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Kohn’s theorem places strong constraints on the cyclotron response of Fermi liquids. Recent observations of
a doping dependence in the cyclotron mass of La2−xSrxCuO4 [Legros et al., Phys. Rev. B 106, 195110 (2022)]
are therefore surprising because the cyclotron mass can only be renormalized by large momentum umklapp
interactions, which are not expected to vary significantly with doping. We show that a version of Kohn’s theorem
continues to apply to disorder-free non-Fermi-liquids with a critical boson near zero momentum. However,
marginal Fermi liquids arising from a spatially random Yukawa coupling between the electrons and bosons do
give rise to significant corrections to the cyclotron mass that we compute. This is the same theory that yields
linear-in-temperature resistivity and other properties of strange metals at zero fields [Patel et al., Science 381,
790 (2023)].
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I. INTRODUCTION

In modern condensed-matter physics, magnetic field re-
sponses have become the go-to tool for probing Fermi
surfaces (FSs) of conventional Fermi liquids (FLs) [1]. In this
work, we explore the possibility of utilizing such responses to
uncover novel physics beyond the Landau Fermi liquid theory,
namely non-Fermi-liquids (NFLs) and marginal Fermi liquids
(MFLs).

The first probe we discuss is the cyclotron resonance,
which refers to the collective motion of the electrons un-
der an external magnetic field. The collective motion can be
measured through optical conductivity which reflects as a res-
onance at the cyclotron frequency ω∗

c = eB/mc, where mc is
the cyclotron mass. Legros et al. [2] have recently studied the
cyclotron resonance of the cuprate compound La2−xSrxCuO4

using time-domain THz spectroscopy. They observed that the
cyclotron mass in cuprates is renormalized away from the
band mass as a function of doping. This observation is in
contrast with Kohn’s theorem [3,4] stating that the cyclotron
frequency of a translational and Galilean invariant electron
gas is not altered by electron-electron interaction. Therefore,
a candidate theory to explain the experiment should break at
least one of these two symmetries. In Ref. [4], the effect of
umklapp scattering was shown to be nonzero but relatively
small, so we expect the renormalization of the cyclotron mass
to be due to disorder effects. In this manuscript, we exam-
ine the effect of the usual potential disorder and the more
novel interaction disorder [5] which gave rise to a universal
mechanism for strange metallic behaviors. We find that the
interaction disorder can more effectively renormalize the cy-
clotron mass and produce a sharper resonance peak.

The second probe we discuss in this paper is quantum
oscillation, referring to the phenomenon that various physical

quantities oscillate as a function of 1/B with a period set
by the Fermi surface cross section. We propose that certain
non-Fermi-liquid or marginal-Fermi liquid aspects can be ex-
tracted from the local density states ρloc(ε, B), where ε is the
energy. First, while the 1/B oscillation in ρloc(ε, B) still has
a period set by the Fermi surface cross section, the Dingle
factor as a function of ε contains information about the single-
particle scattering rate, and so it directly yields information
about NFL/MFL aspects. Second, by measuring ρloc(ε, B) at
fixed B and scanning ε, one can observe an oscillatory re-
sponse in ε. In a Fermi liquid, the period of such an oscillation
is given by the bare cyclotron frequency ωc, but in an NFL or
MFL, the oscillation becomes aperiodic in the sense that the
period grows at higher ε.

To illustrate our proposal, we will consider two types of
theoretical models based on the previously developed large-
N formalism [5–7] of a strongly interacting Fermi surface:
the g-model and the g′-model. The g-model [6], inspired by
Sachdev-Ye-Kitaev models [8–11], consists of N → ∞ fla-
vors of complex fermions ψi with identical Fermi surfaces
coupled to N flavors of gapless real boson φl through ran-
dom Yukawa couplings in flavors. Despite the randomness
in flavor indices, the model is translational invariant and its
large-N saddle point describes a non-Fermi-liquid similar to
those obtained from Eliashberg equations [12,13]. The g′-
model [5,6,14] can be obtained from the g-model by making
the Yukawa couplings random in space as well. The large-
N saddle point of the g′ model describes a marginal Fermi
liquid with strange metal behavior, including the linear-in-
temperature resistivity.

The rest of the paper is organized as follows: In Sec. II, we
investigate the g′-model, which contains interaction disorder
and is technically simpler. We review its formulation in the
large-N limit and analyze the saddle point equations in a
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uniform magnetic field both analytically and numerically.
Next we discuss its quantum oscillation responses in the lo-
cal density of states and the de Haas–van Alphen effect. To
conclude the section, we compute the optical conductivity of
the model and discuss the cyclotron resonance. In Sec. III,
we perform a parallel analysis of the translational invariant
g-model. In particular, we show that optical conductivity of
the model is exactly of the Drude form, reestablishing Kohn’s
theorem in the context of NFLs.

II. DISORDERED g′-MODEL

A. Action

We review the g′-model in 2 + 1D spacetime which has
appeared in previous works [5,6]. The model consists of N
flavors of complex fermions ψi and real bosons φl , coupled
through a Yukawa coupling random in both flavor and space.
The action of the model is

S =
∫

dτ
∑

�k

N∑
i=1

ψ
†
i�k (τ )[∂τ + ε�k+ �A − μ]ψi�k (τ )

+ 1

2

∫
dτ

N∑
i=1

∑
�q

φi,�q
[−∂2

τ + ω2
�q + m2

b

]
φi,−�q(τ )

+ 1

N

∫
d2�rdτg′

i jl (�r)ψ†
i (�r, τ )ψ j (�r, τ )φl (�r, τ ). (2.1)

In Eq. (2.1), ε�k+ �A is the fermion dispersion, which we take to

be ε�k = �k2/(2m). �A(x) = (−eBx2, 0, 0) is the vector potential,
where B is the magnetic field. The boson dispersion is ω2

�q = �q2

where we have set the “velocity of light” to unity. The bosons
also possess a bare mass m2

b which will be tuned to criticality
(there is some subtlety in the approach to criticality due to
irrelevant operators [6], but we focus only on the critical point
near zero temperature and ignore these issues). The Yukawa
couplings g′ are Gaussian spatially random variables satisfy-
ing

g′
i jl (�r) = 0, g′∗

i jl (�r)g′
abc(�r′) = g′2δ2(�r − �r′)δiaδ jbδlc. (2.2)

As we are interested in the properties of the normal phase, we
have allowed the couplings to be complex to suppress super-
conductivity. For theoretical simplicity we do not include any
potential disorder, but we will comment on its effect later.

We take the N → ∞ limit, and average over disorder con-
figurations (at leading large N order there is no difference
between anneal or quench average [15]) to obtain the G-�
action:

S

N
= − ln det(∂τ + εk+A − μ + �)

+ 1

2
ln det

(−∂2
τ + ω2

q + m2
b − �

)
−

∫
d3xd3x′

(
�(x′, x)G(x, x′) − 1

2
�(x′, x)D(x, x′)

)

+
∫

d3xd3x′ g
′2

2
G(x, x′)G(x′, x)D(x, x′)δ̄(�x − �x′).

(2.3)

Here G is the fermion Green’s function, � is the fermion
self-energy, D is the boson Green’s function, and � is the
boson self-energy. The determinant is acting on the function-
als of spacetime functions. Here and later we use x to denote
spacetime coordinates, and we use �x to denote its spatial part.
Also we will use δ̄ to represent spatial delta functions.

B. Saddle point equations

Taking the functional derivatives of Eq. (2.3), we obtain the
saddle point equations

G(x, y) = (−∂τ + μ − εk+A − �)−1(x, y), (2.4)

D(x, y) = (−∂2
τ + ω2

q − �
)−1

(x, y), (2.5)

�(x, y) = g′2G(x, y)D(y, x)δ̄(�x − �y), (2.6)

�(x, y) = −g′2G(x, y)G(y, x)δ̄(�x − �y), (2.7)

where the inverse is in the functional sense.

1. Landau level basis

We proceed to analyze these equations in the presence
of magnetic field. Unless otherwise stated, we will work at
zero temperature. It is useful to transform to the Landau level
basis, where Eq. (2.4) will become diagonal. Since �(x, y)
is proportional to spatial δ functions, together with (average)
translational invariance, it is proportional to the identity ma-
trix in the Landau level basis, i.e., it is only a function of
frequency [14]. We can now expand the Green’s function as

G(�x, �y, iω) =
∑

n

∫
dk

2π
Gn(iω)φnk (�x)φ∗

nk (�y), (2.8)

Gn(iω) = 1

iω + μ − (
n + 1

2

)
ωc − �(iω)

. (2.9)

Here we have Fourier-transformed the imaginary time τ into
Matsubara frequency iω. ωc = eB/m is the bare cyclotron
frequency and m is the bare band mass. The sum over n is
over Landau levels and the integral over k is over the residual
momentum in the Landau gauge. The functions φnk are the
Landau level wave functions:

φnk (�x) = eikx1

√
�B

ϕn

(
x2

�B
− k�B

)
, (2.10)

where �B = 1/
√

eB and ϕn(x) is the normalized Hermite func-
tion

ϕn(z) = 1√
2nn!

√
π

Hn(z)e− z2

2 , (2.11)

where Hn(x) is the physicist’s Hermite polynomial. Here
x1, x2 denote the two components of spatial coordinate �x.

The k-integral in (2.8) can be calculated by mapping to
simple harmonic oscillator to yield

G(�x, �y, iω) =
∑

n

Gn(iω)
eiθB (�x,�y)

2π�2
B

× exp

(
−|�x − �y|2

4�2
B

)
Ln

( |�x − �y|2
2�2

B

)
. (2.12)
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Here θB(�x, �y) = (x1−y1 )(x2+y2 )
2�2

B
is a gauge-dependent phase fac-

tor that breaks translational invariance because G is not gauge
invariant, and Ln is the Laguerre polynomial. A similar result
has appeared before in Ref. [16].

2. Boson self-energy

We now simplify Eq. (2.7); due to the δ function we can set
�x = �y in Eq. (2.12), and consider an auxiliary Green’s function

Ḡ(iω) = −ωc

π

∑
n

Gn(iω). (2.13)

In the large kF limit, most contributions of the sum arise from
near the Fermi surface, and we can approximate the sum to be
over all integers, yielding

Ḡ(iω) = tan
iω + μ − �(iω)

ωc
. (2.14)

The boson self-energy then reads

�(i�) = −g′2m2

4

∫
dω

2π
Ḡ(iω)Ḡ(iω + i�). (2.15)

These equations are consistent with the zero-field limit. In
the ωc → 0 limit, Ḡ(iω) → i sgn ω, and we can compute the
integral (2.15) and obtain

�ωc→0(i�) − �ωc→0(0) = −g′2m2

4π
|�|. (2.16)

3. Fermion self-energy

Next we simplify Eq. (2.6). We will need the local boson
Green’s function, which is

D̄(iν) =
∫

d2 �q
(2π )2

1

ν2 + q2 − �̄(iν)

= 1

4π
ln

ν2 − �̄(iν) + �2
q

ν2 − �̄(iν)
. (2.17)

Here the boson is critical by setting �̄(iν) = �(iν) − �(0)
through tuning the boson mass, and �q is the momentum
cutoff for the boson.

The fermion Green’s function then reads

�(iω) = −g′2m

2

∫
dν

2π
D̄(iν)Ḡ(iν + iω). (2.18)

In the ωc → 0 limit, we recover the marginal Fermi liquid
result

�ωc→0(iω) = −i
g′2mω

8π2
ln

e�2
q

γ |ω| , (2.19)

agreeing with [5].

C. Numerical solution of the saddle point equations

In this part, we analyze the saddle point equations (2.4)–
(2.7) numerically in the real frequency domain.

1. Method

We adapt the saddle point equations with additional cutoffs
to allow for numerical solution. For the auxiliary Green’s

function Ḡ, we insert bandwidth cutoffs for the Landau level
sum:

Ḡ(iω) = −ωc

π

n+−1∑
n=n−

1

iω + μ − �(iω) − (n + 1/2)ωc

= − 1

π

[
ψ

(
1

2
+ n− − iω − �(iω)

ωc

)

− ψ

(
1

2
+ n− + iω − �(iω)

ωc

)]
. (2.20)

Here the cutoffs are set by n+ = −n− = W/(2ωc) where W is
the bandwidth, and we focus on half filling by setting μ = 0.

Next, we analytically continue to real frequencies, yielding
the retarded Green’s function

ḠR(ω) = − 1

π

[
ψ

(
1

2
+ n− − ω + iη − �R(ω)

ωc

)

−ψ

(
1

2
+ n− + ω + iη − �R(ω)

ωc

)]
. (2.21)

Here η is theoretically a positive infinitesimal quantity, but in
numerics it will be a small finite number.

Similarly, the local boson’s Green’s function can be written
as

D̄R(ν) = 1

4π
ln

(η − iν)2 − �̄R(ν) + �2
q

(η − iν)2 − �̄R(ν)
. (2.22)

The self-energies are more conveniently expressed
in the time-domain [the Fourier convention is A(t ) =∫

dω
2π

A(ω)e−iωt ]. Following [17], we compute the Matsubara
summation in Eqs. (2.15) and (2.18) and deform the integra-
tion contour to the real axis, obtaining

�R(t ) = −g′2m2

2
Re[ḠR(t )G̃(t )∗], (2.23)

�R(t ) = g′2m

2
[ḠR(t )D̃(t )∗ − G̃(t )D̄R(t )]. (2.24)

Here we have introduced two additional functions G̃ and D̃,
which are related to the spectral functions of Ḡ and D̄,

G̃(ω) = −2nF (ω)ImḠR(ω), (2.25)

D̃(ω) = −2nB(ω)ImD̄R(ω), (2.26)

and nF (nB) is the Fermi-Dirac (Bose-Einstein) function.
Equations (2.21), (2.22), (2.23), and (2.24) can be solved

numerically using the standard fast Fourier transform + it-
eration method. The frequency domain is represented by a
grid [−ωmax, ωmax) with spacing �ω. The time domain is
discretized accordingly to [0, Tmax) with spacing δt . The time
grid is related to frequency grid via the relations Tmax =
2π/(�ω) and �t = π/ωmax.

2. Result

In this section, we present the results of the numerical so-
lution. The parameters we used are ωmax = 16, �ω = 0.001,
W = 4, �q = 2, η = 10−4, ωc = 0.1, m = 1. We present
the result in terms of the fermion local density of states
ρloc(ω) = ImḠR(ω) (Figs. 1 and 4), the imaginary part of
the fermion self-energy Im�R(ω) (Figs. 2 and 5) and the
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FIG. 1. The fermion local density of states ρloc(ε) at small cou-
pling λ = 1/(2π ). The blue curve shows the zero-field result and
the yellow curve shows the finite-field result with bare cyclotron
frequency ωc = 0.1. The inset plots the position of minima εn vs
index n together with a power-law fitting. The extracted power-law is
close to linear, and minima spacing �0 is also close to bare cyclotron
mass ωc. Because of the small coupling, a decade of oscillations in
ρloc(ε) is visible.

imaginary part of the boson self-energy Im�R(ω) (Figs. 3 and
6). We have converted the disordered Yukawa-SYK coupling
g′ to a dimensionless parameter λ = mg′2/(2π ). We verified
the fermionic sum-rule that |1 − 1

W

∫
dωρloc(ω)| < 10−3. We

also verified that in the zero-field case ωc = 0, we recover
the marginal Fermi liquid |ω| behavior in Im�R(ω) at low
energies.

In Figs. 1–3, we used a small coupling constant g′ = 1,
and in Figs. 4–6 we chose a larger coupling g′ = 3. In the
former case, |Im�R(ω)| � |ω| and the system is similar to
free fermions, and in the latter case the marginal Fermi liquid
self-energy is more pronounced. We found that the marginal

FIG. 2. The imaginary part of fermion self-energy Im�R(ω) at
small coupling λ = 1/(2π ). The blue curve shows the zero-field
result which asymptotes to |ω| at small frequencies, and the yellow
curve shows the finite-field result with bare cyclotron frequency
ωc = 0.1. The shaded regions represent the numerical uncertainty of
the finite-field result. The inset plots the results on a larger frequency
scale and confirms that Im�R vanishes at frequencies above the
bandwidth.

FIG. 3. The imaginary part of the boson self-energy Im�R(ω)
at small coupling λ = 1/(2π ). The blue curve shows the zero-field
result which is linear in ω and the yellow curve shows the finite-field
result with bare cyclotron frequency ωc = 0.1. The shaded regions
represent the numerical uncertainty of the finite-field result. The inset
plots the result on a larger frequency scale.

Fermi liquid and oscillatory behaviors are in competition with
each other that oscillatory effects are strong only when the
marginal Fermi liquid is weak. This behavior can be qualita-
tively understood by rewriting Eq. (2.14) as

ḠR(ω) =
sin

(
ω+μ−Re�R

ωc/2

) + i sinh 2Im�R
ωc

cos
(

ω+μ−Re�R

ωc/2

) + cosh 2Im�R
ωc

. (2.27)

According to Eq. (2.27) the oscillatory part of ḠR(ω) is con-
trolled exponentially by Im�R/ωc. When |Im�R| > ωc, it is
justified to do a first-order expansion in exp(−|Im�R/ωc|),
by only retaining oscillations in the Green’s function ḠR(ω)
and using the zero-field limit for �R(ω).

FIG. 4. Same as Fig. 1 but at a larger coupling λ = 9/(2π ). At
this stronger coupling, the oscillation in ρloc(ε) as a function of
ε has been damped with less minima visible. As the inset shows,
the positions of oscillation minima εn has deviated from the linear
distribution and the typical spacing �0 is significantly smaller than
the bare cyclotron frequency ωc.
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FIG. 5. Same as Fig. 2 but at a larger coupling λ = 9/(2π ).

D. Local density of states

In this part, we analyze the local density of states of the
g′-model. Following [15], we compute the local Green’s func-
tion

Gloc(iω) = 1

2π�2
B

∞∑
n=0

1

iω + μ − �(iω) − (
n + 1

2

)
ωc

.

(2.28)

We assume the large Fermi surface limit such that the Landau
level sum can be extended to −∞. Using the Poisson resum-
mation formula, we obtain

Gloc(iω) = eB

2π

∫ ∞

−∞
dn

∞∑
k=−∞

e2π ikn

iω + μ − �(iω) − (
n + 1

2

)
ωc

.

(2.29)

We analytically continue to the retarded Green’s function
iω → ω + iη, and evaluate the n-integral using contour meth-
ods, we obtain the local density of states

ρloc(ω) = −2 ImGR,loc(ω)

= m + 2m
∞∑

k=1

e− 2πk|�′′
R (ω)|

ωc

× cos

(
2πk

ωc
[ω + μ − �′

R(ω)]

)
. (2.30)

FIG. 6. Same as Fig. 3 but at a larger coupling λ = 9/(2π ).

Here we have decomposed the self-energy into real and imag-
inary parts with �R(ω) = �′

R(ω) + i�′′
R(ω).

The experimental implications of Eq. (2.30) are the follow-
ing:

(i) Because μ 	 |ω − �R(ω)|, the quantum oscillation in
1/B will still show a frequency determined from the Fermi
surface area, similar to a conventional Fermi liquid.

(ii) However, in the marginal Fermi liquid or non-Fermi-
liquid regime |�R(ω)| 	 |ω|, so if a scanning tunneling
microscopy experiment is performed, it can be observed that
the energy (ω) dependence is no longer quasiperiodic (due to
Re�R) with period ωc, and less oscillations in ω can be visible
(due to Im�R), as shown in Figs. 1 and 4.

(iii) Additionally, the Dingle factor exp(− 2πk|�′′
R (ω)|

ωc
) can

also be sensitive to NFL/MFL physics. In particular, the
NFL/MFL interaction will contribute a ω-dependent Dingle
factor, which is distinct from the ω-independent contribution
from potential disorder. It is also possible to differentiate the
NFL/MFL contribution to Dingle factor from the FL contribu-
tions because the former should be much larger than the bare
frequency ω, and ω should be larger than the latter.

Finally we analyze the single-particle spectrum as a func-
tion of temperature at the quantum critical point. Here we
included a finite fermionic cutoff energy W in the numerical
analysis, and we performed the calculation for ωc/W = 0.02
and two values of the dimensionless coupling strength λ =

1
2π

mg′2 at varying T/W . As shown in Figs. 7 and 8, we use
λ = 0.5, which corresponds to weak to moderate coupling,
while λ = 1.75 describes stronger coupling. We observe the
thermal suppression of the Landau-levels, in agreement with
a T -dependent Dingle factor of Eq. (2.30). The effect is again
much more pronounced at strong coupling. Notice, even at
weak coupling the oscillations drift very slightly with temper-
ature, an effect that is absent if we ignore the T -dependence
of the bosonic mass mb(T ) (shown in Fig. 9). The latter is
obtained from the solution of the coupled large-N equations as
is a result of the T -dependence of the bosonic self energy
�(0), that follows for the finite-T version of Eq. (2.15).

E. Magnetization

The magnetization can be calculated from the free energy
via

M(B) = T

V

∂S

∂B
, (2.31)

where S is the saddle-point action defined in (2.3). At the
saddle-point, all implicit dependences of S on G, �, D,�

are canceled out and we only need to include the explicit B
dependence, i.e., the kinetic term.

The magnetization formula is therefore [18]

M(B) = 1

2π�2
B

∑
n

T
∑

iω

Gn(iω)
∂εn

∂B
, (2.32)

where εn = (n + 1/2)ωc. We rewrite the summation using
spectral functions to obtain

M(B) = e2B

2πm

∑
n

(
n + 1

2

) ∫
dz

2π
nF (z)ρn(z), (2.33)
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FIG. 7. Left panels: Fermionic density of states at low energies for different temperature at ωc = 0.02W and dimensionless coupling
constant λ = 0.5, i.e., weak to moderate coupling. Right panels: location of the Landau-level peaks in the spectrum. Landau levels are
essentially equally spaced.

where the spectral function ρn(z) is

ρn(z) = −2 ImGR,n(z)

= −2�′′
R(z)

[z + μ − �′
R(z) − (n + 1/2)ωc]2 + �′′

R(z)2
. (2.34)

We apply the Poisson resummation formula to n and obtain

M(B) = mμ

2πB

∞∑
k=−∞

∫
dznF (z)e

2π ik
ωc

[z+μ−�′
R (z)]e− 2π

ωc
|k�′′

R (z)|

×
[

1 + z − �′
R(z) + i|�′′

R(z)|
μ

]
. (2.35)

Since μ 	 |z − �R(z)|, we expect the magnetization oscilla-
tion in 1/B to be similar to a FL.

F. Transport

1. Formula for conductivity

We start from the Kubo formula

σμν (ω) = 1

S

�
μν
j j (i�) − �

μν
j j (0)

�

∣∣∣∣∣
i�→ω+i0

. (2.36)

Here S is the area of the system, and the current-current
correlator �

μν
j j has the same form as the previous paper [7],

�
μν
j j = �μ,T 1

W −1
� − WMT − WAL

�ν. (2.37)

Here �μ is the bare current vertex, which we describe be-
low. W�, WMT, and WAL are functional kernels that act on
�μ. As discussed in the previous work [7], W� corresponds
to attaching a pair of fermion Green’s functions, and WMT,
WAL generate the Maki-Thompson and Aslamazov-Larkin di-
agrams, respectively.

The bare velocity vertices in the first quantized picture are

vx = m−1(−i∂x − eBy) = − 1

m�B

a + a†

√
2

, (2.38)

vy = −m−1i∂y = 1

m�B

i(a† − a)√
2

. (2.39)

Here a, a† are ladder operators acting on the Landau levels
φnk .
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FIG. 8. Left panels: Fermionic density of states at low energies for different temperature at ωc = 0.02W and dimensionless coupling
constant λ = 1.75, i.e., strong coupling. Right panels: location of the Landau-level peaks in the spectrum. Landau levels are no-longer
essentially equally spaced, an effect caused by the strong renormalization of the real part of the self energy as function of frequency.

Therefore, the bare current vertices are given by

�x
n′k′,nk = − 1√

2m�B

(
√

nδn,n′+1 +
√

n′δn′,n+1)2πδ(k − k′),

(2.40)

�
y
n′k′,nk = i√

2m�B

(
√

n′δn′,n+1 − √
nδn,n′+1)2πδ(k − k′).

(2.41)

FIG. 9. The bosonic thermal mass mb(T ) at weak (λ = 0.5) and
strong couplings (λ = 1.75). For both couplings, the bare boson
mass mb is tuned to criticality in the limit T → 0+.

Here n′(n) denote the Landau level index of the outgoing
(incoming) fermion.

We take the linear combination �± = (�x ± i�y)/2 and
consider

�+
n′k′,nk = − 1√

2m�B

√
n′δn′,n+12πδ(k − k′), (2.42)

�−
n′k′,nk = − 1√

2m�B

√
nδn,n′+12πδ(k − k′). (2.43)

Conductivity in the above basis σ−+ and σ+− corresponds to
the right/left circular polarizations, respectively.

The kernel W� is diagonal in the space of two-point func-
tions:

W�[F ](x′, y′) = G(x′, x)F (x, y)G(y, y′), (2.44)

or in the Landau level-frequency space it reads

W�[F ]n′,n(iω, i�)

= Gn′ (iω + i�/2)Fn′,n(iω, i�)Gn(iω − i�/2). (2.45)

We continue to evaluate σ−+(i�) by treating the MT and
the AL kernels.

2. MT diagram

The MT diagram kernel is

WMT[F ](x, y) = g′2D(x, y)F (x, y)δ(�x − �y). (2.46)

Because of the δ-function, the bare vertex is evaluated at
coincidental spatial points. Using Eq. (2.42) and transforming
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from the Landau level basis to the real space basis, we have

�+(�x, �x) = − 1√
2m�B

∑
n

∫
dk

2π

√
n + 1

1

�B

× ϕn+1(x2/�B − k�B)ϕn(x2/�B − k�B) = 0,

(2.47)

due to the orthogonality of the function ϕn. Therefore,
WMT[�+] = 0. Similar reasonings apply to �− as well.

3. AL diagram

In real space, the AL kernel reads

WAL[F ](x, y) = −g4
∫

d3x′d3y′G(x, y)D(x, x′)D(y′, y)

× [F (x′, y′)G(y′, x′) + F (y′, x′)G(x′, y′)]

× δ(�x′ − �y′)δ(�x − �y), (2.48)

which, for the same reason as the MT diagram, also vanishes
when evaluated on the bare vertices �±.

4. Conductivity

Therefore, the conductivity is given by a single fermion
bubble. The polarization bubble is

�−+
j j (�) = 1

2m2�2
B

gL

∫
dz1dz2

(2π )2

nF (z1) − nF (z2)

z1 − z2 − � − i0

×
∑

n

(n + 1)An+1(z1)An(z2), (2.49)

from which we obtain the dc conductivity

Reσ−+
dc = e2

4m2�2
BS

gL

∫
dz

2π
[−n′

F (z)]

×
∑

n

(n + 1)An+1(z)An(z). (2.50)

Here An(z) = −2 ImGRn(z) is the fermion spectral weight.
gL = eBS/(2π ) is the Landau level degeneracy, which arises

from the k-integral. The summation over n can be evaluated,
yielding

σ xx
dc = 2 Reσ−+

dc = e2

4π

∫
dz

2π

[−4n′
F (z)]�′′(z)

4[�′′(z)]2 + ω2
c

×
[

2�′′(z) + 2[z + μ − �′(z)]

× Imψ

(
1

2
− z − �′(z)+ μ

ωc
+ i�′′(z)

ωc

)]
,

(2.51)

where �R(z) = �′(z) + i�′′(z). The result above agrees with
[14].

To observe quantum oscillations in 1/ωc, we can apply
Poisson resummation to (2.50), yielding

σ xx
dc = 2e2

∫
dz

2π
[−n′

F (z)]
∞∑

k=−∞
e2π i k

ωc
[μ+z−�′(z)]

× e− 2π |k�′′ (z)|
ωc (−1)k −�′′(z)

ω2
c + 4[�′′(z)]2

[z + μ − �′(z)].

(2.52)

Since z is integrated as in Sec. II E, we expect the quantum
oscillation to be similar to a Fermi liquid.

The Hall conductivity is

σ
xy
dc = 2 Imσ−+

dc = e2ω2
c

2π

∫
dz1dz2

(2π )2
P nF (z1) − nF (z2)

(z1 − z2)2

×
∑

n

(n + 1)An+1(z1)An(z2). (2.53)

5. Cyclotron resonance

We can also compute Eq. (2.51) at finite frequency �,
yielding

Reσ−+(�) = e2

8π

∫
dz

2π

nF (z) − nF (z + �)

�

[
z + μ − �(z) + ωc/2

[� − ωc − �(z + �) + �(z)]

[
ψ

(
3

2
− z + � + μ − �(z + �)

ωc

)

−ψ

(
1

2
− z + μ − �(z)

ωc

)]
+ z + μ − �(z) + ωc/2

� − ωc − �̄(z + �) + �(z)

[
ψ

(
1

2
− z + μ − �(z)

ωc

)

−ψ

(
3

2
− z + � + μ − �̄(z + �)

ωc

)]
+ c.c.

]
. (2.54)

Here σ−+(�) only contains cyclotron resonances at positive frequencies. �(z) is the retarded self-energy and �̄(z) is its complex
conjugate.

To visualize the behavior of Eq. (2.54), we can set T = 0
and substitute a MFL self-energy plus disorder scattering

�(ω) = A

(
ω ln

|ω|
ω0

− i
π

2
|ω|

)
− i�

2
.

Here A ∝ g′2 quantifies the strength of interaction disorder
and � represents the scattering rate due to potential disorder.
We also assume ωc is not too large to allow for neglecting
oscillatory terms in �R as discussed in Sec. II C 2. We next
numerically evaluate the integral (2.54), and an example result
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FIG. 10. Example of the resonant optical conductivity Reσ−+

plotted as a function of frequency ω. The renormalized cyclotron
frequency ω∗

c is defined as the maximum of Reσ−+. We also defined
δL/R to be the half-strength width on the left/right side of the peak.

is shown in Fig. 10. From Fig. 10 we can define the renormal-
ized cyclotron frequency ω∗

c as well as the half-strength widths
δR and δL.

We first present the result in terms of the cyclotron mass,

mc(ωc, A)

m
≡ ωc

ω∗
c

, (2.55)

which is plotted in Fig. 11 at fixed ωc = 0.5 and various values
of A and �. We see that in the regime ωc > �, the disorder
elastic scattering rate � only weakly increases the cyclotron
mass, but the disordered interaction on the other way is more
effective.

In Figs. 12–14, we show how the shape of the resonant
peak evolves as we change A and � at fixed ωc. In Fig. 12, we
show that the interaction disorder A increases the asymmetry
of the resonant peak while the potential disorder � results in
a more symmetric peak. In Fig. 13, we see that potential dis-
order � always increases the peak width, but sufficiently large
interaction disorder A can sharpen the peak. In Fig. 14 we
illustrate how the peak shape evolves as we change (�, A).

Next, we fix � and A and investigate the evolution of peak
position and shape as we vary the external magnetic field
(via varying the bare cyclotron frequency ωc). The results are

0.01

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

FIG. 11. Cyclotron mass renormalization mc
m ≡ ωc

ω∗
c

at different
values of potential disorder (represented by scattering rate �) and
interaction disorder (represented by A). The bare cyclotron frequency
is ωc = 0.5. When ωc > �, the cyclotron mass is only weakly renor-
malized by �, but is more sensitive to A.

FIG. 12. The asymmetry of the cyclotron resonant peak δR−δL
δR+δL

at
different values of potential disorder (represented by scattering rate
�) and interaction disorder (represented by A). The bare cyclotron
frequency is ωc = 0.5. The interaction disorder A tends to make the
resonant peak more asymmetric than the potential disorder � does.

shown in Figs. 15–17. In Fig. 15, we see that the interaction
disorder induces a substantial magnetic field dependence in
the cyclotron mass renormalization mc/m. We also find that
the asymmetry of the cyclotron peak only depends on ωc

weakly (Fig. 16), but the interaction disorder makes the peak
width grow with ωc (Fig. 17).

Finally we determine the optical conductivity from the self-
consistently determined self-energy for different temperatures
and coupling constants. The results for the real and imaginary
parts of σ+−(ω) are shown in Fig. 18 for smaller values of
the dimensionless coupling constant λ = 1

2π
mg′2 = 0.5, and

in Fig. 19 for λ = 1.75. We observe a drift of the cyclotron
resonance with temperature towards larger values as the tem-
perature increases. In addition, the line shape of the resonance
is asymmetric, a behavior particularly pronounced at strong
coupling. The cyclotron resonance is a consequence of optical
transitions between consecutive Landau levels. As was shown
in Fig. 8, at strong coupling, self-energy renormalizations
cause the distance between consecutive Landau levels to grow
with energy scale, which is responsible for the asymmetric
accumulation of weight around the cyclotron resonance. The
line shape of the resonance can therefore be used to get a sense
of the distribution of Landau level spacing. The change in the
peak position and the changes of the widths of the resonance

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.01

0.1

0.2

0.3

0.4

0.5

FIG. 13. The total width of the cyclotron resonant peak δR + δL

at different values of potential disorder (represented by scattering rate
�) and interaction disorder (represented by A). Potential disorder �

always makes the resonant peak wider, but sufficiently large inter-
action disorder A can in contrast sharpen the peak. Note that in the
small A limit the total width is close to 2�.
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0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

FIG. 14. Comparison of normalized optical conductivity curves
at different (�, A). Here the bare cyclotron frequency is ωc = 0.5 and
the maxima have been normalized to unity.

are shown in Figs. 20 and 21, where we also show the T -
dependence of the inverse peak maximum. As the temperature
increases, the resonance position approaches the free-electron
value, indicated by the dashed line in panels (b) of the figures.
The actual Landau levels that, among others, enter the self
energy are hardly visible in σ+−(ω). To demonstrate that these
effects are visible in the optical data themselves, we plot in
Figs. 22 and 23 the real and imaginary parts of 1/σ+−(ω).

1.0 1.5 2.0 2.5

1

2

3

4

5

6

(a)

(b)

FIG. 15. (a) Cyclotron mass renormalization mc
m ≡ ωc

ω∗
c

as a func-
tion of the bare cyclotron frequency ωc at different potential disorder
scattering � and interaction disorder A. We see that the interaction
disorder introduces a substantial magnetic-field dependence in mc/m
while the potential disorder does not. (b) mc/m as a function of
ωc at fixed A = 0.5 and � = 0.001. The red line is the fitting to
mc
m = a ln |ωc |

b .

FIG. 16. The asymmetry of the cyclotron resonant peak δR−δL
δR+δL

as
a function of the bare cyclotron frequency ωc at different potential
disorder scattering � and interaction disorder A.

At weak coupling one can clearly see the Landau levels in
the frequency dependence of Re(1/σ+−(ω)) at lower temper-
atures, while they are strongly suppressed by the scattering at
stronger coupling. For Im(1/σ+−(ω)) we find a zero crossing
at the cyclotron frequency with significant changes in the
slope at strong coupling. To illustrate this behavior in the
simplifying Drude form

σ+−(ω) = ω2
p

4π

1

τ−1 + i(ωc − ω)(1 + λ)
(2.56)

with scattering rate τ−1 and optical mass enhance-
ment λ, one immediately finds Re(1/σ+−(ω)) ∼ τ−1 and
Im(1/σ+−(ω)) ∼ (1 + λ)(ωc − ω). The real part of the in-
verse susceptibility contains information about the scattering
rate and the imaginary part about mass renormalization
and the cyclotron resonance position. Comparing the cy-
clotron resonance energy obtained from the peak position of
Re(σ+−(ω)) and the zero of Im(1/σ+−(ω)) they essentially
agree at weak coupling but differ somewhat at stronger cou-
pling, i.e., the large scattering rate affects the precise location
of the cyclotron peak.

1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

FIG. 17. The total width of the cyclotron resonant peak δR + δL

as a function of the bare cyclotron frequency ωc at different potential
disorder scattering � and interaction disorder A. In the presence of
disordered interaction, the width grows with the external magnetic
field.
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FIG. 18. Real (a) and imaginary (b) part of the optical conductivity σ+−(ω) as a function of frequency for different temperatures at
ωc = 0.02W and for a dimensionless coupling constant λ = 0.5.

III. TRANSLATIONAL INVARIANT g-MODEL

Supplemental to the model with interaction disorder, in this
part we study the translational invariant g-model and compare
its properties to the g′-model.

A. Action

The Hamiltonian for the translational invariant g-model is
[5–7]

S =
∫

dτ
∑

�k

N∑
i=1

ψ
†
i�k (τ )[∂τ + ε�k+ �A − μ]ψi�k (τ )

+ 1

2

∫
dτ

N∑
i=1

∑
�q

φi,�q
[−∂τ 2 + ω2

�q + m2
b

]
φi,−�q(τ )

+ 1

N

∫
d2�rdτgi jlψ

†
i (�r, τ )ψ j (�r, τ )φl (�r, τ ). (3.1)

Here, the Yukawa coupling gi jl is translational invariant, but
it is still randomly drawn from a Gaussian ensemble in flavor
indices:

gi jl = 0, g∗
i jl gabc = δiaδ jbδcl . (3.2)

The other quantities in the action (3.1) are defined in the same
way as the g′-model.

Performing the average over gi jl , we can derive the G-�
action in terms of bilinear fields:

1

N
S = − ln det ((∂τ + εk+A − μ)δ(x − x′) + �)

+ 1

2
ln det

((−∂2
τ + ω2

q + m2
b

)
δ(x − x′) − �

)

−
∫

d3xd3x′
(

�(x′, x)G(x, x′) − 1

2
�(x′, x)D(x, x′)

)

+
∫

d3xd3x′ g
2

2
G(x, x′)G(x′, x)D(x, x′). (3.3)

FIG. 19. Real (a) and imaginary (b) part of the optical conductivity σ+−(ω) as a function of frequency for different temperature at ωc =
0.02W and dimensionless coupling constant λ = 1.75. At this larger value of the coupling constant, the line-shape of the resonance shows a
pronounced asymmetry, a behavior caused by the nonequally spaced Landau levels.

075162-11



HAOYU GUO et al. PHYSICAL REVIEW B 109, 075162 (2024)

FIG. 20. Analysis of the peak position ω∗
c and asymmetries ωR,L = ω∗

c ± δR,L , introduced in panel (a), for a coupling constant λ = 0.5.
Panel (b) shows the temperature dependence of the cyclotron mass and the peak width, while (c) shows the inverse conductivity at the
maximum.

Taking functional derivatives of Eq. (3.3), we obtain the
following saddle point equations:

G(x1, x2) = (−∂τ + μ − εk+A − �)−1(x1, x2), (3.4)

�(x1, x2) = g2G(x1, x2)D(x1, x2), (3.5)

D(x1, x2) = (−∂2
τ + ω2

q + m2
b − �

)−1
(x1, x2), (3.6)

�(x1, x2) = −g2G(x1, x2)G(x2, x1). (3.7)

Here the inverses in (3.4) and (3.6) are in functional sense. In
the following, we will analyze Eqs. (3.4)–(3.7) in the case of
a uniform background magnetic field.

We continue to use the Landau level basis to evaluate the
fermion Green’s function. The fermion Green’s function, in a

general operator form, can be written as

G(iωn) = 1

iωn + μ − �(iωn) − ε̂k+A
. (3.8)

Here we assume that the self-energy � is only a function
of frequency as in the zero-field case [6], and therefore it
commutes with the dispersion operator ε̂k+A. Unlike in the
g′-model where �(iω) is exactly proportional to the identity
matrix in the Landau level basis, in the g-model we assume
this only in the vicinity of the FS. Following this assumption,
the Green’s function can be expanded in the same way as
Eqs. (2.9) and (2.12). In the following manipulations, we
assume that the typical value of the Landau level index n is
very large. As nωc should be comparable to μ = k2

F /2m, so
n 
 νF = (kF �B)2/2.

FIG. 21. Analysis of the peak position ω∗
c and asymmetries ωR,L = ω∗

c ± δR,L , introduced in panel (a), for a coupling constant λ = 1.75.
Panel (b) shows the temperature dependence of the cyclotron mass and the peak width, while (c) shows the inverse conductivity at the
maximum.
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FIG. 22. Real (a) and imaginary (b),(c) part of the dynamical resistivity 1/σ+−(ω) as a function of frequency for different temperatures at
ωc = 0.02W and for a dimensionless coupling constant λ = 0.5. Re1/σ+−(ω) serves as a measure of the scattering rate, while the imaginary
part contains information about the effective mass and the cyclotron frequency. At this moderate coupling, the zero crossing of Im1/σ+−(ω)
and the peak position in Reσ+−(ω) coincide.

1. Boson self-energy

The boson self-energy from the g coupling is

�(x, y) = −g2G(x, y)G(y, x). (3.9)

The Fourier transform is

�(i�, q) = − g2T

2π�2
B

∑
iν

∑
m,n

Gm(i� + iν)Gn(iν)
∫

rdrdθ(
2π�2

B

) exp

(
−iqr cos θ − r2

2�2
B

)
Ln

(
r2

2�2
B

)
Lm

(
r2

2�2
B

)
︸ ︷︷ ︸

Im,n(q�B )

. (3.10)

We evaluate the integral Im,n(z). First we perform the θ -
integral and rescale variables to obtain

Im,n(z) =
∫ ∞

0
tdtJ0(zt )e− t2

2 Ln

(
t2

2

)
Lm

(
t2

2

)
, (3.11)

where J0 is a Bessel function. Next there are two ways to
proceed which yield compatible results.

Method 1. This integral is tabulated in [19], and the result
is

Im,n(z) = e− z2

2 (−)m+nLm−n
n

(
z2

2

)
Ln−m

m

(
z2

2

)
, (3.12)

where Lα
n denote the associated Laguerre polynomial. To

proceed, we want to take the limit of large n and m, i.e.,
n = νF + �n and m = νF + �m, with �n(m) being order 1 and

FIG. 23. Real (a) and imaginary (b),(c) part of the dynamical resistivity 1/σ+−(ω) as a function of frequency for different temperatures at
ωc = 0.02W and for a dimensionless coupling constant λ = 1.75. At this stronger coupling, the zero crossing of Im1/σ+−(ω) and the peak
position in Reσ+−(ω) are slightly different, indicating that the line shape affects the peak position.
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νF → ∞. We use the asymptotic formula [19]

Lα
n (x) = e

x
2

nα/2

x
α
2

Jα (2
√

nx), n → ∞, (3.13)

and we obtain

Im,n(z) =
( n

m

) m−n
2

Jm−n(
√

2nz)Jm−n(
√

2mz). (3.14)

Next, we substitute the Bessel functions with asymptotics,

Jν (z) ∼
√

2

πz
cos

(
z − 1

2
πν − 1

4
π

)
. (3.15)

Because
√

2m,
√

2n 
 kF �B, the arguments of the Bessel
functions are fast oscillating, and therefore we can replace

cos2 by 1/2 (the phase difference is |√2m − √
2n|q�B ∼ |�m − �n|q/kF � 1), and we obtain

Im,n(q�B) = 1

πkF q�2
B

. (3.16)

Method 2. In Eq. (3.11), we use Eq. (3.13) first and then use the integral below tabulated in [20],

Im,n(z) =
∫ ∞

0
tdtJ0(zt )J0(

√
2nt )J0(

√
2mt ) =

{
1

2πA(
√

2m,
√

2n,z)
if |√2m − √

2n| < z <
√

2m + √
2n,

0 otherwise,
(3.17)

where A(a, b, c) is the area of a triangle with sides a, b, c.

In the large kF limit,
√

2m = kF �B[1 + �m/(kF �B)2 + · · · ]
and similarly for

√
2n. The lower bound of z = q�B in (3.17)

is then |√2m − √
2n| = |�m−�n|

kF �B
. The lower bound is satis-

fied by the bosons in the critical regime and the weak-field
limit. By weak field, we mean that the characteristic fre-
quency is much larger than the cyclotron frequency ω 	 ωc.
A critical boson has qω ∼ γ 1/3|ω|1/3 	 g2/3v

−1/3
F |eB|1/3, and

the second inequality follows from weak-field condition. To
compare, the lower bound in (3.17) means qB ∼ 1/(kF �2

B) ∼
eB/kF , which is much smaller than qω in both power counting
of B and 1/kF . Furthermore, the scale of qB is also where
the bosons start to feel the quantization of Landau levels.
Therefore, in the kinematic regime of a critical boson, we can
ignore the magnetic field and use the leading order result of
(3.17), which is

Im,n(q�B) = 1

πqkF �2
B

. (3.18)

Using (3.16) or (3.18), we obtain

�(i�, q) = −γ Q(i�)

q
, (3.19)

where γ = mg2

2πvF
and

Q(i�) = T
∑

iν

ω2
c

π2

∑
m,n

Gm(iν + i�)Gn(iν). (3.20)

The sums over m, n can be approximated to be from −∞ to
∞, and we obtain

Q(i�) = πT
∑

iν

tan

(
πA(iν)

ωc

)
tan

(
πA(iν + i�)

ωc

)
,

(3.21)
where A(iω) = iω + μ − �(iω). The ωc → 0 limit of the
above result can be recovered by noticing that the imagi-
nary parts of the tangents become a sign and the real parts
can be set to zero due to rapid oscillation, and therefore
limωc→0 Q(i�) − Q(0) = |�|.

2. Fermion self-energy

Now we calculate the Landau fermion self-energy, which
in real space reads

�(x, y) = g2G(x, y)D(x, y). (3.22)

We now transform it to the Landau level basis

�n′′k′′,n′k′ (τ )

= g2
∑

n

∫
dk

2π
Gn(τ )

∫
d2 �q

(2π )2
D(q, τ )

×
∫

d2�ye−i �q�yφ∗
nk (y)φn′k′ (y)

∫
d2xei �q�xφ∗

n′′k′′ (x)φnk (x).

(3.23)

The two integrals in the second line can be computed as∫
d2�ye−i �q�yφ∗

nk (y)φn′k′ (y)

= 2πδ(k − k′ + q1)e−ikq2�
2
B− i

2 q1q2�
2
B− |q|2�2

B
4

×
√

n′!
n!

(
�B√

2
(q1 − iq2)

)n−n′

Ln−n′
n′

( |q2|�2
B

2

)
, (3.24)

∫
d2xei �q�xφ∗

n′′k′′ (x)φnk (x)

= 2πδ(k′′ − k − q1)eik′′q2�
2
B− i

2 q1q2�
2
B− |q|2�2

B
4

×
√

n!

n′′!

(
�B√

2
(−q1 + iq2)

)n′′−n

Ln′′−n
n

( |q|2�2
B

2

)
.

(3.25)

Using these, and assuming the boson propagator is circular
symmetric in q, it is easy to verify that (3.23) is nonzero
only if (n′k′) = (n′′k′′). Therefore, the fermion self-energy
is diagonal in the Landau level basis. We also see that the
fermion self-energy is independent of k, which is expected
because using k is a gauge-dependent choice.
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The self-energy now becomes

�n′k′ (iω) = g2T
∑
n,i�

Gn(iω − i�)
∫

d2q

(2π )2
D(q, i�)

× e− |q|2�2
B

2 (−1)n−n′
Ln−n′

n′

(
q2�2

B

2

)
Ln′−n

n

(
q2�2

B

2

)
.

(3.26)

To proceed, we use several properties of the associated
Laguerre polynomials. The first is (n, m are integers)

n!Lm
n (x) = (n + m)!L−m

n+m(x)(−x)−m. (3.27)

The second property is about the large n asymptotic behav-
iors of Lα

n [20]:

Lα
n (x) = n

α
2 − 1

4 e
x
2

π1/2x
α
2 + 1

4

[
cos θα

n (x) + bα
1 (x)

n1/2
sin θα

n (x) + O

(
1

n

)]
,

(3.28)

where

θα
n (x) = 2

√
nx −

(
α

2
+ 1

4

)
π, (3.29)

bα
1 (x) = 1

48x1/2
(4x2 − 12α2 − 24αx − 24x + 3). (3.30)

This can also be alternatively written as

Lα
n (x) = n

α
2 − 1

4 e
x
2

π1/2x
α
2 + 1

4

cos
[
θα

n (x) − φα
n (x)

]
,

φα
n (x) = tan−1 bα

1 (x)

n1/2
. (3.31)

Using the above formulas (3.27)–(3.31), we obtain

e− |q|2�2
B

2 (−1)n−n′
Ln−n′

n′

(
q2�2

B

2

)
Ln′−n

n

(
q2�2

B

2

)

= n′!(n′)n−n′

n!π

2 cos2
[
θn−n′

n′
( q2�2

B
2

)]√
2n′q2�2

B

= 1

πkF q�2
B

. (3.32)

In the final result, we have used the fact that to leading or-
der in 1/kF , we can replace n′ = n = k2

F �2
B/2 and replace the

oscillating part by its average. In this way, we decoupled the
Landau level summation and the boson momentum integral
similar to the Prange-Kadanoff reduction [21].

Now we can separately evaluate the n summation and q
integral, obtaining a self-energy that is independent of the
Landau level index:

�(iω) = g2T
∫

d2 �q
(2π )2

∑
i�

∑
n

Gn(iω − i�)
D(�q, i�)

πkF | �q|�2
B

.

(3.33)
Equation (3.33) is also compatible with the zero-field limit.

To see this, we can simplify using Gn(iω)−1 = A(iω) − (n +
1/2)ωc and D(q, i�)−1 = q2 + γ Q(i�)/q, and we obtain

�(iω) = − g2

3
√

3vF γ 1/3
T

∑
i�

tan
(

πA(iω−i�)
ωc

)
Q(�)1/3

. (3.34)

In the ωc → 0 limit, Q(i�) → |�| and tan( πA(iω)
ωc

) → sgn ω,
and we obtain the result identical to [6,7].

To summarize, we can simplify the saddle point equa-
tions of the clean model as follows:

Gn(iω) = 1

iω + μ − (
n + 1

2

)
ωc − �(iω)

, (3.35)

D(i�, q) = 1

q2 + γ Q(i�)
q

, (3.36)

�(iω) = g2T
∫

d2 �q
(2π )2

∑
i�

∑
n

Gn(iω − i�)
D(�q, i�)

πkF | �q|�2
B

,

(3.37)

Q(i�) = T
∑

iν

ω2
c

π2

∑
m,n

Gm(iν + i�)Gn(iν). (3.38)

The main approximations involved are as follows: (i) We
used the 1/kF expansion similar to the ones in the zero-field
situations [7] and should also be consistent with Prange-
Kadanoff reduction [21]. (ii) In terms of response to magnetic
field, there are mainly two categories: (a) Oscillatory re-
sponse in fermion frequencies A(iω) = iω + μ − �(iω): this
has been kept. (b) Oscillatory response in q: this has been
ignored, because the typical boson momentum q is much
larger than typical A(iω) due to scaling, so the oscillation is
much faster.

B. Numerical solution for the saddle point equations

1. Method

In this part, we solve the SD equations numerically to
obtain the local density of states. Similar to the g′-model,
we adapt the saddle point equations (3.4)–(3.7) to include
appropriate UV cutoffs. The fermion Green’s functions are
handled in the same way as the g′-model, where we introduced
the local Green’s function Ḡ(iω) and ḠR(ω) as defined in
Eqs. (2.20) and (2.21).

Next the boson self-energy is �(i�, q) = −γ Q(i�)/q,
where

Q(i�) = πT
∑

iω

ḠR(i� + iω)Ḡ(iω). (3.39)

Analytically continuing to real time, we obtain

QR(t ) = 2πRe[ḠR(t )G̃R(t )∗], (3.40)

where G̃R(ω) = −2nF (ω)ImḠR(ω). The Fourier transform
convention is F (t ) = ∫

dω
2π

F (ω)e−iωt .
The fermion self-energy is

�(i�) = − g2

vF
T

∑
i�

Ḡ(iω + i�)D̂(i�), (3.41)

where

D̂(i�) =
∫

q<�q

d2q

(2π )2

1

q

1

�2 + q2 − γ Q(i�)
q

. (3.42)
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FIG. 24. Local density of states ρloc(ε) = ImGloc,R(ε) at zero and
nonzero magnetic fields (expressed in terms of cyclotron frequency
ωc) and at coupling 4g2/(vFW ) = 1. The inset plots the frequencies
ω = ωn of local minima of ρloc(ε, ωc = 0.1) as a function of index
n. By fitting εn to a power law in n, we see that εn is approximately
linear in n with spacing �0 close to the cyclotron frequency ωc. The
shaded region represents numerical uncertainties.

The real-time version of D̂(i�) is

D̂R(�) =
∫

q<�q

d2q

(2π )2

1

q

1

(η − i�)2 + q2 − γ QR(�)/q
.

(3.43)

Analytically continuing Eq. (3.41) to real time, we obtain

�R(t ) = g2

vF
[ḠR(t )B̃R(t )∗ − G̃R(t )D̂R(t )], (3.44)

where B̃R(ω) = −2nB(ω)ImD̂R(ω).
The numerical version of the Schwinger-Dyson equa-

tions is given by Eqs. (2.21), (3.40), (3.43), and (3.44). In
the computation, we set the bandwidths W/2 = �q = 2, we
fixed the cyclotron frequency to be ωc = 0.1, and we also
chose m

2π
= 1. The frequency axis is discretized to be a grid

from −ωmax to ωmax = 16, with spacing �ω = 0.002. The
infinitesimal η is chosen to be η = 10−4.

2. Numerical results

Now we present the numerical results for the local density
of states ρloc(ω) = ImGloc,R(ω), the imaginary parts of the re-
tarded fermion self-energy Im�R(ω), and the imaginary parts
of the boson damping function ImQR(ω). In the zero-field
limit we recover the |ω|2/3 scaling in Im�R(ω).

We used two different dimensionless couplings
4g2/(vFW ) = 1 (Figs. 24–26) and 4g2/(vFW ) = 5
(Figs. 27–29) to study how the oscillatory response varies
with the strength of the NFL interaction. The dichotomy
between oscillatory behavior and NFL strength is similar to
that of the g′-model.

FIG. 25. The imaginary part of retarded fermion self-energy
Im�R(ω) at zero and nonzero magnetic fields (expressed in terms of
cyclotron frequency ωc) and at coupling 4g2/(vFW ) = 1. The inset
plots the same function on a larger frequency range. The shaded
region represents numerical uncertainties.

FIG. 26. The imaginary part of retarded boson damping function
ImQR(ω) at zero and nonzero magnetic fields (expressed in terms of
cyclotron frequency ωc).

FIG. 27. Same as Fig. 24 but at coupling 4g2/(vFW ) = 5.
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FIG. 28. Same as Fig. 25 but at coupling 4g2/(vFW ) = 5.

C. Quantum oscillations in local density of states
and magnetization

Since the local density of states and the magnetization are
only sensitive to single-particle properties, the discussions in
Secs. II D and II E about the g′-model still apply here.

D. Transport

In this part, we compute the optical conductivity of the
translational invariant g-model, we show that the cyclotron
resonance is not renormalized by interaction, and we reestab-
lish Kohn’s theorem. The framework of the computation is
similar to Sec. II F, but with different WMT and WAL as de-
scribed below. Unlike the disordered interaction case in which
WMT and WAL cancel themselves, here the two kernels should
be treated carefully to account for drag effects.

1. MT diagram

The MT diagram kernel in real space reads

WMT[F ](x, y) = g2D(x, y)F (x, y). (3.45)

FIG. 29. Same as Fig. 26 but at coupling 4g2/(vFW ) = 5.

We transform this into the Landau level basis, writing

D(x, y) =
∫

dν

2π

d2 �q
(2π )2

ei �q·(�x−�y)−iν(τx−τy )D(�q, iν), (3.46)

F (x, y) =
∫

d�dω

(2π )2
e−iω(τx−τy )−i�

τx+τy
2

×
∑

n

∫
dk

2π
Fn+1,n(iω, i�)φn+1,k (�x)φ∗

n,k (�y).

(3.47)

In the following, we will show that the difference of Landau
level indices n′ − n in Fn′n is conserved (which is set to 1
explicitly because F originates from the bare current vertex
�), and Fn′n can be consistently chosen as independent of k.

We now substitute Eqs. (3.46) and (3.47) into (3.45), and
we transform the spatial part into a Landau level basis:

WMT[F ]n′k′,n′′k′′ (iω, i�)

= g2
∑

n

∫
dω′

2π

d2 �q
(2π )2

dk

2π
d2�xd2�yFn+1,n

× (iω′, i�)D(�q, iω − iω′)ei �q·(�x−�y)

× φ∗
n′k′ (�x)φn+1,k (�x)φn′′k′′ (�y)φ∗

nk (�y). (3.48)

The integrals over �x and �y can be evaluated analogously as in
the previous section, yielding∫

d2�xφ∗
n′k′ (�x)φn+1,k (�x)ei �q·�x

= 2πδ(k + q1 − k′) exp

(
ik′q2�

2
B − i

2
q1q2�

2
B − |q|2�2

B

4

)

×
√

(n + 1)!

n′!

[
�B√

2
(−q1 + iq2)

]n′−(n+1)

× Ln′−(n+1)
n+1

( |q|2�2
B

2

)
. (3.49)

∫
d2�yφn′′k′′ (�y)φ∗

nk (�y)e−i �q·�y

= 2πδ(k + q1 − k′′)

× exp

(
−ikq2�

2
B − i

2
q1q2�

2
B − |q|2�2

B

4

)√
n′′!
n!

×
[

�B√
2

(q1 − iq2)

]n−n′′

Ln−n′′
n′′

( |q|2�2
B

2

)
. (3.50)

These two integrals imply that in (3.48) k′ = k′′ and the
result is independent of k′. Because the remaining �q in-
tegrals in (3.48) are rotationally symmetric, we must also
have n′ = n′′ + 1, i.e., the difference is conserved. Combining
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everything together, we get

WMT[F ]n′′+1,n′′ (iω, i�) = g2
∑

n

∫
dω′

2π

d2 �q
(2π )2

Fn+1,n(iω′, i�)D(�q, iω − iω′)

√
n′′ + 1

n + 1

n′′!
n!

Ln−n′′
n′′ (zq)Ln−n′′

n′′+1 (zq)zn−n′′
q e−zq , (3.51)

where zq = |q|2�2
B

2 . Next, we use the asymptotic formula (3.28) for large n, n′′ 
 νF , yielding

WMT[F ]n′′+1,n′′ (iω, i�) = g2
∑

n

∫
dω′

2π

d2 �q
(2π )2

Fn+1,n(iω′, i�)D(�q, iω − iω′)
2 cos θn−n′′

n′′ (zq) cos θn−n′′
n′′+1 (zq)

πkF q�2
B

. (3.52)

As argued before, the oscillation of the cos factors in the critical region is fast, and therefore we can replace them by the average

2 cos θn−n′′
n′′ (zq) cos θn−n′′

n′′+1 (zq) 
 cos
(
θn−n′′

n′′ (zq) − θn−n′′
n′′+1 (zq)

)

 cos

(
q

kF

)
, (3.53)

which is exactly the scattering angle corresponding to the MT diagram [7].
We can now evaluate the q integral using saddle point solutions, and expand the cos factor yielding

WMT[F ]n′′+1,n′′ (iω, i�) = g2
∑

n

∫
dω′

2π
Fn+1,n(iω′, i�)

1

πkF �2
B

1

3
√

3γ 1/3Q(ω − ω′)1/3

(
1 + γ 2/3Q(ω − ω′)2/3

2k2
F

)
. (3.54)

Based on previous work [7], We expect that the first term in (3.54) should cancel with the self-energies, and the second term
should cancel with AL diagrams.

2. AL diagram

In real space, the AL kernel reads

WAL[F ](x, y) = −g4
∫

d3x′d3y′G(x, y)D(x, x′)D(y′, y)[F (x′, y′)G(y′, x′) + F (y′, x′)G(x′, y′)]. (3.55)

Switching to the Landau level basis, we obtain

WAL[F ]n′,n′′ (iω, i�) = 1

2π�2
B

∑
n1,n2,n3

∫
d2 �q
2π

dν

2π

dω′

2π
D(�q, iν + i�/2)D(�q, iν − i�/2)e−2zq Gn1(iω − iν)

× [Gn2(iω′ − iν) − Gn2(iω′ + iν)](−1)n′−n1+n3−n2

[
�B√

2
(q1 − iq2)

]n′−n′′−1

×
√

n′′!
n1!

Ln1−n′′
n′′ (zq)

√
n1!

n′!
Ln′−n1

n1
(zq)

√
(n3 + 1)!

n2!
Ln2−(n3+1)

n3+1 (zq)

√
n2!

n3!
Ln3−n2

n2
(zq)Fn3+1,n3 (iω′, i�). (3.56)

We see that the q integral will enforce n′ = n′′ + 1.
Next, we use (3.31) to simplify the Laguerre polynomials, retaining terms that are slowly varying in q, n1, n2, n3, and to

leading order in | �q|/kF we obtain

WAL[F ]n′′+1,n′′ (iω, i�) = −g4
∑

n1,n2,n3

∫
d2 �q
2π

dν

2π

dω′

2π
D(�q, iν + i�/2)D(�q, iν − i�/2)Gn1(iω − iν)

× [Gn2(iω′ − iν) − Gn2(iω′ + iν)]
1

4k2
F π3| �q|2�6

B

[
1 − cos

| �q|
kF

]
Fn3+1,n3 (iω′, i�). (3.57)

3. Resummation

Now we treat W� . Similar to the zero-field case, and following the spirit of Prange-Kadanoff reduction [7], the Landau level
indices of F in WMT and WAL are summed over, and if we ignore the n-dependence in the bare vertices (which is smooth), the
W� effectively becomes

L(iω, i�) =
∑

n

W�,n+1,n(iω, i�) =
∑

n

Gn+1(iω + i�/2)Gn(iω − i�/2)

= 1

i� − ωc − �(iω + i�/2) + �(iω − i�/2)︸ ︷︷ ︸
L1(iω,i�)

−π

ωc

[
− tan

πA(iω + i�/2)

ωc
+ tan

πA(iω − i�/2)

ωc

]
︸ ︷︷ ︸

L2(iω,i�)

. (3.58)
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Now we have

�−+ = �−,T 1

W −1
� − WMT − WAL

�+ = �−,T L2
1

L−1
1 − (WMT + WAL)L2

�+. (3.59)

Since the bare vertices �± are frequency-independent, we can now evaluate L−1
1 , WMTL2, and WALL2 on a constant function:

L−1
1 [1](iω, i�) = i� − ωc − �(iω + i�/2) + �(iω − i�/2). (3.60)

Notice that L2 can be alternatively written as

L2 =
∑

n

Gn(iω − i�/2) −
∑

n

Gn(iω + i�/2). (3.61)

We have

WMTL2[1](iω, i�/2) = g2
∫

dω′

2π

d2 �q
(2π )2

D(�q, iω − iω′)
cos | �q|

kF

πkF | �q|�2
B

∑
n

[Gn(iω − i�/2) − Gn(iω + i�/2)], (3.62)

WALL2[1](iω, i�/2) = −g4
∑

n1,n2,n3

∫
d2 �q
2π

dν

2π

dω′

2π
D(�q, iν + i�/2)D(�q, iν − i�/2)Gn1(iω − iν)[Gn2(iω′ − iν)

− Gn2(iω′ + iν)]
1

4k2
F π3| �q|2�6

B

[
1 − cos

| �q|
kF

]
[Gn3(iω − i�/2) − Gn3(iω + i�/2)]. (3.63)

Now in (3.63), we can compare the n2, n3 summation with saddle point equation (3.10) for �, and using the identity

D(�q, iν + i�/2)D(�q, iν − i�/2) = 1

�(�q, iν + i�/2) − �(�q, iν − i�/2)
[D(�q, iν + i�/2) − D(�q, iν − i�/2)], (3.64)

we obtain

WALL2[1](iω, i�) =
∫

dν

2π

d2 �q
(2π )2

g2

πkF | �q|�2
B

[D(�q, iν − i�/2) − D(�q, iν + i�/2)]
∑

n1

Gn1(iω − iν)

[
1 − cos

| �q|
kF

]
. (3.65)

After some simple manipulations, we see that

WMTL2[1](iω, i�) + WALL2[1](iω, i�) = �(iω − i�/2) − �(iω + i�/2). (3.66)

Therefore,

1

L−1
1 − (WMT + WAL)L2

�+ = 1

i� − ωc
�+, (3.67)

meaning that the cyclotron frequency is not renormalized.
We can continue to evaluate the current-current polarization by substituting the expressions (2.42) and (2.43) for the bare

vertices,

�−+(i�) = 1

i� − ωc
�−,T L2�

+ = 1

i� − ωc

1

2m2�2
B

[∫
dk

2π
2πδ(0)

] ∫
dω

2π

∑
n

(n + 1)[Gn(iω − i�/2) − Gn(iω + i�/2)].

(3.68)

The k-integral in the bracket can be evaluated using semiclassical state-counting arguments in textbooks, and the result is the
Landau level degeneracy S

2π�2
B
, where S is the system area. In evaluating the n-summation, we can set the factor n + 1 = νF =

k2
F �2

B/2 as the biggest contribution is from the Fermi surface. We then obtain the optical conductivity before analytic continuation
to be

σ−+(i�) = 1

4
N v2

F

1

� + iωc
D(i�,ωc). (3.69)

Here N = m/(2π ) is the density of states on the FS at zero-field, and the function D is

D(i�,ωc) = i

2�

∫
dω

ωc

π

∑
n

[Gn(iω + i�/2) − Gn(iω − i�/2)], (3.70)

which describes the modulation of the density of states due to magnetic field and finite frequency. We now evaluate the function
D using the Poisson resummation formula. Substituting Gn(iω)−1 = A(iω) − (n + 1/2)ωc, and applying Poisson resummation

075162-19



HAOYU GUO et al. PHYSICAL REVIEW B 109, 075162 (2024)

to n, we obtain

D(i�,ωc) = 1 + 1

�

∞∑
k=1

∫
dω(−1)k[Fk (iω + i�/2) − Fk (iω − i�/2)]. (3.71)

The function Fk is

Fk (iω) = θ (ω) exp

(
2π ik

ωc
A(iω)

)
− [1 − θ (−ω)] exp

(
−2π ik

ωc
A(iω)

)
. (3.72)

Because of causality sgn ImA(iω) ∝ sgn ω, each term in (3.72) is exponentially decaying as ω → ±∞, and therefore the integral∫
dωFk (iω) converges. This implies that each term in the sum of Eq. (3.71) vanishes, and therefore

D(i�,ωc) = 1. (3.73)

Therefore, the optical conductivity is exactly of Drude form,

σ−+(i� → ω) = 1

4
N v2

F

1

−iω + iωc
(3.74)

and

σ xx(ω) = σ−+(ω) + σ+−(ω) = N v2
F

2

iω

ω2 − ω2
c

. (3.75)

Therefore, in the g-model the cyclotron frequency does not renormalize and there is no Shubnikov–de Haas oscillation.

E. Comment on the situation with translational invariant
Yukawa coupling, potential disorder, and interaction disorder

We briefly discuss the situation in which translational
invariant Yukawa coupling g, potential disorder v, and inter-
action disorder g′ are all present. Because Prange-Kadanoff
reduction breaks down in the presence of v, the model can
only be studied perturbatively in g and g′ [7]. Since both v

and g′ do not conserve momentum, they do not contribute to
the vertex correction but only the fermion self-energy, and
their effects can still be described by Sec. II. As for the
g-coupling, since translational invariance is broken, we no
longer expect exact cancellation between the Maki-Thompson
and Aslamazov-Larkin diagrams, so g can potentially renor-
malize the cyclotron frequency. In Ref. [7], it is shown that
due to the small-angle nature of the g-scattering, the self-
energy due to g is almost canceled by vertex correction. The
result of this cancellation is a renormalization of the bare i�
term and a �2 transport scattering rate, both of which have a
prefactor that vanishes in the kF → ∞ limit. We do not expect
this result to be altered by the weak magnetic field, therefore
the effect of g should be subextensive and negligible.

IV. CONCLUSION

The properties of most metals in a moderate magnetic
field are well described by a free-electron picture. This is
justified by the principles of Fermi liquid theory and Kohn’s
theorem [3,4], which constrains the conductivity to be exactly
that of free electrons in the presence of a Galilean transla-
tional symmetry. Of course, electrons in metals are not in a
Galilean invariant environment, but nevertheless there is an
emergent Galilean symmetry: as long as the physical prop-
erties are determined by long-wavelength interactions near
the Fermi surface, it makes little difference if the regions far
from the Fermi surface are not Galilean invariant. Only large
momentum interactions, involving umklapp, can lead to renor-
malization of the cyclotron frequency from its free-electron
value [4].

Turning our attention to non-Fermi-liquids in clean metals,
we can again expect Kohn’s theorem to place strong con-
straints on the conductivity because the singular interactions
are at long wavelengths. At zero magnetic field, this was
highlighted in recent work [7,22], showing that a proposed
[23] optical conductivity ∼1/ω2/3 was absent. Section III on
the g-model extends these analyses to nonzero magnetic field,
and shows that Kohn’s theorem continues to apply.

In light of these theoretical studies, the recent observations
by Legros et al. [2] do appear quite surprising. In the present
paper, we show that the route to linear-in-T resistivity of
strange metals in Ref. [5] also provides a route to resolving
the puzzles posed by cyclotron resonance. Specifically, a spa-
tially random Yukawa coupling between the electrons and the
critical boson leads to a full breakdown of Kohn’s theorem.
Our computations are described in Sec. II, and the main results
are in Figs. 10–14. These results show renormalization of the
cyclotron mass and the line shape as a function on the random
interactions, and also random potential scattering.

We comment on the relation between the cyclotron mass
and the thermodynamic mass (measured through heat capac-
ity). In the � = 0 limit, it can be shown numerically that
the cyclotron mass is logarithmic in ωc, which follows from
the MFL self-energy of the fermion. At the same time, the
thermodynamic mass in the heat capacity also shows an ln T
enhancement in the T → 0 limit which is due to the |�|
damping in the boson self-energy [6]. In the pure g′ model, the
coefficients of these two logarithmics are related because they
are both functions of g′ and the fermionic density of states [6].
However, for a general theory where the translational invariant
coupling g and potential disorder v are present, these two
logarithms are expected to be different. This is because the
combination of g and v can also produce a |�| damping for
the boson and contribute to the thermodynamic mass [7], but
their effects cancel in the cyclotron resonance.

We expect similar conclusions to those in this work to hold
in the case of non-Fermi-liquids arising near non-symmetry-
breaking Fermi volume changing transitions [14,24–26]. As
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long as the bosons mediating the hybridization between the
conduction electrons and emergent fermions are uncondensed,
the charge transport properties are dominated by the con-
duction electrons, with an inelastic scattering rate set by the
spatially random (i.e., g′) part of the fermion-boson Yukawa
coupling [14]. The contribution of the spatially uniform (i.e.,
g) part of the coupling to transport is weak as it only scatters
electrons off-shell due to the Fermi surfaces of the elec-
trons and the emergent fermions being generically unmatched.
Therefore, most of the enhancement of the cyclotron mass in
these situations should also arise from disorder effects.

Also of interest is non-Fermi-liquid behavior that is
restricted to small portions of the conduction electron Fermi
surface (known as “hot spots”), which arises from near-critical
bosonic fluctuations centered at a finite wave vector, such
as antiferromagnetic or charge density wave fluctuations.
Since the cyclotron orbit in momentum space has to pass
through these hot spots, and the scattering of the electrons
at the hot spots is not forward in nature due to the finite
boson wave vector, a small amount of cyclotron transport
mass renormalization is to be expected. A detailed study is,
however, quite complicated to perform using the Landau level
basis methods developed in Ref. [14] and this work, and is
therefore deferred for future work.

Note added in proof. Recently, related computations for
clean systems in d = 3 appeared in Nosov, Wu, and Raghu
[27].
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