

AI and Simulation for Efficient Composite Manufacturing Process Development

SAMPE Summit

04 March 2024

Paris, France

Dr.-Ing. Clemens Zimmerling

Karlsruher Institute of Technology (KIT) Institute of Vehicle Systems Technology – Lightweight Design

SAMPE Summit 2024 AI and Simulation for Efficient Composite Manufacturing Process Development **Clemens Zimmerling** Paris, France

\rightarrow Generating an intended state

Now: Process surveillance

- Sensor monitoring
- Process control
- Quality inspection,...
 - \rightarrow *Maintaining* an intended state

Next: Process development

- Feedback on ideas
- Issue recommendations
- **Efficient Optimisation**

Al in Manufacturing

State of the Art

Motivation

Lightweight Engineering

Lightweight potential \leftrightarrow Engineering efforts

Process simulation for engineering design

- Reduction of expensive prototype trials
- ÷ Computation efforts (iterative optimisation!)

Goal

SAMPE Summit 2024

Paris, France

Accelerate virtual process development by AI

adapted from [Kärger et al. 2015]

Karlsruher Institut für Technolog

Conceptual view

Example: virtual process optimisation

- Goal: p_{opt} with $q_{opt} = q(p_{opt})^{!} \rightarrow \min$
- Classical approach: Optimisation algorithms

Challenge

Complex objectives → computation time grows

Increase efficiency by AI

- Integration of "prior knowledge" into optimisation
- Thought experiment

Lightweight Engineering Institute of Vehicle System Technology

Idea: Combine simulation and AI

Virtual ,process experience'

 Physics-based simulations as a proxy of actual experiments

- AI learns governing process dynamics
 - → after training, AI gives recommendations for new geometries

Approach: Reinforcement Learning

Lightweight Engineering

Visualisation of learning

Training

 \rightarrow

Database with forming simulation samples Training: Iterative adaption of network parameters to minimise MSE Images well suited to describe arbitrary forming geometries 10°

0

0

10

20

ML-Training iteration

30

60°

Lightweight Engineering

Institute of Vehicle System Technology

Images from [Trippe, 2019]

SAMPE Summit 2024Al and Simulation for Efficient Composite Manufacturing Process DevelopmentParis, FranceClemens Zimmerling

Database with draping samples

٠.

Application example

Pressure-pad assisted fabric forming [Zimmerling et al. 2020, 2022b]

- FE fabric model [Poppe et al. 2018, 2019] on geometry catalogue of cuboids
- Process manipulation by pressure pads
- Goal: Smoothest possible draw-in

Application example

Karlsruher Institut für Technologie

Pressure-pad assisted fabric forming [Zimmerling et al. 2020, 2022b]

- FE fabric model [Poppe et al. 2018, 2019] on geometry catalogue of cuboids
- Process manipulation by pressure pads
- Goal: Smoothest possible draw-in

 W_2

 p_1 in mm

SAMPE Summit 2024 AI and Simulation for Efficient Composite Manufacturing Process Development **Clemens Zimmerling** Paris, France

Institute of Vehicle System Technology

Application example | Training results

Training progress with Reinforcement Learning [Zimmerling et al. 2020, 2022b]

- Sampling phase to gather observations
- Successful minimisation of curvature across...
 - 14 training geometries
 - 5 validation geometries (hidden)

SAMPE Summit 2024Al and Simulation for Efficient Composite Manufacturing Process DevelopmentParis, FranceClemens Zimmerling

Application example | Training results

After training [Zimmerling et al. 2020, 2022b]

- Testing on new geometry variants
 - Doubly symmetric and mostly convex

Observation

11

- ML recommendations follow geometry variation
- Useful process recommendation
- Continuation of training for refinement

Lightweight Engineering Institute of Vehicle System Technology

Application example | Training results

After training [Zimmerling et al. 2020, 2022b]

- Testing on new geometry variants
 - Doubly symmetric and mostly convex

Observation

- ML recommendations follow geometry variation
- Useful process recommendation
- Continuation of training for refinement

Lightweight Engineering

Institute of Vehicle System Technology

[Zimmerling et al. 2022b]

SAMPE Summit 2024Al and Simulation for Efficient Composite Manufacturing Process DevelopmentParis, FranceClemens Zimmerling

Application example | Training results and Summary

Performance comparison

- Conventional (genetic algorithm)
- Al-approach (geometry-informed)

Observation

- Fewer simulations required for optimum
- AI more efficient than conventional
 - $\rightarrow\,$ Utilise 'knowledge' from previous, generic samples

 Once trained, such a generalised ML-model guides the optimiser and overall speeds up the optimisation

Following AI-recommendations...

Reconfigurable tool

- Base plate to mount tool blocks \rightarrow multiple geometries possible
- Frame-mounted clamps control draw-in
- Conclusion: AI gives useful process advise*

*: but is extremely data-intensive

Lightweight Engineering

The Asterisk

Reading the smallprint...

Lightweight Engineering Institute of Vehicle System Technology

AI-assisted process modelling

Karlsruher Institut für Technologie

Not all data are created equal...

AI training data for process modelling

- Neural networks require expensive training data...
 - \rightarrow Data-efficiency decisive!

Textile forming with a clamping frame [Albrecht et al., 2019]

- 60 spring-guided grippers control the process
- Goal: Data-driven model $\mu: C \mapsto Q$
- Accurate model with little data possible?

Lightweight Engineering Institute of Vehicle System Technology

AI-assisted process modelling

Not all data are created equal...

Observation

- All models improve with more data
- Preprocessing the data improves model accuracy
- Domain knowledge outperforms data-science

Lightweight Engineering

Institute of Vehicle System Technology

Physics-informed AI

Generalising knowledge

- Domain knowledge often case-specific
- Difficult to transfer between domains
 - \rightarrow more general description necessary

Integration of physics into training [Raissi et al. 2019]

→ physically-consistent AI ^[Würth 2023, Würth2024]

Physics-informed AI

Integration of physics [Würth 2023]

- Physical laws are expressed as PDEs
 - Example: Heat equation

$$\frac{\partial T_1}{\partial t} = a \,\Delta T_1 + q_1 \iff \frac{\partial T_1}{\partial t} - a \,\Delta T_1 - q_1 = 0$$

- Neural network learns to solve PDEs
 - \rightarrow Physics-consistent AI model without data

Physics-informed AI

Example [Würth 2023]

- Simplified autoclave curing of a thick CFRP plate
- AI predicts temperature and degree of cure over time
- Accurate solution of the physics with <2% deviation to FEM
- No simulation data required

Lightweight Engineering Institute of Vehicle System Technology

Physics-informed AI – Application example

- Integration of physics-informed AI into Finite-Element solver
 - Learn to solve PDE on small training meshes (< 1000 nodes)</p>
 - Deployment on new meshes

AI solves PDE like FE-solver, ...

- Heat exchanger (>100 000 nodes)
- Resin curing of a hollow cylinder (non-linear PDE)

Lightweight Engineering

Institute of Vehicle System Technology

FAST

 \checkmark

Physics-informed AI – Application example

Neural FE-solver [Würth2024]

- Integration of physics-informed AI into Finite-Element solver
 - Learn to solve PDE on small training meshes (< 1000 nodes)</p>
 - Deployment on new meshes

AI solves PDE like FE-solver, ...

- Heat exchanger (>100 000 nodes)
- Resin curing of a hollow cylinder (non-linear PDE)

SAMPE Summit 2024AI and Simulation for Efficient Composite Manufacturing Process DevelopmentParis, FranceClemens Zimmerling

... yet much faster

 \checkmark

Summary & Outlook

Quo vadis, ML-based process engineering?

Al-based process engineering

- Data-driven AI offers the means to simulate and optimise processes...
- ... but data acquisition is difficult
- Engineering knowledge required to make AI applicable for development

SAMPE Summit 2024Al and Simulation for Efficient Composite Manufacturing Process DevelopmentParis, FranceClemens Zimmerling

Alphabetical order

Albrecht et al. 2019	F. Albrecht, C. Zimmerling, C. Poppe, L. Kärger, F. Henning: Development of a modular draping test bench for analysis of infiltrated woven fabrics in wet compression molding. Key Engineering Materials, 809, 2019
Bonte et al. 2007	M.H.A. Bonte, A.H. van den Boogaard, J. Huétink: A Metamodel Based Optimisation Algorithm for Metal Forming Processes, Advanced Methods in Material Forming, 2007
Guo et al. 2016	X. Guo,W. Li and F. Iorio: Convolutional neural networks for steady flow approximation. <i>Proceedings of the 22nd ACM</i> , 2016
Kärger et al. 2015	L. Kärger, A. Bernath, F. Fritz, S. Galkin, D. magagnato, A. Oeckerath, A. Schön, F. Henning: Development and validation of a CAE chain for unidirectional fibre reinforced composite components, <i>Composite Structures</i> , 132, 2015
Pfrommer et al. 2018	J. Pfrommer, C. Zimmerling, J. Liu, F. Henning, L. Kärger, J. Beyerer: Optimisation of manufacturing process parameters using eep neural networks as surrogate models, <i>Procedia CIRP</i> , 72, 2018
Poppe et al. 2018	C. Poppe, D. Dörr, F. Henning, L. Kärger: Experimental and numerical investigation of the shear behaviour of infiltrated woven fabrics, Composites Part A, 114, 2018.
Poppe et al. 2019	C. Poppe, T. Rosenkranz, D. Dörr, L. Kärger: Comparative experimental and numerical analysis of bending behaviour of dry and low viscous infiltrated woven fabrics, Composite Part A, 124, 2019.
Raissi et al. 2019	M. Raissi, P. Perdikaris and G. E. Karniadakis: PINNs: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Comput. Physics, 378, 2019.

Alphabetical order

Sutton and Barto 2018	R.S. Sutton and A. Barto: Reinforcement learning - An introduction. <i>MIT Press</i> , Cambridge/USA and London/United Kingdom, 2 edition, 2018
Trippe 2019	D. Trippe: Untersuchung der Eignung tiefer neuronaler Netze zur zeiteffizienten Bewertung der Drapierbarkeit endlosfaserverstärkter Bauteile. Masterarbeit (Betreuer C. Zimmerling), Karlsruher Institut für Technologie - Institute für Fahrzeugsystemtechnik (KIT-FAST), Karlsruhe, 2019.
Würth 2023	T. Würth, C. Krauß, C. Zimmerling, L. Kärger: Physics-informed neural networks for data-free surrogate modelling and engineering optimization – An example from composite manufacturing, <i>Materials&Design</i> , Vol. 231, Art. 112034, DOI: 10.1016/j.matdes.2023.112034, 2024
Würth 2024	T. Würth, N. Freymuth, C. Zimmerling, G. Neumann, L. Kärger: Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers for non-stationary and nonlinear simulations on arbitrary meshes, submitted to CMAME, preprint available under DOI 10.48550/arXiv.2402.10681
Zimmerling et al. 2019	C. Zimmerling, D. Trippe, B. Fengler, L. Kärger: An approach for rapid prediction of textile draping results for variable composite component geometries using deep neural networks. AIP Conference Proceedings, 2113: Art. 020007, ESAFORM 2019, Vittoria-Gasteiz/Spain, 2019
Zimmerling et al. 2020	C. Zimmerling, C. Poppe, L. Kärger: Estimating optimum process parameters in textile draping of variable part geometries - A reinforcement learning approach. Procedia manufacturing, 47, ESAFORM 2020, Cottbus/Germany, 2020
Zimmerling et al. 2021	C. Zimmerling, P. Schindler, J. Seuffert, L. Kärger: Deep neural networks as surrogate models for time-efficient manufacturing process optimisation. PoPuPS of ULiège Library, DOI: 10.25518/esaform21.3882, ESAFORM 2021, Liège/Belgium, 2021
Zimmerling et al. 2022	C. Zimmerling, B. Fengler, L. Kärger: Formability Assessment of Variable Geometries using Machine Learning – Analysis of the Influence of the Database. <i>Key Engineering Materials</i> , 926, ESAFORM 2022, Braga/Portugal, 2022
Zimmerling et al. 2022b	C. Zimmerling, C. Poppe, O. Stein, L. Kärger: Optimisation of manufacturing process parameters for variable component geometries using reinforcement learning, Materials and Design, 214, 2022

Thank you!

Contact:

Dr.-Ing. Clemens Zimmerling clemens.zimmerling@kit.edu +49 721 608 45409

KIT Karlsruhe Institute of Technology **FAST** Institute of Vehicle System Technology

LB Lightweight Engineering

Head of Institute Prof. Dr.-Ing. Luise Kärger luise.kaerger@kit.edu +49 721 608-45386

Prof. Dr.-Ing. Frank Henning frank.henning@kit.edu +49 721 608-45905 frank.henning@ict.fraunhofer.de +49 721 4640-711

Rintheimer Querallee 2, 76131 Karlsruhe, Germany www.fast.kit.edu

Institute of Vehicle System Technology

Lightweight Engineering FAS

SAMPE Summit 2024 AI and Simulation for Efficient Composite Manufacturing Process Development **Clemens Zimmerling**

Paris, France