every 4,800 images, and evaluated the checkpoints on
a holdout validation set. For each run, we selected the ten best
checkpoints and calculated the final predictions by averaging
the predictions of the resulting 30 model checkpoints to rely
on the best-performing checkpoints. For the baseline classi-
fication model, we achieved an AUC of 0.8504, which is in
line with the results reported by [3].

4.2. Segmentation Model

Since DenseNet-121 does not provide image segmentation,
we trained two separate U-Nets with VGG-16 encoder pre-
dicting heart or lung segmentation masks. We based our
model on the implementation by [7] and adopted the code
of [22]. Our loss function is a combination of binary cross-
entropy with logits loss and soft dice loss [7]. Further, we
used an Adam optimizer [23] with β1 = 0.9 and β2 = 0.999
and applied a 70-10-10-10 split for the training set, check-
point validation, hyperparameter validation, and test set. The
models were trained three times for 300 epochs each. We
saved model checkpoints after every epoch and evaluated
the performance by using the intersection over union metric
(IoU). We selected the best-performing model checkpoints
and obtained the final prediction as described in the baseline
training procedure. We achieved an IoU of 0.9623 for the
lung and 0.9092 for the heart segmentation model.

5. INFORMED MACHINE LEARNING MODELS

With plenty of domain knowledge available for cardiomegaly
detection, we implemented three IML approaches. First, we
replicated the results of [7] using scientific knowledge by de-
termining CTR directly based on heart and lung segmenta-
tion masks. Second, we used CTR to implement a curricu-
lum learning approach, where we showed easier images to the
model first, before presenting difficult images and, thereby,

included feedback on the difficulty. Last, we cropped the pro-
vided images to regions of interest by using lung segmenta-
tion masks, thus making use of expert knowledge about re-
gions of frequent cardiomegaly presence.

5.1. Automatic CTR Calculation

To determine CTR and thereby replicate the results of [7] we
used the segmentation models. After predicting the segmenta-
tion masks, we calculated the internal chest diameter by mea-
suring the horizontal distance in the segmentation masks be-
tween the leftmost point of the left lung and the rightmost
point of the right lung. The heart diameter was calculated by
measuring the horizontal distance between the leftmost and
rightmost points of the heart segmentation mask. We then
used both values to calculate CTR [7] and classified samples
with a CTR greater than or equal to 0.5 as positive for car-
diomegaly and others as negative. With this approach, we
achieved an AUC of 0.7630. Using the 0.5 threshold for CTR,
sensitivity was 0.7879 and specificity was 0.5376.

5.2. Curriculum Learning

We implemented a curriculum learning model relying on CTR
as a proxy for training sample difficulty, as a larger CTR
generally indicates a severe manifestation of cardiomegaly
that is easier to detect. We used the predicted CTR calcu-
lations to split the dataset into easy, medium, and hard sub-
sets by considering the accuracy of CTR calculation and the
predicted disease severity. We classified samples with uncer-
tain labels or incorrect predictions made based on CTR as
hard. Additionally, we labeled all images with CTR > 0.8 or
CTR < 0.2 as hard, since extreme CTR values may suggest
inaccurate segmentation. We classified the remaining samples
as medium if 0.4 < CTR < 0.6 and as easy if CTR > 0.6 for
positive samples and CTR < 0.4 for negative samples.

To avoid bias, we balanced the subsets to achieve the same
ratio of positive to negative samples in each subset. This was
done by moving samples from easier to harder subsets until
reaching consistent ratios. The resulting dataset sizes were
17,659 for the easy, 50,215 for the medium, and 93,661 data
points for the hard subset. We used these subsets to train a
classification model employing the same architecture and pa-
rameters as the baseline model. We trained our model on the
easy subset first and then successively introduced the medium
and hard subset. The best strategy was training for 3 epochs
on each subset while keeping easier samples from previous
sets. With these variations, we found that predictive perfor-
mance was higher compared to the baseline model, with an
AUC of 0.8592.

5.3. Cropping Images to Region of Interest

The third approach relied on extracting lung bounding boxes
from the predicted lung masks. We cropped all images to



these regions of interest before resizing them to 320x320 pix-
els and feeding them into the model. Since cardiomegaly is
an abnormal enlargement of the heart compared to the lungs,
only the area inside the lung bounding boxes should be rel-
evant for detecting the condition. We hypothesized that ex-
cluding irrelevant portions of the X-ray images could improve
results, especially with limited training data. We used the pre-
trained DenseNet-121 with the previously described parame-
ters. With the cropped images, we found that the AUC was
0.8523 and thus marginally higher than the baseline.

5.4. Curriculum Learning on Cropped Images

Based on these results, we also trained the curriculum learn-
ing approach on the cropped images to evaluate performance.
We achieved an AUC of 0.8495, indicating that combining
these IML approaches yields no benefit over using the ap-
proaches individually.

5.5. Comparison on Different Dataset Sizes

We evaluated the baseline model and the IML models on the
CheXpert test set [3]. To allow a constant number of images
shown to each network, we adjusted the number of epochs
for varying dataset sizes. The results are shown in Figure
6.1. We found that in most instances, curriculum learning
and cropping images outperformed the baseline, with stronger
effects on limited training data. We again found no benefit
in combining two approaches. Overall, curriculum learning
achieved the best results. While performing worse than the
other models on the full dataset, automatic CTR calculation
achieved good performance relative to the limited dataset size.

6. DISCUSSION AND CONCLUSION

6.1. Principal Findings

In this work, we compare three IML approaches incorporat-
ing different forms of domain knowledge for cardiomegaly
detection and modify these approaches to allow combination.

We evaluate DenseNet-121 as a purely data-driven base-
line model on the CheXpert dataset and replicate previous
results [3]. The first IML approach automatically calculates
CTR using heart and lung segmentation masks and uses CTR
to predict the presence of cardiomegaly. We find worse per-
formance than the baseline model using all data, but com-
parable performance for smaller dataset sizes. Second, we
combine CTR calculation with curriculum learning to split
the dataset into three distinct difficulty levels where the easi-
est level is presented to the model first. This approach outper-
forms the baseline model in most circumstances. Third, we
train a classification model on images cropped to lung bound-
ing boxes which achieves slightly better performance than the

Fig. 1. AUC for the different models in relation to number of
training images

baseline model. Finally, we evaluate a model combining cur-
riculum learning and cropping images but don’t find improve-
ments compared to the baseline for this approach.

Overall, we see that IML approaches incorporating do-
main knowledge into ML models can improve classification
performance for cardiomegaly detection, especially with lim-
ited training data. Using CTR as a proxy for the difficulty of
images shows the most promising results and may provide a
reference for future research on combining IML and curricu-
lum learning. Improved performance with cropping images to
lung bounding boxes suggests that extending the approach to
detect further thoracic diseases may be beneficial [12]. Fi-
nally, our classification and evaluation of IML approaches
may serve as a reference for future researchers investigating
and comparing IML approaches.

6.2. Limitations & Future Research

There are several limitations in our work that could be ad-
dressed by future research. First, although our segmentation
models achieve good performance on the test dataset, the
performance of cardiomegaly detection using CTR is rather
low suggesting insufficient generalization of the model. One
likely cause is the limited size of the used segmentation
datasets as other approaches included manually segmented
masks [7, 11]. Therefore, future research could use addi-
tional data to improve results across all IML approaches.
The comparatively low performance of the automatic CTR
calculation may impact the difficulty scores for curriculum
learning. Therefore, future research could explore alterna-
tives to extract difficulties.

Additionally, we encourage future studies to extend the
evaluation to either compare our approach with state-of-the-
art methods or with qualitative evaluation (e.g., by investigat-
ing the perception of the approaches by practitioners).
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