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A B S T R A C T

Liquid metal flows exposed to intense magnetic fields play a fundamental role in the development of blankets
for nuclear fusion reactors, where they serve to produce the plasma-fuel component tritium and transport
the generated heat. When the liquid metal circulates in the blanket, it interacts with the plasma-confining
magnetic field leading to the induction of electric currents. Electromagnetic forces and thermal buoyancy affect
significantly velocity and pressure distributions. The resulting magneto-convective flow has peculiar features
that have to be taken into account in order to evaluate heat transfer properties in the liquid metal. In the
breeding zone of the water-cooled lead lithium blanket concept, the volumetric heat released in the liquid metal
is removed by water-cooled circular pipes that represent obstacles for the liquid metal flow. In order to improve
the understanding of the underlying physical phenomena and obtain a database for code validation, model
experiments have been performed to investigate magneto-convective flow and heat transfer at two differentially
heated parallel horizontal tubes immersed in a box filled with liquid metal. Among other properties, electric
potential has been recorded on the surface of the test-section and compared with 3D numerical simulations.
Computational results provide the basis for interpretation of the measured data, since they allow differentiating
between flow-induced electric potential and thermoelectric effects.
1. Introduction

The buoyancy-driven flow of an electrically conducting fluid, such
as a liquid metal, exposed to a magnetic field, represents a problem
of fundamental importance in the development of blankets, which
surround the hot deuterium–tritium plasma in nuclear fusion reac-
tors [1,2]. Different liquid metal blanket concepts are currently under
investigation and the water-cooled lead-lithium (WCLL) blanket has
been selected as driver design for future use in a DEMOnstration fusion
power plant [3]. In the WCLL blanket, the liquid metal alloy lead
lithium (PbLi) is used as breeding material to produce the fuel compo-
nent tritium and as heat transfer medium. PbLi has to be circulated in
the breeding zones, to route it towards external systems for purification
and tritium extraction. The motion of this electrically conducting fluid
in the intense magnetic field, which confines the fusion plasma in a
toroidal shape away from solid walls, induces electric currents and
electromagnetic Lorentz forces that significantly affect flow features,
such as velocity distribution, heat transfer properties, and pressure
losses. These magnetohydrodynamic (MHD) phenomena, impact the
feasibility and performance of a blanket design.

In the breeding zones of the WCLL blanket, the volumetric heat
due to neutron irradiation is removed by a number of cooling pipes
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immersed in the liquid metal [4]. Therefore, since PbLi does not serve
as coolant, the velocity of the forced flow can be minimized, so that the
MHD-related pressure drop remains relatively small. However, even if
additional MHD pressure losses do not represent a critical issue, the
cooling pipes obstruct the liquid metal flow and lead to the occurrence
of typical internal layers parallel to the magnetic field and tangent to
the tubes [5]. This results in peculiar flow patterns that affect heat and
mass transfer. Hence, the investigation of magneto-convective flows
in the presence of submerged obstacles is essential to clarify aspects
related to the cooling system efficiency in the WCLL blanket.

A large number of studies is available in literature, which focuses
on classical configurations such as Rayleigh–Bénard convection [6]
and differentially heated cavities with a horizontal temperature gra-
dient [7]. Magneto convection in pipes and ducts has been studied by
many authors, as described in an extensive review by Zikanov et al.
(2021) [8]. On the other hand, the analysis of convective flows in
geometries with internal obstacles did not receive much attention [5,9].

In the present paper, we discuss numerical results of magneto-
convective flow in a model geometry that features two parallel pipes
kept at constant differential temperatures, immersed in an adiabatic
rectangular box filled with liquid metal, and we compare results with
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experimental data. This configuration derives from a test-section used
for experiments with the model fluid GaInSn performed in the MEKKA
laboratory of the Karlsruhe Institute of Technology [10,11]. During the
experimental campaign, electric potential has been recorded at more
than 400 positions on the fluid-wall interface of the box. In case of
isothermal experiments, the electric potential can be interpreted as a
streamfunction for the flow and recorded electric potential differences
can be regarded as approximate velocity components and used to gain
insight into the flow distribution in the experimental test-section. The
potential gradient approximates quite well the velocity components
if the current density is small. This approach has been successfully
applied to the analysis of different MHD flows [12,13]. Instead, in
magneto-convective flows, the measurement of flow-induced electric
potential is disturbed by the thermoelectric voltage that develops be-
tween two measuring points when there is a temperature difference
between them [14,15]. Since the thermoelectric potential is expected
to be of the same order of magnitude as the flow induced potential, nu-
merical results are employed to give a suitable physical interpretation
of the recorded data by taking into account the thermoelectric effects
on the potential measurements in the experiments.

2. Problem definition

2.1. Numerical and experimental set-up

We consider the magneto-convective flow of a liquid metal in a
rectangular box exposed to an externally applied uniform magnetic
field 𝐁 = −𝐵�̂� aligned with gravity 𝐠 = −𝑔�̂�. In the adiabatic
and electrically insulating cavity, two horizontal differentially heated
cylinders are inserted with their axes parallel to the coordinate 𝑥, as
shown in Fig. 1a. The typical length 𝐿 = 0.05 m of the problem is
chosen as half of the distance between the walls perpendicular to the
magnetic field, which are called Hartmann walls. This quantity is used
to scale all lengths in the problem. In non dimensional notation the
size of the computational domain in the three directions is defined by
−2 ≤ 𝑥 = 𝑋∕𝐿 ≤ 2,−1 ≤ 𝑦 = 𝑌 ∕𝐿 ≤ 1 and −2 ≤ 𝑧 = 𝑍∕𝐿 ≤ 2.
Walls parallel to the magnetic field are named side walls at 𝑧 = ±2 and
end-walls at 𝑥 = ±2. The centers of the two cylinders are positioned at
𝑧 = ±1 on the middle plane 𝑦 = 0. The two pipes are kept at constant
differential temperatures 𝑇1,2 = 𝑇0 ∓ 𝛥𝑇 , given a mean temperature 𝑇0
and a characteristic temperature difference 𝛥𝑇 . In the experiments, the
mean temperature 𝑇0 has been kept constant and as close as possible
to the ambient temperature (30 ◦C), while adjusting 𝑇1,2 to reach the
chosen Grashof number 𝐺𝑟 (see (5)). Simulations have been performed
by following the same procedure. The temperature gradient in the
fluid leads to the occurrence of buoyancy forces that drive convective
motions in the liquid metal, while velocity-induced currents generate
braking Lorentz forces.

In order to record electric potential during the experiments, thin
copper electrodes are positioned on the top Hartmann wall (H) at 𝑦 = 1
and on the end-wall (E) at 𝑥 = 2. Fig. 1b shows a photograph of
the test-section with electric potential sensors wired to the measuring
system. Electric potential measurements are performed with respect to
a reference point 𝐱𝑟 located at 𝑧 = 0 close to the center of the Hartmann
wall (see Fig. 1b).

2.2. Mathematical formulation

The viscous incompressible flow of an electrically conducting fluid
in a magnetic field and in presence of thermal gradients is driven by
buoyancy and electromagnetic forces. It is mathematically described by
equations for continuity of the velocity field, ∇ ⋅ 𝐯 = 0, satisfying mass
conservation, and by balance of momentum

𝜌0
( 𝜕
𝜕𝑡

+ 𝐯 ⋅ ∇
)

𝐯
2

(1)
2

= −∇𝑝 + 𝜌0𝜈∇ 𝐯 − 𝜌0𝛽(𝑇 − 𝑇0)𝐠 + 𝐣 × 𝐁,
Fig. 1. Design of the test-section used for experiments, nondimensional sizes and
coordinate system (a). Photograph of the manufactured and instrumented box (b).

where the distribution of the temperature 𝑇 is described by the heat
equation

𝜌0𝑐𝑝
( 𝜕𝑇
𝜕𝑡

+ (𝐯 ⋅ ∇)𝑇
)

− 𝑘∇2𝑇 = 0. (2)

The variables 𝐯, 𝐣, 𝐁, 𝑝 and 𝑇 indicate velocity, current density, applied
magnetic field, pressure and temperature. Density changes in the liquid
metal due to temperature variations are described in the buoyancy term
in (1) by the Boussinesq approximation 𝜌(𝑇 ) = 𝜌0

[

1 − 𝛽(𝑇 − 𝑇0)
]

. The
thermophysical properties of the fluid, i.e. reference density 𝜌0, volu-
metric thermal expansion coefficient 𝛽, kinematic viscosity 𝜈, specific
heat 𝑐𝑝, thermal conductivity 𝑘 and electric conductivity 𝜎, are assumed
to be constant and taken at the mean temperature 𝑇0 = (𝑇1+𝑇2)∕2 [16].

Electric currents responsible for the electromagnetic Lorentz force
result from Ohm’s law

𝐣∕𝜎 = −∇𝜙 + 𝐯 × 𝐁 − 𝑆∇𝑇 . (3)

They are driven by the gradient of the electric potential 𝜙, by the flow-
induced electric field and by the thermoelectric electromotive force.
The coefficient 𝑆 multiplying the temperature gradient is known as
the ‘‘absolute thermoelectric power of the conducting medium’’ [14]
and since 𝑆 is a function of 𝑇 only, the third term on the right-hand
side of Eq. (3) ‘‘is irrotational and incapable of driving currents wholly
within such a medium’’ [17]. This allows replacing it with the gradient
of a scalar function 𝑊 (𝑇 ) = ∫ 𝑆𝑑𝑇 .

The Poisson equation

∇2𝛷 = ∇ ⋅ (𝐯 × 𝐁) (4)

ensures conservation of charge ∇⋅𝐣 = 0 and if we regard 𝛷 = 𝜙+𝑊 as a
pseudo potential, the equations shown above do not differ from those
of isothermal MHD flows. Thermoelectric effects do not affect 𝐯 and
𝑇 in the MHD flow as long as all fluid-wall interfaces are electrically
insulating as in the discussed experiment.
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The flow under study is characterized by two dimensionless groups,
the Hartmann number 𝐻𝑎 and the Grashof number 𝐺𝑟:

𝐻𝑎 = 𝐵𝐿
√

𝜎
𝜌0𝜈

, 𝐺𝑟 =
𝑔𝛽𝛥𝑇𝐿3

𝜈2
. (5)

The former one expresses a dimensionless measure for the strength
𝐵 of the applied magnetic field and its square gives the ratio of
electromagnetic to viscous forces. The Grashof number represents the
relative importance of buoyancy and viscous forces. The liquid metal
used for experiments has a low Prandtl number, 𝑃𝑟 = 𝜈𝜌0cp∕k = 0.029.
In the WCLL blanket the characteristic parameters for ITER TBM and
for DEMO reach large values of about 𝐻𝑎 ∼ 103 − 104 and 𝐺𝑟 ∼ 108 −
1011, respectively [2]. In the present study, the selected characteristic
numbers are of similar order of magnitude as those in the WCLL TBM.

As kinematic boundary conditions at the fluid-wall interface the no-
slip condition, 𝐯 = 0, applies. The walls of the box and the cylinders are
electrically insulating, 𝐣 ⋅𝐧 = 0. The cavity is assumed ideally adiabatic,
𝜕𝑇 ∕𝜕𝑛 = 0, while the pipes are kept at differential temperatures 𝑇1,2.

Since, in the present study, the magnetic Reynolds number is small,
𝑅𝑒𝑚 = 𝜇𝜎𝑢0𝐿 ≪ 1, where 𝜇 is the magnetic permeability, the problem
is solved based on the inductionless approximation according to which
the flow-induced magnetic field is negligible compared to the imposed
one that remains unaffected by the flow. The quantity 𝑢0 is a charac-
teristic velocity in the problem defined as 𝑢0 = 𝜌0𝑔𝛽𝛥𝑇 ∕𝜎𝐵2, which is
obtained from a balance of buoyant and electromagnetic forces [18].

Numerical simulations have been performed by using an in-house
code based on the finite volume open source code OpenFOAM, in
which (1)–(4) have been implemented. A segregated solver has been
developed to describe the magneto-convective flow, and the coupling
between pressure and velocity is realized by the Pressure-Implicit with
Splitting of Operators algorithm. Preconditioned conjugate and bi-
conjugate gradient solvers are employed to solve pressure and velocity
equations, respectively. The Poisson equation for the electric potential
is solved with an algebraic multigrid method. The Lorentz force is
treated explicitly and defined at cell-centers. In order to obtain centroid
currents to calculate electromagnetic forces, face current fluxes are
interpolated in divergence form by using the vector identity 𝐣 = ∇ ⋅ (𝐣𝐫),
where 𝐫 is the distance vector [19]. Standard Gaussian finite volume
integration is employed for the discretization of convective terms. The
code has been validated against a large number of analytical and
asymptotic solutions, as well as experimental data [20,21].

Accurate simulations of MHD flows require a proper resolution of
the thin boundary layers that form along all walls and of internal
layers that develop along magnetic field lines caused for instance by
the presence of geometrical discontinuities. In the problem under in-
vestigation, internal layers form tangent to the pipes and parallel to the
magnetic field. For the present simulations, two topologically different
meshes have been used. For small and moderate Hartmann numbers,
a structured grid has been employed where points are clustered near
the walls and around the planes tangent to the pipes and aligned with
𝐁. With the purpose of reducing the total number of computational
cells, for simulations of flows under intense magnetic fields, a hybrid
grid with local refinement has been generated. It is characterized by
boundary-fitted prism layers near the walls of the box and of the
cylinders, a regular core mesh and an unstructured region to merge
the different grid portions. Three-dimensional simulations with up to
2.5 ⋅ 106 cells in half of the geometry have been performed on the
supercomputers JFRS - 1 at IFERC - CSC and on Marconi - CINECA by
using 240 CPUs.

2.3. Recorded electric potential on the walls

The electric potential recorded on the wall of the geometry is given
by the difference between the potential 𝜙 = 𝜙(𝐱) at a point 𝐱 on the
fluid-wall interface and the one 𝜙𝑟 = 𝜙(𝐱𝑟) at the reference point 𝐱𝑟
(Fig. 1b). In the following, all quantities taken at the reference point
3

Fig. 2. Experimental data for ℰ (𝑇 ) and principle sketch showing the setup.

Fig. 3. Velocity distribution on planes 𝑦 = 0 and 𝑧 = 0 colored by the velocity
magnitude.

are indicated by the subscript 𝑟. When analyzing the wall potential, it
is necessary to recall that it is the result of a contribution 𝛷 induced by
the liquid metal motion in the magnetic field according to Eq. (4) and
an additional thermoelectric part 𝑊 due to the temperature difference
between the measuring points, i.e. 𝜙−𝜙𝑟 = 𝛷−𝛷𝑟 −

(

𝑊 (𝑇 ) −𝑊
(

𝑇𝑟
))

.
Moreover, in experiments the potential is recorded by a voltmeter

that is connected via copper wires to the measuring points on the
fluid-wall interface. Therefore, the instrument senses, in addition to the
contributions 𝛷 and 𝑊 , the thermoelectric potential 𝑊𝑤 due to the
absolute thermoelectric power 𝑆𝑤 of the wire material. With abbrevi-
ation ℰ (𝑇 ) = 𝑊 −𝑊𝑤 = ∫

(

𝑆 − 𝑆𝑤
)

𝑑𝑇 , the reading of the measuring
instrument (subscript 𝑚) yields

𝜙𝑚 − 𝜙𝑚,𝑟 = 𝛷 −𝛷𝑟 −
(

ℰ (𝑇 ) − ℰ
(

𝑇𝑟
))

. (6)

As a result, the experimental potential data consists of a flow-induced
MHD contribution 𝛷𝑀𝐻𝐷 = 𝛷 − 𝛷𝑟 and a thermoelectric one 𝛷𝑇𝐸 =
−ℰ (𝑇 ) + ℰ

(

𝑇𝑟
)

, both of which are separately accessible by numerical
analyses. In the calculations, the potential 𝛷 and the temperature 𝑇 are
calculated and ℰ (𝑇 ) is a known almost linear function of 𝑇 determined
experimentally for the liquid metal/wire (GaInSn/Cu) material combi-
nation (see Fig. 2). The quantity ℰ (𝑇 ) has been determined via a simple
experiment where the copper-sealed ends of a thin GaInSn-filled silicon
hose were put in two temperature-controlled baths of which the cold
one was kept at 0 ◦C, while the temperature of the hot end was varied
in the range 0 ◦C < 𝑇 < 100 ◦C. The voltage has been recorded as in
the MHD heat transfer experiment via copper cables. Values obtained
from numerical simulations according to Eq. (6) can be then compared
with the reading of the instrument.
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3. Numerical results

In the following, results for a magneto-convective flow character-
ized by 𝐻𝑎 = 2000 (𝐵 = 1.01 T) and 𝐺𝑟 = 2.5 ⋅ 107 (𝛥𝑇 = 17.4 ◦C)
are discussed. While heat transfer characteristics and temperature dis-
tribution have been described already in previous publications [5,11],
the present work focuses on a physics-based correct interpretation of
electric potential measurements. The main features of the flow are
described and the calculated potential distributions along lines on the
Hartmann wall and on the end-wall of the box are compared with
experimental data.

Fig. 3 shows 3D velocity profiles on a vertical plane at 𝑧 = 0 and
on a horizontal one at 𝑦 = 0, colored by the magnitude of velocity.
A typical MHD feature is the development of boundary layers with
increased velocity at walls parallel to the magnetic field, as visible in
the figure close to the end-walls and tangent to the pipes. It can be also
seen that the largest convective heat transport occurs in the side layers
at the end-walls of the box at 𝑥 = ±2, where a jet-like velocity profile
is present [5].

In Fig. 4a contours of temperature are displayed on the fluid-wall
interface of the cavity. In Fig. 4b the distribution of the normalized
temperature is plotted along two vertical lines on the middle plane of
the cavity (𝑧 = 0) near the center of the box at 𝑥 = −0.13 and at the
end-walls at 𝑥 = ±2. Experimental data recorded at 𝑥 = −0.13 by 11
thermocouples positioned on a central probe (CP) and on the end-wall
(EW) are displayed as symbols. A good agreement is found between
simulations and experiments. Results reveal a much higher magnitude
near the end walls compared to the central position indicating weak
thermal convection in the center, and stronger convective motion in
the boundary layers close to 𝑥 = ±2. In these regions, which serve
as closing path for electric currents induced in the core flow [5], the
largest potential gradients occur, as shown in Fig. 5a, where contours of
electric potential induced by the flow, 𝛷𝑀𝐻𝐷 = 𝛷 −𝛷𝑟, are visualized
on the liquid metal-wall interface.

As already mentioned in Section 2.3, the measured wall potential is
the result of a part induced by the liquid metal motion in the magnetic
field, 𝛷𝑀𝐻𝐷, and a thermoelectric one, 𝛷𝑇𝐸 , due to the temperature
difference between measuring points. These two contributions can be
evaluated separately in the numerical simulations, while in the experi-
ments thermoelectric effects are intrinsically tied to the non-isothermal
operating conditions when recording the electric potential. In Fig. 5b
contours of the summation of 𝛷𝑀𝐻𝐷 with the thermoelectric voltage,
𝜙 = 𝛷𝑀𝐻𝐷+𝛷𝑇𝐸 , are displayed on the fluid-wall interface of the cavity.
The thermoelectric contribution is about 2.5 times larger than the
velocity induced voltage. Contours of 𝛷𝑇𝐸 resemble the temperature
field shown in Fig. 4a. It can be clearly seen that in the boundary
zones along the end-walls (𝑥 = ±2) 𝜙 differs more significantly from the
temperature distribution due to the stronger convective transport and
hence the larger contribution of 𝛷𝑀𝐻𝐷 compared to the core region.

We compare now the experimental data with the potential 𝜙 ob-
tained by numerical simulations, which contains both flow-induced and
thermoelectric voltages. The potential has been normalized by 𝜙0 =
𝑢0𝐵𝐿. The position of the lines (𝖤𝟤, 𝖧𝟤, 𝖧𝟥) along which the results are
compared are marked in Fig. 5a. In Fig. 6 data are taken along the line
𝖤𝟤 on the end-wall. It can be seen that the thermoelectric voltage gives
the largest contribution to the recorded potential data.

In Fig. 7 experimental and numerical results are compared on the
Hartmann wall along the lines 𝖧𝟤 (a) and 𝖧𝟥 (b). The axial profiles
(line 𝖧𝟤) clearly indicate that there is no flow-induced contribution to
the potential in the center of the cavity. Near the end-walls at 𝑥 = ±2
the strong convective transport induces a large 𝛷𝑀𝐻𝐷 voltage. It can be
also observed that 𝛷𝑀𝐻𝐷 and 𝛷𝑇𝐸 are anti-symmetric and symmetric
with respect to 𝑥 = 0, respectively. Therefore the summation 𝜙 loses
its symmetry about 𝑥 = 0. In the transverse 𝑧 direction (line 𝖧𝟥), the
measured potential results only from the thermoelectric effects.
4

Fig. 4. (a) Temperature contours on the fluid-wall interface. (b) The normalized
temperature is plotted along 𝑦, in the middle of the cavity (𝑧 = 0) at 𝑥 = −0.13 and
𝑥 = ±2. A comparison with experimental data (symbols) is shown.

Fig. 5. Contours of calculated flow-induced electric potential 𝛷𝑀𝐻𝐷 (a) and summation
𝛷𝑀𝐻𝐷+𝛷𝑇𝐸 with the thermoelectric contribution. The position 𝖯𝑟𝑒𝑓 marks the reference
point 𝐱𝑟 used to measure the electric potential.

In the experiments, the recorded potential values are often smaller
than the calculated ones. This could be related to parasitic heat losses
across the walls of the test-section, which may result in somewhat
smaller temperature gradients, as shown in Fig. 4b, thereby leading to
a slightly reduced thermoelectric contribution.
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Fig. 6. Experimental data (symbols) are compared with the numerical results along
the vertical line 𝖤𝟤 (see Fig. 5a). 𝛷𝑀𝐻𝐷 is the velocity-induced potential, 𝛷𝑇𝐸 the
thermoelectric voltage.

Fig. 7. Experimental data (symbols) are compared with numerical results along lines
𝖧𝟤 (a) and 𝖧𝟥 (b) on the Hartmann wall (see Fig. 5a). 𝛷𝑀𝐻𝐷 is the flow-induced
potential, 𝛷𝑇𝐸 the thermoelectric voltage.

4. Concluding remarks

Magneto-convection in a liquid metal has been investigated nu-
merically and experimentally in a model geometry consisting of a
rectangular cavity in which two parallel pipes are inserted and kept
at constant differential temperatures. A magnetic field is applied per-
pendicular to the axis of the cylinders and to two walls of the box. A
balance between electromagnetic and buoyant forces determines flow
and temperature distributions in the cavity [5,11]. The major result of
the present work is that measurements of electric potential in MHD con-
vective flows is always significantly affected by thermoelectric effects,
since measured data is given by the voltage between two electrodes
5

that are at different temperatures. The thermoelectric potential depends
on the temperature and on the material of the conductors and it is
superimposed on the potential induced by the motion of the liquid
metal through the magnetic field. In order to use the recorded potential
on the walls to reconstruct velocity features of the convective flow,
as done in isothermal MHD flows, flow-induced electric potential and
thermoelectric contribution have to be separated. Since the latter is
intrinsically related to the measuring method and to the non-isothermal
conditions in the convective flow, the proper interpretation of recorded
data would require simultaneous measurements of temperature and
potential at each electrode. However, having copper electrodes and
thermocouples exactly at the same position is not possible. For these
reasons only numerical simulations, in which flow-induced electric
potential and thermoelectric voltage can be estimated separately, may
shed light into the problem. By taking into account the thermoelectric
potential in the numerical results in addition to the velocity-induced
part, a good agreement between experiments and simulations is found.
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