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Now: Process surveillance

▪ Sensor monitoring

▪ Process control

▪ Quality inspection,...

→ Maintaining an intended state

Next: Process development

▪ Feedback on ideas

▪ Issue recommendations

▪ Efficient Optimisation

→ Generating an intended state
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State of the Art

AI in Manufacturing
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Lightweight Engineering

▪ Lightweight potential ↔ Engineering efforts

Process simulation for engineering design

▪ Reduction of expensive prototype trials

▪ Computation efforts (iterative optimisation!)

Goal

▪ Accelerate virtual process development by AI
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Motivation

AI-based process development

V I R T U A L P R O C E S S C H A I N

F L O W O F I N F O R M A T I O N

Infiltration Curing/CoolingDesign Structure

O P T I M I S A T I O N

adapted from [Kärger et al. 2015]

Example virtual process chain for continuous-fibre reinforced plastics
(Resin-Transfer-Moulding, RTM)

Forming
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Example: virtual process optimisation

▪ Goal: 𝒑opt with 𝑞opt = 𝑞 𝒑opt →
!
min

▪ Classical approach: Optimisation algorithms

Challenge

▪ Complex objectives→ computation time grows

Increase efficiency by AI

▪ Integration of “prior knowledge” into optimisation

▪ Thought experiment
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Conceptual view

AI-based process development
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Virtual ‚process experience‘

▪ Physics-based simulations

as a proxy of actual experiments

▪ AI learns governing process dynamics

→ after training, AI gives

recommendations for new geometries

Idea: Combine simulation and AI

AI-based process development

Generic
geometry samples

Generic
process parameters

Simulation of
part quality

New
component

Process
recommendation

Pretrained
ML-algorithm
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Approach: Reinforcement Learning

AI-based process development

Idea

▪ Replace the

iterative optimisation

by a more general function 𝜇 ∶ 𝐺 ↦ 𝑃∗

Reinforcement Learning [Sutton and Barto, 2018]

▪ Trial-Error-Training in a simulation environment

▪ Algorithm is rewarded if part quality improves

Simulation 𝜑Optimiser 𝒑opt

Parameter 𝒑

Quality 𝑞

Process recommendation
𝒑

Simulation
𝜑

Quality 𝑞

…

…

Catalogue
with generic
geometries

„reward signal“

ML-Analysis
𝜇

Geometry
𝑔

New part geometry Process optimum
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Database with draping samples

Visualisation of learning

AI-based process development
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Images from [Trippe, 2019]

Training

▪ Database with forming simulation samples

▪ Training: Iterative adaption of network parameters to minimise MSE

→ Images well suited to describe arbitrary forming geometries

MSE =
1

𝑛s
෍

𝑗=1

𝑛s

ෝ𝜸𝑗 − 𝜸𝑗
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Pressure-pad assisted fabric forming [Zimmerling et al. 2020, 2022b]

▪ FE fabric model [Poppe et al. 2018, 2019]

on geometry catalogue of cuboids

▪ Process manipulation by pressure pads

▪ Goal: Smoothest possible draw-in
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Application example

AI-based process development
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on geometry catalogue of cuboids
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▪ Goal: Smoothest possible draw-in

9

Application example

AI-based process development
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Training progress with Reinforcement Learning [Zimmerling et al. 2020, 2022b]

▪ Sampling phase to gather observations

▪ Successful minimisation of curvature across…

▪ 14 training geometries

▪ 5 validation geometries (hidden)
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Application example | Training results

AI-based process development
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After training [Zimmerling et al. 2020, 2022b]

▪ Testing on new geometry variants

▪ Doubly symmetric and  mostly convex

Observation

▪ ML recommendations follow geometry variation

▪ Useful process recommendation

▪ Continuation of training for refinement
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Successful extraction of process experience

and application to new geometries
෤𝑔1 ෤𝑔2 ෤𝑔3 ෤𝑔4 ෤𝑔5 = 𝑔dd
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[Zimmerling et al. 2022b]
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Application example | Training results

AI-based process development
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Successful extraction of process experience

and application to new geometries
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AI-based process development
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Performance comparison

▪ Conventional (genetic algorithm)

▪ AI-approach (geometry-informed)

Observation

▪ Fewer simulations required for optimum

▪ AI more efficient than conventional

→ Utilise ‘knowledge’ from previous, generic samples
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Once trained, such a generalised ML-model guides

the optimiser and overall speeds up the optimisation 

Application example | Training results and Summary

AI-based process development
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Reconfigurable tool

▪ Base plate to mount tool blocks

→ multiple geometries possible

▪ Frame-mounted clamps control draw-in

▪ Conclusion: AI gives useful process advise*

Following AI-recommendations…

AI-based process development

‚Neutral‘ ‚ML‘

SAMPE Summit 2024 
Paris, France

*: but is extremely data-intensive
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Reconfigurable tool

▪ Base plate to mount tool blocks

→ multiple geometries possible

▪ Frame-mounted clamps control draw-in

▪ Conclusion: AI gives useful process advise*

Reading the smallprint…

The Asterisk

‚Neutral‘ ‚ML‘

SAMPE Summit 2024 
Paris, France

*: but is extremely data-intensive

*: but is extremely data-intensive
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AI training data for process modelling

▪ Neural networks require

expensive training data...

→ Data-efficiency decisive!

Textile forming with a clamping frame [Albrecht et al., 2019]

▪ 60 spring-guided grippers control the process

▪ Goal: Data-driven model 𝜇: 𝐶 ↦ 𝑄

▪ Accurate model with little data possible?
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Not all data are created equal…

AI-assisted process modelling

SAMPE Summit 2024 
Paris, France

Quality 𝑄Clamping 𝐶

ID 𝒄𝟏 𝒄𝟐 …

1 0.123 2.384 …

2 4.241 0.853 …

… … … …

𝑛 9.565 2.853 …

ID 𝒒𝟏 𝒒𝟐 …

1 231.2 241.8 …

2 235.6 231.2 …

… … … …

𝑛 239.1 229.9 …
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Observation

▪ All models improve with more data

▪ Preprocessing the data

improves model accuracy

▪ Domain knowledge

outperforms data-science
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Engineering knowledge boosts AI-models

→ Smart data beats big data

Not all data are created equal…

AI-assisted process modelling
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Generalising knowledge

▪ Domain knowledge often case-specific

▪ Difficult to transfer between domains

→ more general description necessary

Physics-informed AI

▪ Integration of physics into training [Raissi et al. 2019]

→ physically-consistent AI [Würth 2023, Würth2024]
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Physics-informed AI

Introducing more knowledge

SAMPE Summit 2024 
Paris, France
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Integration of physics [Würth 2023]

▪ Physical laws are expressed as PDEs

▪ Example: Heat equation

▪ Neural network learns to solve PDEs

→ Physics-consistent AI model without data
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Physics-informed AI

Introducing more knowledge

SAMPE Summit 2024 
Paris, France
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Example [Würth 2023]

▪ Simplified autoclave curing of a thick CFRP plate

▪ AI predicts temperature and

degree of cure over time

▪ Accurate solution of the physics

with <2% deviation to FEM

▪ No simulation data required
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Physics-informed AI 

Introducing more knowledge

SAMPE Summit 2024 
Paris, France
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Neural FE-solver [Würth2024]

▪ Integration of physics-informed AI

into Finite-Element solver

▪ Learn to solve PDE on small training meshes (< 1000 nodes)

▪ Deployment on new meshes

▪ Heat exchanger (>100 000 nodes)

▪ Resin curing of a hollow cylinder (non-linear PDE)

21

Physics-informed AI – Application example

Introducing more knowledge

SAMPE Summit 2024 
Paris, France
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Neural FE-solver [Würth2024]

▪ Integration of physics-informed AI

into Finite-Element solver

▪ Learn to solve PDE on small training meshes (< 1000 nodes)
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▪ Heat exchanger (>100 000 nodes)

▪ Resin curing of a hollow cylinder (non-linear PDE)
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Physics-informed AI – Application example

Introducing more knowledge

SAMPE Summit 2024 
Paris, France
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AI-based process engineering

▪ Data-driven AI offers the means to

simulate and optimise processes…

▪ … but data acquisition is difficult

▪ Engineering knowledge required

to make AI applicable for development

23

Quo vadis, ML-based process engineering?

Summary & Outlook

SAMPE Summit 2024 
Paris, France

Virtual process
engineering with AI

Data science

Engineering &
Simulation

Algorithms and
networks

process
understanding

AI and Engineering combined presage

great potential for virtual process engineering
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