KIT | KIT-Bibliothek | Impressum | Datenschutz

Knowledge Graph Embeddings: Open Challenges and Opportunities

Biswas, Russa ORCID iD icon 1; Kaffee, Lucie-Aimée; Cochez, Michael; Dumbrava, Stefania; Jendal, Theis E.; Lissandrini, Matteo; Lopez, Vanessa; Mencía, Eneldo Loza; Paulheim, Heiko; Sack, Harald 1; Vakaj, Edlira Kalemi; Melo, Gerard de
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

While Knowledge Graphs (KGs) have long been used as valuable sources of structured knowledge, in recent years, KG embeddings have become a popular way of deriving numeric vector representations from them, for instance, to support knowledge graph completion and similarity search. This study surveys advances as well as open challenges and opportunities in this area. For instance, the most prominent embedding models focus primarily on structural information. However, there has been notable progress in incorporating further aspects, such as semantics, multi-modal, temporal, and multilingual features. Most embedding techniques are assessed using human-curated benchmark datasets for the task of link prediction, neglecting other important real-world KG applications. Many approaches assume a static knowledge graph and are unable to account for dynamic changes. Additionally, KG embeddings may encode data biases and lack interpretability. Overall, this study provides an overview of promising research avenues to learn improved KG embeddings that can address a more diverse range of use cases.


Verlagsausgabe §
DOI: 10.5445/IR/1000169247
Veröffentlicht am 12.03.2024
Originalveröffentlichung
DOI: 10.4230/tgdk.1.1.4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2942-7517
KITopen-ID: 1000169247
Erschienen in Transactions on Graph Data and Knowledge
Band 1
Heft 1
Seiten 4:1–4:32
Externe Relationen Abstract/Volltext
Schlagwörter Knowledge Graphs, KG embeddings, Link prediction, KG applications, Computing methodologies → Machine learning approaches, Computing methodologies → Semantic networks
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page