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Kurzfassung

Biologische und bioinspirierte Oszillatoren sind faszinierende Systeme, die aus technischer Sicht
untersucht werden sollten. Biologische Oszillatoren sind von Natur aus verrauscht, erzeugen aber
dennoch stabile Schwingungsrhythmen und passen ihre Periode an die Periode der Eingangssig-
nale an, ein Prozess, der als Entrainment bekannt ist. Oszillatorsysteme kommen nicht nur in
der Natur, sondern auch in vielen vom Menschen geschaffenen Systemen vor, zum Beispiel in
Bewegungsgeneratoren für Roboter oder in elektrischen Schaltkreisen. Daher ist ein besseres Ver-
ständnis der Konstruktionsprinzipien biologischer Oszillatoren und ihrer Strategien, mit Rauschen
umzugehen oder es sogar zu nutzen, um ihr Entrainment an die Eingangssignale zu unterstützen,
für ein besseres Verständnis der oszillatorischen Systeme und ihrer technischen Anwendungen
unerlässlich.

Der Hauptbeitrag der vorliegenden Arbeit ist die numerische Untersuchung und Analyse einer
Population stochastischer Oszillatoren unter wechselnden Parametern des Eingangssignals und
variierender Rauschintensität. Das theoretische Kapitel der Arbeit zeigt, dass Rauschen die
Empfindlichkeit gegenüber schwachen externen Signalen erhöhen kann und somit die Anpassung
an einen größeren Bereich von Eingangsamplituden und -perioden im Vergleich zu einem äquiv-
alenten deterministischen System ermöglicht. Das Rauschen erhöht auch die Phasenreaktion
auf einen stufenförmigen Eingangsimpuls und beschleunigt die Erholung von einer Jet-Lag-
artigen Störung. Es wird ferner gezeigt, dass diese Effekte nicht nur auf biologische Oszillatoren
beschränkt sind, sondern auch für eine größere Anzahl von generischen Oszillatorsystemen mit
einem Grenzzyklus zu gelten scheinen. Im letzten Teil des theoretischen Kapitels wird ein
neuartiger schrittweiser Anpassungsalgorithmus vorgestellt, der eine Parameteranpassung von
stochastischen Oszillatorpopulationen ermöglicht. Alle im theoretischen Kapitel entwickelten
Methoden wurden als Open-Source-Softwarepaket zur Verfügung gestellt. Im letzten Teil der
Arbeit wird eine praktische Anwendung für die entwickelten Methoden vorgestellt. Hier wird
ein stochastisches Gleichungsmodell entwickelt, um die Tag-Nacht-Rhythmen in Zebrafisch-
Zelllinien zu untersuchen. Das Modell wird anschließend verwendet, um festzustellen, wie
verschiedene Medikamente die Synchronisation und Stochastizität der biologischen Uhr beein-
flussen.
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Abstract

Biological and bio-inspired oscillators are fascinating systems to be studied from an engineer-
ing perspective. The biological oscillators are inherently noisy, but still, they generate stable
oscillatory rhythms and adjust their period to the period of input signals, a process known as
entrainment. Oscillator systems occur not only in nature but also in many human-made systems,
such as movement generators for robots or electric circuits. Therefore, a better understanding
of the design principles of biological oscillators and their strategies to cope with noise or even
utilize it to support their entrainment to input signals is essential for a better understanding of the
oscillatory systems and their engineering applications.

The major contribution of the presented thesis is the throughout numerical exploration and
analysis of a population of stochastic oscillators under changing parameters of the input signal
and varying noise intensity. The theoretical chapter of the thesis demonstrates that noise can
increase the sensitivity to weak external signals and allows thus entrainment to a wider range of
input amplitudes and periods in comparison to an equivalent deterministic system. The noise
also increases phase response to a step-like input pulse and speeds up recovery from a jet-lag-like
perturbation. It is further shown that those effects are not only limited to the biological oscillators
but seem to apply to a wider range of generic oscillator systems with a limit cycle. In the last part
of the theoretical chapter, a novel step-wise fitting algorithm is presented, which allows parameter
fitting of stochastic oscillator populations to the traces from experimental data. All methods
developed in the theoretical chapter were made available as an open-source software package.
The last part of the thesis presents a practical application for the developed methods. Here, a
stochastic equation model is developed to study the day-night rhythms in the zebrafish cell lines.
The model is consequently used to determine how different drugs affect the synchronization and
stochasticity of the biological clock.
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1 Introduction

1.1 Motivation

Oscillator systems are omnipresent ranging from simple mechanical systems, like mass on a spring
and pendulum [7], over sophisticated man-made systems, like electrical circuits [8] and movement
generators for robots [9], to complex biological systems, like day-night regulation [10] and
heartbeat [11]. As oscillators are widely present in both engineering and biology, it comes as no
surprise that theymight be studied using the same tools [12]. For example, all biological oscillators
consist of some form of negative feedback with a delay [13], mathematically not different from a
negative feedback loop as we know it from control engineering (Figure 1.1). Control engineering
theory can thus provide quantitative description and insights into the biological process [14]. In
turn, the implementation of the control systems in living organisms provides a good opportunity
to learn how to build robust and reliable man-made systems. Biological oscillator systems are
inherently noisy [15] yet this noise does not appear detrimental to their function [16, 17]. To
contrary, biological control systems exhibit a remarkable ability to adapt to noise environments,
and sometimes even utilize it to improve their performance [18, 19]. From the perspective of
control engineering, it remains, however, unclear how this robustness and utilization of noise is
implemented in the biological control systems and how they could be potentially transferred to
technical application on a long-term perspective.

The main aim of this thesis is to study the interaction of noise and external forcing in biological
oscillator systems. The adaption of the oscillatory systems to external forcing is critical mainly to
the correct function of many biological oscillators (Table 1.1) but finds its application also in the
domain of the control of oscillatory mechanical systems [21]. A particular interest of my thesis
is in the forcing of a population of noisy oscillators. Such a scenario is of especial importance as
many biological oscillators occur in populations of thousands of oscillating cells whose effect on
the organism is the result of their population output. This thesis presents a novel methodology to
study this class of systems and provides a comprehensive and modular software tool to analyze
various oscillator models under external forcing and noise. This tool is subsequently applied to
infer new insights into the dynamics of a forced stochastic population showing that increasing
noise intensity allows entrainment to a wider range of input signals and at the same time accelerate

1
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A B

Protein

Gene promoter

PlantController

Input OutputInput OutputDisturbances Disturbances

Figure 1.1: The negative feedback loop is a central concept in the control engineering [7] as well as systems biology [20].
(A) The output of a plant (e.g. heater) is fed to the controller (e.g. thermostat) in a negative feedback loop (indicated
with ⊣). The controller compares the input signal (e.g. room temperature) with the signal from the plant and regulates
the plant through control signals. The plant is also affected by disturbances that might distort its function. (B) In gene
regulation, a gene produces a protein that can bind to the gene promoter region and thus inhibit its production. The gene
can be additionally regulated by other cellular elements acting as an external input signal. The protein levels depend also
on disturbances such as noise in gene expression or changing environment.

Function Period Input signal Reference
Circadian clock (day-night regulation) 24 h Light [22]
Cell cycle 24 h Circadian clock [23]
Cardiac pacemaker 200 ms Electric current [24]
Energy generation 50 s Glucose [25]
Signaling (NF-κB) 90 min Signaling protein (TNF-α) [26]

Table 1.1:Biological oscillators performvarious functions and operate on various time scales. The common characteristics
of those oscillators are that they are implemented as a negative feedback loop, they operate in a noisy environment, and
they reliably adapt to an external input signal. This table is based on a recent review on the entrainment in biological
oscillators [27].

the system response to those signals. The theoretical findings are supplemented by a practical
application of the methods to the study of a population of zebrafish clock cells. Here, it is shown
that the developed methods can be used to infer single-oscillators parameters from population-
level recordings, which can be used to obtain insights into the effects of various drug treatments.

The following sections of this chapter provide an overview of essential theory, related work,
and the context of the thesis. The main focus lies on the mathematical description of the
oscillatory systems, the specifics of bio-inspired oscillators, and how those systems behave under
noise-induced perturbation and periodic forcing. At the end of the chapter, it is shown how the
population behavior differs from the single-oscillator behavior and what effects of noise on the
population-level entrainment were described to this date. The chapter ends with an overview of
open questions, aims, and major contributions of the thesis.

2



1.2 Theoretical background and related work

1.2 Theoretical background and related work

1.2.1 Limit cycle oscillator

Stable limit cycle oscillators represent a scientifically important class of oscillators that exhibit
self-sustained oscillations even in free-running conditions without external forcing [28]. In
practice, limit cycle oscillator models are used to describe many systems from various fields
including neural activity [29], electrical circuits [8], earthquakes [30], and circadian clock [31].
Those models are represented, in general, by coupled differential equations of a general form

ẋ(t) = f[x(t),p] (1.1)

where x is a vector of state variables, t is time, p is a vector of model parameters, and f is a
nonlinear function of state variables and parameters. This model generates stable limit cycle
oscillations if for its solution holds that

lim
t→∞

[x(t)− x(t− τ)] = 0 (1.2)

where the smallest positive τ , for which Equation 1.2 holds, is the period of the generated
oscillations [32]. The free-running period of the oscillations can be conveniently adjusted without
loss of dynamics by rescaling Equation 1.1 as [33]

ẋ(t) =
τnew
τ

{f[x(t),p]} , (1.3)

where τnew is usually set to 2π or 1.

A prototypical limit cycle oscillator can be characterized by its amplitude (A), period (τ ), and
relaxation rate (λ), which indicates how fast the oscillations return to the free-running amplitude
after a perturbation. The amplitude-phase model (Poincaré oscillator) encodes those parameters
directly in a set of ordinary differential equations (ODEs) in polar coordinates [34]

ṙ = λr (A− r) (1.4a)

φ̇ = ω =
2π

τ
, (1.4b)

3
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A B

C D

Figure 1.2: Amplitude of the harmonic oscillator depends on the initial conditions, whereas amplitude of the limit cycle
oscillator converges to the stable orbit. (A) Linear system represented by the amplitude-phase model with parameters
λ = 0, A = 1, ω = −1 exhibits oscillatory behavior that depends on the initial conditions. (B) In the phase plane
corresponding to panel A, we can see three closed orbits, one for each simulated initial condition. (C) A limit cycle
oscillator represented by the amplitude-phase model with parameters λ = 3, A = 1, ω = −1 has a stable limit cycle.
Regardless of the initial conditions, the simulation converges to the same amplitude oscillations in finite time. (D) In the
phase plane corresponding to panel C, we can see a single stable closed orbit that attracts all neighboring trajectories.

which can be for practical purposes also written in cartesian coordinates as

ẋ = λx (A− r)− ωy (1.5a)
ẏ = λy (A− r) + ωx (1.5b)

r =
√
x2 + y2. (1.5c)

The important component of this model is the nonlinear term (A− r) that constantly evaluates
the distance from the target amplitude A and adjusts the derivative so we always move in the
direction of the stable orbit. This is in contrast with the simple harmonic oscillator (λ = 0)
whose amplitude depends on the initial conditions (Figure 1.2). The limit cycle is thus an
inherently nonlinear phenomenon and can occur only in nonlinear systems [35]. Although this
model is rather abstract and simple, it has a wide range of applications in studying the general
properties of limit cycle oscillator systems. This model was used before as a conceptual model
of biological oscillators [34, 36]. For its simplicity and generalization, this model is used in this
introductory chapter to reproduce some of the fundamental properties of the oscillator systems.

4



1.2 Theoretical background and related work

An important class of limit cycle oscillators are relaxation oscillators that are phenomenologically
described by the Van der Pol model [37, 38] as

ẋ = y (1.6a)
ẏ = −

(
Bx2 − d

)
y − x, (1.6b)

whereB and d are free parameters. The special property of the relaxation oscillator is that it does
not generate a sinusoidal rhythm as the amplitude-phase oscillator, but rather so-called relaxation
oscillations. The term relaxation refers here to the time evolution within a cycle where we can
observe a slow part (“stress” build-up) followed by a sudden jump (relaxation) [28]. Relaxation
oscillations appear in various fields of science and engineering, including electrical circuits [8]
as well as biological oscillators such as circadian clock [39] and cardiac pacemakers [40]. The
shape of the generated oscillations also depends on the parameter values whose change can even
lead to the disappearance of the limit cycle altogether (Figure 1.3). The parameter value, at which
the limit cycle appears/disappears, is called Hopf bifurcation and mathematically represents a
parameter value, for which a pair of complex conjugate eigenvalues of the linearized system
crosses the imaginary axis [41]. The Hopf bifurcation is important in many disciplines as it
indicates a threshold under which oscillations stop. In the real world, such parameter change
can mean climate change in the ecosystem or wear out of components in mechanical systems
[28]. The bifurcation diagram is also often used in the literature to provide better insight into the
dynamics of the presented oscillator model [42].

1.2.2 Design principles of biological oscillators

The models presented in the last section provide a simple and valuable toolkit to study the general
properties of limit cycle oscillators but do not consider any specific properties of biological
systems. To make a step closer to the biological reality, we can consider that state variables x
represent concentrations of molecules and parameters p are kinetic parameters that govern the
interactions between those molecules [32]. Consequently, the ODEs represent the production and
decay of those molecules as [41]

ẋ(t) = fproduction [x(t),p]− fdecay [x(t),p] . (1.7)

5
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A B C

D

Figure 1.3: The limit cycle is born at the Hopf bifurcation. (A) The Van der Pol model with parameter values of
B = 3.0, d = −0.1 generates only damped oscillations. (B) By increasing the value of d to d = 1.0, we cross the Hopf
bifurcation, and the model becomes a limit cycle oscillator. (C) Increasing the value of d further to d = 3.0 increases
amplitude and period and makes the relaxation oscillations more prominent with clearly visible slow changes followed by
sudden jumps. (D) Numerical estimation of the bifurcation diagram for varying parameter d shows the Hopf bifurcation
at d = 0.

As x in Equation 1.7 represents molecular concentrations, it cannot reach negative values creating
a constraint on the simulation of this class of models. A simple example of a mechanistic model
is Goodwin model [43] that can be in the most general form written as [44]

ẋ1 = g(xne
)− x1 (1.8a)

ẋi = xi−1 − xi i = 2, . . . , ne, (1.8b)

where ne is the number of coupled equations and g is a nonlinear function with a strictly negative
derivative [45] representing negative feedback. The number of equations in this model represents
time delay that is essential to generate the oscillations (Figure 1.4) [13].

6
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x1

x2 x3

1 equation

x1

x2 x3

x4

x1 x2x1

2 equations 3 equations 4 equations

Figure 1.4: Oscillations can be generated only with a sufficient delay in the negative feedback loop. The Goodwin model
was simulated with one, two, three, and four coupled equations. The more equations we consider the longer is the delay
caused by the propagation of the signal through the individual state variables. To generate sustained oscillations, the
Goodwin model must consist of at least three equations.

The function g represents inhibition, such as caused by a repressor molecule inhibiting gene
expression, and can be chosen based on the inhibitory mechanism we want to model [46]. The
most commonly used is the Hill function (Figure 1.5A) [41]

g(x) =
1

1 +
(
x
Kh

)nh

nh→∞−−−−→

{
1 x ≤ Kh

0 x > Kh

, (1.9)

which has a shape of a decreasing sigmoid function. This represents cooperative binding that
manifests as a switch-like process: with increasing concentration of x over the threshold Kh the
function drops from 1 to 0. nh indicates the steepness of the sigmoid [41] and must be sufficiently
large for the oscillations to occur. For example, in the minimal Goodwin model with 3 equations
we need n > 8 [47]. The Hill function has been for decades de facto the standard function to
use with the Goodwin model, especially in theoretical studies. Later, the Kim-Forger function
(Figure 1.5B) has emerged as an alternative. The Kim-Forger function can be written as [48]

g(x) =
Akf −Kkf − x+

√
(Akf −Kkf − x)

2
+ 4AkfKkf

2Akf

Kkf→0−−−−→

{
1− x

Akf
x ≤ Akf

0 x > Akf

(1.10)
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A B

Figure 1.5: Common nonlinear functions that are used in the Goodwin model. (A) The Hill function has two free
parameters nh andKh. nh indicates the slope of the inhibition andKh indicates the position of the half-maximal value
(hereKh = 5). (B) The Kim-Forger function has two free parametersKkf andAkf . Kkf indicates the "smoothness" of
the elbow and Akf indicates its position (here Akf = 5).

and represents 1:1 binding of activator (Akf ) and repressor (x) molecules: with increasing con-
centration of xmore activator moleculesAkf are bound to x and the activation function decreases
until it reaches 0 (no free activators remain) [49]. It has been suggested that transcriptional
repression in multicellular organisms is better explained by the Kim-Forger function, rather than
Hill function [50]. The Kim-Forger function also seems to be more reliable for stochastic sim-
ulations [51]. Similarly as with the Hill function, sufficient nonlinearity is necessary to produce
oscillations (Kkf < 10−4) [48].

1.2.3 Entrainment to input signal

Entrainment is a phenomenonwhen an oscillator adjusts its period to the period of an input periodic
signal. The fundamental property of entrainment, as compared to the general phenomenon of
synchronization, is that the oscillator generates sustained oscillations also without external forcing
[52]. Entrainment is common to many biological oscillators that must adjust their period to
changes in the external environment, for example, entrainment of the auditory cortex oscillators
by speech and music [53], circadian clock entrained by the day-night rhythm [10] or respiratory
system entrained by a ventilator [54]. A common forcing signal used as an input to the oscillator
in computational studies is a square-wave signal

I⊓(t) =

{
I 0 ≤ (t mod T ) < DT

0 DT ≤ (t mod T ) < T
, I ≥ 0, T > 0, D ∈ [0, 1], (1.11)

where I is the input amplitude, T input period andD input duty cycle (Figure 1.6). Other shapes
of the input signal can be also applied to force the oscillator, among which the sine wave is the
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Phase of
entrainmentDuty cycle

Amplitude

Period

Figure 1.6: The square input signal (red) is characterized by three parameters: input amplitude (I), period (T ), and duty
cycle (D). Parameters of the showed input signal are I = 8, T = 1, andD = 0.25. The model output (black) oscillates
with the same period as the input signal and is thus entrained. For an entrained oscillator, we can define the phase of
entrainment as the distance from the input signal cycle onset to the nearest following output signal peak.

most popular. Although some differences between the response of the oscillator system to sine
and square input signals were reported [55], the differences seem to be, for the context of this
thesis, rather quantitative than qualitative. A square wave is also easier to realize in experimental
settings. In simple conceptual models, input is usually implemented as an additive term to one of
the state equations [56, 36, 57, 58]. In some special cases, such as light input to the mammalian
circadian clock, the input signal might be also modeled multiplicatively by changing a value of
one of the kinetic parameters already presented in the model [59].

The important property of the forced oscillator is the range of the input signal parameters that
allow for entrainment. An Arnold tongue is a pictogram that visualizes the area of the entrainment
in a 2D plane representing varying input amplitudes and periods of the input signal (Figure 1.7A).
In general, if we increase the amplitude of the input signal the range of periods for which the
system is entrained also increases. This results in the typical, tongue-shaped region of entrainment
[60, 61]. Arnold tongues are a standard method to describe entrainment in oscillator systems
including biological [55] as well as mechanical oscillators [62]. In the context of some oscillator
systems, the input amplitude in the pictogram is switched for the input duty cycle creating a
visualization known as Arnold onion (Figure 1.7B). Arnold onions stem from the circadian
research where the duty cycle represents varying lengths of the day over the seasons [63, 36].

Another classical way to quantify the response of an oscillator to an input signal is the phase
response curve (PRC). The PRC visualizes the phase shift caused by a pulse input applied at a
specific time of a cycle. To measure the PRC the oscillator is simulated without the input signal
oscillating with its free-running period. Then a pulse input is delivered at different times across
the period (cycle) and the phase change is measured as the time shift of the oscillations from the
reference output without the input signal [64]. The PRC is plotted as the pulse time versus the
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A B

Figure 1.7: Arnold tongues and onions quantify the range of entrainment for varying parameters of the input signal. (A)
Arnold tongue plots the area of entrainment as a function of input amplitude and period. The duty cycle is fixed (here
D = 0.5). The phase of entrainment is color-coded. The white area indicates the values of the input amplitude and period
for which the model is not entrained. (B) Arnold onion plots the area of entrainment as a function of input amplitude and
duty cycle. Input amplitude is fixed (here I = 3). Color-coded is the phase of entrainment. The white area indicates the
values of the input amplitude and duty cycle for which the model is not entrained.

phase shift (Figure 1.8A, B, C) and its shape depends on the oscillator model structure as well as
the applied pulse amplitude and length [65]. Based on the shape of the PRC we can call the phase
response as type 1 or type 0 (Figure 1.8). The terms type 0 and type 1 refer to the average slope
of the phase transition curve (PTC), an alternative to the PRC that plots the new phase versus the
pulse time (Figure 1.8D, E, F) [64]. The new phase is calculated as new phase = pulse time +
phase shift. The PRCs are extensively used to quantify pulse-response properties of biological
and bio-inspired oscillators such as phase resetting of the circadian clocks [10], phase control of
the beating heart cells [66], and adaptive control of the human walking rhythms [67, 68].

1.2.4 Stochastic effects on oscillation generation

Noise is an inherent component of biological control systems [15] and in many cases, it is
necessary to consider, if we desire to capture the correct dynamics of the biological oscillators or
fit precisely the experimental data [69, 70]. Noise in the computational models can be encoded
using stochastic differential equations (SDEs) in the form of

dx(t) = f[x(t),p]dt+ σ h[x(t),p]dW (t) (1.12)

where f is called a drift function, x are state variables, p are model parameters, σ is noise
intensity, h is called a diffusion or noise function, and W are independent Gaussian processes.
In biological systems, the noise stems from a low number of interacting molecules, which makes
the molecular interactions scarce and occur at stochastically distributed times [71, 72]. We can
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BA C

D E F

Figure 1.8: The phase response curve (PRC) changes its shape with the increasing amplitude I of the input signal. (A)
PRC for low input amplitude shows only a minimal change in phase shift (type 1). (B) An increasing input amplitude
increases also the phase shift. (C) For high input amplitude the PRC "wrap-around" the cycle (type 0). (D) Phase transition
curve (PTC) to the PRC from panel A. The new phase is calculated as "new phase = pulse time + phase shift" and is
technically just the PRC rotated by 45 degrees (see the guiding lines). The type 1 resetting manifests itself in the PTC
plot as a curve with an average slope of 1. (E) The PTC equivalent to the PRC from panel B. (F) The PTC to the PRC
from panel C. The type 0 resetting manifests itself in the PTC plot as a curve with an average slope of 0.

therefore write the noise intensity as a function of system size (Ω), which represents the number
of molecules, as [73]

σ =
1√
Ω
. (1.13)

Another important notion is that the stochastic processesW in Equation 1.12 are not differentiable
by time and thus classical ODE solvers (such as ode45 inMatlab) cannot be used and suitable SDE
solvers must be applied to obtain a precise approximation of the solution [74]. This also means
that the stochastic models are considerably more computationally demanding than deterministic
models and more challenging to fit to experimental data. Despite this challenge, a great body of
work focused on the interference of noise with oscillator generation showing that oscillations can
occur also in systems with high noise intensities [75, 76, 77, 78] and that also noisy systems can
be entrained by external forcing [79, 80]. The main consequence of increasing noise intensity in
the limit cycle oscillator model is an increase in random perturbation of the system from its limit
cycle (Figure 1.9).
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B

A

C

D

Figure 1.9: Noise causes perturbations from the limit cycle. (A) For a relatively small noise intensity, the perturbations
are minimal. In the phase plane, we can conveniently see the range of values around the deterministic limit cycle that
the stochastic model visited during a simulation over 10,000 periods. The red ring indicates the limit cycle and the
color-coding indicates the fraction of time that the stochastic model spent in the given state during a simulation of 10,000
periods. (B) Increasing noise intensity increases also the range of deviations from the limit cycle. Notice that the stochastic
time series also shows a visibly larger amplitude and longer period than the deterministic model. (C) Periodic forcing
decreases the deviations of the stochastic simulation from the deterministic limit cycle (compare to panel A). (D) Increased
noise intensity increases also the range of deviations from the limit cycle. But the deviations are visibly smaller than for
the free-running model (compare to panel B). As the input signal amplitude in panels C and D is sufficiently large, the
oscillator is entrained to the input period, and thus the oscillator period is not changed by higher noise intensity.
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BA

C D

Figure 1.10: Noise improves the detection of weak signals in threshold-like systems. (A) The input signal without noise
does not reach a threshold and thus does not generate any input signal. (B) The addition of noise makes the input signal
reach the threshold and generates output spikes. Each spike corresponds to the time when the input signal crossed the
threshold. (C) Optimal noise intensity leads to the generation of spike trains in periodic intervals that match the period of
the input signal. (D) If the noise intensity is too high, the spikes are generated perpetually and the input pattern is difficult
to recognized. This figure is inspired by a previous description of the threshold stochastic resonance in the context of
neural synchrony [85].

In the state-of-the-art man-made control systems, noise is usually considered undesirable, but in
biological control systems, noise is often utilized to facilitate information transfer [81, 82]. The
effect of increasing the performance of the system by increasing noise intensity is called stochastic
resonance [83] and was observed in various disciplines including cell biology, ecology, and
physics [84]. In the context of the oscillator systems, the term stochastic resonance is traditionally
used in neuroscience to describe improved detection of weak signals in threshold-like systems
(Figure 1.10) [85, 86]. In practice, this means enhanced response of sensory neurons to an input
signal [87, 88]. Noise can also play a key role in the generation of oscillations. Specifically,
in the proximity to the Hopf bifurcation, the noise can induce oscillations [89, 90, 91] even if
the deterministic model has no limit cycle and exhibits only damped oscillations without noise
(Figure 1.11).

1.2.5 Population dynamics

Let us consider a population of n uncoupled stochastic oscillators forced by a common input
signal (Figure 1.12). A population of uncoupled forced stochastic oscillations can be used to
model many biological systems, including oscillating signaling proteins [26, 92], populations of
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BA

Figure 1.11: Noise can induce oscillations in a system that does not have a limit cycle. (A) The output of the oscillator
without noise produces only damped oscillations that after a transient period reach a steady state. However, if noise is
added to the system, the model generates sustained oscillations. (B) In the phase plane, noise leads to a generation of a
circular pattern around the deterministic steady state (red x). The phase plane values correspond to the stochastic system
from panel A (black curve). The red x corresponds to the steady state of the deterministic system from panel A (red
curve).

synthetic oscillators [93], and many examples from the field of circadian clocks, such as circadian
oscillators in plants [94], mammalian peripheral tissues [95], and laboratory cell cultures [96].
The importance of studying the population dynamics as opposed to studying individual oscillators
can be illustrated with two examples when the population-level output and dynamics of individual
cells differ substantially. The first example is the desynchronization of the individual oscillators
in the free-running conditions (Figure 1.13). Without external forcing, the individual oscillators
desynchronize, and thus their population-level average will display no oscillations even though
the individual oscillators keep oscillating [96]. The second example is the phenomenon of the
stochastic population entrainment (SPE, Figure 1.14). The SPE refers to the phenomenon when
the population-level average is entrained by the input signal even though the individual stochastic
oscillators are not [92]. Those two examples of the discrepancy between the population-level
average and single-oscillator traces demonstrate the importance of studying the population-level
output and how it deviates from the dynamics of the individual cells. A better understanding
of the relationship between the population-level output and the single-cell dynamics would be
beneficial, for example, for the correct analysis of population-level recording methods that are
often easier, cheaper, and faster than performing single-cell imaging [97].

The system of uncoupled stochastic oscillators presented in the paragraph above is in contrast to a
more studied case of a population of coupled oscillators. Much previous work has been devoted to
the study of the effects of coupling among the individual oscillator [98] and the effect of external
forcing in such systems [99, 100]. The coupling has been shown to provide the network with an
increased level of resistance to noise and external perturbation [34]. Weakening coupling between
the individual oscillators allows entrainment to a wider range of input periods and weaker external
input signal [101]. The noise plays also an important role in the dynamics of a coupled population.
Noise has been shown to enhance synchronization between networks of oscillators [102] and can
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Input signal Output signal

Population of oscillators

Figure 1.12: The main interest of this thesis is a population of uncoupled stochastic oscillators forced by a square signal.
The same input signal acts on all members of the population that in turn produce an oscillatory output. The output signal
is obtained as average of the outputs of the individual oscillators. If the input and output signals oscillate with the same
period, the population is entrained.

BA

C D

Figure 1.13: Noise desynchronize individual oscillators leading to the loss of oscillations at the population level. (A)
Under a periodic forcing, the individual oscillators are synchronized and oscillate with similar phase. (B)Without external
forcing, the individual oscillators desynchronize and peaks occur at any time. (C) Under periodic forcing, population-level
oscillations can be observed. In gray, the example traces from panel A. The population mean is constructed from 1000
independent traces. (D) The lack of periodic forcing leads to the loss of oscillatory behavior at the population level even
though the individual oscillators keep oscillating. In gray, the example traces from panel B. The population mean is
constructed from 1000 independent traces.
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Figure 1.14: At the population level, a population of oscillators can be entrained even if individual oscillators in the
population are not. (A) A single stochastic oscillator is not entrained to the input signal. Notice that the relative peak
position (indicated with stars) changes in the course of several periods. (B) An average of 1000 independent stochastic
oscillators show robust entrainment with peaks (indicated with stars) occurring at the same relative position in the cycle.

shorten the time needed for the coupled population to recover from a jet-lag-like phase reversal
of the input signal [103]. Although those findings are intriguing for further exploration, the
main focus of this thesis is the case without coupling. Uncoupled oscillators provide reduced
mathematical complexity and faster computational simulations. This simplification allows one
to computationally explore a wide range of noise intensities under various scenarios of the input
forcing and for large populations of thousands of cells including fitting those large populations to
experimental data. Given the abundance of oscillators in biology and other fields, this thesis will
contribute to the general knowledge of oscillatory systems as well as to the analysis of a specific
class of oscillatory systems that consists of uncoupled stochastic oscillators [33].

1.3 Open questions

Although previous research on oscillator systems offers a tremendous amount of theoretical,
computational, and experimental insights, there are still several open questions in the field of
forced stochastic oscillators that remain to be addressed:

• Entrainment, period, and other parameters of forced oscillators are challenging to reliably
quantify in stochastic systems. Many common methods used to quantify entrainment
(Arnold tongues, PRCs) work well for deterministic systems, but their employment for the
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analysis of stochastic systems with significant level of noise remains unambiguous in the
face of stochastic uncertainties.

• The implications of noise on population-level entrainment are still poorly understood. Al-
though noise and entrainment are individually recognized to influence oscillator dynamics,
it remains unclear whether noise is generally detrimental to entrainment, or might be
co-opted in the entrainment of oscillator populations.

• High computational costs of stochastic simulations keep fitting stochastic oscillator models
to real-world data challenging. Here, it is necessary to explore methods that would keep
the necessary reevaluations of the equations to a minimum but could still provide robust
and reliable estimation for the model parameters.

• Biological as well as man-made systems adjust their function as a response to variations
in environmental conditions. A suitable parameter identification strategy that could map
those environmental changes to the changes in parameter values of a computational model
would be beneficial. In the biological context, such a framework could be used to infer
the effects of pharmacological treatments or genetic mutants. In the context of man-made
systems, the changes in environmental conditions could be quantified.

• In the field of the circadian clock, experimental measurement of the degree of single-cell
clock synchronization requires long-term imaging of individual cells, which is technically
challenging and not suited to large-scale screening experiments. Here, a mathematical
modeling approach that could predict the degree of individual cell clock synchronization
from population-level recordings would be valuable.

1.4 Objectives and thesis outline

Concerning the open question presented in the previous section, the main objectives of the present
thesis are:

1. Provide methodology than can be used to reliably quantify the entrainment of stochastic
oscillators to the input signal.

2. Explore and quantify the behavior of a population of uncoupled stochastic oscillators under
varying parameters of the input signal (period, amplitude, duty cycle) and different noise
intensities.

3. Build an efficient data-fitting pipeline that can be used to infer stochastic oscillator param-
eters from real-world data.
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4. Implement all developed methods in a comprehensive and modular open-source software
package that enables computational exploration of oscillator models and their fitting to the
real-world data.

5. Use the implemented tool to fit, analyze and interpret real-world data from the field of the
circadian clock.

Those objectives are addressed in the following chapters of the thesis. Chapter 2 presents some
theoretical findings and methods for the quantification of entrainment in stochastic oscillator
populations and a pipeline for fitting experimental data. This answers the Objectives 1, 2, and
3. Chapter 3 describes an open-source implementation of the methods developed in Chapter 2
and thus directly relates to Objective 4. In Chapter 4, the developed methods are applied to
the analysis of experimental data, which answers the last objective, Objective 5, of the thesis.
Chapter 5 summarizes the work and provides an outlook for further research.
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2 Theory: Effect of noise on
population-level entrainment

This chapter presents new theoretical findings in the domain of uncoupled stochastic oscillator
and their entrainment. The chapter begins with the evaluation of existing numerical methods
for the simulation of stochastic models of biological oscillators and gives a recommendation on
the simulation approach that is accurate and computationally effective (Section 2.1). With the
established simulation approach, the chapter continues with the development of the methodology
to reliably quantify the entrainment of stochastic oscillators under periodic forcing (Section 2.2).
This addresses Objective 1 of the thesis. Once the optimal approach to the numerical simulation
and entrainment quantification is established, the chapter continues with an extensive theoretical
exploration of the entrainment dynamics for a population of stochastic oscillators (Sections 2.3,
2.4, 2.5, 2.6). This addresses Objective 2 of the thesis. The chapter concludes with a presentation
of a novel parameter-fitting algorithm (Section 2.7). This addresses Objective 3 of the thesis and
builds a bridge to the practical application described later in Chapter 4. Parts of this chapter have
been adapted from a previously published journal article [1].

2.1 Bio-inspired stochastic oscillator model

2.1.1 Model

In this chapter, the simple Kim-Forger model [48] is used as a prototype of a generic biological
oscillator. In its minimal form, the Kim-Forger model consists of three equations as

ẋ = f(z,A)− x+ I⊓ (2.1a)
ẏ = x− y (2.1b)
ż = y − z (2.1c)

f(z,A) =

{
1− z

A
z
A ≤ 1

0 z
A > 1

(2.1d)
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2 Theory: Effect of noise on population-level entrainment

Figure 2.1: Bifurcation diagram for parameter A of the Kim-Forger model (Equation 2.1). This figure is adapted from
the previous publication [1].

Figure 2.2: Numerical simulation of the deterministic Kim-Forger model (Equation 2.1) for parameters A = 0.1 and
I = 0.01 and period of the input signal T = 1 (Equation 2.2).

where x, y, z represent concentrations of molecular entities that form a negative feedback loop
(see also Section 1.2.2). A is the only free parameter that is set for this chapter constant as
A = 0.1, which corresponds to a limit cycle oscillator that can generate high-amplitude sustained
oscillations (Figure 2.1). I⊓ is the input square signal, for example, day-night rhythm in the
example of the circadian clock, which can be written as

I⊓(t) =

{
I 0 ≤ (t mod T ) < T

2

0 T
2 ≤ (t mod T ) < T

, (2.2)

where T is the input period and I is the input amplitude (see also Section 1.2.3). An example
numerical simulation of the Kim-Forger model is shown in Figure 2.2.
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Figure 2.3: Chemical reaction network based on the Kim-Forger model (Equation 2.1). (A) Full-line arrows indicate
synthesis (when pointing in) or degradation (when pointing out) of the respective molecular entity. The dashed lines
indicate that the given entity facilitates the given reaction but is not itself affected by it. Reactions 1, 2, and 3 represent
terms in Equation 2.1a, reactions 4 and 5 represent terms in Equation 2.1b, and reactions 6 and 7 represent terms
in Equation 2.1c. (B) List of reactions that represents the scheme in panel A and provides the basis for the discrete
computational model (Table 2.1).

2.1.2 Stochastic simulations of biological oscillators

Biological oscillator as a network of chemical reactions

Themolecular noise affecting biological oscillators stems from the lowabsolute number of reacting
molecules [15]. As the molecules are subject to thermal noise, they move erratically around and
collide at random times [104]. In consequence, the molecular interactions occur at stochastically
distributed times, resulting in stochastic variations in the oscillatory dynamics. To model this
kind of stochasticity, the deterministic model in Equation 2.1 needs to be decomposed into the
individual chemical reactions (Figure 2.3). Particularly, each state variable x, y, and z represents
the concentration of one molecular entity and each equation describes synthesis and degradation
reactions by positive and negative terms, respectively. Following this logic, Equation 2.1 can be
decomposed in 7 individual reactions, where each reaction represents synthesis or removal of a
specific molecule (Figure 2.3). The substantial difference of the chemical reaction model from
the ODE model is that the chemical reaction models represents exact number of molecules (X ,
Y , Z), which relate to the concentrations (x, y, z) asX = Ωx, Y = Ωy, Z = Ωz, where Ω is the
system size parameter that determines the overall number of molecules in the system [75, 76, 77].
To finalize the discrete model, we use the parameter Ω to also scale the model parameters and
prepare a list of transitions that describe probabilities with which the individual reactions occur
(Table 2.1).

Several algorithms to perform the numerical simulation of the stochastic models exist. However,
it is not clear, which algorithm provides the best accuracy and reasonable computation times,
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2 Theory: Effect of noise on population-level entrainment

Transition number Transition Transition rate

k = 1 X → X + 1 tr1 = Ωkfr(Z,ΩA)

k = 2 X → X − 1 tr2 = X

k = 3 X → X + 1 tr3 = ΩI⊓

k = 4 Y → Y + 1 tr4 = X

k = 5 Z → Z − 1 tr5 = Y

k = 6 Z → Z + 1 tr6 = Y

k = 7 Z → Z − 1 tr7 = Z

Table 2.1: Table of transitions based on the Kim-Forger model (Equation 2.1) and its reaction model (Figure 2.3).

especially in the context of this thesis, where a larger range of noise intensities should be explored.
This section compares two common methods for stochastic simulations of biological systems,
specifically Gillespie’s Stochastic Simulation Algorithm (SSA) and Chemical Langevin Equation
(CLE). In the end, a combined approach is proposed, which uses SSA for high and CLE for low
noise intensities. This approach leads to optimal results in terms of accuracy and computational
efficiency of the stochastic simulations.

Gillespie’s Stochastic Simulation Algorithm (SSA)

Gillespie’s Stochastic Simulation Algorithm (SSA) is a discrete Monte Carlo method that models
molecular interactions as discontinuous jumps among individual states [72]. Meaning, SSA
estimates discrete times at which an integer is added or subtracted from a state variable to model
synthesis or degradation of the given molecular entity, respectively (Figure 2.4A). Given the
system of reactions in Table 2.1, the SSA runs as [104]:

1. Initialize the state vector X(t = 0) = [X0, Y0, Z0].

2. Evaluate the individual transition rates trk(X) according to Table 2.1.

3. Calculate time for next reaction as

∆t = − 1∑K
k=1 trk(X)

ln r1, (2.3)

where r1 is a random number drawn from a uniform random interval [0, 1], and K = 7 is
the number of reactions on the model.
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4. Select which reaction will occur next by rolling a biased dice. That is, find reaction j for
which holds that ∑j−1

k=1 trk(X)∑K
k=1 trk(X)

≤ r2 <

∑j
k=1 trk(X)∑K
k=1 trk(X)

, (2.4)

where r2 is a random number drawn from a uniform random interval [0, 1]

5. Update the state vector X according to the transition for transition number k = j from
Table 2.1. For the Kim-Forger model that means to add or subtract 1 from one of the state
variables X , Y , Z.

6. Update time by t→ t+∆t.

7. Repeat steps 2 → 6 until desired time t is reached.

The main advantage of SSA is that it produces a statistically accurate realization of a reaction
model. The disadvantage is high computational costs that depend strongly on the system size Ω
(Figure 2.5A). This drawback is also obvious from the algorithm described above as higher Ω
leads to shorter time steps (∆t) in step 3.

Chemical Langevin Equation (CLE)

The SSA produces a statistically correct realization of the given reaction model but becomes
computationally expensive for increasing system size Ω. However, for high Ω, the absolute
numbers of molecules become larger and relative changes between the individual states smaller.
The discrete states can be thus approximated by a continuous stochastic differential model known
as Chemical Langevin Equation (CLE) (Figure 2.4) [73]. The CLE approximation of the reaction
model from Table 2.1 is

ẋ = kfr(z,A)− x+ I⊓ +σ
(√

⌊kfr(z,A)⌋W1 +
√

⌊x⌋W2 +
√
⌊I⊓⌋W3

)
(2.5a)

ẏ = x− y + σ
(√

⌊x⌋W4 +
√
⌊y⌋W5

)
(2.5b)

ż = y − z + σ
(√

⌊y⌋W6 +
√
⌊z⌋W7

)
(2.5c)

where ⌊a⌋ = max(0, a) prevents the terms under square roots to become negative (discussed
below), σ is noise intensity that depends on the system size Ω as

σ =
1√
Ω
, (2.6)
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A

B

C

Figure 2.4: Comparison of simulated time series with Gillespie’s Stochastic Simulation Algorithm (SSA, black) and
Chemical Langevin Equation (CLE, red). The dashed line indicates 0. (A) For a very low system size (Ω = 10) the
exact numbers of estimated molecules are important. This is visible by a step-like time series of the SSA. CLE gives an
inaccurate approximation, especially around 0, where it often estimates negative concentrations. (B) Increased system
size (Ω = 100) increases also the number of molecules in the system. The step-like behavior is thus becoming less
prominent and the approximation by CLE becoming more accurate. (C) For a higher system size (Ω = 1000) give both
methods comparable solutions.

andWi are independent Wiener processes for which apply that

W (t = 0) = 0 (2.7)

W (t+∆t) =W (t) +
√
∆tN(0, 1), (2.8)

where N(0, 1) is a normally distributed random variable with zero mean and unit variance and
∆t is a time increment [74]. The CLE model was simulated using the Euler-Maruyama method
with an integration step ∆t = 0.001. The integration step is sufficiently low to give comparable
results with an accurate deterministic adaptive method for σ = 0 (Figure 2.6) as well as with the
accurate SSA method for higher values of σ (Figure 2.7).

One common problem associated with the CLE is that it breaks down if the terms under the square
roots reach negative values [105]. The negative concentrations are not biologically possible and
thus this should mathematically never happen. However, in numerical practice, the differential
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2.1 Bio-inspired stochastic oscillator model

A B

Figure 2.5: Simulation times and accuracy for Gillespie’s Stochastic Simulation Algorithm (SSA) and Chemical Langevin
Equation (CLE). The dots and error bars represent the mean and standard deviation over 10 repeated simulations. The
methods were benchmarked on a standard office computer with Intel Core i7-9700 CPU. (A) The simulation time of SSA
increases rapidly with the system size parameter Ω. In contrast, the simulation time of the CLE is constant and depends
on the chosen integration step of the Euler–Maruyama method (here dt = 0.001). (B) The SSA provides a precise
realization for the reaction model. In contrast, the CLE loses its accuracy with decreasing Ω. Here, the losing accuracy
is illustrated by the number of estimated negative concentrations, which is biologically impossible and is the result of the
inaccurate approximation.

A

B

C

Figure 2.6: The chosen integration step for the SDE solver gives for σ = 0 a comparable estimation as an adaptive ODE
solver. (A) The integration step dt = 0.1 is too large to give a usable approximation. (B) Decreasing the integration step
to dt = 0.01 improves the estimation markedly. (C) The integration step dt = 0.001 gives almost the same result as an
adaptive ODE solver.
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2 Theory: Effect of noise on population-level entrainment

Figure 2.7: Phase-plane histograms for different system sizes (Ω) estimated with SSA and CLE. Bright yellow and dark
blue indicate that the states were visited with high and low frequency, respectively.

equations solver might step in the negative domain, if the solution lives close to zero due to
numerical inaccuracies and extrapolations [106]. Additionally, the CLE becomes increasingly
less accurate for a decreasing system size Ω, which leads to an increased probability of stepping
in the negative plane. This problem has no rigorous solution and thus CLE should not be used for
a small system size Ω and its accuracy must be always proved. For our application, this problem
is circumvented by using CLE only for high values of the system size Ω and for lower values
switching to SSA. In particular, for the here-presented Kim-Forger model, this breaking down
of the CLE occurs around Ω = 1000. Accidently, SSA also becomes numerically manageable
around this point (Figure 2.5). Thus, SSA is used as a fallback for Ω < 1000, and CLE is used
otherwise. Taking together that for Ω ≈ 1000 both methods give the same results (Figure 2.7),
this approach leads to accurate as well as fast numerical simulations for a wide range of Ω.
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2.2 Metrics for entrainment quantification

Figure 2.8: SSA and CLE give an equal estimate of the population-level mean under a complicated input signal. Here,
the noise intensity was set to σ = 0.03 (Ω ≈ 1111) and population size to n = 30000.

2.1.3 Population-level output

A population of uncoupled oscillators is simulated by calculating a mean of repeated independent
numerical simulations as

x =
1

n

n∑
i=1

xi, (2.9)

where n is the number of oscillators in the population. Also for a population of oscillators with a
non-zero input signal and noise intensity close to the breaking point of the CLEmethod (σ = 0.03,
Ω ≈ 1111), the population-level mean estimated by CLE and SSA is the same (Figure 2.8), further
validating the modeling approach outlined above.

2.2 Metrics for entrainment quantification

Entrainment is a phenomenon when an oscillator adjusts its period to match the period of an
input periodic signal (Section 1.2.3). Although this definition seems quite straightforward, in
the context of stochastic oscillators it might be not always obvious what is a "matching" period.
The stochasticity blurs the border between entrained and not entrained and makes it less obvious
whether the observed trajectory is entrained or not. Thus, a continuous metric that would
quantify the quality of entrainment rather than giving a hard threshold would be of particular
interest. Here, four such continuous metrics are proposed, two based on the period estimation
(autocorrelation, winding number) and two based on the phase estimation (peak detection, circular
cross-correlation). Even though this list of metrics is not necessarily exhaustive, it provides a
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2 Theory: Effect of noise on population-level entrainment

Figure 2.9: Period estimation with autocorrelation function. The marked peak is the first peak of the autocorrelation
function, and its location (≈ 1) defines the period of the signal.

good overview of possible quantification approaches and their limitations. After the presentation
of the methods, those are compared for the construction of Arnold tongues.

2.2.1 Autocorrelation

The period of oscillations can be identified as the dominant lag of its autocorrelation function
[107]. The sample autocorrelation of a signal x is defined as

Rxx(k) =

N−k∑
i=1

zx[i+ k]zx[i], (2.10)

where zx is Z-score defined as

zx =
x− x̄

Sx
, x̄ =

1

N

N∑
i=1

x[i], Sx =

√√√√ 1

1−N

N∑
i=1

(x[i]− x̄)
2, (2.11)

where x̄ is mean and Sx is standard deviation. Autocorrelation defined according to Equation 2.10
is a function that starts in Rxx(k = 0) = 1, and is bounded to interval (−1, 1) for all k > 0. The
period of the signal is estimated as the lag k of the first peak (Figure 2.9), which is the argument
of the first local maximum after the time lag 0. The estimated period can be compared with the
known period of the input signal to determine the degree of entrainment.
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2.2 Metrics for entrainment quantification

2.2.2 Winding number

In geometry, the winding number w is the number of revolutions made around a point P while
traveling along a closed curve C. If we assume P = [0, 0] and a closed discrete trajectory
C = [C1, C2, . . . , Cn, Cn+1 = C1] than the winding number is defined as [108]

w =
1

2π

n∑
i=1

φi (2.12)

where φi is the signed angle between the edges PCi and PCi+1. The angle φi can be calculated
for two neighboring points Ci = [xi, yi] and Ci+1 = [xi+1, yi+1] using the two-parameter
arctangent function as

φi = atan2(xi ∗ yi+1 − yi ∗ xi+1, xi ∗ xi+1] + yi ∗ yi+1), (2.13)

where atan2 is defined as

atan2(x, y) =



atan( yx ) x > 0

atan( yx ) + π x < 0, y ≥ 0

atan( yx )− π x < 0, y < 0

π
2 x = 0, y > 0

−π
2 x = 0, y < 0

π x = 0, y = 0

. (2.14)

For a numerical simulation of a differential equation model, we can estimate the winding number
from the phase plane of two state variables x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn]

(Figure 2.10). As w in Equation 2.12 is calculated as the number of revolutions around the point
[0, 0], the mean is subtracted from the x and y to ensure that the phase plane revolves around the
origin. It is also important to mention that the two assumptions made above about the geometric
winding number will not apply to the numerical estimation of the period. First, w estimated
from data does not necessarily need to be an integer as the phase plane might not form a closed
trajectory. Second, the period does not have a sign, therefore, the absolute value |w| is used. The
period is then calculated as

τ =
tend
|w|

, (2.15)

where tend is the duration of the simulation.
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2 Theory: Effect of noise on population-level entrainment

Figure 2.10: Two state variables (x, y) can be used to draw a phase plane. The phase plane is used to calculate the
winding number as the sum of the angles of the individual data points (φi). In this specific case, the winding number
would be exactlyw = 1 as the phase plane shows exactly one revolution around the origin. Considering that the maximal
recorded time in the figure is tend = 1, we get an estimated period τ = 1, according to Equation 2.15.

φ1 φ2 φ3 φ4 φ5 φ6

Figure 2.11: The entrainment phase (φi) can be quantified as the distance from the beginning of a cycle to the highest
peak within the cycle. For a stochastic oscillator, the phase can vary substantially between the cycles.

2.2.3 Peak detection

The phase of entrainment can be defined as the relative timing of an event within the period of the
input signal [109]. This "event" can have various definitions and depend on the studied system,
but one of the most straightforward definitions is to consider the peak of the output signal. The
phase is then defined as the distance of the highest peak within an input cycle from the beginning
of the input cycle (Figure 2.11). In the context of this thesis, the input signal switch from 0 to 1
is considered the beginning of a cycle.
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2.2 Metrics for entrainment quantification

Figure 2.12: Circular cross-correlation for a noisy cosine function and square input signal indicated by the red boxes. The
circular cross-correlation has a maximum at time 0.25, which would be the estimated entrainment phase.

2.2.4 Circular cross-correlation

As an alternative to peak detection, the phase of entrainment can be estimated using circu-
lar cross-correlation. The circular cross-correlation is defined for two periodic signals x =

[x0, x1, x2, ..., xN = x0] and y = [y0, y1, y2, ..., yN = y0] as

Rc
xy(k) =

1

N

N−1∑
i=0

zx[(i+ k) mod N ]zy[i], (2.16)

where N is the number of samples in a cycle, and zx and zy are z-scores of x and y according to
Equation 2.11, respectively. The phase of entrainment is defined as the lag k, for which isRc

xy(k)

maximal (Figure 2.12).

2.2.5 Phase coherence

The output of the period-based methods, here autocorrelation and winding number, return the
period of the analyzed signal that can be directly compared with the period of the input signal.
The phase-base methods, here peak detection and circular cross-correlation, however, estimate
the phase for each cycle of the input signal separately (Figure 2.11). A summarizing technique is
thus needed that quantifies the stability of the phase estimated from several consequent cycles. In
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2 Theory: Effect of noise on population-level entrainment

the literature, the problem of phase variability is often studied in the context of a population of
oscillators using the complex-valued order parameter, which is defined as [110, 111]

r · eiψ =
1

n

n∑
j=1

eiϕj (2.17)

where r is the degree of coherence, i is the imaginary number, ψ is the collective phase, ϕj is
the phase of the individual oscillators in the population, and n is the number of oscillators in the
population. The degree of coherence r is a number between 0 and 1, where r = 1 indicates that all
oscillators are in the same phase and r = 0 indicates complete incoherence when the individual
oscillators average out at the population-level mean. Based on the order parameter, two metrics
of entrainment are derived to specifically target the problem of phase stability: phase coherence,
quantifying period-period phase variability, and population phase coherence, quantifying phase
variability among the individual oscillators in the population.

Phase coherence (PC) quantifies the period-period variability of the estimated phases as

PC =

∣∣∣∣∣ 1N
N∑
k=1

eiφk

∣∣∣∣∣ (2.18)

whereN is the number of periods of the input signal, and φk is the estimated phase in k-th cycle
of the input signal. The phase coherence ranges from 0 to 1. A value of 1 means that the phase
of the population-averaged signal occurs exactly at the same time in every cycle. Values close to
0 indicate an unentrained signal with peaks occurring randomly within the cycle (Figure 2.13).

Population phase coherence (PPC) quantifies the desynchronization of the individual oscillators
in the population and is equivalent to r from Equation 2.17 as

PPC =

∣∣∣∣∣∣ 1n
n∑
j=1

eiϕj

∣∣∣∣∣∣ (2.19)

where n is the number of oscillators in the population, and ϕj is phase for j-th oscillator in the
population. The precision of this metric can be increased by calculating the circular mean of the
population phase coherence over several periods of the input signal. The final value ranges from
0 to 1. A value of 1 indicates that phases of all individual oscillators within an input cycle are at
the same time. Values close to 0 indicate a highly disperse population where each oscillator has
a different phase (Figure 2.14).
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2.2 Metrics for entrainment quantification

Figure 2.13: Phase coherence is decreasing from the top to the bottom panel. The decreasing phase coherence corresponds
to increasing cycle-to-cycle variability of the peak locations within the individual cycles.

Figure 2.14: Population phase coherence is decreasing from the top to the bottom panel. The decreasing population phase
coherence corresponds to increasing variability of the individual oscillators (gray) that form the population-level mean
(black). The phase coherence of the mean trajectory is 1 in all panels, as the mean exhibit no cycle-to-cycle variations in
any of the panels.
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2 Theory: Effect of noise on population-level entrainment

Figure 2.15: Arnold tongues estimated with various entrainment metrics. For the period-based metrics (autocorrelation
and winding number) the color shows the deviation of the oscillator period from the period of the input signal. For the
phase-based method (peak detection and circular cross-correlation) the color shows phase coherence.

2.2.6 Comparison of the entrainment metrics

To compare the metrics presented above, Arnold tongues for input periods between 0.75 and
1.25 and input amplitudes between 0.0 and 0.08 were constructed using the Kim-Forger model
(Equation 2.5) with noise intensity σ = 0.005. All metrics gave comparable results with no
obvious differences (Figure 2.15). Further evaluation of the entrainment metrics, this time in the
context of heterogeneous populations, is provided in Section 2.6.

Another important aspect of the developedmethods is their computational expense. The presented
methods were benchmarked on a standard office computer with Intel Core i7-9700 CPU and a
time trace with 10000 samples and 100 cycles of the input signal. The algorithms were run
10000 times and the resulting mean and standard deviation of the execution time were noted. In
this test, autocorrelation was the slowest method (6.95 ± 1.51 ms) and the winding number the
fastest (0.17 ± 0.34 ms). The phase estimation methods were slower than the winding number
but still considerably faster than autocorrelation (circular cross-correlation, 1.63± 1.06ms, peak

34



2.3 Noise widens range of entrainment

detection, 1.05± 1.46ms). At first sight, the computation differences might not seem significant,
as all numbers are in milliseconds, but consider that for an Arnold tongue as shown in Figure 2.15
one already needs 100 x 100 evaluations. Adding that a population of up to 1000 oscillators
should be explored in the next section, this already adds up to 107 evaluations of the metric for
the estimation of a single Arnold tongue.

For the next sections, the phase coherence estimated with peak detection will be used as the
metric of choice. The advantages of peak detection are its reasonable computational time and
straightforward interpretation (distance of peak from the beginning of the cycle). The resulting
phase coherence also allows for easy quantification and comparison of multiple Arnold tongues
as we can calculate the average phase coherence of the tongue, which will always be a number
between 0 and 1 indicating the entrainment range of the population.

2.3 Noise widens range of entrainment

Arnold tongues visualize how entrainment depends on the amplitude and period of the input
signal [60, 61]. In general, a greater amplitude of the input signal increases the range of periods
for which the system is entrained, resulting in the typical, tongue-shaped regions of entrainment
(Figure 2.16). It has been previously shown that if a population mean is considered, the Arnold
tongue is wider in comparison to the Arnold tongue estimated with a single stochastic or deter-
ministic model [92]. This section explores how this widening of the entrainment range depends
on the noise intensity (σ) and the number of oscillators (n) used to construct the population
mean. The Arnold tongues were quantified by calculating the mean phase coherence of the
tongue (Figure 2.16). Applying this metric to the output of a deterministic model (σ = 0) and a
stochastic model (σ = 0.005) showed that the range of entrainment for the deterministic system
is lower than for a stochastic population of 1000 oscillators (Figure 2.16A, C). This is in line
with previously published findings [92]. However, if a single stochastic oscillator is considered,
the entrainment area drops to a lower value close to the deterministic model (Figure 2.16B). This
suggests that noise must be compensated for with a sufficiently large population size to allow the
widening of the Arnold tongue by noise.

To extend this observation, the entrainment area for four different population sizes and seven
noise intensities was measured (Figure 2.17, Figure A.1). Considering the mean phase coherence
for a deterministic model as a reference, one can see that for a single oscillator (n = 1) the
range of entrainment decreases with increasing noise intensity, showing the detrimental effect
of noise for a single-oscillator model described also by a previous study [80]. However, with
increasing population size (n > 1), an optimal value of noise intensity exists, for which the range
of entrainment is maximal. With increasing population size, this optimal noise intensity moves
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2 Theory: Effect of noise on population-level entrainment

A B C

Figure 2.16: Arnold tongues and corresponding mean phase coherence (PC) for a varying population size n. (A)
Deterministic model (PC = 0.72). (B) Stochastic model representing one oscillator with noise intensity σ = 0.005
(PC = 0.67). (C) Stochastic model representing a population of stochastic oscillators with the same noise intensity as
in panel B (PC = 0.96).
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Figure 2.17: Mean phase coherence as a function of population size (n) and noise intensity (σ). The individual Arnold
tongues used to generate this image are shown in Figure A.1.

to higher values, and also the maximal range of entrainment at this optimum noise intensity is
increased. The results thus suggest an optimal noise intensity for the entrainment of a population
of a given size. When this optimum noise intensity is exceeded, the entrainment capacity is again
compromised.

To better understand how the observed population-level effect relates to the dynamics of the
individual oscillators in the population, population phase coherence was used as a metric of
desynchronization among the individual oscillators within the population (Equation 2.19, Fig-
ure 2.14). Utilizing population phase coherence showed that with increasing noise intensity the
population phase coherence steadily decreases, indicating progressively more desynchronization
among the individual oscillators (Figure 2.18, Figure A.2). A moderate desynchronization of the
individual oscillators thus supports the population-level entrainment, however, the amplitude of
the population mean is progressively less prominent with increasing noise in comparison to the
amplitude of the individual oscillators in the population.
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Figure 2.18:Mean population phase coherence as a function of noise intensity (σ) estimated for a population ofn = 1000
oscillators. The individual Arnold tongues used to generate this image are shown in Figure A.2.

To understand how a given population of cellular oscillators (cells) might be tuned towards optimal
entrainment, a hypothetical case was investigated where a total volume Ω0 of cell material is
available, but the number of cells (n) and their individual system size (Ω) can change. In other
words, the experiment starts with one big cell (Ω = Ω0) that is subsequently divided into many
small cells (Ω = Ω0/n) while the total volume Ω0 remains constant. Here, the noise intensity
(σ) depends on the system size of the individual cells (Ω) as σ = 1/

√
Ω. The simulation results

suggest an optimal population size for each total volume (Figure 2.19, Figure A.3). Specifically,
with increasing total volume, the maximal range of entrainment occurs at a higher population size
and the average phase coherence is also larger. In other words, a higher total volume can support
a higher number of noisy oscillators, which in turn allows the population to take advantage of
high noise intensities. Considering those results more generally, if the goal is maximal sensitivity
in entrainment to input signals, it is more advantageous to distribute the resources to several
noisy units rather than maintain a single unit with minimal noise. However, when the population
size is increased beyond the optimum, the individual units become too noisy and the ability of
entrainment is again compromised.

The existence of an optimal noise intensity is a typical characteristic of a phenomenon known as
stochastic resonance [83]. The term stochastic resonance is traditionally used in neuroscience to
describe improved detection of weak signals in threshold-like systems [86]. The term stochastic
resonance is also used more generally to describe improvement in output performance of a noisy
system in various disciplines including cell biology, ecology, and physics [84]. In the system
of uncoupled stochastic oscillators under period forcing, noise improves the population-level
entrainment but only to the point where the population size is sufficiently large to compensate
for the noise-induced fluctuations at the population-level read-out. Thus, in comparison to the
previous studies, the section shows not only that noise widens the range of entrainment, but also
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Mean phase coherence for a varying total volume
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Figure 2.19:Mean phase coherence as a function of the total volume (Ω0) and population size (n). The individual Arnold
tongues used to generate this image are shown in Figure A.3.

that there exists an optimal value of the noise intensity, for which the range of entrainment is the
widest.

2.4 Noise increases phase response

2.4.1 Noise increases amplitude of phase response curve

The phase response curve (PRC) is a plot that displays the change in the oscillator phase caused
by a step pulse as a function of the time during the oscillation cycle at which the pulse was
applied (Section 1.2.3). In practice, the PRC is measured by a repeated run of the oscillator and
application of a step pulse at different phases at each run [112, 64]. The algorithm starts with
a reference simulation that consists of a square input signal followed by a constant zero. The
initial input signal is necessary to synchronize the individual oscillators in the population and
also to provide time reference. In the following simulations, the same square signal is applied
at the beginning of the simulation followed by a step signal at various times of the oscillation
cycle. After the pulse, the input signal returns to constant zero and the phase shift compared to
the reference simulation is calculated (Figure 2.20).

The PRCs are often characterized based on their amplitude, which represents the extent of the
pulse-induced phase shift, as type 1 or type 0. Type 1 PRCs exhibit relatively small phase
shifts and appear continuous in the PRC plot, whereas type 0 PRCs show large phase shifts and
appear visually discontinuous [112, 64]. Increasing the PRC amplitude in the consequence of
increasing input amplitude is well-documented [65], however, this section shows that the PRC
amplitude surprisingly increases also as a consequence of increasing noise intensity (Figure 2.21).
Specifically, for low input amplitude and low noise intensity, relatively small phase shifts can
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Figure 2.20: Estimation of the phase response curve (PRC) by comparing pulse shifts caused by varying pulse times.
This example corresponds to type 0 PRC.

be observed (type 1 PRC). As expected, when the input amplitude is increased, the phase shifts
also increase. Interestingly, the same effect also applies to increasing the noise intensity. For
high noise intensities, the resulting PRCs have large phase shifts (type 0 PRC) regardless of the
amplitude of the input signal. Accordingly, increasing noise intensity allows the transition from
low-amplitude (type 1) to high-amplitude (type 0) PRC, even if the input amplitude remains low.

2.4.2 Noise increases slope of T-cycle phase response curve

A disadvantage of the PRC related to the populations of stochastic oscillators is that it cannot be
estimated if the individual oscillators are subject to high noise intensity and thus desynchronize too
fast. In such cases, the population-level mean loses its amplitude rapidly and the analysis based
on the signal peaks cannot be performed. This section proposes a T-cycle phase response curve
(T-PRC) as an alternative. The T-PRC is a plot that shows the phase of entrainment as a function
of the input period T , thus T-PRC (Figure 2.22). The simulation from the previous section
was repeated to estimate the relationship between the PRC and T -PRC (Figure 2.23). Whereas
the PRC showed increasing amplitude following increasing input amplitude and noise intensity,
the T-PRC exhibited decreasing slope with increasing input amplitude and noise intensity. The
decreasing slope of the T-PRC potentially relates to the previous observation that noise increases
the range of entrainment. The increased range of entrainment would have a smaller slope of the
T-PRC as the phase is changing over a larger range of input periods before entrainment is lost.
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Figure 2.21: Phase response curves (PRCs) for a varying noise intensity (σ) and input amplitude (I) for a population-level
mean of 1000 oscillators. Phase shift and pulse time are cyclic quantities normalized to the unit circle. The pulse length
is 0.5, which is half of the free-running period for the deterministic model (σ = 0). The dots represent the mean and
error bars the standard deviation over 10 simulations.

Taken together, the T-PRC can be used as an alternative to the PRC for rapidly desynchronizing
populations. Section 4.7 also shows a practical demonstration of the T-PRC in the context of
cellular entrainment.

2.4.3 Noise allows faster recovery after jet lag

Jet lag is a famous phenomenon that occurs when traveling between time zones. This section
explores the effect of a varying noise intensity on the reentrainment to a persistent phase-shift in
the input signal, or, “recovery from jet lag”. In these simulations, the population is first entrained
by a regular input cycle representing a day-night cycle. After the output of the population
(n = 1000) is phase-locked to the input signal, an abrupt shift in the phase of the input signal
is introduced and the time, until the population output is locked to the new cycle, is measured
(Figure 2.24). The results show that noise shortens this time, allowing faster recovery from jet
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Figure 2.22: Estimation of the T-cycle phase response curve (T-PRC) by comparing entrainment phase (φ) for a varying
input period (T ).

lag. This is well visible especially when the input amplitude is low (Figure 2.25). With increasing
input amplitude, reentrainment to the new cycle is fast for all noise intensities, so the effect of
the increasing noise is not as apparent. Accordingly, noise allows faster recovery from jet lag,
especially if the input amplitude is low.

These results might be particularly interesting in the context of the entrainment dynamics of
the circadian clock. In mammals, the clock is thought to be organized hierarchically, with a
central pacemaker of highly coupled oscillators in the suprachiasmatic nucleus (SCN) and less
coupled peripheral oscillators that are entrained by signals from the SCN [95]. Pharmacologically
increased noise in the SCN cells shortens jet lag even without explicitly weakening coupling
among the cells [103]. This hints at the possible relevance of the results also to the domain of
coupled oscillators. The coupling also provides the SCN with a certain level of resistance to
noise and external perturbation [34, 101]. The results show that for increasing noise intensities
the population becomes very sensitive to the input signals. This property would not seem useful
to the SCN in maintaining a steady rhythm but might be advantageous for peripheral clocks that
need to adjust to a manifold of external cues.
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Figure 2.23: T-cycle phase response curves (T-PRCs) for a varying noise intensity (σ) and input amplitude (I) for a
population-level mean of 1000 oscillators. Increasing input amplitude (I) and increasing noise intensity (σ) flatten the
slope (a) of the T-cycle phase response curve (T-PRC).
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Figure 2.24: Jet lag is simulated by keeping the input square signal in its high state for doubled time and then proceeding
again with a regular rhythm.
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Figure 2.25: Increasing noise intensity (σ) allows faster reentrainment after jet lag, especially for low input amplitudes
(I). The phase difference indicates the difference between the phase on a specific day and the average phase of the days
before the jet lag (Figure 2.24). Dots represent the mean and error bars the standard deviation over 10 simulations for all
panels.
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2.5 Noise facilitates entrainment of generic limit
cycle oscillators

This section demonstrates that the positive effects of noise are not limited to bio-inspired oscillator
systems but emerge also in a broad class of limit cycle oscillators. Limit cycle oscillators can
be classified as either sinusoidal oscillators, which have a harmonic limit cycle, or as relaxation
oscillators, which generate non-sinusoidal oscillations (Section 1.2.1). This distinction is im-
portant in the study of entrainment as different classes of oscillators react differently to external
forcing. For example, relaxation oscillators allow for faster entrainment [113]. In this section, the
population-level entrainment under noise is studied for two generic limit cycle oscillator models
representing both classes: the Amplitude-phase model as a model of sinusoidal oscillations and
the Van der Pol model as a generic model of relaxation oscillations.

Another way to classify oscillators based on their dynamics is to differentiate between limit
cycle oscillators, which generate sustained oscillations, and noise-induced oscillators, whose
parameters are set below the Hopf bifurcation, and thus their deterministic dynamics correspond
only to damped oscillations. In the second case, sustained oscillations might occur under noise
that provides constant disruptions driving the system away from the stable state [89, 114]. This
class of noise-induced oscillators is important for biological oscillators, where it is not often clear
if the system is noise-induced or limit cycle [115], as well as in engineering applications, for
example in the control of semiconductor superlattices [116]. Regarding entrainment, it has been
shown that a noise-induced oscillator can be entrained to a wider range of input amplitudes than
a limit cycle oscillator [117].

To explore the all above-mentioned oscillator types and regimes, this section presents numerical
simulations with two generic models: the amplitude-phase model representing a sinusoidal
oscillator and the Van der Pol model representing a relaxation oscillator. Furthermore, both
models are considered in two regimes, first as a limit cycle (sustained) oscillator and second as
noise-induced oscillators that produce sustained oscillations only in the presence of noise. The
novelty of the here-presented numerical experiments lies mainly in considering the individual
classes of oscillators in the context of population-level dynamics and under external input signals
and a range of noise intensities. This should providemore insights into themathematical properties
of the oscillator systems that are necessary to reproduce the results achieved with the bio-inspired
oscillator model in the previous sections of this chapter.
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A

B

Figure 2.26: Comparison of the deterministic and stochastic simulations for the amplitude-phase model in two regimes:
limit cycle oscillator (panel A) and noise-induced oscillator (panel B).

2.5.1 Generic oscillator models

Amplitude-phase model

The amplitude-phase model is a generic model of an oscillator with sinusoidal oscillations and
has equations [36]

Ẋ = λX (A−R)− ωY + I + σW1, (2.20a)
Ẏ = λY (A−R) + ωX + σW2, (2.20b)

R =
√
X2 + Y 2, (2.20c)

where σ is noise intensity, Wi are independent Wiener processes (Equation 2.7), I is input, λ
is the time rate of the return to the limit cycle, A is amplitude, and ω is the angular frequency
(see also Section 1.2.1 for detailed description). To represent a limit cycle oscillator, the free
parameters were set to λ = A = ω = 1 according to the previous study (Figure 2.26A) [34]. To
explore the model also in the regime of a noise-induced oscillator, the parameter A, representing
the amplitude of the oscillations, can be set toA = 0 (Figure 2.26B). The amplitude-phase model
is a generic model whose equations do not have a direct biological interpretation. Therefore,
the noise terms are purely additive and represent a general stochastic disturbance rather than
specifically molecular noise as in the Kim-Forger model. The SDE model was simulated using
the Euler-Maruyama method with an integration step dt = 0.001.
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B

Figure 2.27: Comparison of the deterministic and stochastic simulations for the Van der Pol model in two regimes: limit
cycle oscillator (panel A) and noise-induced oscillator (panel B).

Van der Pol model

The Van der Pol model is a generic model of an oscillator with relaxation oscillations and has
equations [38]

dX

dt
= Y + σW1 (2.21a)

dY

dt
= −

(
BX2 − d

)
Y −X + I + σW2 (2.21b)

where σ is noise intensity, Wi are independent Wiener processes (Equation 2.7), I is the input,
and d and B are free parameters that were set, according to the previous study [38], to represent
a relaxation limit cycle oscillator (d = 2, B = 10, Figure 2.27A) and a noise-driven oscillator
(d = −0.1, B = 1, Figure 2.27A). This model, including its parameters, was adapted from a
previous study on the entrainment of stochastic oscillators (see also Section 1.2.1 for detailed
description) [38]. Similar to the amplitude-phase model, the Van der Pol model is a generic model
whose equations do not have a direct biological interpretation. Therefore, the noise terms are
purely additive and represent a general stochastic disturbance rather than specifically molecular
noise as in the Kim-Forger model. The SDE model was simulated using the Euler-Maruyama
method with an integration step dt = 0.001.
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2.6 Population heterogeneity as a form of noise

2.5.2 Noise facilitates entrainment of limit cycle but not
noise-induced oscillators

The repetition of the experiments from Sections 2.3 and 2.4 with the generic oscillator mod-
els showed that the previously described results work also for generic sinusoidal and relaxation
oscillator models with the parameters corresponding to the limit cycle regime. Distinctive be-
havior, however, appears for noise-induced types of oscillators. Specifically, the sinusoidal and
relaxation limit cycle oscillators showed the same results as the bio-inspired oscillator in the
previous sections: increasing noise intensity increases the range of entrainment (Figures 2.28A
and Figures 2.29A), the amplitude of the phase response curves becomes larger (Figures 2.30A
and Figures 2.31A), and recovery from jet lag faster (Figures 2.32A and 2.33A). On the other
hand, repeating the experiments with parameters corresponding to noise-induced regimes, showed
distinctively different behavior. Here, already the deterministic model with zero noise intensity
showed a large range of entrainment (Figures 2.28B and Figures 2.29B), high-amplitude PRCs
(Figures 2.30B and Figures 2.31B), and short jet lags (Figures 2.32B and 2.33B). Those proper-
ties were consequently not further improved by increasing the noise intensity. We thus conclude
that the observations made in this chapter are general properties of limit cycle oscillators, both
sinusoidal and relaxation, but do not apply to noise-induced oscillators without a limit cycle.

2.6 Population heterogeneity as a form of noise

The previous sections of this chapter investigated a population of identical stochastic oscillators
whose noisy behavior stemmed from the uncertainty in the oscillation generation. In real oscillator
systems, however, the oscillators might not be identical and a certain level of heterogeneity can
be expected [118, 119]. This heterogeneity is effectively also a form of noise, which raises an
intriguing question of whether this so-called extrinsic noise would have the same impact on the
entrainment dynamics as intrinsic noise considered so far. A previous study has already shown
that heterogeneity facilitates a wider range of population-level entrainment similar to the intrinsic
noise [26]. This section aims to investigate the effects of heterogeneity more in detail. Particularly,
the focus is on how the dynamics of the individual oscillators map to its population-level mean
and how the entrainment metrics developed in Section 2.2 can be interpreted in the context of
more complicated and ambiguous waveforms that stem from averaging non-identical oscillators.

To get better insight into the complexity that stems from population heterogeneity, first, a case of
a small population of only two oscillators is considered. The oscillators are modeled using the
deterministic Kim-Forger model (Equation 2.1) with the population heterogeneity implemented
by a time-scaling parameter, which scales the free-running period of the oscillator (Equation 1.3).
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A

B

Figure 2.28: Mean phase coherence for the limit cycle (panel A) and noise-induced (panel B) regimes of the amplitude-
phase model. The mean phase coherence is shown as a function of the noise intensity (σ) and population size (n). Solid
lines represent second-order polynomial fits. The individual Arnold tongues used to generate those images are shown in
Figures A.4 and A.5 for panels A and B, respectively.

The free-running period is denoted τ and, in this example, is chosen as τ = 0.9 and τ = 1.1,
leading to two distinctive single-cell Arnold tongues that superimpose at the population level
(Figure 2.34). The superposition of two non-identical oscillators leads to the emergence of
rather complicated non-sinusoidal waveforms (Figure 2.35). To estimate the entrainment, the
Arnold tongues were estimated using all four metrics presented in Section 2.2: winding number,
autocorrelation, peak detection, and circular cross-correlation. As expected from the previous
results, all four metrics gave the same estimate for the single-cell Arnold tongues with a clear
distinction between entrained and unentrained areas. However, at the population level, the
situation is considerably more complex as the population-level Arnold tongue depends on the
selected metric. The population-level Arnold tongues also show generally three regimes of
entrainment: full entrainment, when both oscillators are entrained (point A in Figure 2.34),
quasi entrainment, when only one oscillator is entrained (points B and C in Figure 2.34), and no
entrainment when neither of the oscillators is entrained (point D in Figure 2.34). The difference
among the individual metrics occurs mainly in the area of the Arnold tongue, where only one
of the oscillators is entrained. Thus in the context of non-identical oscillators, the definition of
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A

B

Figure 2.29: Mean phase coherence for the limit cycle (panel A) and noise-induced (panel B) regimes of the Van der
Pol model. The mean phase coherence is shown as a function of the noise intensity (σ) and population size (n). Solid
lines represent second-order polynomial fits. The individual Arnold tongues used to generate those images are shown in
Figures A.6 and A.7 for panels A and B, respectively.

A

B

Figure 2.30: Phase response curves for the limit cycle (panel A) and noise-induced (panel B) regimes of the amplitude-
phase model.
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A

B

Figure 2.31: Phase response curves for the limit cycle (panel A) and noise-induced (panel B) regimes of the Van der
Pol model. The applied values of the input amplitude and noise intensity parameters differ from the parameters used for
the amplitude-phase model (Figure 2.30) as the models have different structures and thus the observed effects appear at
different parameter values.

A

B

Figure 2.32: Recovery from jet lag for the limit cycle (panel A) and noise-induced (panel B) regimes of the amplitude-
phase model.
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A

B

Figure 2.33: Recovery from jet lag for the limit cycle (panel A) and noise-induced (panel B) regimes of the Van der Pol
model. The applied values of the input amplitude and noise intensity parameters differ from the parameters used for
the amplitude-phase model (Figure 2.32) as the models have different structures and thus the observed effects appear at
different parameter values.

entrainment is more ambiguous as the estimated degree of entrainment depends strongly on the
selected metric.

In the next step, the results from the previous paragraph were extended for a population of three,
five, and seven oscillators (Figure 2.36). In this experiment, two metrics of entrainment were
used: winding number as a period estimator and peak detection as a phase estimator. The
results show two qualitative differences, depending on if the period or phase estimator is used.
Specifically, when winding number (period estimator) is used, two regions of the population-
level Arnold tongue can be recognized: entrained and unentrained. The border between those
regions approximately follows the border where at least half of the oscillators are entrained.
In contrast, quantifying entrainment with peak detection leads to the emergence of multiple
entrainment zones with various levels of entrainment that overlay the number of overlapping
single-cell Arnold tongues. Taken together, if at least half of the oscillators are entrained then
the output oscillates with the period of the input signal, however, the phase coherence improves
markedly with each oscillator that becomes entrained.
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A

B C

D

Figure 2.34: Superposition of Arnold tongues for two oscillators (right column) with free-running periods τ = 0.9 (left
column) and τ = 1.1 (middle column). The Arnold tongues are estimated using the four metrics presented in Section 2.2
(individual rows in the figure). The labels A, B, C, D refer to plotted trajectories shown in Figure 2.35.
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A

B

C

D

Figure 2.35: Time trajectories illustrating the range of dynamical behavior achieved with a system consisting of two
heterogeneous oscillators. The panels A, B, C, D correspond to points A, B, C, D from Figure 2.34. Titles of the
individual panels show values of entrainment metrics from Section 2.2: winding number (WN), autocorrelation (AC),
phase coherence using peak detection (PC_peaks), and phase coherence using circular cross-correlation (PC_corr). A
value of 1 for WN, AC indicates that the input and oscillator period are the same. A value of 1 for AC and PC_peaks
indicates stable phase-locked entrainment.

As the last step presented in this section, a population of 1000 heterogeneous oscillators was
considered (Figure 2.37). The period of each oscillator was set by drawing a random number
from a normal distribution N as

τ ∼ N(τ0, σ), (2.22)

where τ0 = 1 is mean and σ is standard deviation representing the noise intensity. Plotting
the mean phase coherence as a function of the noise intensity σ showed that the mean phase
coherence is increasing with increasing σ. The effect thus seems to be similar to the intrinsic noise
(Section 2.3). However, given the complexity of the population-level waveforms, as described
in the previous paragraphs, a more throughout investigation of this phenomenon is required
before drawing any conclusions. For example, here only 1:1 Arnold tongues are considered,
but considering a system that is driven by a periodic input signal with period TIN, the system
can be also entrained with arbitrary m:n ratio if the output is periodic with a period TOUT
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Figure 2.36: Superposition of three (n = 3), five (n = 5) and seven (n = 7) Arnold tongues. The first row shows
Arnold tongues estimated by winding number, an estimator of the oscillator period. The second row shows Arnold tongues
estimated by phase coherence with phase estimated by the circular cross-correlation. The red numbers show, visually
approximated, how many Arnold tongues are overlapping in the giving region.

Figure 2.37: Mean phase coherence as a function of noise intensity for a heterogeneous population of 1000 oscillators.
Noise intensity refers to the standard deviation of the normal distribution from which the parameter values were drawn.
The individual Arnold tongues used to generate this figure are shown in Figure A.8.

and TOUT/TIN = m/n [120]. The phenomenon of m:n entrainment is especially important
in the context of a heterogeneous population as the Arnold tongues can move far away from
its "default" position and thus enter the range of input amplitudes and periods captured by the
experiment [55]. Another shortcoming is, that here only the time-scaling parameter τ is varied,
but varying other parameters will lead to widely different waveforms and some might even cross
the Hopf bifurcation or exhibit chaotic behavior. Therefore, the results presented here should be
considered rather preliminary and should be developed in detail in future work.
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2.7 Parameter fitting algorithm for a stochastic
oscillator population

The optimization of stochastic models is a notoriously difficult problem because of the uncertain-
ties caused by stochastic terms as well as computational demands of the numerical methods for
evaluation of the stochastic models [121]. This section presents an optimizing approach that aims
to minimize the computational effort by allowing pre-estimation of the parameter values using
a deterministic model and subsequently using stochastic simulations only to fine-tune the model
parameters to the data.

2.7.1 Benchmark model and data

The model used as a benchmark for the presented fitting algorithm represents a population of
1000 synthetic gene oscillators each consisting of a network of two genes. The model equations
for a single oscillator read [122]

ẋ = F − γxx+ I⊓ +σWx (2.23a)

ẏ =
1

τy
(F − γyy) + σWy (2.23b)

F =
1 + x2 + αβx4

(1 + x2 + βx4) (1 + y4)
, (2.23c)

where x and y present two gene products whose genes contain the same promoter represented by
function F . y acts as a negative element inhibiting gene production and x is a positive element
enhancing the production of both genes. The free parameters α and β control the gene expression.
γx and γy are degradation rates for x and y respectively. τy is time scale for y. σ is noise intensity,
I⊓ square input signal. In comparison to the original paper [122], the benchmark model in
Equation 2.23 was extended for the purpose of this section by independent noise sourcesWx and
Wy . The extension by the noise terms allows us to use the model in the context of stochastic
population-level fitting. The parameters of the model were set to

α = 11, β = 2, γx = 0.105, γy = 0.036, τy = 5, I = 0.01, σ = 0.01. (2.24)

The model was simulated with those parameters under a varying input signal consisting of periods
of a regular square signal, and periods when the signal was kept at one or zero for a longer time
span (Figure 2.38). For the following optimization, it is assumed that only the value of τy = 5

is known. The remaining parameters will be considered unknown and searched in the interval
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2 Theory: Effect of noise on population-level entrainment

Figure 2.38: Generated benchmark data for the optimization algorithm. The system of 1000 uncoupled stochastic
oscillators is synchronized to the input cycle before the recording starts. The dashed line is not part of the recorded data.

[0, 100]. The Hasty model was chosen for this section as a generic example of an oscillator. In
Section 4.5 the same fitting algorithm is used also for fitting of the Kim-Forger model to the real
experimental data.

2.7.2 Step-wise fitting algorithm

Differential evolution is used as an optimization algorithm for the parameter estimation [123].
Differential evolution is a stochastic population-based algorithm that starts with a randomly
initialized population of vectors. The values of the individual vectors evolve through several
generations using random mutations of the vector values and crossovers with other population
members until the whole population converges to an optimum. The differential evolution is an
efficient black-box optimization method that does not require derivatives of the cost function to
be known [124]. Computation experiments also showed that the differential evolution optimizer
works also well for stochastic functions with undefined regions, which is important because the
numerical simulation of the stochastic differential equations can fail or the equations might be
simply not defined for some parameter values (Figure 2.39).

The advantages of the differential evolution algorithm can be illustrated by an example of the
Gomez-Levy function [125]

f(x, y) = 4x2 − 2.1x4 +
1

3
x6 + xy − 4y2 − 1 + y4 + σN(0, 1), (2.25)

where σ = 0.1 is noise intensity and N(0, 1) is a random number with normal distribution
with zero mean and unit standard deviation. The extension of the Gomez-Levy function by the
noise terms was done purposefully for this section, to study the behavior of the optimizer under
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uncertainty. The optimizer also needs to be able to deal with discontinuities and undefined regions
that occur for the Gomez-Levy function after applying condition [125]

g = − sin(4πx) + 2 sin2(2πy) ≤ a , (2.26)

where a = 1.5 (Figure 2.39A).

Running the differential evolution algorithm to find the optimum of Equation 2.25 subjected to
the condition in Equation 2.26, scenarios for various initial populations can be studied. When the
initial population covers the whole search range (Figure 2.39B), all members of the population
converge to the global optimum, with uncertainty caused by the noise terms in Equation 2.25.
When the initial population is limited to a sub-interval of the total search range in the vicinity of
a local optimum (Figure 2.39C), the population might get stuck in this local minimum. However,
even a restricted initial population can converge to the global optimum, even if this global optimum
is outside of the initial range (Figure 2.39D). Those observations are obvious, but also important
for the below-introduced optimization algorithm, which takes a pre-optimized population from a
previous step and applies it as an initial population for the following step.

Taken together, differential evolution is a powerful and robust algorithm that can efficiently
navigate very complicated landscapes. This section builds on the differential evolution optimizer
by presenting a step-wise fitting algorithm that consists of three steps where each step starts with
an initial population that was estimated by a previous step. The steps are:

1. Pre-estimation of parameter values for a deterministic model without noise.

2. Pre-estimation of noise intensity based on the population-level loss of synchrony.

3. Fine-tuning the parameter values to the experimental data.

The following subsections describe the outlined steps in detail and Section 2.7.3 compares the
step-wise algorithm with direct fitting using the differential evolution without the pre-estimation
steps 1 and 2.

Step 1: Pre-estimation of parameter values for deterministic model

In the first step, all noise intensities in the model equations are set to zero and only the parameters
of the resulting deterministic model are estimated to find an oscillating dynamic that can be
entrained by the input signal. A lot of heavy lifting is thus made using the deterministic model
that can be evaluated using fast adaptive ODE algorithms and can be simulated only once as
opposed to the population of 1000 stochastic oscillators. The cost function consists of terms that

57



2 Theory: Effect of noise on population-level entrainment
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C D

Random population

Population at local optimum Population at global optimum

Figure 2.39: Pre-estimating the starting population of a population-based algorithm can reduce the time needed to find
the optimum. (A) As an example, a Gomez-Levy function is considered [125]. The orange diamond marker indicates
the global minimum. The white spaces indicate undefined values of the function. Random noise was also added to
the function resulting in the grainy look of the plot. (B) With an initial population covering the whole search space,
the differential evolution algorithm can easily find the global optimum even if noise and undefined intervals are present.
Black, gray, and red dots indicate the initial population, points visited by the search algorithm, and final population,
respectively. (C) An initial population restricted to a small interval at a local optimum can get stuck in this local optimum.
(D) In a different scenario, the optimum can be found even if not covered by the initial population. In the context of
the optimization of the SDE-model parameters, a pre-estimated initial population, as compared to a very widespread
population, leads to faster convergence and thus lower number of time-expensive SDE evaluations.
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represent experimental features that can be approximated also without stochasticity [126]. The
cost function has form

CODE = CT + Cφ + Cmin + Cmax (2.27)

and denotes various oscillator properties observable from the target data or known from the
literature. CT indicates the error of the simulation from the target oscillation period with the
constant input signal at 0 (Figure 2.40A)

CT =
|Tmodel − Tdata|

Tdata
, (2.28)

where Tmodel and Tdata are periods estimated from the model output and target data, respectively.
The second term Cφ concerns the ability of the model to be entrained by an input signal as

Cφ = |φ1 − φ2| , (2.29)

where φ1 and φ2 are the phases of the oscillator under two cycles shifted by half of the period
(Figure 2.40B, C). The phase shift by half of the period means that cycle 1 starts at time t = 0,
whereas cycle 2 starts at the t = T/2, where T is the period of both cycles. Evaluation the phases
for the two cycles, and making sure there are equal, ensure that the model is really entrained
by the input signal and does have a constant entrainment phase simply due to the fact that the
free-running period of the oscillator matches the period of the input signal [126]. The third term
and fourth terms decode the minimum and maximum of the entrained signal as

Cmin =
|min(xmodel)−min(xdata)|

min(xdata)
, (2.30)

Cmax =
|max(xmodel)−max(xdata)|

max(xdata)
, (2.31)

where min(xmodel) and min(xdata) are minimum estimated from model output and target data,
respectively. One assumes the considered oscillators generate non-zero values by definition. To
allow some variance in the final population, the optimum is considered with a tolerance of 10 %

for CT , Cmin, and Cmax as

g =
|estimated value− reference value|

reference value
< 0.1. (2.32)

The individual terms of the cost function in Equation 2.27 can be adjusted based on the system
studied and the information we have about the system.

The optimization was performed in the range of [0, 100] for all parameters. This parameter range
was chosen as a toy example based on the fact that the largest parameter has a two-digit value.
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Figure 2.40: Visualization of metrics used for the optimization of the parameters of the deterministic model. Each panel
represents an independent simulation of the model. (A) Simulation with the input signal at 0 to estimate free-running
periodTmodel. (B) Simulation with square signal to estimate maximum andminimum of oscillations under the entrainment
and the phase of entrainment (φ1). (C) Simulation with square signal shifted by half of the period to ensure that the new
phase of entrainment (φ2) will be the same as in panel B.

In the real-world application, the parameter range must be estimated from literature or one must
try multiple parameter ranges. The initial population was let to evolve for 100, 000 generations.
After 100, 000 steps, the best candidate was saved. Those are consequently used as an initial
population for the next fitting step. Comparison of the 50 pre-estimated values, each estimated
with an independent run of the differential evolution algorithm, with the target parameter values
(Figure 2.41) showed a significantly narrowed down search space from the original range of
[0, 100]. Using the pre-estimation with a deterministic model can thus significantly reduce the
search space that needs to be covered by the stochastic simulations later.

Step 2: Pre-estimation of noise intensity

In this step, noise intensity σ is estimated for each parameter set from the previous step separately.
The noise intensity can be estimated from the population-level recording as increasing noise
intensity causes faster desynchronization of individual oscillators. If the input signal is set to
0, the faster desynchronization of individual oscillators leads to faster damping of oscillation

60



2.7 Parameter fitting algorithm for a stochastic oscillator population

Figure 2.41: Results of the first optimization step for the four free parameters α, γx, γy , I of the Hasty model
(Equation 2.23).

amplitude at the population level [127]. The damping rate can be estimated from data by fitting a
damped sine (Figure 2.42) of form

f(t) = Ae−dt sin

(
2πt

T
+ φ

)
, (2.33)

where A is amplitude, d is damping rate, T is period, and φ is phase.

To estimate the damping rate d for a computational model, one can use the following approach.
First, the parameter of σ is set to an arbitrary value. Second, the model is run under ten cycles of
a regular square signal to achieve synchronization of the individual oscillators in the population.
Third, the input signal is turned to 0. Consequently, the individual oscillators of the population
start to desynchronize and a damped-sine-like population average emerges. The resulting damped-
sine-like model output is Z-score normalized and damped sine is fitted. From the damped sine
fit, one can estimate the value of the damping rate d for the given noise intensity σ. Repeating
the algorithm for different values of σ, one can estimate a function d(σ). There is, however, a
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Population-level data Damped sine fit

Figure 2.42: Damped sine fit to the population-level date provides estimation of noise intensity at the level of individual
oscillators.

pitfall related to high values of σ. If σ is larger than can be supported by the population size, the
output will not lead to a damped sine wave but rather to a random stochastic trajectory and the
damped sine cannot be fitted well. Therefore, the estimated d is accepted only if the damped-sine
fit reaches an efficiency coefficient of at least 0.8 according to Equation 2.38.

The damping rate d is a monotonically increasing function of noise intensity σ (Figure 2.43).
One can take advantage of this property and find the target noise intensity using a fast converging
binary search. For this algorithm first, the search range is defined as

[σmin, σmax], d(σmin) < dtarget < d(σmax), (2.34)

where σmin and σmax are search boundaries with the corresponding damping rates d(σmin) and
d(σmax), and dtarget is the damping rate estimated from the data. A new candidate σ is then
assigned as

σnew =
σmin + σmax

2
. (2.35)

In the last step, the original search range is collapsed toward the target value by assigning

σmin := σnew if d(σnew) < dtarget or σmax := σnew if d(σnew) > dtarget. (2.36)

Repeating Equations 2.35 and 2.36 for several iterations will give a value of noise intensity that
corresponds to the damping rate estimated from the data.

In the previous step, a deterministic model was used to obtain 50 parameter sets, which should
be now extended by the values for the noise intensities. The target damping rate can be estimated
from the benchmark data (Figure 2.38) from the section where the input signal was kept 0 for
a long time. The search range was set to [0, 100] and the binary search ran for each of the 50
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Figure 2.43: Damping rate (d) is monotonically increasing function of noise intensity (σ).

Figure 2.44: Results of the second optimization step for the noise intensity σ of the Hasty model (Equation 2.23).

parameter sets for 25 iterations estimating σ for all parameter sets independently. So estimated
values of σ lie mostly in the close vicinity of the target value (Figure 2.44).

Step 3: Fine-tuning the parameter values to experimental data

In the last step of the fitting algorithm, the pre-estimated parameter sets from the previous steps
are used as the initial population for the differential evolution algorithm to fit the data. The cost
function for the optimization is the squared error of the solution from the data defined as

C =
1

n

n∑
i=1

(xi − x̂i)
2 , (2.37)

where xi denotes data points and x̂i denotes the output of the model. The initial conditions for
the numerical simulation were estimated by letting the model run under 10 cycles of a square
signal, which corresponds to the assumption of synchronized oscillators at the beginning of data
(Figure 2.38). Performing this last optimization step on the benchmark data from the Hasty
model (Equation 2.23), the original parameter set was found accurately (Table 2.2, Figures 2.45
and 2.46).
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Parameter name Target value Search interval Estimation

α 11.000 [0, 100] 11.154
β 2.000 [0, 100] 2.049
γx 0.105 [0, 100] 0.105
γy 0.036 [0, 100] 0.036
I 0.010 [0, 100] 0.010
σ 0.010 [0, 100] 0.010

Table 2.2: Final fitting results for the generated data. The column "Estimation" is rounded to 3 decimal places. The
parameters refer to the Hasty model showed in Equation 2.23.

Figure 2.45: The final optimized population of parameter sets after the last step of the optimization algorithm. The gray
values show the pre-estimated values from the previous steps. The parameters refer to the parameters of the Hasty model
showed in Equation 2.23.
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2.7 Parameter fitting algorithm for a stochastic oscillator population

Figure 2.46: Final fit to the generated benchmark data after the step-wise optimization.

Search range α β γx γy I σ

Step-wise algorithm [0, 100] [0, 100] [0, 100] [0, 100] [0, 100] [0, 100]
Search range 1 [0, 10] [0, 10] [0, 1] [0, 1] [0, 0.1] [0, 0.1]
Search range 2 [0, 100] [0, 100] [0, 1] [0, 1] [0, 0.1] [0, 0.1]
Search range 3 [0, 100] [0, 100] [0, 10] [0, 10] [0, 0.1] [0, 0.1]
Search range 4 [0, 100] [0, 100] [0, 100] [0, 100] [0, 0.1] [0, 0.1]
Search range 5 [0, 100] [0, 100] [0, 100] [0, 100] [0, 1] [0, 0.1]

Table 2.3: Search ranges for the comparison of optimization convergence. The convergence can be seen in Figure 2.47.
The parameters refer to the parameters of the Hasty model showed in Equation 2.23.

2.7.3 Evaluation step-wise optimization algorithm

As shown in the previous section, the presented step-wise algorithm can find the correct param-
eter values, but does it present a significant improvement from using the differential evolution
algorithm directly? To answer this question the model parameters were fitted also directly using
varying starting search ranges. Direct fitting would be here to use the third step of the optimization
algorithm with a random initial population instead of the one pre-estimated with steps one and
two. Specifically, 5 different search ranges were tested (Table 2.3) and corresponding optimiza-
tion convergence was recorded (Figure 2.47). In comparison to the proposed algorithm, direct
fitting stopped converging before the search range of [0, 100] could have been reached for all the
parameters. For narrower search ranges, the direct fitting converged but not as fast as fitting with
the pre-estimated population. The presented algorithm thus provides not only improvement in
evaluation time but also allows for the exploration of parameter ranges that would not be possible
with a conventional algorithm. For wider applicability of the proposed algorithm, the reader can
also see Section 4.5 where the same algorithm was applied to fit real-world data with a different
computational model.
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2 Theory: Effect of noise on population-level entrainment

Figure 2.47: Comparison of the optimization convergence with the pre-optimized population using the here-presented
step-wise algorithm andwith direct fitting using random populations in ranges specified in Table 2.3. For a rough reference,
the evaluation of 10,000 optimization steps takes an order of hours of processor time. Due to the long computational
time and because the effect captured in the figure is already obvious, multiple runs of the optimization algorithm were not
performed.

2.7.4 Goodness of fit metric

In the real-world applications it is not only important to fit themodel parameters to data, but also be
able to quantify the goodness of fit. This can be useful, when the user wishes to compare various
parameter sets or model structures or simply to evaluate, whether the optimization algorithm gave
an acceptable result. The goodness of fit can be assessed using the model efficiency coefficient
defined as [128]

Ef = 1−
∑n
i=1 (xi − x̂i)

2∑n
i=1 (xi − x̄)

2 , (2.38)

where n is the number of data points, xi are the individual data points, x̂i are model-estimated
values and x̄ is mean of data points. The values of the model efficiency coefficient can range
from -∞ to 1. Values near 1 indicate a high predictive value of the model while negative values
indicate that data mean x̄ is a better predictor than model output x̂ (Figure 2.48).

2.8 Conclusion

This chapter explored the entrainment of a population of uncoupled stochastic oscillators repre-
sented by a minimal model of the circadian clock. It was found that noise allows for population-
level entrainment to a wider range of input signal periods and amplitudes. Noise also facilitates
a larger response to external stimuli and faster recovery from a jet-lag-like phase reversal in the
input signal. These effects emerge specifically at the population level, and cannot be observed
in single oscillators. In the next steps, the canonical Amplitude-phase and Van der Pol models
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2.8 Conclusion

A B C

Figure 2.48: A toy example demonstrating the quantification of the goodness of fit by the model efficiency coefficient
(Ef ). (A) Ef values close to 1 indicate a high predictive value of the model and thus a good fit to data. (B) A model that
simply predicts the mean of data has Ef = 0. (C) Negative values of Ef indicate that the model fit is worse than simply
taking the mean of the data and has thus no predictive power.

were used to show that this behavior emerges also for generic limit-cycle oscillators, but not for
noise-induced oscillators without a deterministic limit cycle. Similar positive effects of noise can
be observed also in heterogeneous populations with increasing heterogeneity having an analogous
effect as increasing intensity of the intrinsic noise. In the last section, a step-wise fitting algorithm
was introduced that enables the fitting of stochastic populations to the experimental data and thus
provides a necessary link between this theoretical chapter and practical application in Chapter 4.
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3 Implementation: Software package
for oscillator population analysis

3.1 Introduction

There are many software solutions available for the numerical simulation of differential equations
and also specifically for the simulation of chemical reaction networks [129]. Those include,
among others, COPASI, XPPAUTO, Matlab, Python, and Julia. COPASI1 is a user-friendly
biochemical simulator, which provides numerical methods for deterministic and stochastic sim-
ulations of biochemical reaction networks. COPASI provides functions for fitting the models to
experimental data, parameter scans, and visualization routines. For more flexibility, COPASI can
be used as a command line tool or as an application programming interface (API) to integrate
COPASI routines in various programming languages [130]. XPPAUTO2 is a powerful tool for
the analysis of dynamical systems. XPPAUTO can integrate differential equations, perform sta-
bility and phase plane analyses, and solve bifurcation problems for deterministic systems [129].
MATLAB3 is a propriety programming language that is designed for mathematical and technical
computing. MATLAB contains many toolboxes that make simulation, analysis, and fitting of
mathematical models easy and convenient and includes also SimBiology toolbox designed for
modeling, simulating, and analyzing chemical network systems. Python4 is a general-purpose
programming languagewith a great number of available libraries designed for scientific computing
including numerical simulations of differential equations and optimization.

The software for this thesis is implemented in Julia5. Julia is a language designed specifically
for scientific computing with a special focus on performance. Julia is a compiled language
but implements also REPL (read-eval-print loop) for a quick and easy evaluation of state-
ments similar to Python or MATLAB console [131]. Also, the popular Jupyter notebooks

1 https://copasi.org
2 http://math.pitt.edu/~bard/xpp/xpp.html
3 https://mathworks.com
4 https://python.org
5 https://julialang.org
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3 Implementation: Software package for oscillator population analysis

Functionality Implementation Theory

Mathematical models and simulation 3.3.1 2.1, 2.5, 2.7.1
Entrainment metrics 3.3.2 2.2
Arnold tongues 3.3.2 2.3
Phase response curves 3.3.2 2.4
Data fitting algorithm 3.3.3 2.7.2
Table 3.1: Overview of key methods from Chapter 2 with their implementation described in this chapter.

are natively equipped with the Julia kernel. Another factor for choosing Julia was the native
DifferentialEquations.jl package that implements modern numerical methods for solving
deterministic as well as stochastic differential equation models and also chemical reaction net-
works model [132]. To make the results of this thesis as reproducible as possible and also to
allow the use of the methods in other projects, a Julia package6 was developed. The developed
package contains all methods described in the previous chapter (Table 3.1) and provides thus a
framework to simulate and analyze deterministic and stochastic oscillators and their populations.
This software was developed as open source under MIT License and can be thus used by anybody
without any limitations.

3.2 Installation

The package can be installed directly from the Julia REPL by referring to its GitHub location
(Listing 3.1). Once the package is installed, the user can import all package functions by
calling using OscillatorPopulation. The list of all implemented functions with their brief
description can be accessed by typing ?OscillatorPopulation. Each function also includes
its own detailed documentation that can be accessed simply by typing ?function_name. Part
of the package are also unit tests that can be used to ensure that the implemented code work as
expected.

6 https://github.com/vkumpost/OscillatorPopulation, DOI: 10.5281/zenodo.7620823
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3.3 Usage examples

1 ## Package installation
2 import Pkg
3 Pkg.add(url="https://github.com/vkumpost/OscillatorPopulation")
4 Pkg.test("OscillatorPopulation") # optional: run package tests

Listing 3.1: The package can be installed directly from Julia REPL by calling its GitHub URL.

3.3 Usage examples

3.3.1 Simulation of population of uncoupled stochastic
oscillators

The first example illustrates setting up and simulating a model of a population of uncoupled
stochastic oscillators (Figure 3.1, Listing 3.3). To do this, first load_model is used to load amodel
as an instance of Model (Listing 3.3 line 6, Figure 3.1A). The currently implemented models are
all models used in this thesis, which includes amplitude-phase model (Equation 2.20), Goodwin
model (Equation 1.8), Van der Pol model (Equation 2.21), and Kim-Forger model (Equation 2.5).
All models include their deterministic and stochastic implementations as described in the previous
chapter. To implement new models the file src/model_library.jl should be edited following
the example of already implemented models. An instance of Model, which load_model returns,
represents a specified model together with its parameters, initial conditions, and simulation
settings. Those can be displayed by print_info function (Listing 3.2). All implemented models
contain, by convention, an input parameter called I , a noise intensity parameter called σ and a
scaling parameter called τ . τ is used to scale time without changing the dynamics of the equations
(Equation 1.3).

The parameters of the loaded model, such as parameter values, numerical solver, and numerical
solver parameters can be changed by a set of functions (Listing 3.3 lines 7, 13, 16, Figure 3.1B).
This is in detail explained in the documentation of the individual functions. For details, it
is also advised to read the documentation of DifferentialEquations.jl7, which is used to
perform the numerical simulations. Two particularities that are worth extra attention are functions
set_output! and set_input!. set_output! is used to set the output of the model, which can
be any transformation on the state variables. set_input! adds an input signal to the model based
on the events matrix. events is a matrix with two columns, the first column indicating times
when the signal turns on and the second column times when the signal turns off. For convenience,

7 https://diffeq.sciml.ai/stable
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3 Implementation: Software package for oscillator population analysis

1 SDE Model
2 tspan = (0.0, 100.0)
3 Solver
4 StochasticDiffEq.SOSRI()
5 Solver parameters
6 saveat = 0.01
7 Initial conditions
8 x = 0.1
9 y = 0.1
10 Parameter values
11 B = 10.0
12 d = 2.0
13 I = 0.0
14 τ = 7.63
15 σ = 0.1

Listing 3.2: Example of calling print_info(model) showing properties of a Model object.

this matrix can be generated automatically using corresponding functions (Listing 3.3 lines 10-12,
Figure 3.1C, D).

Once themodel is ready, it can be passed to simulate_population to perform a simulation of the
model and in turn to return an instance of PopulationSolution, which represents the numerical
solution (Listing 3.3 lines 19, Figure 3.1E, F). simulate_population can also perform repeated
parallel simulations to simulate a population of identical oscillators. A heterogeneous population
can be simulated as well by passing additionally a vector with varying parameter values. The
result of the simulation is an instance of PopulationSolution that contains information on
individual trajectories, population-level mean as well as time vector and input signal in the
matrix form described above. The instance of PopulationSolution can be further edited by
corresponding functions, for example, to select a specific time frame or a subset of oscillators
(Figure 3.1G). Finally, the results can be plotted using plot_solution (Listing 3.3 line 22,
Figure 3.1H).

3.3.2 Model and input parameter scans

To perform a parameter scan, first, a model needs to be loaded and set up (Listing 3.4 lines 5-10,
Figure 3.3A), which was described in detail in the previous section. As a second step a simulation
function is created (Listing 3.4 lines 12-16, Figure 3.3B). The simulation function takes amodel as
input, performs simulation, and returns values formetrics described in Section 2.2. The simulation
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3.3 Usage examples

set_initial_conditions!
set_timespan!
set_output!
set_solver!
set_parameter!
set_input!

Model

load_model

simulate_population

PopulationSolution
- time::Vector
- mean::Vector
- trajectories::Matrix
- events::Matrix

plot_solution

select_time
select_subset

events::Matrix
create_events
create_events_cycle

A
B

C D
E

F
G

H

Figure 3.1: Workflow for a simple population simulation. A code example following this workflow is in Listing 3.3.

Figure 3.2: The output of the code showed in Listing 3.3. Black depicts the population mean, gray lines depict a random
selection of 5 oscillators from the population, and red boxes indicate when the input signal is active.

function is together with the model passed to a scan and returns a dataframe that provides a list
of iterated parameters and corresponding metrics values (Listing 3.4 lines 18-23, Figure 3.3C,
D, E). Depending on the chosen scanning function, the final results can represent a parameter
scan (scan, Figure 2.1), Arnold tongue (scan_arnold, Figure 2.16), phase response curve
(estimate_prc, Figure 2.21) or T-cycle phase response curve (estimate_T_prc, Figure 2.23).
For Arnold tongues also a dedicated plotting function is provided to transform the dataframe
into a color-coded matrix plot (Listing 3.4 lines 25-28, Figure 3.3F). The function scan_arnold
can be also used to estimate and plot Arnold onions (Figure 1.7) as it allows to iterate over all
parameters of the input signal, that is the input amplitude, input period, and input duty cycle. On
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3 Implementation: Software package for oscillator population analysis

1 ## Simulate a population of uncoupled stochastic oscillators
2 # Load the package
3 using OscillatorPopulation
4
5 # Load model and change some of its parameters
6 model = load_model("van-der-pol", "sde")
7 set_parameter!(model, ["I", "σ"], [0.5, 0.08])
8
9 # Generate input signal (events) and add it to the model
10 events = create_events(
11 [(:DD, 5), (:LD, 5, 0.5, 0.5), (:LL, 5)]
12 )
13 set_input!(model, events)
14
15 # Set maximum integration time to the end of the input signal
16 set_timespan!(model, events[end])
17
18 # Simulate population of 1000 oscillators
19 solution = simulate_population(model, 1000, seed=3)
20
21 # Plot solution
22 plot_solution(solution)

Listing 3.3: This example demonstrates how to set up and simulate a population of oscillators under external forcing.
(Line 11): The array of tuplets passed to create_events specifies the input signal. Here, (:DD, 5) means signal at
0 for 5 time units, (:LD, 5, 0.5, 0.5) means 5 cycles of a square signal consisting of cycles with 0.5 time units at
1 and 0.5 time units at 0, and (:LL, 5) means signal at 1 for 5 time units. The symbols are adapted from circadian
research (DD - dark-dark, LD - light-dark, LL - light-light). (Line 19): The keyword seed specifies the seed for the
random number generator, allowing thus for reproducible stochastic calculations. (Line 22): The output of this line can
be seen in Figure 3.2.

multi-core systems, the individual points of a scan are estimated in parallel. The scan result can
be saved to a CSV file for later reuse (Figure 3.3F, G, H, I).

3.3.3 Optimization

As a first step, one needs to load and set up a model as shown in Section 3.3.1 (Listing 3.5
lines 5-7, Figure 3.5A). The prepared model, possibly together with fitting data, can be used to
generate a cost function for the optimization (Listing 3.5 lines 9-20, Figure 3.5B, C, D). There are
three optimization functions implemented, each corresponding to a single step of the step-wise
fitting algorithm outlined in Section 2.7.2. The created cost function is next passed to optimize
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Modelload_model

create_simulation_function

simulation_function::Function

scan
scan_arnold
estimate_prc
estimate_T_prc

scan_result::DataFrame

save_data results.csv (disk file)

load_data

plot_arnold

B

D

A C

E

F

G
H

I

Figure 3.3: Workflow for scans over model and input signal parameters. A code example following this workflow is in
Listing 3.4.

Figure 3.4: Output of the code showed in Listing 3.4.

75



3 Implementation: Software package for oscillator population analysis

1 ## Estimate and plot Arnold tongue
2 # Load the package
3 using OscillatorPopulation
4
5 # Load model
6 model = load_model("van-der-pol", "sde")
7
8 # Set noise intensity and end simulation time
9 set_parameter!(model, "σ", 0.005)
10 set_timespan!(model, 100.0)
11
12 # Simulation function
13 simulation_function = create_simulation_function(
14 ["phase_coherence"],
15 trajectories=10
16 )
17
18 # Scan a range of input amplitudes and periods
19 arnold_tongue = scan_arnold(model, simulation_function,
20 input_amplitudes=0:0.01:0.4,
21 input_periods=0.75:0.01:1.25,
22 show_progress=true
23 )
24
25 # Plot the resulting Arnold tongue
26 plot_arnold(arnold_tongue, "tongue",
27 property_name="phase_coherence"
28 )

Listing 3.4: This script illustrates how to estimate and plot the Arnold tongue for a population of 10 stochastic Van der
Pol oscillators. (Line 14): The array of strings specifies, which metrics to estimate. (Line 15): Keyword trajectories
specifies the number of oscillators in the population. (Line 22): Keyword show_progress will display a progress bar
in the terminal, which is convenient, if the simulation time is expected to be long. (Lines 25-28): The string "tongue"
specifies that the user wish to plot an Arnold tongue. Another option can be "onion" to plot an Arnold onion. Keyword
property_name indicates, which estimated metric should be plotted. The resulting plot can be seen in Figure 3.4.
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load_model Model

optimize

cost_function::Function

create_entrainable_oscillator_objective
create_desynchronization_objective
create_data_objective

save_dataresults.csv (disk file)

load_data final_population::Matrix

initial_population::Matrix

Fitting data
- time::Vector
- trajectory::Vector
- events::Matrix

A B C

D

E

F

G

K

H
I

J

Figure 3.5:Workflow for parameter optimization. A code example following this workflow is in Listing 3.5.

function (Listing 3.5 lines 22-26, Figure 3.5E), which provides essentially a wrapper around
BlackBoxOptim.jl package8 implementing the differential evolution algorithm. The output of
the optimization function is a matrix with all members of the final population and their fitness as
determined by the cost function (Figure 3.5F). This final population can be saved as a CSV file
and used later as a starting population for another optimization (Figure 3.5G, H, I, J, K).

3.4 Package for peak detection

Many algorithms presented in Chapter 2 rely on peak detection in either the model output directly
to estimate phase based on peak detection or in a correlation function to find its dominant lag.
As peak detection can be important also for other related projects, beyond this thesis, a Julia
package9 inspired by the Matlab’s findpeaks function10 was written. The package implements
findpeaks function that takes a time series as an input and returns its local maxima together with
their locations, prominences, and widths (Figure 3.6). The found peaks can be sorted and filtered
based on their properties, which provides a powerful tool for peak detection and consequent
analysis based on the oscillation peaks.

8 https://github.com/robertfeldt/BlackBoxOptim.jl
9 https://github.com/vkumpost/FindPeaks
10 https://www.mathworks.com/help/signal/ref/findpeaks.html
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3 Implementation: Software package for oscillator population analysis

1 ## Find parameter values that give 24-hour oscillations
2 # Load the package
3 using OscillatorPopulation
4
5 # Load model
6 model = load_model("kim-forger-full", "ode")
7 set_output!(model, 2)
8
9 # Specify parameters and their search range
10 parameter_names = ["A", "dM=dP=dR", "I"]
11 search_range = [(0.0, 100.0), (0.0, 1.0), (0.0, 0.1)]
12
13 # Target period estimated from data
14 target_period = 24.0
15
16 # Construct cost function
17 cost_function = create_entrainable_oscillator_objective(model,
18 target_period,
19 parameter_names=parameter_names
20 )
21
22 # Perform optimization
23 best_candidate, final_population = optimize(cost_function,
24 search_range=search_range,
25 max_steps=5_000
26 )

Listing 3.5: Find parameter values that give 24-hour oscillations. (Line 7): This line specifies that we are interested
only in the second state variable. (Line 10): Placing = between the parameter names as in "dM=dP=dR" says that the
parameters dM , dP , dR should be equal and thus estimated as a single parameter.

3.5 Conclusion

A Julia package for the analysis of the stochastic oscillator populations was implemented. This
package allows easy and fast simulation and manipulation of stochastic oscillator models and
provides functions for analysis and quantification of the simulation results. The package also
implements routines for parameter scans and estimations of PRCs and Arnold tongues. Finally,
optimization routines are provided to fit the models to the experimental data. This package should
thus comprehend all necessary routines to reproduce all the results in this thesis.
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Figure 3.6: Visualization of peak properties that can be estimated using the findpeaks function from the FindPeaks
package. The width is measured at the half of prominence.
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4 Application: Entrainment of cellular
clocks by light

After the new theoretical findings, methods, and associated implementations have been presented
in the previous chapters of the thesis, the following chapter presents an application of the developed
methods in the analysis of experimental data from the field of the circadian (24-hour) clock. This
addresses the last objective, Objective 5, of the thesis. Parts of this chapter have been adapted
from a previously published journal article [2].

4.1 Introduction

The circadian clock is an inner timekeeping mechanism that coordinates various biological pro-
cesses with respect to the time of the day [10]. The circadian timekeeping is maintained and
regulated at the level of individual cells by a set of clock genes and proteins that functionally
connect in a negative feedback loop (Figure 4.1) [133]. To ensure the correct timing of the
circadian events, the inner clock can adjust its phase to environmental signals (zeitgebers) in the
process known as entrainment [109]. Although various environmental cues (food, temperature,
social interactions) can act as a zeitgeber, light is the most prominent [134]. Light entrainment
is an important research area as misalignment of the circadian clock with the environmental
light-dark cycle can lead to mood and cognitive disorders [135] as well as metabolic disorders
and cancer [136].

The circadian clock in zebrafish cells is directly light-sensitive, thus providing an attractive
laboratory model for the analysis of light entrainment [138]. This is in contrast to mammalian
cells that need to be synchronized by pharmacological treatments [139, 140] and cannot be
regulated noninvasively simply by changing lighting conditions. The zebrafish light-responsive
cell lines are suitable for high-throughput screening as well as studies of the transcriptional
control mechanisms mediating light entrainment [141]. In this regard, bioluminescent reporter
assays (Figure 4.2) have been established in zebrafish cell lines and enable the non-invasive
assessment of dynamic changes in clock gene transcription at a high temporal resolution over the
course of light exposure protocols [142]. The circadian regulation in those assays can be easily
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Figure 4.1: The circadian clock is generated at the level of individual cells by a complex network of genes. The core
motif consists of a negative feedback loop of multiple Period (Per) and Cryptochrome (Cry) genes activated by the active
CLK-BMAL complexes. In turn, Per and Cry genes produce PER and CRY proteins that act as negative elements that
inhibit the function of CLK-BMAL complexes thus closing the negative feedback loop. In zebrafish, a subset of Per
and Cry genes is light-driven conveying information about the environmental light levels to the clock. The core loop is
supplemented with a stabilizing loop that regulates the levels of the active elements BMAL and CLOCK (CLK) [137].

perturbed bymutations or pharmacological treatments, and the effect can be seen as changes in the
luminescence data. However, the time traces obtained from the bioluminescent reporter assays
represent a population-level mean from thousands of noisy, uncoupled oscillators, which obscures
the actual effect of mutations or pharmacological treatments on the changes in the underlying
genetic regulatory network [33]. Here, a mathematical modeling approach that could map the
population-level changes to the changes in the single-cell parameters would be beneficial in the
correct analysis and quantification of the bioluminescent reporter assays.

In this chapter, a minimal mathematical model of the zebrafish circadian regulation is used to
quantify the time traces obtained from the bioluminescent reporter assays. The model is used
to map changes in population-level luminescence data to changes in the model parameters that
represent single cells. In particular, the model parameters are adjusted to infer the impact of
various pharmacological treatments on core clock dynamics at the cellular level. This work
thus provides a tool to characterize core clock dynamics, with the ability to provide hypotheses
on how population-level luminescence signals emerge from single-cell behavior. This paves
the way toward model-based, large-scale screens for genetically or pharmacologically-induced
modifications affecting the degree of synchronization of single-cell circadian oscillators.
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Figure 4.2: Continuous changes in the circadian gene expression can be recorded using bioluminescent reporter assays.
(A) The zebrafish cells are transfected with the luciferase reporter gene attached to the Per1b promoter region. As the
luciferase reporter is regulated by the same promoter region as Per1b, the output luminescence corresponds directly to the
activation of the Per1b gene. (B) In bioluminescent reporter assay experiments, a controllable light source illuminates
a 96-well cell culture plate. Each of the 96 wells of this plate can contain a cell culture of approximately 30000 cells
transfected with a luciferase reporter (panel A). In regular intervals, the cell culture plate is automatically moved into a
recording chamber and output luminescence is recorded from the individual wells. This leads to a final recording of up
to 96 time traces, where each represents the population-level dynamics of 30000 independent cells. Panel B is adapted
from the previous publication [2].

4.2 Dataset description

The luminescence data used in this chapter come from zebrafish cell lines stably transfected with
a luciferase construct of a major circadian gene Per1b [141]. These zebrafish cell lines can be
entrained by direct light exposure and are widely used to study the transcriptional mechanisms of
light entrainment [143, 144]. The resulting time traces represent periodical activation of the Per1b
gene. However, one must keep in mind that the recorded gene activation represents a population
average of 30000 cells. The data were recorded under various light-forcing protocols (Figure 4.3)
and contain multiple experimental repeats and pharmacological treatments (Table 4.1). The
luminescence time traces were recorded with a resolution of approximately 40 minutes, which
provides a fine time resolution compared to the circadian periods of 24 hours. Except for
untreated (wild-type) cell lines also the effect of 6 pharmacological compounds has been tested:
Forskolin (FOR), dibutyryl cAMP (DBC), epidermal growth factor (EGF), U0126, phorbol-12-
myristate-13-acetate (PMA), and ro-318220 (RO) [145]. Those pharmacological compounds
have been chosen to target major signaling pathways that are involved in the regulation of light
entrainment [146, 147, 148, 149]. In summary, the experiments provide a sufficient number of
experimental data to train and test a mathematical model.
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Figure 4.3: The recorded data include a variety of forcing light protocols to explore the dynamics of light entrainment.
(A) Before the beginning of each protocol, the cells were entrained using a regular light-dark (LD) cycle (dashed line).
These first LD repetitions are not part of the final recording. The beginning of each protocol starts at the end of the light
period (lights went off at time 0). (B) Light protocol 1 starts with 6 days of constant darkness followed by three 12:12 LD
cycles and ends with 4 days of constant light. (C) Light protocol 2 consists of several irregular LD cycles and ends with
constant light. (D) 15:15 LD cycle protocol consists of two 30-hour days followed by constant darkness. (E) 10:10 LD
cycle consists of two 20-hour days followed by constant darkness. (F) The jet lag protocol consists of a jet-lag-like phase
reversal (long day) followed by two days of the 12:12 LD cycle. (G) In the constant darkness protocol, the cells were kept
in constant darkness for the whole time of the recording. The figure is partly adapted from the previous publication [2].
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Plate Well repeats

Light protocol 1 16x untreated cells
Light protocol 2 4x untreated cells
15:15 LD cycle 32x untreated cells
10:10 LD cycle 16x untreated cells
Jet lag (set A) 4x DMSO control treatment

12x FOR (4x 5 µM, 4x 10 µM, 4x 15 µM)
12x DBC (4x 0.5 mM, 4x 1 mM, 4x 3 mM)
12x U0126 (4x 10 µM, 4x 20 µM, 4x 40 µM)

Constant darkness (set A) 4x DMSO control treatment
12x FOR (4x 5 µM, 4x 10 µM, 4x 15 µM)
12x DBC (4x 0.5 mM, 4x 1 mM, 4x 3 mM)
12x U0126 (4x 10 µM, 4x 20 µM, 4x 40 µM)

Jet lag (set B) 4x DMSO control treatment
12x EGF (4x 30 ng/ml, 4x 50 ng/ml, 4x 80 ng/ml)
12x PMA (4x 0.5 µM, 4x 1 µM, 4x 3 µM)
12x RO (4x 2 µM, 4x 5 µM, 4x 8 µM)

Constant darkness (set B) 4x DMSO control treatment
12x EGF (4x 30 ng/ml, 4x 50 ng/ml, 4x 80 ng/ml)
12x PMA (4x 0.5 µM, 4x 1 µM, 4x 3 µM)
12x RO (4x 2 µM, 4x 5 µM, 4x 8 µM)

Table 4.1: Description of experimental repeats in the recorded luminescence data. Each cell culture plate consists of 96
wells (Figure 4.2) that can be used to record up to 96 cell cultures in parallel under the same light protocol. The first
four light protocols (light protocol 1, light protocol 2, 15:15 LD cycle, and 10:10 LD cycle) were used to explore the light
entrainment of untreated cells. The last two light protocols (jet lag and constant darkness) were used to explore the light
entrainment under various pharmacological treatments. As the number of tested pharmacological treatments was high,
those had to be split between two plates (set A and B). This table is adapted from the previous publication [2].

4.3 Dataset normalization

We want normalization so the pharmacological treatments are comparable among the plates.

In the luminescence recordings, the shape of the time traces seems to be well conserved for
individual repeats but the absolute amplitude shows great variability (Figure 4.4A). Furthermore,
inherent experimental errors cause variations in mean and amplitude also between individual
plates [145]. In order to be able rigorously to compare the individual traces and use them for
model fitting and validation, a reliable normalization strategy is required. Z-score removes the
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A

B

C

Figure 4.4: The luminescence data were normalized by Z-score to reduce the variability among the individual traces.
This example corresponds to Light protocol 1 (Figure 4.3). (A) Data from 16 recording wells in the raw units as obtained
from the recording device (counts per second). (B) Applying Z-score to the individual traces decreases the variability
among the measurements from different wells. (C) The mean of normalized well traces was used for further analysis and
data fitting (SD = standard deviation). This figure is adapted from the previous publication [2].

mean and normalized the standard deviation of the time trace to 1 while maintaining the shape
of the traces unchanged. Z-score is defined as

z(x) =
x− x̄

sx
, x̄ =

1

N

N∑
i=1

x[i], Sx =

√√√√ 1

1−N

N∑
i=1

(x[i]− x̄)
2
, (4.1)

where x̄ is sample mean and Sx is sample standard deviation of trace x. Normalizing the traces
using the Z-score reduced the variability among the traces to the minimum (Figure 4.4).

The Z-score normalization works well for the recordings of untreated cell lines but cannot be
directly used for pharmacological treatments whose effect can manifest in changes in the mean
and amplitude of the recorded gene expression (Figures B.1, B.2). Thus a normalization strategy
that would minimize the variations among the repeats of the same treatment but would still
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4.4 Model derivation

Control - jet lag

Control - constant darkness

Figure 4.5: Control treatments from different plates remain the similar waveform after the normalization.

preserve the differences among the individual treatments is required. To achieve this, one can use
an adjusted Z-score defined as

zd(x) =
x− x̄

Sx

Sd
Sc

+
x̄d − x̄c
Sc

(4.2)

where x̄ and Sx are the sample mean and sample standard deviation of trace x as showed in
Equation 4.1, x̄d and Sd are the mean of means and mean of standard deviations for all traces
of the corresponding compound and dose on the plate, and x̄c and Sc are mean of means and
mean of standard deviations for all control traces (without treatment) on the plate. An important
property of this normalization strategy is that it reduces to standard Z-score if Sd = Sc and
x̄d = x̄c. The values for control can be thus directly compared to the values of untreated cell
lines from other plates normalized by the standard Z-score (Figure 4.5). Visual comparison of
raw and normalized data showed low variance in traces of the same compound while correctly
preserving the relative changes of the treated traces to control (Figure 4.6 and 4.7). If we used a
standard Z-score, the difference in amplitude diminish (Figure 4.8). As a consequence, we have
a normalization method that allows us to compare control traces across the different plates and
pharmacological treatments relative to those control traces.

4.4 Model derivation

Themodel of the zebrafish circadian regulation is based on the simple Kim-Forger model [48] that
was already introduced and applied in Sections 1.2.2 and 2.1. In the application, the Kim-Forger
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Original data - jet lag

Original data - constant darkness

Figure 4.6: Example of unprocessed data for a pharmacological treatment with U0126.

Adjusted Z-score - constant darkness

Adjusted Z-score - jet lag

Figure 4.7: Example of normalized data (adjusted Z-score) for a pharmacological treatment with U0126.

model can be thought as representing the oscillatory behavior of three clock elements connected
in a negative feedback loop. The variables of the model are arbitrary denoted as mRNA M ,
protein P , and repressorR (Figure 4.9). The three state variables implicitly encode the delay that
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4.4 Model derivation

Standard Z-score - constant darkness

Standard Z-score - jet lag

Figure 4.8: Standard Z-score is not suitable for the pharmacological treatments as it removes the amplitude difference
among the individual treatments (compare with the adjusted Z-score normalization in Figure 4.7).

is necessary to produce the oscillatory behavior [13] and thereby provide a minimal model of the
circadian clock [43, 46]. The simple Kim-Forger model reads

dM

dt
= vM f(R,A)− dMM (4.3a)

dP

dt
= vPM − dPP (4.3b)

dR

dt
= vRP − dRR (4.3c)

where A denotes activator concentration, v∗ are production rates, and d∗ are degradation rates.

In the zebrafish circadian clock, the repressors physically interact with the activators and thereby
inhibit the transcriptional induction of their own genes [137]. This corresponds to the physical
meaning of the Kim-Forger model, where the repressor R binds to the activator A, forming an
inactive RA complex and thus preventing the binding of the activator to the E-box enhancers,
resulting in inhibition of gene expression. The according protein sequestration function that
describes the transcriptional activation is defined as [48, 49]

f(R,A) =

{
1− R

A R ≤ A

0 R > A
(4.4)

where R and A are repressor and activator concentrations, respectively.
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I
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R P
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M - mRNA

A - Activator

P - Protein
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I - Light-induced element

L - Luminescence readout

Figure 4.9: A mathematical model represents the transcription-translation feedback loop that generates the circadian
rhythm in individual zebrafish cells. The core loop consists of positive (green) and negative (yellow) elements. The
activator (A) binds to the promoter region (E-box) of a circadian gene, which starts the gene transcription and so
production of the mRNA (M). M translates into a protein (P), which is transported back to the cell nucleus where it acts as
a repressor (R). In the nucleus, R binds A forming an inactive RA complex. This prevents A from binding to the promoter
of the gene leading to a decrease in the production of negative elements and the cycle repeats. Zebrafish possess additional
light-driven genes that are regulated by D-box elements. Increased light levels in the environment lead to the activation
of the D-box elements and thus increases the concentration of the negative elements. In the bioluminescence reporter
assays, the cells are transfected with a reporter gene that has the same promoter as the circadian gene. The luminescence
output is assumed to be proportional to the gene activation. This figure is adapted from the previous publication [2].

As the luminescence data are normalized and thus the amplitude has arbitrary units, the variables
of the model can be scaled as

M = vMM
∗, P = vMvPP

∗, R = vMvP vRR
∗, (4.5)

whereM,P,R are the original model variables andM∗, P ∗, R∗ are the scaled model variables.
The rescaling of the model variables leads to the removal of production rates from the equations.
This reduces the number of parameters by 3 effectively avoiding over-parametrization and con-
nected problems of non-unique results of the fitting. For convenience, the scaled variables were
relabeled back asM := M∗, P := P ∗, R := R∗, which leads to the scaled model equations

dM

dt
= f(R,A)− dMM (4.6a)

dP

dt
=M − dPP (4.6b)

dR

dt
= P − dRR. (4.6c)
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4.4 Model derivation

The light input is implemented as a light-induced element I , whose activation increases the
production of mRNAM . In the equations, this is encoded as an additive term to the first equation
as

dM

dt
= f(R,A)− dMM + iI (4.7a)

dP

dt
=M − dPP (4.7b)

dR

dt
= P − dRR, (4.7c)

where parameter i is light sensitivity and I is a time-dependent function that changes its value
between 0 and 1 and represents turning on and off of the light source. Similar extensions to the
minimal models of the circadian clock are commonly used to represent light stimuli [56, 150, 151].
In our model, the additive light term I represents light-driven activation of an additional set of
light-driven Per and Cry clock genes that is characteristic of the zebrafish circadian clock and is
mediated by D-box enhancers [143, 144]. These light-driven genes are specifically activated by
light with minimal activation in darkness, and thus most accurately represented by an additive
term.

Cellular noise is an intrinsic part of the clock mechanism [76] and is essential to consider when
interpreting observations made at the cell population level [33]. We have therefore implemented
noise at the single-cell level by additive noise terms [115] in the model as

dM

dt
= f(R,A)− dMM + iI + σWM (4.8a)

dP

dt
=M − dPP + σWP (4.8b)

dR

dt
= P − dRR+ σWR, (4.8c)

where σ is noise intensity andWi are independent Wiener processes (Equation 2.7).

In the experimental setup, cells presumably function as independent oscillators and are imple-
mented accordingly in our model. Each well of a 96-well culture plate contains approximately
30000 independently oscillating cells that contribute to the luminescence signal measured from
that well. To mimic the averaging over a population of single-cell oscillators in the luminescence
assays, we simulate 30000 instances of the model and obtain the mean value as the final out-
put [127, 58]. The function f is the quantity in the model that most closely represents the induction
of the Per1b-luciferase reporter by E-box enhancers. We thus use the value of the function f to
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4 Application: Entrainment of cellular clocks by light

A B

Figure 4.10: The model represents a population average of 30000 independent cells. (A) Example of 5 single-cell traces.
(B) Average of 30000 cells. Notice the loss of oscillation amplitude in the constant darkness that is caused by the
desynchronization of the individual oscillators. This figure is adapted from the previous publication [2].

represent the luminescence read-out obtained in our experiments. The luminescence produced
by a single cell is then equal to

Lj = f(R,A). (4.9)

The final model output that corresponds to the luminescence output of a cell culture well is

L =
1

n

n∑
j=1

Lj , (4.10)

where j are independent evaluations of the stochastic model and n is the number of cells in the
population. The necessity to address single-cell dynamics for the population-level recordings was
illustrated previously by experiments that show that desynchronization at the level of individual
cells leads to the loss of the population-level oscillations although the single cells exhibit sustained
oscillations [96]. These experimental results can be reproduced using the presented model
(Figure 4.10).

4.5 Model fitting and validation

The proposed mathematical model contains 6 free parameters: activator concentration (A),
degradation rates (dM , dP , dR), light sensitivity (i) and noise intensity (σ). For validation, the
model parameterswere fitted to the data fromuntreated cell lines experiments using a customfitting
algorithm based on an evolutionary optimizer (Section 2.7.2). Previous experiments have shown
that, in the case of untreated cell lines, the individual cells behave as sustained oscillators [96].
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4.5 Model fitting and validation

Light protocol 1 (fitting data) Model
Data

Dark
Light

Figure 4.11: Data from light protocol 1 were used as fitting data for the model. Visual inspection of the results shows
that the model can well reproduce all characteristics of the original data: damping of the oscillation amplitude in constant
darkness, synchronization of the phase of the rhythm upon transfer from constant darkness to an LD cycle, and oscillation
repression under constant light. This figure is adapted from the previous publication [2].

As the probability of the oscillations is the highest when the degradation terms are equal [152], a
constraint on equal degradation terms

d = dM = dP = dR (4.11)

was used to simplify the fitting process by reducing the number of free parameters from 6 to 4.
The constraint in Equation 4.11 is based on preliminary experiments that showed that unequal
degradation terms do not lead to a better fit to the presented data. Of course, if other data are
available and the fit is not satisfactory, this assumption can be relaxed. Themodel parameters were
first fitted to the untreated cell lines under light protocol 1 (Figure 4.11) showing three characteristic
phenomena: attenuation of the oscillation amplitude during free-running conditions in constant
darkness, synchronization of the phase of the rhythm upon transfer from constant darkness to an
LD cycle, and oscillation repression under constant light. The goodness of fit was evaluated by
the model efficiency coefficient (Ef , Section 2.7.4). The resulting model efficiency on this fitting
data was high (16 experimental repeats, mean ± standard deviation, Ef = 0.89± 0.03).

For the validation of the estimated parameters, the model was simulated without further read-
justment of model parameters for experiments under light protocol 2 (Figure 4.12), resulting in
fair model efficiency (4 experimental repeats, Ef = 0.63 ± 0.21). Upon visual inspection, the
model captured all key behaviors observed in the experiments. The performance of the model
was further tested under LD cycles with period lengths significantly longer and shorter than 24
hours (30 hours, 15:15 LD cycle; and 20 hours, 10:10 LD cycle). In this case, the goodness of fit
was lower than under the 12:12 LD cycle experiments (15:15 LD cycle, 32 experimental repeats,
Ef = 0.24 ± 0.20, Figure 4.13A; 10:10 LD cycle, 16 experimental repeats, Ef = 0.60 ± 0.11,
Figure 4.13B), mainly due to mismatched profiles of each expression cycle. Nevertheless, the
model was still entrained and oscillated with the corresponding period of these long and short
LD cycles, which corresponds to the previous experiments [141]. As the last validation step,
the phase response curve (PRC, Section 2.4.1) was estimated for the fitted model and 12-hour
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Light protocol 2 (validation data) Model
Data

Dark
Light

Figure 4.12: Data from light protocol 2 were used as validation data to verify the parameter fit for the model. Visual
inspection of the results shows that the model can well reproduce data that were not used for the parameter fitting. This
figure is adapted from the previous publication [2].

A B

Figure 4.13: Simulating the model under LD cycles that differ significantly from the 12:12 LD cycle leads to a mismatch
in the data and predicted curve shapes. (A) For the 15:15 LD cycle, the model curve differs significantly from the data,
however, the main characteristics are maintained. The model is still entrained by this cycle and the peak seems to occur
at the same time as in the data. (B) For the 10:10 LD cycle, the entrainment amplitude is significantly smaller than in the
data. However, the model is still entrained by this LD cycle. This figure is adapted from the previous publication [2].

long light pulses (Figure 4.14). The resulting high-amplitude type 0 PRC [64] is also consistent
with previously reported experimental PRC using those zebrafish cell lines [141]. Therefore, the
model can reproduce and predict characteristics of the entrainment of the zebrafish cellular clock
under complex lighting conditions and loses its accuracy only for entrainment period lengths that
differ significantly from the natural 12:12 LD cycle.

4.6 Model parameters quantify pharmacological
treatments

The parameters of the model were next adjusted to infer the effect of different pharmacological
compounds on the core clock dynamics. The luminescence data for the pharmacologically-treated
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Figure 4.14: The estimated phase response curve with large phase shifts (type 0 PRC) corresponds to the previously
published experimental PRC using the same zebrafish cell lines [141]. This figure is adapted from the previous publica-
tion [2].

cells were recorded under two light conditions: jet lag and constant darkness (Figure 4.7). The
cost function considers both experiments in a single function as

Ctreatment =
1

NJL

NJL∑
i=1

(yJL[i]− ŷJL[i])
2
+

1

NCD

NCD∑
i=1

(yCD[i]− ŷCD[i])
2 , (4.12)

where yJL, yCD denote luminescence recordings recorded under the jet lag protocol and in
constant darkness respectively and ŷLD, ŷCD denote model outputs for the jet lag and constant
darkness respectively. As the pharmacological treatment can substantially distort the regulatory
mechanisms of the circadian clock and thus the individual cells might stop exhibiting sustain
oscillations, the constraint on equal degradation rates (Equation 4.11) was relaxed so all three
degradation rates can have different values.

The compounds were administrated right before the beginning of the recording which caused
transient behavior observable in the data. To incorporate this into our simulations, we precalcu-
lated initial conditions by running the model of the untreated cells for 10 days and then taking the
last values as initial conditions for the simulations of pharmacological treatments. The resulted
initial conditions correspond to the state of the oscillator at the transition from light to dark.
This corresponds to the experimental data used in our work that starts at the beginning of the
dark phase. The initial conditions were fixed for the whole process of optimization. Individual
compound doses were fitted iteratively from control to the highest concentration of the specific
compound (Figure 4.15). At each step, the final optimized population from the previous step was
used as the initial population for the next step (Section 2.7.2). Representative fits to the selected
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Parameters for untreated cells

Control A

[U0126] = 10 μM [U0126] = 20 μM [U0126] = 40 μM 

[RO] = 2 μM [RO] = 5 μM [RO] = 8 μM 

[DBC] = 0.5 mM [DBC] = 1 mM [DBC] = 3 mM 

[PMA] = 0.5 μM [PMA] = 1 μM [PMA] = 3 μM

[FOR] = 10 μM [FOR] = 15 μM [FOR] = 5 μM 

[EGF] = 30 ng/ml [EGF] = 50 ng/ml [EGF] = 80 ng/ml Control B

Figure 4.15: The data for the pharmacological treatments were fitted step-wise. First, the final population of candidates
fitted to the untreated data was used as starting population for the control treatments. The final candidate population
for the control treatments was used as the initial population for the lowest compound dose, continuing iteratively for the
higher compound doses. This figure is adapted from the previous publication [2].

pharmacological treatments are in Figures 4.16 and 4.17. Table 4.2 shows the goodness of fit for
all pharmacological treatments.

The principal component analysis (PCA) of the parameter sets representing the individual com-
pounds revealed that the twomain principal components together account for 86%of the explained

Figure 4.16: Pharmacological compounds DBC and U0126 have a similar effect of attenuating the oscillation amplitude
under both LD cycle (panel A) and constant darkness (panel B). The model parameters can be adjusted to this. This figure
is adapted from the previous publication [2].
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Compound Ef jet lag Ef constant darkness

Control A 0.87 0.89
Control B 0.72 0.81
[FOR] = 5 µM 0.74 0.86
[FOR] = 10 µM 0.74 0.87
[FOR] = 15 µM 0.70 0.83
[DBC] = 0.5 mM 0.62 0.73
[DBC] = 1 mM 0.11 0.20
[DBC] = 3 mM -1.56 -0.20
[U0126] = 10 µM 0.86 0.86
[U0126] = 20 µM 0.68 0.50
[U0126] = 40 µM -18.19 0.60
[EGF] = 30 ng/ml 0.73 0.73
[EGF] = 50 ng/ml 0.50 0.67
[EGF] = 80 ng/ml 0.69 0.77
[PMA] = 0.5 µM -1.59 -3.98
[PMA] = 1 µM 0.83 0.89
[PMA] = 3 µM 0.89 0.86
[RO] = 2 µM 0.12 -0.04
[RO] = 5 µM 0.46 0.84
[RO] = 8 µM 0.27 0.84

Table 4.2: The goodness of fit for all pharmacological treatments. The goodness of fit was quantified by the model
efficiency coefficient defined (Ef , Equation 2.38) that lives on the interval (−∞, 1]. Values near 1 indicate high predictive
value of the model while negative values indicate that data mean is a better predictor than model output (Figure 2.48).
Most of the fits show a relatively high model efficiency coefficient. Only a few compounds at the highest concentrations
could not be fitted (Ef < 0) using the simple model. This table is adapted from the previous publication [2].
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Figure 4.17: Application of the pharmacological compound EGF (green line) leads to a transient behavior with increased
amplitude of oscillations. Administration of RO (brown line) leads to the complete removal of oscillations. The model
can reproduce the effect of RO and partly also of EGF but struggles with a combination of low-frequency transient and
high oscillation amplitude as shown in panel B. This figure is adapted from the previous publication [2].

variance. The relative changes of the six free parameters can be, therefore, depicted in the two-
dimensional space defined by the two main principal components (Figure 4.18). In the PCA plot,
every compound exhibits a change away from the control conditions. Compound-specific changes
were increasingly pronounced at higher concentrations, while the overall direction of parameter
change was conserved for each of the compounds. Based on the direction of displacement in
the principal component plot, different compounds can be grouped. FOR, DBC, and U0126
are all associated with a decrease in principal component 1, reflected in a loss of the oscillation
amplitude that is similar for all three compounds (Figure 4.16, Figure B.3A, B, C). PMA and EGF
are associated with an increase in principal component 1, reflected in a decreased amplitude of
the oscillations during the first day of the recording, followed by a sudden transition to a higher
amplitude in the subsequent days of the assay (Figure 4.17, Figure B.3D, E). RO showed a distinct
decrease in principal component 2 and lies considerably further away from all other compounds.
This reflects the complete absence of oscillatory behavior associated with this specific treatment
(Figure 4.17, Figure B.3F). Taken together, our refitting approach allows the categorization of
these compounds based on their inferred effects on the model parameters, as indicated by the
proximity of compounds with similar effects in the PCA plot. This also provides a rapid visual
validation for our refitting approach, as it shows that parameter values that represent similar treat-
ment effects are in fact placed close to each other in the PCA plot. In the case more compounds
should be explored, the PCA has to be recomputed for new experiments using all pharmacological
treatments available and the explained variance of the first two PCA components evaluated.
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Control A

Control B

PMA
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Figure 4.18: Principal component analysis can be used to visualizemodel parameter changes related to all pharmacological
treatments in a single overview figure. Control A refers to untreated cells recorded at the same plate as FOR, DBC, and
U0128. Control B refers to untreated cells recorded at the same plate as EGF, PMA, and RO. The lines indicate the
increasing concentration of the pharmacological treatments from control→ low dose→middle dose→ high dose. Dots
indicate the mean and error bars standard deviation of the final population obtained from the evolutionary algorithm.
Individual values used to calculate the median points are shown in Figure B.4. Only pharmacological treatments with
positive model efficiency coefficient Ef (Table 4.2) were included in the PCA analysis. The explained variance for the
first three PCs was 53 %, 33 %, and 8 %. This figure is adapted from the previous publication [2].

The results summarized by the PCA plot also correctly reflect the known molecular mechanisms
of working of those pharmacological treatment. Inspecting the resulting parameter space, the
parameter sets representing the treatments with FOR and DBC were closer to each other than to
other compounds. This is expected, as both FOR and DBC act as activators of the cAMP pathway
and should thus similarly affect the core clock mechanism [153]. The parameter sets representing
EGF and PMA were also close to each other. This is consistent with previous work showing that
the PKC pathway (activated by PMA) is an upstream activator of the MAPK pathway (activated by
EGF) [146, 154]. Those results indicate that the presented model as well as the fitting procedure
can accurately classify changes in core clock parameters. Thus the PCA plot provides a useful
tool to easily assess an arbitrary number of experimental conditions in a single image. This kind
of assessment would be beneficial when large numbers of compounds are tested, for example, as
part of a high throughput screen.
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Beyond the overview provided by the PCA plot, the changes in individual parameter values can be
also related to changes in the luminescence traces upon pharmacological treatments (Figure 4.19).
For example, all compounds leading to a decrease in oscillatory amplitude (FOR, DBC, U0126)
exhibit a decrease in parameter A, representing activator concentration. In contrast, compounds
resulting in higher amplitude (EGF, PMA) exhibit an increase inA. In the case of RO, a compound
that abolishes oscillatory behavior, the parameter dR is decreased. dR represents the degradation
rate of the repressor, so the decrease of dR indicates that a stabilization of the repressor drives
constant inhibition of the transcription activation. Leaving aside the fully repressed case of
RO, the parameter i (light sensitivity) seems positively correlated with the parameter σ (noise
intensity). This relationship suggests that entrainment due to higher light sensitivity can counteract
the faster desynchronization of individual oscillators that results from higher noise intensity. This
balance between light sensitivity and noise strength allows the possibility that FOR, DBC, and
U0126, even though they all similarly decrease the amplitude of oscillation, have different noise
intensities. Note that the analysis implies that the compounds typically result in a change of
several model parameters, making it ultimately problematic to use our model to identify the exact
regulatory element within the clock mechanism targeted by a given compound.

4.7 Using model to predict mechanisms of
population-level amplitude loss

The impact of the FOR, DBC and U0126 compounds on the rhythmic parameters of the lumi-
nescence recordings is similar. However, close inspection of the PCA plot reveals that U0126
lies further away from FOR and DBC (Figure 4.18). This relative displacement appears to be
mainly in the direction of parameter σ, suggesting that U0126 differs from FOR and DBC by
higher noise intensity, as is also supported by the assessment of changes in individual parameters
(Figure 4.19). As the model consists of an ensemble of oscillators, the observed difference can
be mapped to the altered behavior of the simulated individual cells. As an illustrative example,
one can compare the treatments with 0.5 mM DBC and 20 µM U0126. When synchronized cell
populations were transferred to constant darkness, both treatments resulted in a more rapid loss
of population amplitude than in control-treated cultures. At the level of single cells, however,
the model suggests that DBC treatment resulted in reduced single-cell oscillator amplitude, while
incubation with U0126 caused a more pronounced desynchronization of individual oscillators
due to higher noise (Figure 4.20). This effect of differences in the noise intensity was further
investigated by visualizing the histograms of phases of individual cells (Figure 4.21). During the
regular light-dark cycle, histograms of phases in all three cases (Control, DBC, U0126) markedly
differ from the uniform distribution, indicating synchronized oscillations. After transfer into
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A (log) dP (log)

dM (log) dR (log)

i (log) σ (log)

Figure 4.19: Parameter values for all pharmacological treatments. Each dot indicates the median value and lines maximal
and minimal values of the parameter sets obtained by a differential evolution algorithm. Multiple dots per compound
indicate increasing concentrations of the same compound from left to right. Only pharmacological treatments with positive
model efficiency coefficient Ef (Table 4.2) are included. The numerical values of the parameters are in Table B.1. This
figure is adapted from the previous publication [2].

the constant darkness, the histogram of phases for U0126 is more uniformly distributed than
the one of control and DBC treatment, indicating a more pronounced loss of synchrony. This
hints that DBC causes the loss of population-level amplitude by inhibition of gene expression
at the single-cell level, whereas U0126 causes a more rapid desynchronization of the single-cell
oscillators, which was further confirmed by comparing the average transcription activation and
noise intensity of the two compounds (Figure 4.22). Taken together, the presented simulations
imply two distinct sets of single-cell dynamics that both result in the accelerated loss of rhythm
amplitude at the population level.

The effect of pharmacological treatments strongly depends on environmental light conditions [155,
156, 157]. To assess how the capacity for entrainment by light differs upon DBC and U0126
treatment, the phase of entrainment was extracted from simulations forced by light-dark cycles
with different periods (T). In this analysis, the model was simulated for various T and the phase
angle as the time interval between the light onset and the oscillation peak was calculated (Fig-
ure 4.23) [64]. The conventional PRCs could not be constructed because, for some treatments,
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Figure 4.20:Model simulation with parameters corresponding to control treatment and DBC and U0126 treatments. (A)
Population mean of 30000 oscillators show decreased amplitude for DBC and U0126 compounds. DBC shows also a later
peak under the light-dark cycle and lower amplitude in constant darkness than U0126. (B) 10 individual cells that form
the population mean for control-treated cells in panel A. (B) 10 individual cells that form the population mean for DBC
in panel A. Notice that the individual cells have lower amplitude than the control in panel B but otherwise the waveforms
look the same. (C) 10 individual cells that form the population mean for U0126 in panel A. U0126 treated cells have
higher amplitude than DBC treated cells but the peaks seem to occur with lower probability. This figure is adapted from
the previous publication [2].
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A B

Figure 4.21: Probability density function (PDF) of the occurrence of peaks during 24 hours. (A) In the light-dark cycle,
control and DBC show similar PDFs. The PDF for U0126 differs slightly, showing an earlier peak. Those data were
collected from times between 72 and 96 in Figure 4.20. (B) In constant darkness, control and DBC show similar PDFs.
The PDF for U0126 differs distinctly from the control and DBC as it is uniformly distributed. Those data were collected
from times between 122 and 146 in Figure 4.20. This figure is adapted from the previous publication [2].

A B

Figure 4.22: Treatments with DBC and U0126 lead to lower average transcription activation (average value of f(R,A) in
Equation 4.8) but DBC lead to decrease while U0126 to increase of the noise intensity (value of σ in Equation 4.8). (A)
Transcription activation was calculated as mean of the output luminescence in constant darkness. The values for control
(L = 0.0576±0.0017) are higher than the values for DBC (L = 0.0198±0.0004) and U0126 (L = 0.0331±0.0012).
(B) The noise intensity value for control (σ = 0.098 ± 0.006) was lower than for U0126 (σ = 0.124 ± 0.016) but
higher than for DBC (σ = 0.023± 0.001). Mean and standard deviation were calculated across the final population of
parameter sets obtained by the evolutionary optimizer. This figure is adapted from the previous publication [2].
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Figure 4.23: Simulated effect of the light-dark cycle period (T) on the phase of entrainment. The phase angle is calculated
as the time interval between the light onset and the oscillation peak normalized by T/24. Negative values indicate that
the oscillation peak is delayed with respect to the light onset. The phase of entrainment curves for all pharmacological
treatments can be seen in Figure B.5. This figure is adapted from the previous publication [2].

oscillations in constant darkness diminished too rapidly, making an analysis based on lumines-
cence peaks impossible (Section 2.4.1). The analysis revealed that, for T smaller than 24 hours
both compounds, DBC, and U0126, reduce the phase angle relative to the control treatment. For
T higher than 24 hours, DBC had no apparent effect, while U0126 markedly reduced the phase
angle. U0126 leads to increased noise intensity in comparison to the treatment with DBC and thus
also T-PRC related to U0126 has a smaller slope than T-PRC related to DBC. This corresponds
to the theoretical observations from Section 2.4.2 that increasing noise intensity decreases the
slope of the T-PRC. Considering that these simulated phase angle curves provide highly specific
predictions for future experiments, the same type of curves were generated also for the other
compounds (Figure B.5). Interestingly, these simulations predict that the entrainment dynamics
upon U0126 treatment are similar to those upon EGF and PMA treatment, even though the loss of
amplitude upon U0126 treatment under a 24-hour light-dark cycle is closer to the results obtained
upon DBC and FOR treatment. Interestingly, U0126 is an inhibitor of the MAPK pathway, the
same pathway that is positively regulated by EGF and PMAwhereas FOR and DBC are inhibitors
of the cAMP pathway.
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4.8 Example of further application: synchronization
of fungal hyphae

This chapter focused on the application of the developed methods in the domain of circadian
timekeeping, however, in many other systems stochastic oscillators and their synchronization play
an important role. As an example and a sneak peek of a possible other application, a project on
the modeling of cellular communications in fungal hyphae can be presented [3]. In this project,
not a population of oscillators was explored but rather two identical stochastic oscillators that
have the ability to synchronize in anti-phase when they are spatially close to each other. This kind
of cell-to-cell communication occurs in growing fungal hyphae that can then navigate themselves
toward each other and consequently fuse into a single cell. The cells rely on a single chemical
signaling channel to exchange its location, which raises the question of how communication is
initiated and how a cell knows it just does not speak with itself but there is actually a partner in the
area. Implementing a stochastic equation model revealed that the system can work as two coupled
excitatory oscillators whose cycle includes a refractory period that makes the cell temporarily
numb to the input signal (Figure 4.24). When one cell is active, it sucks in all available signaling
molecules in the shared medium not allowing the other cell to be activated. Only at the end of
the cycle, the signaling molecules are released, which provides the basis for the activation of the
partner cell. Here the refractory period prevents the immediate auto-excitation giving the partner
cell time to initiate its cycle. Mathematical modeling showed that such a system of communication
works robustly also under noise.

4.9 Conclusion

In this chapter, a stochastic oscillator model that mimics the dynamic properties of the core
circadian clock in cultures of zebrafish cells was presented. The model accurately recapitulates
the rhythmic properties and entrainment of luminescence recordings under a range of lighting
conditions, only losing accuracy when simulating the effects of exposure to light-dark cycles with
periods significantly longer or shorter than 24 hours. Furthermore, the model can characterize
luminescence recordings in terms of changes in single-cell core clock regulation. In particular,
the model was successfully used to quantify the effects of several pharmacological treatments
by correctly grouping compounds with similar effects. The model was also used to predict the
distinct effect of two pharmacological treatments that appeared to have a similar effect at the
population level but a distinct impact on the single-cell regulatory mechanisms. Such assessment
of the degree of synchronization of single-cell oscillators in a cell population in culture cells would
involve technically challenging and time-consuming imaging that is not trivial to perform as part
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Figure 4.24: Fungal hyphae exhibit anti-phase locking (entrainment) at a short distance. (A) The mathematical model
consists of two stochastic oscillators connected through a commonmedium. (B) At a long distance, the oscillators generate
independent sustained oscillations. (C) At a short distance, the oscillators lock to each other in anti-phase. This figure is
adapted from a previous publication [3].

of a large-scale screen. Within this context, the here-presented modeling approach provides the
possibility to make rapid predictions about the behavior of individual cell clocks from population-
level luminescence recordings. These predictions could then be followed up by more refined
imaging-based assays of single-cell dynamics on a much smaller set of samples. Therefore, the
presented mathematical model should contribute a rapid and scalable tool for interpreting the
effects of pharmacological treatments and genetic modifications on the circadian clock at the
cellular level.
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Biological oscillators are inherently noisy and yet they have a great ability to synchronize to
the changing environmental conditions, such as the day-night cycle. It is, however, not clear
what design principles make the oscillators robust to noise or to what degree they might even
utilize noise to enhance their entrainment performance. This thesis considered those questions
at the theoretical level, by numerically analyzing computational models, and also in a practical
application, by analyzing experimental data of biological stochastic oscillators using the developed
methods. In a nutshell, the major contributions presented in this thesis are:

1. Comparison and evaluation of the numerical methods for noise approximation concerning
their accuracy and simulation time (Section 2.1).

2. Definition, comparison, and evaluation of various metrics of entrainment in the context of
the quantification of stochastic oscillations (Section 2.2).

3. New theoretical findings showing that noise allows for population-level entrainment to a
wider range of input signal periods and amplitudes (Section 2.3).

4. Implementing T-cycle phase response curve as an alternative to the phase response
curve when the analysis based on oscillation peaks cannot be performed because of
fast population-level desynchronization (Section 2.4.2).

5. New theoretical findings showing that noise allows for a larger response to external stimuli
(Section 2.4.1) and faster recovery from jet lag (Section 2.4.3).

6. Demonstration that the noise-improved entrainment emerges for a larger class of generic
limit cycle oscillators, not only biological or bio-inspired (Section 2.5).

7. Showing that population heterogeneity can also enhance entrainment similarly to intrinsic
stochasticity, but lead to a more complex dynamical behavior that is challenging to quantify
(Section 2.6).

8. Novel step-wise fitting algorithm that fits stochastic population models in a step-wise
manner. This saves computational time and enables the exploration of larger parameter
ranges in comparison to direct trajectory fitting (Section 2.7.2).

107



5 Conclusion

9. Software implementations of the described methods, which enhances the thesis repro-
ducibility and utilization of the methods for future research (Chapter 3).

10. Novel normalization approach to the luminescence recordings of pharmacological treat-
ments, which normalize individual treatments with respect to the control treatment and
allows thus precise comparison of treatments from separate experimental repetitions (Sec-
tion 4.3).

11. Novel model to capture precisely the entrainment dynamics of the zebrafish clock with the
minimum of parameters (Sections 4.4 and 4.5).

12. Demonstration that a model can be used to quantify pharmacological treatments from
population-level recordings at the level of individual cells (Section 4.6).

13. New predictions made with the model regarding the effects of the pharmacological treat-
ments on the stochasticity of the individual cells (Section 4.7).

14. Novel model demonstrating dialog-like information exchange between two cells utilizing a
single signaling channel (Section 4.8).

Considering the contributions listed above, the thesis met all objectives outlined in Section 1.4.
Nevertheless, with regard to the open questions outlined in Section 1.3, there are still many
further directions that should be investigated in future work. At the theoretical level, the presented
thesis considered mainly populations of uncoupled identical stochastic oscillators. The future
work should thus consider population heterogeneity, as briefly outlined in Section 2.6, and
coupling among the individual oscillators in the population. The theoretical findings could be
also supported by biological experiments using zebrafish luminescence reporter assays (introduced
in Section 4.2). Ultimately, single-cell imaging could be employed to verify experimentally the
presented model predictions on the relation among individual stochastic oscillators and their
population-level mean. Beyond the research on biological oscillators, the results of this thesis are
potentially relevant also to applications in the fields of biotechnology, control engineering, and
automation. For example, the presented modeling approach could be used to create an automatic
artificial light control to achieve optimal plant growth in greenhouses. Control of a population
of noisy oscillator units could also prove important in the domains of movement generators for
robots or semiconductor superlattices.
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Figure A.1: Arnold tongues used to calculate the mean phase coherence for Figure 2.17. The color indicates mean phase
coherence in the range 0 (dark blue) - 1 (bright yellow).
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Figure A.2: Arnold tongues used to calculate the mean population phase coherence for Figure 2.18.
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Ω₀ = 600000

Ω₀ = 100000

Ω₀ = 20000

Ω₀ = 10000

Figure A.3: Arnold tongues used to calculate the mean phase coherence for Figure 2.19. In gray, for low values of
Ω Gillespie’s Stochastic Simulation Algorithm (SSA) instead of the Chemical Langevin Equation (CLE) was used as
described in Section 2.1.2. The color indicates mean phase coherence in the range 0 (dark blue) - 1 (bright yellow).
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Figure A.4:Arnold tongues used to calculate the mean phase coherence for Figure 2.28A. The color indicates mean phase
coherence in the range 0 (dark blue) - 1 (bright yellow).
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Figure A.5:Arnold tongues used to calculate the mean phase coherence for Figure 2.28B. The color indicates mean phase
coherence in the range 0 (dark blue) - 1 (bright yellow).
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Figure A.6:Arnold tongues used to calculate the mean phase coherence for Figure 2.29A. The color indicates mean phase
coherence in the range 0 (dark blue) - 1 (bright yellow).
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Figure A.7:Arnold tongues used to calculate the mean phase coherence for Figure 2.29B. The color indicates mean phase
coherence in the range 0 (dark blue) - 1 (bright yellow).
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Figure A.8: Arnold tongues used to calculate the mean phase coherence for Figure 2.37. The color indicates mean phase
coherence in the range 0 (dark blue) - 1 (bright yellow).
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Treatment A dM dP dR i σ

Untreated cells 9.68 0.16 0.16 0.16 0.05 0.04
DMSO control A 9.70 0.17 0.17 0.17 0.03 0.10
DMSO control B 11.84 0.16 0.16 0.16 0.02 0.09
[FOR] = 5 µM 5.11 0.13 0.13 0.34 0.01 0.04
[FOR] = 10 µM 4.92 0.12 0.13 0.35 0.01 0.04
[FOR] = 15 µM 5.17 0.13 0.12 0.35 0.01 0.04
[DBC] = 0.5 mM 4.77 0.05 0.27 0.27 0.01 0.02
[DBC] = 1 mM 3.89 0.04 0.35 0.26 0.00 0.01
[DBC] = 3 mM 2.40 0.01 0.90 0.18 0.00 0.04
[U0126] = 10 µM 7.74 0.15 0.14 0.24 0.02 0.08
[U0126] = 20 µM 3.84 0.17 0.08 0.41 0.04 0.12
[U0126] = 40 µM 1.29 0.06 0.33 0.50 0.60 0.02
[EGF] = 30 ng/ml 12.66 0.98 0.67 0.02 0.06 0.05
[EGF] = 50 ng/ml 12.62 0.90 0.73 0.02 0.06 0.09
[EGF] = 80 ng/ml 13.39 1.68 0.61 0.02 0.11 0.07
[PMA] = 0.5 µM 16.49 0.33 0.12 0.11 0.07 0.30
[PMA] = 1 µM 13.65 1.50 0.42 0.02 0.05 0.04
[PMA] = 3 µM 13.93 1.72 0.36 0.02 0.07 0.05
[RO] = 2 µM 15.41 0.09 0.05 0.06 0.00 0.17
[RO] = 5 µM 13.03 0.37 1.83 0.00 22.50 0.00
[RO] = 8 µM 13.11 0.39 1.74 0.00 40.50 0.00

Table B.1: Fitted parameter values for individual treatments.
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Jet lag (A)

Jet lag (B)

Constant darkness (A)

Constant darkness (B)

Figure B.1: Mean value for the pharmacological treatment recordings. Dots indicate mean values for the individual
recordings and horizontal line indicate the mean of means for the specific compound and dose.
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Jet lag (A)

Jet lag (B)

Constant darkness (A)

Constant darkness (B)

Figure B.2: Standard deviation for the pharmacological treatment recordings. Dots indicate standard deviations for the
individual recordings and horizontal line indicate the mean of standard deviations for the specific compound and dose.

121



B Supplementary material for Chapter 4

FOR - Jet lagA

C D

E F

B

FOR - Constant darkness

DBC - Jet lag

DBC - Constant darkness

U0126 - Jet lag

U0126 - Constant darkness

EGF - Jet lag

EGF - Constant darkness

PMA - Constant darkness

PMA - Jet lag

RO - Constant darkness

RO - Jet lag

Figure B.3: Model fits to all pharmacological treatments. (A) Model fit to treatments with forskolin (FOR). (B) Model
fit to treatments with dibutyryl cAMP (DBC). (C) Model fit to treatments with U0126. (D) Model fit to treatments with
epidermal growth factor (EGF). (E) Model fit to treatments with phorbol-12-myristate-13-acetate (PMA). (F) Model fit
to treatments with ro-318220 (RO). This figure is adapted from the previous publication [2].

122



B Supplementary material for Chapter 4

Figure B.4: Individual values in the PCA analysis. This plot is equivalent to Figure 4.18 showing individual points
for each compound concentration. Each point represents one member of the final population obtained from running a
differential evolution algorithm to find the best parameter fit for the data. The population size was 50. This figure is
adapted from the previous publication [2].
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A B

C D

E

Figure B.5: The phase of entrainment depends on the light-dark cycle period (T) and administrated compound. The phase
angle is calculated as the time interval between the light onset and the oscillation peak normalized by T/24. Negative
values indicate that the oscillation peak is delayed with respect to the light onset. (A) forskolin (FOR) (B) dibutyryl cAMP
(DBC) (C) U0126 (D) epidermal growth factor (EGF) (E) phorbol-12-myristate-13-acetate (PMA). This figure is adapted
from the previous publication [2].
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