
Automated Post-Quantum Certificate
Management for Industrial Internet of

Things Infrastructures

Master’s Thesis of

Kiron Mirdha

at the Department of Informatics
KASTEL – Institute of Information Security and Dependability

Reviewer: Prof. Jörn Müller-Quade
Second reviewer: Prof. Martina Zitterbart
Advisor: Dr. Sebastian Paul, Robert Bosch GmbH
Second advisor: M.Sc. Astrid Ottenhues
Third advisor: M.Sc. Marcel Tiepelt

01. August 2022 – 11. May 2023



Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe



I declare that I have developed and written the enclosed thesis completely by myself,
and have not used sources or means without declaration in the text.
Karlsruhe, May 11, 2023

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Kiron Mirdha)





Abstract

The Industrial Internet of Things (IIoT) is characterized by its high interconnectedness
enabling data exchange across private and public networks. In order to protect the
authenticity of industrial devices and applications against cyber attacks, current best
practices typically involve Public Key Infrastructures (PKIs). While PKI solutions are
well established in the Web, recent studies suggest that their realization in industrial
applications is often insufficient.
Moreover, the long lifespan of IIoT devices necessitates protecting them against

future threats, such as attacks aided by quantum computers. Especially the ongoing
standardization efforts of post-quantum cryptography (PQC) by the National Institute
of Standards and Technology (NIST) motivate research on its applicability in industrial
networks.

In this thesis, we reduce the complexity of certificate management for IIoT devices
by automating administrative PKI tasks. Furthermore, we addressed the quantum
threat by incorporating post-quantum algorithms from NIST’s standardization process.
Our approach instantiates a use case specific version of the Lightweight Certificate
Management Protocol (CMP) Profile for X.509 digital certificates. It considers the
requirements of industrial networks and provides an automation concept for the main
functions of certificate management: certificate request, renewal, and revocation. We
analyzed the authentication of the proposed protocol in the symbolic model using
the formal verification tool Verifpal and proofed that the exchanged messages are
secure against a Dolev-Yao attacker under the notion of injective agreement. Our
impact assessment showed that using the post-quantum signature scheme Dilithium2
instead of Elliptic Curve Digital Signature Algorithm (ECDSA) with the curve P-384
results in shorter execution times at the cost of larger message sizes. In particular, the
execution time for generating request messages is reduced by a factor of ∼ 7, and for
validating their corresponding responses by a factor of ∼ 120. Overall, we concluded
that Dilithium is a viable post-quantum alternative – even for time-sensitive industrial
applications.
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Zusammenfassung

Das industrielle Internet der Dinge (IIoT) zeichnet sich durch seine hohe Vernetzung
aus, die den Datenaustausch über private und öffentliche Netze hinweg ermöglicht. Zum
Schutz der Authentizität von Industriegeräten und -anwendungen vor Cyberangriffen
werden in der Regel Public-Key-Infrastrukturen (PKIs) eingesetzt. PKI-Lösungen sind
zwar im Internet gut etabliert sind, neuere Studien deuten jedoch darauf hin, dass ihre
Umsetzung in industriellen Anwendungen oft unzureichend ist. Darüber hinaus erfor-
dert die lange Lebensdauer von IIoT-Geräten, dass sie gegen künftige Bedrohungen,
wie etwa Angriffe mit Hilfe von Quantencomputern, geschützt werden. Insbesondere
die laufenden Standardisierungsbestrebungen des NIST für Post-Quanten-Kryptografie
motivieren die Forschung zu ihrer Anwendbarkeit in industriellen Netzwerken.

In dieser Arbeit wird die Komplexität des Zertifikatsmanagements für IIoT-Geräte
reduziert, indem die administrativen PKI-Aufgaben automatisiert werden. Außerdem
wird die Bedrohung durch Quantencomputer durch die Integration von Post-Quanten-
Algorithmen aus dem NIST Standardisierungsprozess adressiert. Unser Ansatz in-
stanziiert eine anwendungsspezifische Version des Lightweight Certificate Manage-
ment Protocol (CMP) Profils für digitale X.509-Zertifikate. Es berücksichtigt die
Anforderungen industrieller Netze und bietet ein Automatisierungskonzept für die
Hauptfunktionen der Zertifikatsverwaltung: Zertifikatsanforderung, -erneuerung und
-widerruf. Die Authentizität des vorgeschlagenen Protokolls wird im symbolischen
Modell mit dem formalen Verifikationswerkzeug Verifpal analysiert. Es wird gezeigt,
dass die ausgetauschten Nachrichten gegen einen Dolev-Yao-Angreifer unter dem
Begriff der injektiven Vereinbarung sicher sind. Eine erste Analyse hat zudem ergeben,
dass die Verwendung des Post-Quantum-Signaturalgorithmus Dilithium2 anstelle von
ECDSA mit der Kurve P-384 zu kürzeren Ausführungszeiten führt, allerdings auf
Kosten größerer Nachrichtengrößen. Insbesondere wird die Ausführungszeit für die
Erzeugung von Anforderungsnachrichten um den Faktor ∼ 7, und für die Validierung
der entsprechenden Antworten um einen Faktor von ∼ 120 reduziert. Insgesamt lässt
sich daraus schlussfolgern, dass Dilithium eine praktikable Post-Quantum-Alternative
ist – sogar für zeitkritische industrielle Anwendungen.
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1. Introduction

Today’s digital signatures are based on hard mathematical problems such as integer
factorization, i.e., Rivest–Shamir–Adleman (RSA), and the discrete logarithm problem,
i.e., ECDSA. In 1994, the mathematician Peter Shor developed a quantum algorithm
which efficiently solves the hidden-subgroup problem for finite Abelian groups [Sho94].
As a result of this, currently used digital signature algorithms can be broken with a
quantum computer. Although a sufficiently large quantum computer has not been
built yet, current advancements in the field of quantum computing indicate that it is
only a matter of time until a quantum computer can effectively break RSA and ECDSA
[Jos+22]. Michele Mosca, an expert on quantum computing, estimated in 2017 that
there is a “1/6 chance [of breaking RSA-2048] within a decade and a 1/2 chance within
15 [years]” [Mos18]. This hypothesis is supported by the roadmap of the IBM Quantum
processor technology which envisions to start developing large-scale systems beyond
2026 [Gam22]. Considering that IIoT “devices are often expected to stay functional for
years or even decades” [GKS19, RFC 8576], quantum technology poses a real threat for
IIoT infrastructures when cryptographically relevant quantum computers are available
earlier than the development and migration to PQC is completed [Mos18]. Therefore,
Niederhagen and Waidner [NW17] conclude in their report that it is already necessary
today to incorporate post-quantum secure technology in industrial applications to
reduce the future risk.

1.1. Scope of this Thesis

In the thesis, a protocol shall be developed which automatically manages the entire
life cycle of post-quantum certificates on IIoT devices. It shall provide a solution to
automatically and securely request new certificates, renew them upon expiration and
revoke them when needed. To address future security requirements due to the long
lifespan of IIoT devices, PQC for digital signatures will be analyzed regarding their
feasibility in a resource-constraint IIoT environment and also their status in recent
standardization processes. In the scope of this thesis, the proposed protocol shall
be analyzed and evaluated w.r.t. its security properties and the performance of the
post-quantum signature algorithms compared to currently established ones using a
prototype implementation.

Since mutual authentication is considered a requirement for secure IIoT infrastruc-
tures, the proposed certificate management protocol will enable manufacturers to
securely enhance the networking of their facilities. Additionally, it aims to ease the
migration towards upcoming PQC signature standards by enabling post-quantum
authentication within existing IIoT production environments.
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1.1.1. Industrial Internet of Things

In recent years, industrial control systems have started to migrate from isolated
networks and proprietary communication protocols to highly connected networks and
IP-based protocols, referred to as IIoT. Gathering data, such as machine status, usage
pattern, and production quality, and sharing these sets of data amongst intended
peers internally or even externally via public cloud services, IIoT aims to improve the
efficiency of industrial operations. This implicates that industrial devices are envisioned
to share data about different aspects of industrial operation, such as business strategies,
safety- and security-critical information as well as privacy relevant data, across public
networks [SLB20; AJS20]. Due to this increased degree of interconnectedness and the
sensitive nature of the transmitted data, IIoT infrastructures are even more vulnerable
to cyber attacks than current industrial networks [SWW15]. Therefore, security
mechanisms are a crucial requirement for IIoT.

One main security goal is to ensure the authenticity of devices and applications, i.e.,
there is a process that assures the correct identities of all communication partners. The
current state of the art to provide network wide authenticity are digital certificates
deployed via PKIs [Dah+22]. Existing PKI solutions are designed for use with
the public Internet and enterprise IT, however, they are not well suited for IIoT
networks. In IT networks, certificates are often provided manually to a small number of
servers. This works because these systems deploy certificates for server authentication
rather than mutual authentication. Different from the web, in IIoT environments
the communication takes place to a large extent in a machine-to-machine fashion
without any human interaction. In these use cases a server may, for instance, need to
authenticate the origin of the received sensor data, hence mutual authentication. This
necessitates the use of certificates on both the client and server devices, requiring a
substantially larger number of certificates, favoring an automated solution for certificate
management. Therefore, in IIoT networks it would be desired to automatically and
securely request new certificates, renew and revoke them if necessary.

1.1.2. Research Questions

The goal of the proposed thesis is the development of an automated post-quantum
certificate management system for IIoT infrastructures. Following questions shall be
addressed in the design and implementation of the proposed approach:

1. How can an automated post-quantum certificate management be constructed
for IIoT networks based on existing concepts and protocols?

2. Which security assumptions and goals is the proposed protocol based on and to
which extent can they be verified?

3. How does the use of PQC affect the performance of the proposed certificate
management system compared to traditional public key algorithms?

The main contributions are a concept for automated post-quantum certificate
management (based on an existing certificate management protocol), its prototype
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implementation, and a performance evaluation of the use of PQC digital certificates.
To ensure the security properties of the used protocol, its security analysis is another
major contribution of the thesis. For this, the security assumptions and goals as well
as the attacker model of the system will be specified. In a second step, the security
properties are verified for the proposed protocol.

1.2. Outline

This thesis is structured into six chapters: After this introduction, the state of the art
and related work in the research fields touched by this work are reviewed in Chapter 2.
This includes industrial networks, post-quantum digital signatures, certificate man-
agement protocols and automated security verification. Based on the conclusions of
this chapter, an instantiation of the Lightweight CMP Profile for our industrial PKI
architecture is described in Chapter 3. This specification is then used in Chapter 4 to
conduct a security analysis using the verification tool Verifpal. The analysis comprises
of the security assumptions and goals, the attacker model, the protocol model and the
verification results. In Chapter 5, a proof of concept of the proposed post-quantum
certificate management solution is presented. It provides a proposal for embedding
the PKI architecture into an industrial network and an automation concept for the
certificate management operations. Furthermore, the integration of post-quantum
algorithm support into an existing protocol implementation is documented here. Then,
this prototype is used to assess the impact of post-quantum certificates on memory
and execution time. Finally, the results of this thesis are summarized in Chapter 6
and an outlook gives impulses for future work.
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The subject of this thesis combines multiple fields of research. This chapter provides an
overview of all aspects of the topics relevant for the understanding of the contributions
in this thesis. First, the industrial networks are introduced as target environment in
Section 2.1. Then, the theoretical background for post-quantum digital signatures
as well as a comparison of existing signature schemes is presented in Section 2.2.
Afterwards, certificate management is explained in Section 2.3 and existing protocols
are compared with regard to their suitability in industrial networks. Finally, the
topic of computer aided security verification including relevant security definitions
and notions is described in Section 2.4 and the use of Verifpal as verification tool is
motivated. For each research field, a brief review of related work is provided at the
end of each section.

2.1. Industrial Communication Systems and Networks

In manufacturing and industrial facilities, an industrial communication system refers
to a large class of automation systems that offer control and monitoring capabilities.
These are distributed systems embedded in a large architecture comprising of plant
areas with common and shared applications, area-specific control devices and associated
field devices, all interconnected via different network equipment, the industrial network.
Such networks are increasingly migrating to Ethernet and Internet Protocol (IP) based
technologies using both wired and wireless connectivity. At the field level, however,
non-IP-based field bus media and protocols are still used. Compared to a business
network or the internet the availability of data is much more prioritized in industrial
networks. As a result, real-time protocols are used to a greater extent as well as
fault-tolerant networks connecting endpoints and servers. Additionally, industrial
network architectures need to provide low / consistent latency because the deployed
applications and protocols usually depend on deterministic communication and precise
timing requirements [KL15b].

The heterogeneous environment and the ubiquitous connectivity can pose a signifi-
cant security risk if proper design considerations are not taken. Focusing on network
attacks, [GT11] divides them into four classes:

1. Interception attacks: The attacker attempts to gain unauthorized access to
confidential data during the transmission over the network.

2. Modification attacks: The attacker attempts to modify messages while they are
transmitted over the network.
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3. Fabrication attacks: The attacker attempts to insert malicious data.

4. Interruption attacks: The attacker attempts to disrupt the communication
between devices making the data unavailable.

A planned approach to security for industrial networks is the “defense-in-depth”
principle relying on multiple security layers to protect valuable assets. This principle
is intended to ensure that an attacker or an otherwise triggered incident cannot spread
unhindered and cause damage by leveraging a single measure [KL15b].

In the following, a key concept of this approach is described in more detail: security
zones and conduits.

2.1.1. Security Zones and Conduits

Many industrial communication systems are structured in a hierarchical way following
the Purdue Reference Model for Computer Integrated Manufacturing (CIM) from 1989.
Applying this network segmentation based on security requirements the International
Electrotechnical Commission (IEC) defined the concept of security zones and conduits
as specified in IEC-62443-1-1 [Int09] of the international standard series IEC-62443
“Industrial communication networks - Network and system security”:

Definition 2.1.1 (Security zone). [A security zone describes a] grouping of logical
or physical assets that share common security requirements. [. . . ] A zone has a
clear border with other zones. The security policy of a zone is typically enforced by a
combination of mechanisms both at the zone edge and within the zone. Zones can be
hierarchical in the sense that they can be comprised of a collection of sub-zones.

Definition 2.1.2 (Conduit). A conduit is a particular type of security zone that
groups communications that can be logically organized into a grouping of information
flows within and also external to a zone. It provides protection measures for the
communication channels within to allow secure communication across zones.

If implemented correctly, the zone model complies with the principle of least privilege
and the principle of least route. The first principle ensures a reduced attack surface
by granting minimal privileges to users and devices. The second principle ensures
minimal delay in data communication, which can contribute to lower utilization of
transmission paths and communication devices, especially in a real-time network
[KL15b].
Figure 2.1 illustrates a three-zone security model for industrial communication

applications in a company adopted from Granzer and Treytl [GT11] : The inner
control zone (or production zone) hosts the field-level communication systems, which
are primarily located at the shop floor. The plant zone (or on-premise/service zone) is
typically built upon IP based Local Area Networks (LANs) inside the plant. Finally,
the enterprise zone connects multiple plants, remote maintenance sites, etc. In general,
it is assumed that devices outside a security zone fulfill a lesser or different level of
security, and thus, are not trusted by default. Therefore, all data transfer between
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• IP based network
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Production Zone
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communication

• control devices located at 
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trustworthy
entity

security measure security measure

inner security
structure

Figure 2.1.: Three-zone security model adopted from Granzer and Treytl [GT11]

zones must have a conduit which provides dedicated security measures. Typical
examples are firewalls between the enterprise and service zone or application gateways
between the service zone and the production zone.

2.1.2. Machine to Machine Communication

In industrial networks a majority of communication takes place between distributed
applications to transfer data or to invoke functions without any human interaction.
This is referred to as machine-to-machine communication. Martin Wollschlaeger
[Mar11, Section 56.4.3] state that in the automation domain, the use of web services
for machine-to-machine communication is increasing. A web service, as defined by
W3C [W3C], is “a software system designed to support interoperable machine-to-
machine interaction over a network.” For this, it offers an interface to describe services
in a machine-processable format. Other systems interacting with a web service
typically transfer messages using Hypertext Transfer Protocol (HTTP) together with
other web-related standards [W3C].

2.1.2.1. Communication Use Cases

Communication which requires communication across security zones can be assigned
to three top level use cases: production execution, data streaming, and remote
maintenance and support. The first two use cases represent machine-to-machine
communication whereas the third involves human interaction.

Production Execution All tasks and processes which directly influence the product and
its production. This use case allows conduits to have a permanent, bidirectional
connection between the dedicated production execution services and IT systems
in the control zone.

7



2. State of the Art

Data Streaming Applications such as control monitoring, energy data collection or
backup service which involve the continuous provisioning of large amounts of
data to a consumer for later use. In these cases, only outgoing communication
from the control zone is permitted, the original request by the data consumer
excluded.

Remote Maintenance and Support All uses cases in which a human initiates the com-
munication. The communication can be bidirectional, but it is required that the
conduit is set up on demand and is limited in time.

In the context of the thesis, the focus is on machine-to-machine communication, i.e.,
on the use cases production execution and data streaming, which can benefit from an
automated certificate management.

2.1.2.2. Secure Industrial Communication Protocols

Based on the expected message pattern the two use cases can be grouped in two
types of communication: The production execution use cases represent the client-
server model and the data streaming calls for a more data-centric approach, the
publish-subscribe model.

In both cases, the Transport Layer Security (TLS) protocol [DR08; Res18], which is
already well-established in the IT domain, can be used to establish secure communica-
tion channels providing confidentiality, integrity and authenticity based on certificates.
TLS is designed for client-server applications and only requires mandatory server
authentication. But it is possible that the server also demands clients to authenticate
themselves, thus, enabling mutual authentication.
For the publish-subscribe model currently the machine-to-machine communica-

tion protocol MQTT, originally an initialism of MQ Telemetry Transport (MQTT)
[Ban+19] is widely studied for its use in IIoT networks. Profanter et al. [Pro+19]
have shown that it is a lightweight protocol which is able to handle high latency
and noisy network conditions. A central broker maintains the entire data set of it
communication partners and distributes the information upon subscription. A client
can publish messages corresponding to a specific topic (publisher) or receive messages
by subscribing to topics provided by the broker (subscriber). MQTT specifies that
TLS shall be used to ensure authentication between subscriber and broker as well as
between publisher and broker. It should be noted that mutual authentication between
a subscriber and a publisher is not possible with MQTT. However, this offers the
advantage that a subscriber does not need to validate all publishers it subscribes to.
Thus, a performance gain can be achieved compared to the client-server model.

2.2. Post-quantum Digital Signatures

Certificate-based authentication relies on the cryptographic primitive of digital signa-
tures. However, as outlined in Chapter 1 current signature schemes cannot be relied
upon once a quantum computer exists that can efficiently break them. Therefore,
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post-quantum signature schemes are considered in this thesis and their integration
into certificates and certificate management is investigated.
In December 2016, NIST initiated a PQC standardization process which is a

competition-like process calling for proposals for quantum-safe 1 digital signatures,
Public Key Encryption (PKE) schemes, and Key Encapsulation Mechanisms (KEMs).
The standardization committee evaluates the submissions regarding their security
guarantees, performance and algorithm and implementation characteristics [NIS22].
In the following, the signature scheme candidates are discussed in more detail. For
this, first, the relevant definitions and security notions are specified. Afterwards, the
different families of algorithms are briefly described including their representatives in
the standardization process. Comparing these candidates regarding their feasibility it
is reasoned that Dilithium2 will be used as an example for post-quantum certificate
management in IIoT networks.

2.2.1. Definitions and Security Notions

To send an authenticated message, the sender first generates a public-private key
pair (pk , sk). The public key pk is then published in a manner so that the receiver
can obtain a legitimate copy of it afterwards. When the sender wants to transmit a
message m, they compute a signature σ using the secret key sk and send both the
message and the signature to the other party. The signature σ is obtained using a
signing algorithm Sign. The receiver verifies the validity of the signature by running a
verification algorithm Vrfy , which takes the public key pk, message m, and signature
σ as input and determines whether the received signature is valid or not. Formally
defined by Katz and Lindell [KL15a, Section 12.2]:

Definition 2.2.1 (Digital signature scheme). A (digital) signature scheme consists of
three probabilistic polynomial-time algorithms (Gen, Sign,Vrfy) such that:

1. The key-generation algorithm Gen takes as input a security parameter 1n and
outputs a pair of keys (pk, sk). These are called the public key and the private key,
respectively. We assume that pk and sk each has length at least n, and that n
can be determined from pk or sk .

2. The signing algorithm Sign takes as input a private key sk and a message m from
some message space (that may depend on pk). It outputs a signature σ, and we
write this as σ ← Signsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key pk, a
message m, and a signature σ. It outputs a bit b, with b = 1 meaning valid and
b = 0 meaning invalid. We write this as b := Vrfypk(m, σ).

It is required that except with negligible probability over (pk, sk) output by Gen(1n), it
holds that Vrfypk (m, Signsk (m)) = 1 for every (legal) message m. If there is a function

1The terms “quantum-safe”, “quantum-resistant” and “post-quantum” are used synonymously in
this thesis.
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` such that for every (pk, sk) output by Gen(1n) the message space is 0, 1`(n), then we
say that (Gen, Sign,Vrfy) is a signature scheme for messages of length `(n).

Security of a signature scheme means that an adversary should not be able to
produce a forgery even if they obtain signatures of other messages of their choice.
For a fixed public key pk generated by a signer S, a forgery is a message m with a
valid signature σ where the signer did not sign m previously. This security notion is
referred to as EUF-CMA and is formally defined by Katz and Lindell [KL15a, Section
12.2] as follows:

Definition 2.2.2 (Signature experiment Sig-forgeA,Π (n)). Let Π = (Gen, Sign,Vrfy)
be a signature scheme, and consider the following experiment for an adversary A and
parameter n:

1. The key-generation algorithm Gen (1n) is run to obtain keys (pk , sk).
2. Adversary A is given pk and access to an oracle [for the signature algorithm]

Signsk (·). The adversary then outputs (m,σ). Let Q denote the set of all queries
that A asked its oracle.

3. A succeeds if and only if a) [the verification algorithm] Vrfypk (m,σ) = 1, and
b) m /∈ Q. In this case, the output of the experiment is defined to be 1.

Definition 2.2.3 (EUF-CMA). A signature scheme is existentially unforgeable under an
adaptive chosen-message attack, or just secure, if for all probabilistic polynomial-time
adversaries A, there is a negligible function negl such that:

Pr
[
Sig-forgeA,Π (n) = 1

]
≤ negl(n).

For their candidate signature schemes, NIST primarily considers security proofs in
which the attacker uses classical queries to the signing oracle, rather than quantum
queries [NIS22]. As previously stated, digital certificates are based on signature
algorithms. Thus, in the following, the term “post-quantum certificate” shall refer to
digital certificates which are considered secure under the given notion of EUF-CMA.
Additionally to the this security definition, NIST introduces a security strength

categories which are defined by the security of “a comparatively easy-to-analyze refer-
ence primitive” [NIS22]. The security strength shall reflect how much computational
resources an attack requires to break the relevant security definition, i. e., EUF-CMA.
Table 2.1 summarizes the five NIST security levels, listed in increasing order: The
classification is based on the range of security strengths provided by the current NIST
symmetric cryptography standards, which are expected to offer significant resistance
to quantum cryptoanalysis. In that sense, the security requirement assigned to each
security level means, that a signature scheme of a certain level is at least as hard to
break as the given symmetric primitive using the specified method. For example, any
attack on a level 1 signature scheme “that breaks the relevant security definition must
require computational resources comparable to or greater than those required for key
search on a block cipher with a 128-bit key (e. g., AES-128)” [NIS22].
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Level Security requirement

1 key search on a block cipher with a 128-bit key (e. g., AES-128)
2 collision search on a 256-bit hash function (e. g., SHA-256/ SHA3-256)
3 key search on a block cipher with a 192-bit key (e. g., AES-192)
4 collision search on a 384-bit hash function (e. g., SHA-384/ SHA3-384)
5 key search on a block cipher with a 256-bit key (e. g., AES-256)

Table 2.1.: NIST security levels

2.2.2. Candidates Signature Schemes

In July 2022, NIST completed the third round of the standardization process and de-
cided to standardize the algorithms CRYSTALS-Dilithium [Léo+21], Falcon [Pie+20]
and SPHINCS+ [Aum+22] as post-quantum signature schemes [CSR22]. Dilithium
and Falcon belong to the family of lattice-based signature schemes, while SPHINCS+
is a hash-based scheme.

Lattice-based cryptography Lattice-based cryptography relies on hard problems on
lattices. In linear algebra, a lattice is the set of all integer linear combinations of
linearly independent vectors from a basis of Rn. The crucial point here is that
the basis for a lattice is not unique, which is utilized in the construction of hard
problems. Dilithium depends on the module learning with error (LWE) problem
and module short integer solution (SIS). Falcon is constructed with SIS over
NTRU, a ring based public-key cryptosystem [HPS98]. According to Bernstein
and Lange [BL17] lattice-based algorithms are relatively efficient to implement,
but “more research is required to gain confidence in the security of lattice-based
cryptography.”

Hash-based cryptography Hash-based cryptography relies on hash trees or Merkle trees
and few or one time signature (FTS/OTS) which use secure cryptographic hash
functions, i. e., they are required to be preimage and collision resistant. When
the signer signs a message with FTS/OTS the corresponding private key becomes
a leaf in the Merkle tree and the resulting tree root is the public key. Using
one time signature (OTS) the signer has to ensure that its private key is never
reused which requires maintaining a key state. The stateless signature scheme
SPHINCS+ alleviates this issue but with the cost of much larger signature sizes.
Bernstein and Lange [BL17] conclude that hashed-based signature schemes using
Merke trees are well-understood, and reliable regarding their security properties.

Table 2.2 shows the parameter sets for the three post-quantum signature candidates.
Compared to the classical elliptic curve signature scheme ECDSA it is evident that
both the key sizes and the signature sizes are significantly larger, except for SPHINCS+.
With SPHINCS+ the key sizes are rather small, but as it is a stateless hash-based
signature scheme, the signature sizes are in the range of 17− 49 kB. Regarding the
use in certificates and with the goal to choose a resource-conserving algorithm, a
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Signature Public key Private key Signature Security
algorithm size (Bytes) size (Bytes) size (Bytes) level

ECDSA nistp384 48 48 96 –

Dilithium2 1312 2528 2420 2
Dilithium3 1952 4000 3293 3
Dilithium5 2592 4864 4595 5
Falcon-512 897 1281 690 1
Falcon-1024 1793 2305 1330 5
SPHINCS+-SHA256-128f-simple 32 64 17088 1
SPHINCS+-SHA256-192f-simple 48 96 35664 3
SPHINCS+-SHA256-256f-simple 64 128 49856 5

Table 2.2.: Post-quantum signature algorithms and parameter sets

signature scheme with key and signature sizes as small as possible would be desired.
Thus, Falcon would be the best choice out of the three schemes.

All of them are secure under the notion of EUF-CMA (Definition 2.2.3). Depending
on the parameter set, different security levels (Table 2.1) can be achieved. The larger
the key sizes are chosen, the greater computational resources are required for an
attacker to break the scheme.

Although Falcon would be the more favorable scheme due to its smaller key and
signature sizes, NIST recommends the primary use of Dilithium because of its per-
formance and less complexity of implementation [CSR22]. Therefore, in this thesis,
we select the Dilithium parameter set with the smallest key and signature sizes,
Dilithium2, to evaluate the post-quantum impact on the certificate management
protocol.

2.2.3. RelatedWork

Bindel et al. [Bin+17] and Kampanakis et al. [Kam+18] have studied the integration of
post-quantum signatures in X.509 certificates. One of the first performance evaluations
of post-quantum authentication in TLS 1.3 was performed by Sikeridis, Kampanakis,
and Devetsikiotis [SKD20]. However, they solely focused on server authentication.
Later, this performance study has been extended for mutual authentication integrating
all NIST round three candidates in the wolfSSL library [Pau+22]. To the best of our
knowledge no research has been conducted on the integration of PQC in certificate
management protocols.
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2.3. X.509 Public Key Infrastructure and Certificate
Management

X.509 Public Key Infrastructure (PKI) [Int22] is a standard for managing digital
certificates, which are used to establish trust and enable secure communication over
the internet. A PKI involves a hierarchical system of trusted authorities that issue,
manage, and revoke digital certificates, which contain public keys used for encryption
and authentication.
In the following, the main components of a PKI and the processes of certificate

life-cycle management are introduced. Afterwards, existing certificate management
protocols are compared and related work regarding the use of certificate management
in industrial network is reviewed.

2.3.1. PKI Components

The following terminology adopted from Brockhaus, Oheimb, and Fries [BOF23] and
Adams et al. [Ada+05] will be used in this document to describe the entities involved
in the certificate management.

Certificate Authority (CA) A Certificate Authority (CA) issues certificates.

Registration Authority (RA) A CA can delegate certificate management tasks including
end entity authentication and authorization checks for incoming requests to a
Registration Authority (RA), which is an optional PKI component. An RA
can also convert between several certificate management protocols and other
protocols that offer certificate management-related operations.

End Entity An end entity is typically a device or application that possesses a public-
private key pair for which it requires a certificate.

PKI management operation A PKI management operation describes the entirety of all
messages belonging to a single transaction between PKI entities.

PKI management entity All entities of the PKI which are not end entities are referred
to as PKI management entities, e. g., the CA and the RA.

PKI entity A PKI entity is an end entity or a PKI management entity.

2.3.2. Certificate Life-cycle Management

Certificate management describes all processes a digital certificate undergoes over the
span of its entire life time. Buchmann [Buc13, Chapter 7.1] differentiates between
three phases: the Certificate Generation Phase when the certificate is initially issued,
the Certificate Validity Phase during which it can be used for authentication, and
finally the Certificate Invalidity Phase.
Certificates are issued with a limited validity period because the identity of the

entity authenticated by CAs might change or the security of the public key may
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be compromised either accidentally or even intentionally by an attacker. Therefore,
certificate life cycle management is needed to maintain the necessary information and
manage the transitions between the phases Atreya et al. [Atr+02, Chapter 3]. The
four main tasks in this life cycle are initialization, certificate request, renewal and
revocation.

Initialization During the initialization of an application or device information about
the PKI such as the address of the CA including its certificate are provisioned.
For the scope of the thesis, it is assumed that the provisioning of the PKI details
is performed out of band.

Certificate Request Having information about the trusted CA, the application can now
request a certificate. For this, it sends its identity and the public key which shall
be authenticated by the CA and provides a proof of possession to prove that
they own the private key corresponding to the public key. The CA validates
the proof of possession and on success, it replies with the signed application
certificate.

Certificate Renewal Upon expiration of its certificate an application can request a
renewal. Depending on the security policy it one can continue to use the public
key linked to the certificate or replace it with a new key. The renewal is simpler
than a certificate request since using the signing key of the already authenticated
certificate is a sufficient proof of identify towards the CA. Therefore, it is possible
to automate the renewal process.

Certificate Revocation Sometimes it is necessary to actively revoke a certificate even
before it expires. The most common reason for that is a change in the identity
of its owner. If a CA revokes a certificate, it also has to propagate this informa-
tion to all communication partners of the certificate owner. Typically, this is
accomplished with a Certificate Revocation List (CRL) which is maintained by
the CAs.

2.3.3. Comparing Existing Certificate Management Protocols

The PKI standardization for X.509 certificates is mainly driven by the Internet
Engineering Task Force (IETF) and targets internet infrastructures: The CMP
[Ada+05, RFC 4210] specifies all aspects of certificate management. In particular
the communication protocol for certificate enrollment, renewal and revocation are
described. The messages are self-contained and thus, can be transported via various
means, typically over HTTP or emails. CMP is considered rather complex in its
implementation and message syntax [Atr+02]. Therefore, Certificate Management
over CMS (CMC) [SM08, RFC 5272] was introduced to support the simpler, widely
used Cryptographic Message Syntax (CMS) [Hou09, RFC 5652] message format.
Additionally, in CMC the communication overhead for a management operation is
reduced to a single request and response.
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Later, the protocols Simple Certificate Enrollment Protocol (SCEP) [Gut20, RFC
8894 - internet draft] and Enrollment over Secure Transport (EST) [PYH13, RFC
7030] have been published. They are both based on CMC and focus on methods for
automated certificate enrollment on managed devices. The difference lies in whether
a shared secret (SCEP) or TLS (EST) is used for authentication. Note that EST
does not support querying for a certificate’s revocation status. However, additional
mechanisms can be used to check the validity of a certificate, such as CRLs and the
Online Certificate Status Protocol (OCSP) [San+13, RFC 6960] can be used to check
the validity of a certificate.
A relatively new protocol is Automatic Certificate Management Environment

(ACME) [Bar+19, RFC 8555], known for it’s use in the Let’s Encrypt project, though
its application is limited to the authentication of web servers. Compared to afore-
mentioned protocols, ACME allows automatic verification of the ownership of an
internet domain, and thus, enables simple automated certificate issuance without user
interaction. Currently, an ACME based approach is proposed as an experimental
draft to provision X.509 certificates on Internet of Things (IoT) devices leveraging a
private CA instead of a public one [Swe22].
With the increasing demand of certificates especially for IoT devices, in 2020 the

Limited Additional Mechanisms for PKIX and SMIME (LAMPS) working group of the
IETF published a first draft a simple and automated certificate management protocol
based on CMP, the Lightweight CMP Profile. Since then it has been revised several
times, the version which is referred to in this thesis is version 21 [BOF23]. As stated
before CMP itself is a complex framework for realizing certificate management in
various ways, an instantiation of the protocol is referred to as profile. The Lightweight
CMP Profile focuses especially on IoT and industrial uses cases by reducing the set of
procedures to the most crucial operations and supporting only the mandatory options.
For example, the necessary interaction for a certificate management operation can be
reduced to a single message round-trip, similar to CMC.

Table 2.3 shows the mentioned certificate management protocols in direct compari-
son: Regarding the feature coverage, the CMP protocols are most suited to provide
certificate management over the whole certificate lifecycle. Furthermore, the use of
self-contained protection mechanisms allows flexibility towards the transport protocol
and thus, the target network infrastructure. Additionally, it saves the overhead of
establishing a TLS connection which again requires its own certificates compared to
CMC and EST. Most importantly, due to its targeted profile for industrial networks,
the Lightweight CMP Profile is further studied in this thesis regarding its extensibility
for post-quantum certificates.

2.3.4. Post-quantum X.509 Certificates

To use post-quantum authentication, X.509 certificates need to provide post-quantum
algorithm support. Sikeridis, Kampanakis, and Devetsikiotis [SKD20] analyzed in their
work which fields of the certificate are affected as shown in Figure 2.2. The subject of
the certificate is the identifier of the end entity that holds ownership over the public
key provided in the subject public key info field. In this field, the post-quantum public
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CMP Lw. CMP CMC SCEP EST

Cert. request X X X X X
Cert. renewal X X X X X
Cert. revocation X X − − −
Protection Self-contained Self-contained TLS Shared secret TLS

Table 2.3.: Comparison of existing certificate management protocols
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Figure 2.2.: Post-quantum (PQ) X.509 certificate

key and the identifier of its post-quantum signature algorithm are placed. The issuer
then signs the certificate using the signature scheme indicated in the PQ signature
algorithm field. The post-quantum signature is attached at the end of the certificate
in the signature area. The size of the X.509 certificate and the related certificate
chains will increase as a result of the post-quantum public key and post-quantum
signature being added (Table 2.2).

2.3.5. RelatedWork

Mota [Mot16] and Ackermann [Ack19] compared CMP, CMC, SCEP and EST re-
garding their suitability for different network settings: Mota [Mot16] investigated
the deployment of a PKI for IoT devices for the authentication of web services.
He proposed the use of EST since it allows server-side private key generation for
resource constrained devices. Ackermann [Ack19] worked on the integration of an
automated certificate management system for OPC Unified Architecture (OPC UA),
a cross-platform standard data exchange in industrial networks developed by the OPC
Foundation.
In the last years several proprietary solutions emerged for cloud-based automated

certificate life cycle management [Glo22; Key22b; MTG22]. Furthermore, in the
research project FieldPKI a related subject is studied, namely the security life cycle
management of heterogeneous industrial field bus environments [Off21].
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2.4. Computer-Aided Security Protocol Verification

Security protocols are used to secure communication over insecure networks by utilizing
cryptographic primitives. The design of security protocols, however, is particularly
prone to errors. One of the most prominent examples in literature is the well-known
Needham-Schroeder public-key protocol [NS78], in which 16 years after its publication
Lowe [Low96] discovered a security error. Despite significant progress since then,
many errors in current security protocols remain [Bla12]. Such errors on protocol
level not only weaken the trust in security measures but also are not detectable by
functional software testing because they appear only when a malicious adversary
is present. In order to obtain actual assurances that a security protocol is correct
the use of automatic verification tools can be helpful. Therefore, security protocol
verification has been and continues to be a very active research area since the 1990s
[Cre08; EMM09; Mei+13; Bla12; Bla16; KNT20].
Here, the foundations of security protocol verification are described and existing

automatic tools are reviewed.

2.4.1. Security Models

A formal security analysis of a protocol comprises two parts, the definition of a security
model and the proof of the desired security properties in this model. As described by
Boyd, Mathuria, and Stebila [BMS20, Section 1.6] formal methods are divided in two
different categories depending on the underlying model: the symbolic methods and
the computational methods.

Computational Model Typically, the computational model is used to prove the security
of cryptographic primitives by reducing the protocol to security properties of
its underlying primitives all the way to mathematical complexity assumptions.
For this, messages are represented as bit strings and primitives are functions
operating on those bit strings. It is shown that if a security property of the
protocol can be broken in this model with non-negligible probability, then the
existence of an adversary breaking one of the protocol’s security assumptions is
implied.

Symbolic Model In the symbolic model, also referred to as the Dolev-Yao model
[DY83] the attacker is modeled as a non-deterministic state machine and the
cryptographic primitives are symbolic functions, i.e., it is assumed that the
attacker cannot break their security properties (perfect cryptography). Having
only a fixed set of actions at their disposal the general idea is to show that the
attacker is not able to reach a bad state, representing a successful attack.

As the Dolev-Yao model is classically assumed for network security protocols
[BMS20, Section 1.6], in this thesis the security verification is conducted in the
symbolic model. Previous works have shown that many practical attacks can be
described in the symbolic model and tool-based analysis of complex protocols, such
as TLS 1.3, has been proven to be quite valuable [Cre+17; LZK20].
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2.4.2. Authenticity as Security Property

Security protocols can have various security goals, which can be broadly categorized
as trace properties and equivalence properties. The definitions and formalisms used
in this thesis are adopted from a survey by Blanchet [Bla12] and the formalization of
“authenticity” by Lowe [Low97].

Definition 2.4.1 (Trace properties). Trace properties are properties that are defined
for each run of the protocol (execution trace). A protocol satistisfies a trace property
in the symbolic model if it holds for all traces and in the computational model for all
but a set of traces with a neglible probability. An example for a trace property is the
fact that certain states are not reachable.

Definition 2.4.2 (Equivalence or indistinguishability properties). Equivalence prop-
erties are processes which an adversary cannot distinguish from each other, e. g., the
protocol under study and its specification. In the symbolic model this notion is referred
to as process equivalence, whereas in the computational model it is called indistin-
guishability. Equivalences are useful in modeling subtle security properties and can be
used for compositional proofs.

Automating a proof of an equivalence property is more challenging than automating
the proof of trace properties because they cannot be described within a single trace,
they rather require relations between traces (or processes).
The security goal “authenticity”, which is the focus of this work, can be expressed

as trace property and thus, the proof for the chosen certificate management protocol
is likely to be automated by a verification tool.
By the notion “authenticity“ we mean, that if a participant A runs the protocol

seemingly with a participant B, then B runs the procedure supposedly with A, and
vice versa. In general, it is also required that A and B have the identical protocol
parameter values.
In 1997, Lowe [Low97] introduced a hierarchy of authentication properties for the

symbolic model which was later extended by Cremers [Cre08]. Lauser, Zelle, and
Krauß [LZK20] informally summarized the different meanings of authentication:

Definition 2.4.3 (Authentication properties). Let there be a protocol that aims to
authenticate a responder or prover B to an initiator or verifier A. Then the following
security properties directly adopted from Lauser, Zelle, and Krauß [LZK20, Section
3.3.1] can be specified:

Aliveness Whenever A completes a run of the protocol, apparently with B, then B has
previously been running the protocol.

Weak agreement Whenever A completes a run of the protocol, apparently with B, then
B has previously run the protocol, apparently with A.

Non-injective agreement Whenever A completes a run of the protocol, apparently with
B and some data values −→v , then B has previously been running the protocol,
apparently with A and −→v .
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Injective agreement In addition to the non-injective agreement, each run of A has to
correspond to a unique run of B. This implies replay protection.

Non-injective synchronization This property extends the non-injective agreement by
additionally requiring that the order of messages is preserved, i. e., they are
received in the same order as sent.

Injective synchronization In addition to non-injective synchronization, it is required
that each run of A corresponds to a unique run of B.

Additionally, these properties can be extended with a notion of recentness, which
can be accomplished, for example, by tying messages to a timestamp that is only
valid for a specified interval. The appropriate properties desired to prove are use case
specific and thus, need to be chosen based on the protocol under study.

Cremers and Mauw [CM12] provide formal definitions of the aforementioned prop-
erties, but for the understanding of this thesis the informal descriptions are sufficient.
In Chapter 4, we will revisit the definitions here for the security analysis of the

certificate management protocol.

2.4.3. Comparing Existing Verification Tools in the Symbolic Model

Table 2.4 provides a comparison of existing tools for symbolic verification of security
protocols which support the analysis of trace properties, in particular, authenticity.
This list is not extensive, but rather an excerpt of surveys conducted by Barbosa et al.
[Bar+21], Boyd, Mathuria, and Stebila [BMS20] and Kobeissi, Nicolas, and Tiwari
[KNT20]. The comparison criteria are established by Barbosa et al. [Bar+21]:

Automated proof-finding (Auto) Can the tool automatically conduct the security analy-
sis? Interactive tools require in-depth knowledge about the verification techniques
and thus, make the usage of such tools difficult for beginners.

Unbounded number of session (Unbound) Can the tool analyze an unbounded number
of protocol sessions? Bounded tools (#) have an explicitly limited number of
sessions to be analyzed, and attacks beyond this cut-off are not considered.
Unbounded tools ( ) are able to prove the absence of attacks within the model,
this comes at the cost of undecidability.

Trace properties (Trace) Can the tool verify trace properties? As determined in Sec-
tion 2.4.2, authentication is described as trace property in the symbolic model.
Therefore, the tool should support the verification of trace properties.

Equational theories (Eq-thy) What is the support for equational theories? Equations
enable detecting a larger class of attacks, since they allow more detailed modeling
of cryptographic constructions, e. g., Diffie-Hellman constructions.

Globaly mutable states (State) Does the tool support verification of protocols with
global mutable state? Tools with mutable states of the protocol participants
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enable reasoning support for analyzing complex, stateful attacks which is practical
for many real-world protocols use shared databases or shared memory.

Link to implementation (Link) Can the tool extract/generate executable code from spec-
ifications in order to link symbolic security guarantees to implementations? This
is not necessarily needed for the scope of this thesis, but might be of advantage
in future work towards the security analysis of the protocol implementation.

In Table 2.4, a filled circle ( ) means that the criteria is fulfilled to full extent and
an empty circle (#) means that it is not fulfilled. A half filled circle (G#) indicates that
the criteria is only fulfilled to a limited extent or under certain assumptions. For our
purposes we desire a tool that is able to run an automated security analysis, supports
unbounded executions, can verify trace properties, in particular authentication prop-
erties (Section 2.4.2) and has mutable states. Apart from these criteria, we desire the
tool to be accessible to protocol designers without deep knowledge of cryptographic
proofs and reasoning.
In direct comparison with the other tools, ProVerif [Bla16], Tamarin [Mei+13]

and Verifpal [KNT20] qualify most under these criteria. In our selection process
the automation of the tool has the highest priority, since we pursue the use of an
easily understandable tool. Therefore, we see the need for interaction during the
security analysis in Tamarin as a disadvantage, although its support for equational
theories is more refined [KNT20]. Verifpal is a tool heavily inspired by ProVerif,
but instead of using applied pi-calculus as modeling language [ABF17], it introduces
its own more intuitive language. Different from other existing tools Verifpal focuses
on the usability for engineers and practitioners. That is why it has primarily been
chosen in this thesis to conduct the security verification. ProVerif is known to have a
significant problem with analysis termination, whereas Verifpal makes compromises
in analysis completeness to greatly increase the likelihood of termination. Another
common problem among protocol verifiers in the symbolic model is that for complex
protocols, the space of participants states and value combinations the verifier needs
to assess may become too large to terminate the verification within a reasonable time.
Verifpal mitigates this problem by using certain heuristic techniques and leveraging
multi-threading [KNT20]. These circumstances need to be considered when discussing
the soundness of the verification results in Chapter 4, as Kobeissi, Nicolas, and Tiwari
[KNT20] state that formally, Verifpal is unable to guarantee “that it never misses an
attack in any model that can be expressed within its language”.

2.4.4. Cryptographic Protocol Analysis with Verifpal

To conduct a security analysis with Verifpal, the attacker, the protocol, and its
participants as well as the desired security goals need to be described in the Verifpal
modeling language. In this section, the relevant principles, and notations as specified
by [KNT20] are introduced for later use in Chapter 4.

Figure 2.3 shows a high level overview of all Verifpal language components used in
this work: First, it is specified whether the model will be examined under a passive or
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Tool Auto Unbound Trace Eq-thy State Link

Desired properties for tool      #

Maude-NPA [EMM09] #    # #
ProVerif [Bla16]    G# # #
Scyther [Cre08]    # # #
Tamarin [Mei+13] G#     #
VerifPal [KNT20]    G#  G#

Table 2.4.: List of tools for symbolic protocol analysis

Attacker

-- passive

-- active

Queries

Check security properties:
-- confidentiality
-- authentication
-- freshness
-- unlinkability (experimental)

Value Types

• Constants
• Equations
• Primitives (perfect cryptography)

hash, encrypt, sign, secret 
sharing

Principals

• Honest participants in activity modelled with value types

messages modelled with value types

Figure 2.3.: Overview of Verifpal language components

active attacker. The attacker in Verifpal is understood as a Dolev-Yao attacker [DY83]
(see Section 2.4.1). Informally, a passive attacker is only able to record transcripts of a
protocol, i. e., in a real-world scenario they listen to all traffic that is transmitted over
a network, and try to obtain as much information about the ongoing communication
as possible, for example, to impersonate one of the communication partners. An
active attacker is additionally able to modify an message as they cross the network.
Next, the honest parties participating in the protocol are defined, the principals.

The internal behavior of the principals is described using a fixed set of value types.
Such types include constants, equations and most importantly the cryptographic
primitives which are assumed to be perfect as explained in Section 2.4.1. Afterwards,
is it specified which messages are exchanged between the principals in order to
perform the protocol activities. Finally, in queries it is expressed which security
properties shall be analyzed by the tool. Verifpal offers four different types of queries:
confidentiality, authentication, freshness, unlinkability; in this work we primarily focus
on authentication and freshness.
In the following, a simple Verifpal model as shown in Figure 2.4 will be used to

introduce the syntax in more detail. The principals Alice and Bob are communicating
with each other. Alice first defines the constants for a secret key a_sk, and messages
x, y. Constants in Verifpal are immutable, share a global namespace and can only be
references in primitives. A constant declared with knows (private | public) will stay
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Figure 2.4.: A complete example Verifpal model of a simple protocol

the same across every execution of the protocol, whereas generates creates unique
“fresh” values for every time the protocol is executed. So, while a_sk and y are fresh
values, x stays fixed to one value. Next, she generates a public key a_pk associated
with the secret key a_sk. The notation G^a resembles the Diffie-Hellman pubic key
calculation, but semantically any type of public key generation is represented in this
way. Afterwards, she signs the values x, y using the primitives CONCAT and SIGN.
Verifpal supports set of core primitives such as CONCAT and cryptographic primitives
for hashing, encryption, signatures and secret sharing. From the latter, we only require
the signature primitives.

In the next step, Alice sends the public key a_pk and the message x, y to Bob. As
a_pk is surrounded by brackets ([ ]), it becomes a guarded constant, meaning while
an active attacker can read it, they cannot tamper with it.

Upon receiving Bob validates the message using SIGNVERIF. The question mark (?)
behind SIGNVERIF makes the instantiation of the primitive checked That means that
the protocol execution will be aborted at this point if the verification fails. We use
_ to indicate that the return value of the verification, the message, will not be used
afterwards.
In Table 2.5 the keywords and notations used in this thesis are summarized.
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Notation Description

G^a : ga Calculates a public key ga

knows [private | public] a Prior knowledge of a constant
generates a Creates fresh value
CONCAT(a, b . . . ) : c Concatenates between two to five

values into one value
SPLIT(CONCAT(a, b . . . )) : a, b Splits a concatenation back to

its component values
SIGN(key, m) : sig Signature primitive with

private key key and message m
SIGNVERIF(G^k, msg, SIGN(k, m)) : m Verifies if signature can be authenticated
[a] Guarded constant, active attacker

cannot tamper with it
SIGNVVERIF(. . . ) ? Checked primitive
_ Used here to indicate that

return value is ignored

Table 2.5.: Keywords and notations in Verifpal
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Lightweight CMP Profile

In Section 2.3.3, the Lightweight CMP Profile [BOF23] has been introduced as a
tailored version of CMP to meet the needs of automated certificate management
for IIoT. However, the protocol draft remains a framework which requires further
profiling to address a specific use case or scenario. Therefore, we propose a variant
of the protocol based on the request for comments (RFC) draft [BOF23] which aims
for a lightweight implementation for end entities and takes the use of post-quantum
certificates into account. The end entity is expected to have only limited resources,
whereas it can be assumed that the PKI management entities have larger resources
at their disposal. We focus on the three core certificate management operations as
identified in Section 2.3.2: certificate request, renewal, and revocation.
This chapter is structured as follows: First, the requirements for industrial use

cases are briefly described in Section 3.1. Then, the PKI architecture for this thesis is
presented in Section 3.2 and the general aspects of CMP messages are elaborated in
Section 3.3. Finally, the supported certificate management operations are explained
in Section 3.4.
Here, only those details of the protocol specification are discussed, which are

relevant for the remainder of the thesis. Further information, particularly the specific
definitions of the message field types, can be found in the related standards for CMP
[Ada+05; BOG22], Certificate Request Message Format (CRMF) [Sch05], and CMS
[Hou09; Hou20]. The terminology used in this chapter corresponds to the definitions
introduced in Section 2.3.1.

3.1. Requirements for Industrial and IoT Scenarios

In Section 1.1.1 and Section 2.1 the increasing need for security and availability in
industrial networks has been elaborated. Especially, when relying on certificate based
machine-to-machine communication (Section 2.1.2.2), it becomes crucial that the
certificate management system is constantly available and cost-efficient. Therefore,
high automation and reliability are required. Consequently, the best practice standard
for industrial communication networks IEC 62443 requires in part IEC 62443-3-3
[Int13] for security level 2 and higher that “proper processes for issuance, management,
verification, revocation, and audit for authorized devices, users, and processes involving
identity and credential management ” [BOF23] are in place. According to International
Electrotechnical Commission [Int09], security level 2 refers to systems which are
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required to have protection measures against intentional misuse by simple means with
few resources, general skills and low motivation.
The concept of security zones, introduced in Section 2.1.1, poses an additional

challenge for certificate management systems. Typically, the PKI management entity
is not deployed in the production zone, but rather located in a separate network
either on-site or even off-site in a highly protected data center environment. Moreover,
the production network is often heterogeneous in their use of network technologies.
To cope with such network architectures, CMP uses authenticated self-contained
messages which enable flexibility regarding the message transfer.

3.2. Revised Architecture

Different from the example architecture provided by Brockhaus, Oheimb, and Fries
[BOF23] in our target PKI architecture an intermediate CA or Sub_CA directly
communicates with the End_Entity to perform the certificate management operations,
as shown in Figure 3.1. For this, the tasks of the RA as defined in Section 2.3.1 are
taken over by the CA itself. The Sub_CA possesses its own identification certificate
ca_cert and is authorized by a private Root_CA to issue certificates for IoT devices
in the production network.
To enable secure automatic certificate enrollment, we assume that the IoT device

(here: referred to as End_Entity) possesses a device certificate dev_cert, which has
been issued by the Root_CA. It is assumed, that during the provisioning of the
End_Entity in the production environment this certificate is installed on the device
together with its trust chain. The dev_cert is intended to identify the End_Entity
throughout its lifespan. As the certificate chain is typically needed to be transmitted
during the CMP operations, and the post-quantum certificates are going to be
considerably larger, a PKI architecture with a flat hierarchy is proposed here.

Here, the automated certificate management is realized for the End_Entity which
uses the Lightweight CMP Profile to request application certificates from the Sub_CA.
These application certificates are intended to be used for secure communication
protocols as described in Section 2.1.2.2. Therefore, we limit the key usage of the
issued certificates to signature certificates that facilitate the authentication of machine-
to-machine communication. The communication between the Root_CA and the other
PKI entities is out of scope.
In accordance with the pull model, all certificate management activities described

in this chapter are initiated by the End_Entity. They generate the private-public key
pair locally, create a CMP request message message protected with a digital signature
and send it to the Sub_CA. Upon reception, the Sub_CA verifies and handles the
request. This interaction is performed synchronously, i. e., a request is processed and
responded to immediately after it has been received.
Alternative approaches with CMP support asynchronous communication as well

as solutions for more centralized certificate management. In case of asynchronous
communication, the End_Entity can poll for delayed messages ([BOF23, Section
5.1.7]). The centralization can be achieved through the CA centrally generating all
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End Entity
• knows device certificate dev_cert
• authorized to request certificates
• generates keys locally

Sub CA
• knows CA certificate ca_cert
• authorized to issue certificates

CMP over HTTP

Root CA
• knows Root certificate root_cert
• issues dev_cert and ca_cert

« trusts » « trusts »

Figure 3.1.: Overview of proposed PKI architecture
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CMP Message

header

body

protection

extraCerts

Figure 3.2.: CMP message structure

keys for the end entities and distributing them securely in a CMP message ([BOF23,
Section 4.1.6]). Additionally, Brockhaus, Oheimb, and Fries [BOF23] state that the
CMP messages can also be implemented in a way that the push model is supported.
For this, the CA would proactively trigger the End_Entity to provide a CMP request
making the End_Entity the receiver of the interaction rather than the initiator. As the
certificate management in our scenario is used to provide certificates for applications
on the control devices, the more lightweight solution is letting the End_Entity initiate
the management operations – thus, implementing a push model. In the pull model,
additional communication with the PKI management entity would be required to
trigger the certificate issuance after the installation of an application.

Brockhaus, Oheimb, and Fries [BOF23] specify multiple methods how CMPmessages
can be exchanged: Either using HTTP, Constrained Application Protocol (CoAP)
or piggybacking over any other reliable protocol, or transferring the message offline,
e. g., via file transfer. The protocol is very flexible regarding the message transfer
method because the protection of the CMP messages is self-contained. In our scenario,
we assume message transfer over HTTP as in the industrial network infrastructure, it
is already used for machine-to-machine communication (see: Section 2.1.2). So, under
this condition, additional provisioning of a transport protocol can be saved with this
approach.
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recipientsenderpvno

protectionAlgmessageTime

transactionIDsenderKID

recipNoncesenderNonce

generalInfo:implicitConfirm

Figure 3.3.: CMP message header structure

3.3. Generic Aspects of CMPMessages

All CMP messages follow the same structure: They comprise of a message header
and body, a protection and an extraCerts field as depicted in Figure 3.2. The header
contains meta information about the CMP protocol transaction. The body contains
information necessary for the actual certificate management operations. The protection
field is a signature-based message protection and extraCerts is a generic field to convey
certificates.

In the following, all fields are described in more detail, except for the message body.
The contents of the latter are specific to the PKI management operation and will be
presented below.

3.3.1. CMPMessage Header

Figure 3.3 shows the CMP message header structure.
The pvno field contains the protocol version number, which is CMP v2 for the

management operations supported in this variant of the protocol.
The sender field contains the name of the message originator. The name must

be identical to the subject of the certificate which is used to calculate the message
protection, the CMP protection certificate. The recipient field should contain the
name of the message recipient. Since our profile uses the pull model, the recipient of
the first message of CMP management operation (or transaction) is a PKI management
entity. Therefore, the recipient field should contain the subject distinguished name of
the CA. In the following messages of the same transaction, it has value of the sender
field of the previous message. In case of deviations from this specification, the field
shall be handled gracefully, i. e., a different use does not automatically result in an
error.
For the signature-based protection the protectionAlg field contains the algorithm

identifier for the signature scheme and the senderKID field contains the subject key
identifier of the CMP protection certificate used to calculate the message protection
signature.
The messageTime is the time stamp of the time when the message was produced.

Although it is an optional field it is typically used in implementations to verify the
recentness of a message.
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The transactionID is a 128 bit random value used as unique identifier of a transaction.
It is newly generated for the first message of the transaction and will be kept the
same for all following messages of the same transaction.
The senderNonce and recipNonce contain 128 cryptographically secure and fresh

random bits. In the first message of a transaction the recipNonce must be absent;
in all other messages, the senderNonce of the previously received message in this
transaction becomes the value of the recipNonce.

The last field of the header is the generalInfo, which can contain different optional
values. Amongst those is the implicitConfirm flag. In CMP, the actual management
operation is communicated via a simple request-response message pair. But by
default, the CA additionally requires confirmation that the end entity received the
issued certificate and afterwards sends a confirmation message back to the end entity.
Depending on the PKI policy and requirements for handling end entity certificates, it
may be necessary for PKI management entities to learn whether the new certificate was
accepted by the end entity. For our purposes, this information is not significant. Hence,
this overhead of a further message round-trip is saved by setting the implicitConfirm
flag when enrolling a new end entity and updating a valid certificate. In case of
revocation requests the default message exchange already comprises of a singular
request-response interaction. Therefore, here this flag must not be used.

3.3.2. CMPMessage Protection

The CMP message protection serves for the message origin authentication and integrity
protection for the CMP header and body. The extraCerts field is not covered by
this protection. The default mechanism for the message protection is a digital
signature. Alternatively, MAC-based protection can be used which requires shared
secret information. A MAC is a piece of information that is calculated over the
message using symmetric cryptography and a shared secret to ensure the message
integrity. In particular, a MAC prevents an attacker from modifying a message or
injecting a new message, without the receiver detecting that the original message was
tampered with [KL15a, Section 4.2]. The recent internet draft by Brockhaus et al.
[Bro+23] which is intended to obsolete RFC 4210 [Ada+05], proposes three different
ways to establish the shared secret for the message protection: MAC with Pre-Shared
Secret (MAC-PSS), MAC with Diffie-Hellman Key Agreement (MAC-DH) and MAC
with Key Encapsulation Mechanism (MAC-KEM).

Especially, regarding the migration to post-quantum cryptography, KEMs are a
viable alternative to signature-based message protection: With a KEM the symmetric
key material for the MAC calculation is secured for transmission using asymmetric
algorithms. Here, this option is not further investigated because it requires an
additional round trip to complete a CMP management operation and thus, causes a
higher communication overhead.
We use a signature-based message protection, where the entity protecting the

message has to calculate the signature using the CMP protection key. As mentioned
in Section 3.3.1, the protectionAlg field in the header indicates the used protection
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CMP message type Description

ir Initial request message
ip Response to ir message
cr Certificate request message
cp Response to cr message
kur Key update request message (certificate renewal)
kup Response to kur message
rr Certificate revocation request message
rp Response to rr message

Table 3.1.: Feature summary of selected Lightweight CMP Profile

algorithm, i. e., for signature-based protection it is required to contain an algorithm
identifier for a signature.

The CMP protection certificate corresponding to the protection key together with
its certificate chain is added to the extraCerts field of the CMP message so that the
receiver is able to verify the message protection. In general, the extraCerts field is a
generic field to convey any additional certificates which might be necessary to perform
a PKI management operation. In the next section it will be further specified if other
certificates other than the CMP protection certificate are contained in this field.

3.4. Supported PKI Management Operations

In this section, the procedures and message structures of the three main PKI manage-
ment operations are specified. First, the transaction for enrolling an end entity to
the PKI is described in Section 3.4.1. Afterwards, the certificate renewal operation
follows in Section 3.4.2. Finally, in Section 3.4.3 the certificate revocation operation
is explained. For the sake of readability, the Sub_CA will be referred to simply as CA
in this section.

Table 3.1 provides an overview of the CMPmessage types of the operations supported
by this profiled version of the protocol.

3.4.1. Enrolling an End Entity

For a certificate request the end entity generates a new public-private key pair which
it intends to use for authentication purposes in some application. Then they can
trigger the enrollment process to the PKI by sending a request to the CA.

In this request, the end entity has to authenticate themselves as well as provide proof
that they possess the private key associated with the certificate template presented
to the CA. As our solution architecture focuses on digital signature certificates
(Section 3.2), we can use a certificate-based proof-of-possession (POPO) in the form of
a self-signature. In Section 3.3.2, it has already been established that this specification
uses signature-based message protection and hence, signature-based authentication.
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3.4. Supported PKI Management Operations

End_Entity Sub_CA

ir

handle ir

format ip
grant implicitConfirm

ip

handle ip

Figure 3.4.: Message flow for enrolling an end entity to a new PKI

However, there are different approaches in the way the end entity authenticates
themselves to the PKI depending on whether it is their first request addressed to the
CA or a subsequent one. Therefore, in the following the transaction for both scenarios
are explained in more detail.

Enrolling an End Entity to a New PKI For the first transaction with the CA the end
entity creates an initial request message ir as show in Figure 3.5a. The actual
certificate request comprises of a certReqId field which must be 0 and a certificate
template certTemplate. To create this template, the end entity generates a new
public-private key pair and adds the public key in the subjectPublicKey field. The
algorithm field contains the identifier of the signature scheme associated with the
generated key pair. The subject field holds the name of the end entity, it will later
become the subject of the issued certificate. As mentioned above, the end entity has
to produce a proof for owning the public key in the certificate template. For this,
they sign the template with the corresponding private key. Thus, the value in the
algorithmIdentifier field of the popo container is identical to the algorithm field.
The calculated signature is put in the signature field of the popo. With this the
construction of the ir is completed.
Now the end entity needs to authenticate themselves towards the CA by using

signature-based protection as described in Section 3.3.2. The CMP protection certifi-
cate used for the initial request is the device certificate which has been introduced
in our architecture specification in Section 3.2. The private key associated with the
device certificate is used to sign the CMP header and body containing the ir. The
device certificate and its chain are placed in the extraCerts field. With this, the
CMP message for the initial request is complete and sent to the CA.

Upon reception the CA verifies the authenticity of the end entity by validating the
certificate and its chain received in the extraCerts field. Then they verify the message
protection with this certificate. Now, the certificate request is processed and the CA
issues a certificate for the provided public key and signs it with the private key of
their CA certificate. In Section 3.3.1 is has been specified that the implicitConfirm
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(b) initial response

Figure 3.5.: CMP message body structure for certificate requests

flag is set in the CMP header. Therefore, internally, the CA is configured to grant the
implicitConfirm.
The response message ip (Figure 3.5b) contains the certReqID value from the

request message and a status value which indicates that the request has been accepted
if positive, or rejected if negative. If accepted, the signed X.509 certificate is placed in
the certificate field. The CA calculates the message protection using the private key
of their CA certificate. This certificate is then added to the extraCerts container.
The end entity can validate the authenticity of the response message using the

CA certificate, and then finally, retrieve the issued certificate from the message. The
message flow for the initial certificate request is depicted in Figure 3.4.

Enrolling an End Entity to a Known PKI After the initial enrollment the end entity
already possesses a certificate which has been issued by the CA. Therefore, they do
not have to use their device certificate to authenticate themselves, but rather use the
already issued certificate. For any additional certificates, e. g., for other applications,
the end entity sends a certificate request to the CA and if granted, they will receive a
new signed certificate as response as depicted in Figure 3.6. For this, the end entity
generates a new public-private key pair for the certTemplate, calculates the popo with
this new private key, and signs the CMP header and body with the private key of the
already existing certificate.
Consequently, the message structures for requesting an additional certificate is

identical to that shown in Figure 3.5 with one minor change: The body of the request
must be of type cr and the response of type cp.

3.4.2. Updating a Valid Certificate

For a certificate renewal the end entity sends a key update request to the CA, and
if granted, they receive a new signed certificate as response. It is required that the
certificate to be updated cannot be expired yet or even be revoked at the time of the
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End_Entity Sub_CA

cr

handle cr

format cp
grant implicitConfirm

cp

handle cp

Figure 3.6.: Message flow for enrolling an end entity to a known PKI

End_Entity Sub_CA

kur

handle kur

format kup
grant implicitConfirm

kup

handle kup

Figure 3.7.: Message flow for updating a valid certificate

request. Additionally, the new public-private key pair needs to be generated for the
new certificate.

The message structures for updating a valid certificate is identical to that shown
in Figure 3.5 with some minor changes: The body of the request must be of type
kur and the response of type kup. The subject field must be identical to the end
entity subject name used in the currently used certificate. The end entity uses the
existing certificate they wish to update as CMP protection certificate. By signing the
message with its corresponding private key, they both authenticate themselves and
proof ownership of the certificate to be updated.

Additionally, after the certTemplate field optionally the oldCertId control, com-
prising of the issuer and serialNumber of the current certificate, can be added to
clarify which certificate is to be updated. In our profile we do not use this field, since
this information can be obtained from the CMP protection certificate which will be
transmitted in the extraCerts field in any case.
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End_Entity Sub_CA

rr

handle rr

format rp

rp

handle rp

Figure 3.8.: Message flow for revoking a certificate
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Figure 3.9.: CMP message body structure for certificate revocation

3.4.3. Revoking a Certificate

To revoke a certificate the end entity issues a revocation request rr as shown in
Figure 3.8 using the message structure illustrated in Figure 3.9. For this, the certificate
which shall be revoked cannot be expired yet or already be revoked. The revocation
request uses the CMP header specification as described in Section 3.3.1. The message
body contains the details of the certificate to be revoked: its serial number and the
name of the issuer. Additionally, in the crlEntryDetails field the reason for the
revocation request is stated using a reasonCode. As message protection the CMP
header and body must be signed with the certificate that is to be revoked to prove
that the end entity is authorized to perform this action.

An end entity can only request a certificate revocation from the CA that issued
the certificate. Therefore, upon reception of the rr, the CA validates whether they
issued the certificate and if it is still valid at that time. After successful validation
the CA sends a response message which basically contains one field which indicates
the status of the revocation. A positive value means the revocation request has been
accepted, a negative value, respectively, means rejection.
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Protocol property Options

Certificate purpose Digital signature
Communication approach � Pull model � Push model

� Synchronous � Asynchronous
Key generation � Local � Central
Message transfer � HTTP � CoAP

� Piggybacking � Offline
Supported operations � ir � cr

� kur � rr

Proof-of-possession Self-signature
Message protection � Signature � MAC-PSS

� MAC-DH � MAC-KEM
Confirmation � implicitConfirm � certConf

Table 3.2.: Feature summary of the selected Lightweight CMP Profile

3.5. Profile Summary

To summarize the design choices made in our instantiation of the Lightweight CMP
Profile, in Table 3.2 all significant features are listed and the selected options are
marked. With this variant of the RFC draft we present a minimal certificate manage-
ment solution which can be operated without additional user interaction. Therefore,
it is well suited for its deployment in IIoT scenarios.
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4. Security Analysis of Lightweight CMP
Profile using Verifpal

In this thesis, the security of the Lightweight CMP Profile is analyzed in the symbolic
model (Section 2.4.1) using the verification tool Verifpal [KNT20]. For this, we use
the specification of the protocol as described in Chapter 3. The Verifpal syntax used
in this chapter is specified in Table 2.5.

Figure 4.1 visualizes how the analysis is structured in Verifpal: The protocol itself
is transferred into different Verifpal models for each certificate management operation.
For each model, first, the initial state of the principals is specified and then, the
protocol activities of the CMP operation are specified.
The End_Entity is an application that wants to use a certificate and therefore,

needs to request those from a PKI. Here, a simple PKI is modeled by a hierarchy
of two CAs, an intermediate CA called Sub_CA and the root CA Root_CA. This
corresponds to the setup described in Section 3.2. The communication between the
Sub_CA and the Root_CA is put in brackets as it is not part of CMP in our scenario.
Nevertheless, it is necessary to include it in the model in order to establish a common
trust anchor.

These preliminaries will be described in more detail in Section 4.1. Additionally, in
that section the assumptions regarding the security of the cryptographic primitives
and the CMP protocol details are specified. Based on these assumptions and the
query capabilities of Verifpal, the security goals for the Lightweight CMP Profile are
determined in Section 4.2. In Section 4.3, the behavior of the Dolev-Yao attacker
model in Verifpal’s analysis methodology is described.

Section 4.4 then provides the Verifpal models for the protocol. To model CMP three
different models have been specified: enrolling an end entity to a new PKI, updating
a valid certificate, and revoking a certificate. From a cryptographic point of view the
protocol operations for enrolling an entity to a known PKI is identical to enrolling
to a new PKI, just the semantics of the message fields differ and therefore, modeling
this case is omitted.
Finally, we describe the security goals as Verifpal queries in and present the

verification results for the protocol models in Section 4.5.

4.1. Assumptions and Preliminaries

For the security analysis we make certain security assumptions as described in the
following. Additionally, preliminaries and adaptations of the Lightweight CMP Profile,
which are necessary to define the Verifpal models, are outlined here.
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Updating a valid 
certificate Revoking a certificate

Figure 4.1.: Overview of Verifpal model for Lightweight CMP Profile

4.1.1. Security Assumptions

Verifpal conducts security proofs in the symbolic model and therefore assumes that
all cryptographic primitives fulfill perfect cryptography (Section 2.4.1). Compared
to this, the requirements we formulate for the certificate management protocol are
weaker: The signature scheme used in the certificates and for authentication purposes
shall be secure under the notion of EUF-CMA as defined in Section 2.2.1. Choosing
Dilithium, the algorithm also has a security strength categorized as NIST security
level 2, i. e., it is at least as hard to break as SHA-256 in terms of computational
resources (Table 2.1).

Derived from the target architecture in Section 3.2, we assume that the Root_CA is
already established as trust anchor in both the End_Entity and the Sub_CA. The
End_Entity shall possess a device certificate signed by the Root_CA before the CMP
protocol activities begin, and the Sub_CA shall possess a CA certificate signed by the
Root_CA, respectively.

4.1.2. Certificate and CMPMessage Representation

In Verifpal protocol messages can either be one simple value or a concatenation
CONCAT(a, b . . . ) of up to five values. First attempts of defining a complete CMP
protocol message by nesting multiple CONCAT statements have shown that it leads to
state space explosion. This means that the space of value combinations that the verifier
needs to assess becomes too large to terminate within a reasonable time. Therefore,
only most crucial fields of the CMP message serving a cryptographic purpose are
included in the models. These are in particular public keys, signatures and nonces.
The same reasoning applies to the representation of a certificate: A signed certificate
in Verifpal only comprises the public key and the signature itself. This simplification
is a common approach among protocol verification in the symbolic model such as
Cremers et al. [Cre+17].
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4.1. Assumptions and Preliminaries

Figure 4.2.: Protocol diagram of trust anchor establishment model in Verifpal

4.1.3. Trust Anchor Establishment

The trust anchor is established in the real-world scenario with the out-of-band distribu-
tion of the root certificate, and the aforementioned device certificate and CA certificate.
The correct way to translate this setup into the Verifpal model would require active
interaction between the End_Entity / Sub_CA and the Root_CA. Figure 4.2 shows
the protocol diagram of the Verifpal model in which the Root_CA transmits the signed
device certificate (dev_pk, dev_sig) to the End Entity and the signed CA certificate
(ca_pk, ca_sig) to the Sub_CA: All the transmitted values are modeled as guarded
constants so that, while an active attacker can read it, they cannot tamper with it.
This satisfies the desired properties towards the trust anchor establishment, since we
are solely interested in attacks during the CMP protocol activity.
To reduce the complexity in the Verifpal models for the certificate management

operations under investigation, this pre-protocol interaction is abstracted with the
following assumption: The End_Entity and Sub_CA both own the public-private
key pair of the Root_CA and create their own signed certificates locally, i. e., the CA
certificate and the device certificate.
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4.2. Security Goals

Our overall goal is to ensure the authenticity of the certificates which are issued
through the certificate management protocol. In Section 2.4.2, more formal notions of
authentication as a trace property have been introduced. Verifpal analyzes security
properties by using a fixed set of queries, among those are authentication queries and
freshness queries which are described as follows [KNT20]:

Authentication queries The purpose of an authentication query is to determine if
Bob will depend on a particular value x in a crucial protocol activity (such as
authenticated decryption or signature verification) if and only if he received that
value from Alice. If x is successfully used by Bob for signature verification or a
similar action without necessarily having been sent by Alice, the attacker has
successfully impersonated Alice.

Freshness queries Freshness queries help identify replay attacks, in which an attacker
modifies a message to appear valid in two different contexts. A freshness query
in passive attacker mode will determine whether a message contains at least one
generated, non-static value between sessions. In active attacker mode, it will
determine whether a message may be successfully used between sessions and
thus, rendered static.

The authentication query corresponds to the definition of non-injective agreement
from Section 2.4.2. Together with the freshness query for detecting replay attacks, we
get the notion of injective agreement from Section 2.4.2.
So, under the assumption in Section 4.1 , we aim to show that the certificate

management operations of the Lightweight CMP Profile as specified in Chapter 3
fulfill the authentication property of injective agreement. In particular, the following
properties will be proven by Verifpal:

SG 1 Injective agreement on a signed certificate for a newly enrolled end entity When
enrolling an end entity to a new or known PKI, the Sub_CA can trust that the
certificate template is freshly generated and sent by the End_Entity, and the
End_Entity can trust that the corresponding signed certificate is sent by the
Sub_CA.

SG 2 Injective agreement on a signed certificate a�er renewal When requesting a cer-
tificate renewal, the Sub_CA can trust that the certificate template is freshly
generated and sent by the End_Entity, and the End_Entity can trust that the
corresponding signed certificate is sent by the Sub_CA.

SG 3 Injective agreement on revoking a certificate When requesting a certificate revo-
cation, the Sub_CA can trust that the certificate template containing a unique
serial number is sent by the End_Entity, and the End_Entity can trust that
the received revocation status information is sent by the Sub_CA.
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Figure 3. Verifpal analysis methodology. On the left, the three fundamental types usable in Verifpal

models are illustrated. As noted in §2.2, all primitives are defined via a standard PrimitiveSpec

structure with four logical rules. On the right, a model analysis is illustrated: first, the Verifpal

model is parsed and translated into a global immutable “knowledge map” structure from which

a “principal state” is derived for each declared principal. Based on the messages exchanged

between these principal states, the attacker obtains values to which it can recursively apply the

four transformations discussed in §3 before executing mutated sessions while still following the

heuristics touched upon in §3.1, until it is unable to learn new values.

1. Gather values. Attacker passively observes a protocol execution and gathers all values

shared publicly between principals.

2. Insert learned values into attacker state. Attacker’s state (VA) obtains newly learned

values.

3. Apply transformations. Attacker applies the four transformations (detailed below)

on all obtained values.

4. Prepare mutations for next session. If the attacker has learned new values due to

the transformations executed in the previous step, they create a combinatorial table

of all possible value substitutions, and from that, derive a set of all possible value

substitutions across future executions of the protocol on the network.

5. Iterate across protocol mutations. Attacker proceeds to execute the protocol across

sessions, each time “mutating” the execution by mayor-in-the-middling a value.

Attacker then returns to step 1 of this list. The process continues so long as the attacker

keeps learning new values.
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Figure 4.3.: Illustration of Verifpal analysis by Kobeissi, Nicolas, and Tiwari [KNT20]

4.3. Attacker Model

The Verifpal analysis is based on the Dolev-Yao attacker model as briefly introduced
in Section 2.4.4. Based on the explanations by Kobeissi, Nicolas, and Tiwari [KNT20]
regarding Verifpal’s attacker analysis methodology, we derived an informal description
of the attacker’s procedures and capabilities.
Figure 4.3 shows the overall process of analyzing a Verifpal model. First, the

model is translated into a global immutable knowledge map structure. From this the
prinicipal state for each honest participant in the protocol is derived. As described in
Section 2.4.3 these states are mutable. The attacker observes a protocol session and
gathers all values sent between the principals. Then they apply four different types of
transformations to the obtained values. Finally, they update the attacker’s state with
the newly learned values and start the next protocol execution with mutated principal
states. After each step, the attacker verifies if they have found a contradiction to any
query specified in the model.

As depicted in Figure 4.3 four main transformations are performed on the attacker’s
state, which contains the set of all values known by the attacker:

RESOLVE Resolving a certain constant to its assigned value.
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DECONSTRUCT Attempting to deconstruct a primitive or equation. For this, the attacker
must obtain enough information from the protocol run to reserve-engineer the
input parameters of a cryptographic operation. Then it can deconstruct the
expression into a logical subset of its inputs.

RECONSTRUCT Given that the attacker possesses all component values, attempting to
reconstruct a primitive or equation.

EQUIVALIZE Determining whether the attacker can reconstruct or equivalize any values
within a principal’s state from the attacker’s state. If successful, the equivalent
values are added to the attacker’s state.

The overall goal of the attacker is to obtain as many values as possible from their
viewpoint on the network.

Passive attacker A passive attacker can only obtain values by deconstructing the values
observed on the network during the protocol execution. They might potentially
also be able to reconstruct these into different values.

Active attacker An active attacker can modify unguarded constants when they are sent
over the network. Additionally, an active attacker can generate its own values
such as a key pair which they have full control over. They can also create new
values to substitute any unguarded constant exchanged between the principals.
As each modification can result in learning new values, the attacker can make
an unbounded number of modifications over an unbounded number of protocol
executions.

4.4. Protocol Models

In the following it is described how the main certificate management operations of
the Lightweight CMP Profile are translated into Verifpal models.

4.4.1. Enrolling End Entities

Figure 4.4 shows the protocol diagram for enrolling new end entities to the certifi-
cate authority by sending an initial request message which has been described in
Section 3.4.1. For this, we declare two principals, the Sub_CA and End_Entity.
As previously stated, both principals are assumed to know the private key of the
Root_CA. Each principal then calculates the corresponding public key G^root_sk.
Now the initial certificates are created: Sub_CA creates its own certificate by creating
a public-private key pair and signing the public key using the SIGN primitive and the
secret key of the root CA root_sk. So, the tuple (ca_pk, ca_sig) represents the
Sub_CA certificate and (dev_pk, dev_sig) the device certificate of the End_Entity,
respectively.

The actual CMP enrollment operation, as described in Section 3.4.1, begins at this
point with the creation of the initial request message ir of the end entity: In the
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Figure 4.4.: Verifpal communication model of CMP initial request

CMP message structure Verifpal message representation

header e_nonce
body app_pk, popo_sig
protection ir_sig
extraCerts dev_pk, dev_sig

Table 4.1.: Simplification of the CMP initial request message for Verifpal

CMP header most of the fields are static and used to identify the communication
end points and message type. Since Verifpal does not support the equivalence test of
non-cryptographic values, it is justifiable to neglect these fields in the model. The
sender nonce field solely serves a cryptographic purpose enabling replay protection.
For this, in each protocol run a new enonce is generated. Now, the CMP body shall
contain the certificate template which the CA should sign. This again is modeled
as simple public key app_pk. Additionally, the signature-based proof-of-possession
popo_sig is calculated by signing the app_pk with its corresponding private key
app_sk. Finally, the message protection signature is calculated over the sender nonce,
the application’s public key and the proof-of-possession value using the previously
declared device secret key of the end entity dev_sk. Table 4.1 summarizes the Verifpal
model for the CMP initial request message.
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CMP message structure Verifpal message representation

header ca_nonce
body app_sig
protection ip_sig
extraCerts ca_pk, ca_sig

Table 4.2.: Simplification of the CMP initial response message for Verifpal

The next phase to model is the corresponding response message ip created by
the Sub_CA: For this, first the received extraCerts, the protection signature and the
proof-of-possession are verified. Then, again from all CMP header fields we only
declare a freshly generated sender nonce. The response message shall contain the
signed application certificate created from the received certificate template. The
signature is calculated using the ca_sk known to the Sub_CA. Afterward the message
protection ip_sig is calculated over the sender nonce, receiver nonce and the signed
application certificate.
Table 4.2 summarizes the response message fields as transmitted in the Verifpal

model. Note that e_nonce and app_pk cannot be sent, since Verifpal does not allow
receiving a constant despite already knowing it. However, from the attacker’s point of
view this does not limit the expressiveness of the model. Because upon receiving the
ip message the end entity verifies the received CA certificate, the message protection
and the validity of the application certificate signature. Therefore, the verification
succeeds if and only if the same e_nonce and app_pk are used by both principals.

Since we assume that CMP is configured to use implicitConfirm, the enrollment of
a new end entity is concluded at this point.

4.4.2. Updating a Valid Certificate

The Verifpal model visualized in Figure 4.5 addresses the key update operation of
a valid certificate described in Section 3.4.2. After a successful initial enrollment of
an end entity the trust anchor shifts from the Root_CA to the Sub_CA. Hence, the
setup of the principals Sub_CA and End_Entity in Verifpal requires both to know
the private key of the Sub_CA. This way, the End_Entity can create a valid signed
application certificate (app_pk, app_sig) without any additional message transfer in
this model. At this point this approach is justified, since it reflects the initial state of
the key update operation in the real CMP protocol: The Sub_CA should possess its
own signed CA certificate which has already been verified by the End_Entity during
the initial enrollment. Therefore, as a simplification and the shifted trust anchor we
can dispense with the modeling of the certificate chain up to the Root_CA. Moreover,
it is assumed that during the initial enrollment the End_Entity received the CA public
key and a signed application certificate (app1_pk, app1_sig). This prior knowledge is
remodeled in the first part of the communication diagram in Figure 4.5 The actual key
update request kur begins with the sender nonce e_nonce and a new public-private
key pair for the application (napp2_pk, app2_sk). With the same reasoning of the

44



4.4. Protocol Models

Figure 4.5.: Verifpal communication model of CMP key update

CMP message structure Verifpal message representation

header e_nonce
body app2_pk, popo_sig
protection kur_sig
extraCerts app1_pk, app1_sig

Table 4.3.: Simplification of the CMP key update request message for Verifpal

cryptographic purpose as in Section 4.4.1 only the nonce field of the CMP header
is represented in this model. Afterwards, the signature-based proof-of-possession
popo_sig is calculated by signing the app2_pk with its corresponding private key
app2_sk. Finally, the message protection is calculated over the sender nonce, the
new public key and the proof-of-possession field using the private key app1_sk of
the currently valid application certificate. Table 4.3 summarizes the fields of the key
update request kur. Assuming that the CA does not store issued certificates, the
application certificate (app1_pk, app1_sig) needs to be sent as extraCerts.
Upon receiving the request, the Sub_CA proceeds similar to the initial enrollment.

First, the authenticity of the currently valid application certificate (app1_pk, app1_sig
is verified, followed by the message protection and the proof-of-possession signatures.
In case of a valid request, the response message kup is calculated. For this, a fresh
sender nonce ca_nonce is generated and the the new public key for the application
is signed with the private key of the Sub_CA. Finally, the newly signed application
certificate (app2_pk, app2_sig) is protected by the kup_sig signature next to the
ca_nonce and the eenonce_kur values. Here again, the e_nonce and app2_pk
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CMP message structure Verifpal message representation

header ca_nonce
body app2_sig
protection kup_sig
extraCerts −

Table 4.4.: Simplification of the CMP key update response message for Verifpal

Figure 4.6.: Verifpal communication model of CMP revocation request

cannot be transmitted since both are already known to the End_Entity. Table 4.4
lists all the message fields of the kup which are sent in the Verifpal model. It shows
that no additional extraCerts need to be attached to the message, because all necessary
key material should already be known by the End_Entity at this point.
The final operations of the End_Entity are verifying the message protection

kup_sig and the received signature for app2_pk. When successful, the old ap-
plication certificate can be revoked.

4.4.3. Revoking a Certificate

The setup for the Verifpal model of the certificate revocation (Section 3.4.3) is almost
identical to the key update described in Section 4.4.2. In the initial state, the principals
Sub_CA and End_Entity know the key pair (ca_sk, ca_pk) reflecting the fact that
the CA has already been established as trust anchor for the end entity. Additionally,
the End_Entity again creates a signed application certificate but this time it is
necessary to model the certificate with its serial number. In the case of a CMP
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CMP message structure Verifpal message representation

header e_nonce
body app_serialno
protection rr_sig
extraCerts app_pk, app_sig

Table 4.5.: Simplification of the CMP revocation request message for Verifpal

revocation request, instead of the signed certificate to be revoked itself, a certificate
template containing serial number and issuer of the certificate is sent. Since the
serial number is due to its uniqueness an additional ephemeral value, we include the
serial number in the Verifpal certificate representation. For this, we generate a fresh
constant app_serialno and calculate the signature over the serial number and the
application’s public key. This means, here a certificate is modeled slightly different
than before as the tuple (app_serialno, app_pk, app_sig).

From the CMP header solely the e_nonce is defined as a fresh value. The revocation
request rr in the CMP body represented with the app_serialno value. The message
protection rr_sig is then calculated over the CMP header and body, i. e., sender
nonce and the serial number. Table 4.5 shows the message fields of the rr message
modeled in Verifpal and their correspondence to the CMP message structure. Note,
that technically the serial number should be transmitted twice, once in the CMP body
and once in the extraCerts field as part of the signed application certificate. However,
it does not serve any cryptographic purpose sending a duplicate app_serialno value
and Verifpal does not permit it regardless, it is justified to omit the value in the
extraCerts field.

In the next step of the protocol, the Sub_CA verifies the received application
certificate and the message protection value. Afterwards, through internal non-
cryptographic processes it is determined whether the revocation request is granted.
In any case a PKIStatusInfo object is created which contains the information if the
request has been accepted or rejected. In the Verifpal model this can simply be
abstracted to a freshly generated value status.
The response message rp additionally requires a new sender nonce ca_nonce for

the header. The message protection rp_sig is then calculated over ca_nonce, the
recipient nonce e_nonce and the revocation status status. As the CA certificate is
also already known to the End_Entity, the transmission of extraCerts can be omitted,
see Table 4.6. Like before the e_nonce will not be transmitted.

After receiving the response message the End_Entity verifies the message protection
which concludes the protocol model of certificate revocation.

4.5. Analysis Results

As specified in Section 4.2, the security property of injective agreement shall be verified.
It has been concluded, that using the authentication and freshness query, this can be
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CMP message structure Verifpal message representation

header ca_nonce
body status

protection rp_sig
extraCerts −

Table 4.6.: Simplification of the CMP revocation response message for Verifpal

Passive attacker Active attacker

Message Auth. Freshness Auth. Freshness

Certificate request app_pk X X X X
app_sig X X X X

Certificate renewal app2_pk X X X X
app2_sig X X X X

Certificate revocation app_serialNo X X X X
status X X X X

Table 4.7.: Verifpal analysis results

mapped to the Verifpal security goals. The authentication query takes a value from a
specific message transfer as shown in Listing 4.1 and checks whether it is possible that
an attacker can successfully forge this value. The freshness query additionally checks
for a given value if an attacker can successfully reuse it in a new protocol execution.
The queries for all Verifpal models look similar to the code shown in Listing 4.1:
we verify the authentication and freshness of (app_pk, app_sig) (Section 4.4.1),
(app2_pk, app2_sig) (Section 4.4.2) and (app_serialNo, status) (Section 4.4.3).
As Table 4.7 shows all queries passed in the Verifpal analysis. Hence, the security
properties specified in Section 4.2 are fulfilled under the security assumptions given in
Section 4.1.

queries[

authentication? End_Entity -> Sub_CA: app_pk

authentication? Sub_CA -> End_Entity: app_sig

freshness? app_pk

freshness? app_sig

]

Listing 4.1: Queries in Verifpal model for certificate requests

Performance For the security analysis of the certificate management protocol, the
tool Verifpal version 0.27.0 was used on a Ubuntu Server 20.04.1 SMP virtual machine,
deployed with a 32-core Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz and 64 GB of
memory.

In the case of a passive attacker, all models were analyzed with all virtual machine
resources at their disposal. When analyzing the active attacker, it very quickly became
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apparent that the execution time increases significantly with the complexity of the
model. In addition, it was observed that when multiple processor cores are used,
the utilization of the individual cores drops to 5 - 10 % from a certain degree of
parallelization. To achieve the highest possible utilization of a core, and to keep the
parallelization overhead within limits, it has been experimentally shown that the use
of 10 cores for the analysis leads to an 80 - 90 % utilization, and thus, an efficient use
of resources is achieved. Therefore, all three protocol models, instantiated with an
active attacker, have been analyzed in parallel by assigning each analysis task to 10
dedicated CPU cores.
Table 4.8 shows the execution time of each analysis. Since the passive attacker

can only obtain information from transmitted messages without applying any trans-
formations (), the verification was completed within milliseconds. The analysis of
the initial request with an active attacker required more than 12 h, a result of the
nested signatures in the protocol model which allow a vast set of mutations for the
attacker. Compared to that, the key update has been modeled very lean shifting the
trust anchor from the Root_CA to the Sub_CA and therefore, reducing the number
of variables and cryptographic operations. The certificate revocation analysis could
also be performed within a reasonable amount of time, since the model is very simple
and does not contain any new certificates.

Passive Attacker Active Attacker

Initial request 0.018 s 744 min 32.252 s
Key update 0.016 s 42 min 33.091 s
Revocation request 0.026 s 25 min 35.200 s

Table 4.8.: Execution time of Verifpal verify operation
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5. Proof of Concept: Automated
Post-Quantum Certificate Management

In this chapter, a proof-of-concept implementation for automated post-quantum
certificate management in IIoT networks is presented. Based on the findings of the
previous chapters, we specify the requirements of this concept in Section 5.1. Then,
a target architecture for embedding a PKI in an industrial network is described in
Section 5.2. Afterwards, the procedures for automating the certificate management
operations are introduced in Section 5.3. Section 5.4 and Section 5.5 document the
integration of post-quantum algorithms in the existing Lightweight CMP Profile
implementations. In Section 5.6, the impact of PQC support on the end entity is
assessed. Finally, in Section 5.7 the results are discussed w. r. t. their fulfillment of
the previously defined requirements.

5.1. Requirements for Certificate Management in IIoT

In Section 2.3.3, the Lightweight CMP Profile has been identified as a suitable
candidate since it can be implemented such that it fulfills the requirements for
industrial scenarios (Section 3.1). Furthermore, we compared the NIST standardization
candidates for post-quantum signature schemes in Section 2.2.2 and concluded, that
the integration of Dilithium into the certificate management protocol will be studied
in this thesis to provide proof-of-concept for post-quantum certificate management.
Finally, in Section 1.1.1 the need for an automated approach has been motivated.

Next, a prototype shall be developed that fulfills the following requirements (REQ 1-5)
for an automated post-quantum certificate management system for IIoT infrastruc-
tures:

REQ 1 Security zones The certificate management system shall comply with the
security zones concept presented in Section 2.1.1. For this, the architecture
specified in Section 3.2 shall be embedded in a prototypical IIoT network.

REQ 2 Lightweight end entity implementation The implementation of the end entity
shall be as lightweight as possible, because it is expected to have limited
resources (Section 2.1). Therefore, the certificate management system shall
only support the most crucial certificate life-cycle management operations to
enable machine-to-machine communication, i. e., use cases production execution
and data streaming (Section 2.1.2.1): the prototype shall be able to handle
certificate requests, renewals and revocations.
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REQ 3 Self-containedauthenticatedmessages The certificate management system shall
perform the management operations from REQ 2 in an authenticated manner
using security mechanisms which are independent from the chosen message
transfer mechanism. For this, it shall provide an approach to protect the
messages in a self-contained way.

REQ 4 Automation The certificate management system shall be designed in a way
that it requires only a minimal amount of human interaction. The certificate
renewal shall be fully automated, certificate requests and revocations shall only
require minimal user interaction.

REQ 5 PQC support The certificate management system shall be able to support the
issuance, renewal and revocation of post-quantum certificates. In particular,
the Dilithium signature scheme with the parameter set of Dilithium2 has been
chosen to be integrated in the prototype as explained in Section 2.2.2. The
impact of the use of Dilithium certificates on the certificate management shall
be evaluated regarding the memory consumption and execution time of the
operation compared to “classical” certificates, here exemplarily represented by
ECDSA certificates.

Requirements REQ 2 and REQ 3 are conceptually already fulfilled by the protocol
design of the chosen certificate management protocol as described in Chapter 3
together with the profiling in Section 3.5. The latter reduces the feature richness
and complexity of CMP to the most crucial options needed to support the desired
management operations and thus, aiming for a lightweight end entity (REQ2). Moreover,
the security of the Lightweight CMP Profile against a Dolev-Yao attacker (Section 4.3)
has been verified in this work (Section 4.5).
In the following, it is described how the requirements, especially REQ 1, REQ 4 and

REQ 5 are met by the prototype developed in this thesis.

5.2. Composition of the Certificate Management System

The prototype is developed based on open-source projects which are implementing the
Lightweight CMP Profile. In the following, we introduce the existing prototypes which
are used to implement the automated certificate management system. Furthermore,
we describe the security zone concept for our solution in order to enable a deployment
in an industrial network.

5.2.1. Existing CMP Implementations

Since the standardization of Lightweight CMP Profile has only started in 2021, not
many open-source implementations are available. As all the projects that have been
used for our prototype are still in active development, Table 5.1 provides information
about the used software versions and references to their project repositories.
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OpenSSL
(version >= 1.1.0)

genCmpClient

cmpossl

Figure 5.1.: Dependency structure of genCmpClient

To the best of our knowledge, the only available end entity implementation of this
new profile is the C library cmpossl developed by Peylo and Oheimb [PO22]. cmpossl
is a standalone CMP and HTTP client extension to OpenSSL, for versions 1.1.0 and
higher [Ope22], i. e., the library implements the CMP profile using HTTP as message
transfer mechanism. Additional to this library, a prototypical high-level application
programming interface (API) and a CLI are provided by Kretschmer and Oheimb
[KO22b], the genCmpClient. This software makes the detailed CMP API of cmpossl
more practical to use for application programmers, focusing on the support of the
main certificate management operations needed in industrial use cases. Therefore,
with the genCmpClient we are able to implement the functionality of the Lightweight
CMP Profile as specified in Chapter 3. To simplify the access to some of the functions
of the OpenSSL library, genCmpClient uses the library libsecutils by Oheimb and
Schilling [OS22]. Figure 5.1 visualizes the dependencies between the genCmpClient

application and the used libraries.

On the side of the PKI management entity, we know of two different open source
projects written in Java which support the Lightweight CMP Profile: The free
software CA package formerly known as Enterprise JavaBeans Certificate Authority,
now simply EJBCA [Key22a], and the lightweightCmpRa [KO22c], a CLI-based RA
application for demonstration and test purposes. In the pursuit of using a software
that can also be deployed in a real-world environment with little effort, we first
explored the suitability of Enterprise JavaBeans Certificate Authority (EJBCA) for
our prototype. However, working with EJBCA has shown that building the software
from its source code requires unreasonably high effort due to its software architecture.
Moreover, in the process it became apparent that the integration of PQC in such a
complex software environment would affect several other modules of EJBCA additional
to the CMP module. Consequently, it would be necessary to familiarize oneself with
and adjust components which are not of interest in this thesis, but nevertheless required
to ensure the correct functioning of the EJBCA CA server. Therefore, this approach
has been discarded, and instead, we are now presenting a certificate management
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application using the lightweightCmpRa which satisfies our goal to develop a proof of
concept.
The core CMP functions of lightweightCmpRa are encapsulated in a separate soft-

ware, the cmpRaComponent [KO22a]. This software supports all main features of CMP
message processing including their generation, protection and validation. But it is
not a CA and therefore, it cannot issue certificates. For this, the software intends
that the requests of the end entity are forwarded to an external CA which has to be
provided by the application developer. However, the lightweightCmpRa comes with a
mock CA implementation for its test classes, referred to as mockCa, in the following.
We will utilize this mockCA to realize the functionality of the Sub_CA as specified in
Chapter 3. For the purpose of our prototype, we summarize the lightweightCmpRa,
the cmpRaComponent and the mockCa under the term Sub_CA.

Software Lang. Project Repository Version

libsecutils C [OS22] commit 3199ea8
cmpossl C [PO22] commit fa1a4ee
genCmpClient C [KO22b] commit a791495

cmpRaComponent Java [KO22a] version 2.2.0, commit 038ad5e
lightweightCmpRa Java [KO22c] commit c8eb6ca

Table 5.1.: Overview of the software used in the prototype

5.2.2. PKI Architecture in IIoT Networks

In Section 3.2 we introduced our PKI architecture envisioned for use in industrial
networks. However, to be embedded into an actual IIoT infrastructure, requirement
REQ 1 demands the certificate management system to comply with the IEC 62443
security zones concept described in Section 2.1.1. Figure 5.2 shows the prototypical
demonstration environment which has been developed for our implementation:

The certificate management shall facilitate certificate-based communication between
control applications in the production zone and applications in the on-premise zone.
Physically, our demonstration setup consists of two devices: A Raspberry Pi 4
representing a constrained control device in the production zone, and an Ubuntu
virtual machine in the on-premise zone.

The production zone (red zone) represents a network-separated zone for the operation
of information technology (IT) systems that are required for the manufacturing
process. Communication into or out of the red zone shall be prohibited by default;
communication connections that are required for operation shall be configured in the
firewall. Semantically, a red zone can be envisioned as one station on a plant floor
and interconnections between red zones are not allowed. A manufacturing execution
system which supervises, manages, controls and monitors the whole production
process is intended to be deployed in the on-premise zone (yellow zone). To access
machines in the production zone from the company zone (green zone) conduits need
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Company ZoneOn-premise ZoneProduction Zone

Server

Ubuntu VM

Control Device

Raspberry Pi 4

End_Entity
genCmpClient
with cmpossl

Application
• requires application 

certificate app_cert

Sub_CA
lightweightCmpRa

with mockCa

Manufacturing 
Execution System

• hosts production 
execution and
data streaming 
applications

CMP over 
HTTP

TLS

Root CARoot CA

Figure 5.2.: Architecture of the IIoT production environment demonstrator.

to be established at the zone borders, i. e., firewall configurations as described in
Section 2.1.1.

The certificate management tool shall enable two different use cases for IT in
production: production execution and data streaming facilitating both client-server
communication and the publish-subscribe pattern. As described in Section 2.1.2,
the certificates used for both communication patterns are similar in case TLS and
MQTT are used. In this work, we focus on the management of TLS certificates. An
application on the control device, which needs to communicate with the manufacturing
execution system in the yellow zone, shall be able to automatically renew an application
certificate.

For this, the PKI architecture from Section 3.2 shall be embedded in the three
zones: The End_Entity is envisioned to be an application on the control device in
the red zone that can be controlled by a device management platform, which centrally
administers all applications and services on the control device. The Sub_CA is located
in the yellow zone. For the sake of completeness, we also show the Root_CA operated
in the company network, but it is not part of our experimental setup (see Section 3.2
for details).

In the scope of this thesis, we implement the functionality of the End_Entity on
the Raspberry Pi and the Sub_CA on the Ubuntu VM, respectively. Our primary
goal is to provide a proof of concept for the automated post-quantum certificate
management. Therefore, we focus on the implementation of the Lightweight CMP
Profile and the integration of post-quantum cryptography in the existing prototypes
introduced in Section 5.2.1.
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5.3. Automation of the Certificate Management Operations

As the protocol follows the pull model (Section 3.2), all certificate management opera-
tions are initialized by the End_Entity. Therefore, to meet REQ 4 the interaction with
the end entity application genCmpClient needs to be automated. For this, we assume
that the certificate management application is connected to a device management
platform. A human user interacts with this platform during the provisioning process,
and whenever they need to install a new application on the device or make changes
to the existing ones.
In the following sections, the proposed interaction between the user, the platform,

the End_Entity and the Sub_CA for each certificate management operation are
explained.

5.3.1. Certificate Request

The certificate request is split in two phases triggering the initial request ir during the
device provisioning and the actual application certificate request cr during operation
when the application is installed.

Figure A.1 visualizes the activities for enrolling the End_Entity to the Sub_CA.
When the user deploys a new control device in the production zone, they need to
perform a several tasks. As assumed in Section 3.2 and in Section 5.2.2, they install
the device certificate with its corresponding public-private key as well as the root
certificate as trust anchor. Additionally, the network information about the Sub_CA
is provided to the End_Entity, i. e., the network address and port of the Sub_CA.
Afterwards, a background process is scheduled to trigger the initial request: For this,
the End_Entity generates a new key pair and sends the ir message to the Sub_CA.
The information about the certificate subject and key usage for the certificate template
are provided by the platform. We use ir to get an operational certificate which shall be
used to authenticate further transactions with the Sub_CA. In real-world environments
it is not usual, that the PKI management entity and the end entity already share
the same trust anchor. Instead, the device certificate is rather issued by the device
manufacturer whose CA needs to be trusted by the Sub_CA. In our system, we
simplified this fact as the device certificate provisioning is out of scope. So, upon
receiving the operational certificate in the ip message by the Sub_CA, the End_Entity
stores the certificate and notifies the user via the platform..
In the next phase, shown in Figure A.2 we assume that the user configures and

installs a new application on the device using the device management platform. If the
configuration requires certificates, the platform schedules a job during the installation
which triggers the End_Entity to send a certificate request to the Sub_CA using
the operational certificate for authentication. Again, the End_Entity generates a
new key pair when triggered and sends cr to the Sub_CA. After receiving the new
application certificate, the End_Entity stores it on the device and makes it available
to the application. The user is notified after the installation of the application about
the completed certificate request.
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5.3.2. Automated Certificate Update

Each certificate comes with an expiration date as shown in Figure 2.2. To renew
the certificate in due time before the currently valid application certificate expires,
a job is scheduled directly after the installation of the application certificate which
triggers the update at a pre-configured time tupdate. This time is a specific point in
time which is before the expiration time tnot_after specified by a buffer period tbuffer.
So, that is tupdate = tnot_after − tbuffer. The parameter tbuffer is determined by the PKI
operator and security policies. This activity can already be seen in Figure A.1 and
Figure A.2. Figure A.3 is the corresponding sequence diagram visualizing the activities
for automatically updating a valid certificate on a control device before it expires.

When the update job is triggered at time tupdate, the End_Entity generates a new
key pair and sends the kur message to the Sub_CA authenticating themselves using
the current application certificate. After the certificate has been updated, the user is
notified via the device management platform. Again, for the new certificate a new
job is scheduled which shall update this certificate in the future. This can easily be
realized with the Linux shell command at given the calculated time tupdate [IT18].

5.3.3. Certificate Revocation

When the user changes a policy or any authorization settings for the application, the
device management platform checks if the validity of the used application certificate is
affected. If, for example the certificate shall no longer be used, the platform triggers
the End_Entity to revoke the certificate. For this, the End_Entity creates a rr

message with a revocation reason code given by the platform and sends the message
to the Sub_CA. The latter handles the request and revokes the certificate. The result
of the certificate revocation is then reported to the user via the platform. Figure
Figure A.4 visualizes the interaction for a certificate revocation as described here.

5.4. Lightweight CMP End Entity

The functionality of the End_Entity is realized using the genCmpClient introduced in
Section 5.2.1. In the following, the functionality and configuration of the software is
described. Subsequently, the integration of the Dilithium algorithm for post-quantum
certificate mangement is described. The End_Entity functionality is implemented on
a Raspberry Pi 4 Model B Rev 1 running Ubuntu 20.04 LTS. The Pi 4 is equipped
with a ARM Cortex-A72 (ARM64 architecture) and 8 GB RAM.

5.4.1. Functionality

The CLI of genCmpClient comes with four pre-defined use cases which correspond
to the CMP operations in REQ 2 as shown in Table 5.2: imprint, bootstrap, update
and revoke. Each command calls a high-level API function in genCmpClient which
encapsulates the low-level API calls to the core CMP in the cmpossl library. In
Figure 5.3 the function calls to the cmpossl library triggered by the high-level API
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genCmpClient command Certificate management operation

imprint enroll end entity to new PKI (ir/ip, Section 3.4.1)
bootstrap request a certificate (cr/cp, Section 3.4.1)
update update a valid certificate (kur/kup, Section 3.4.2)
revoke revoke a certificate (rr/rp, Section 3.4.3)

Table 5.2.: genCmpClient CLI commands

calls for certificate requests and renewals in the genCmpClient are visualized. For
example, the CMPclient_imprint() is used in the diagram to initiate the enrollment
of a new end entity; the function calls of the bootstrap and the update are similar.
Additionally, in Figure 5.4 the function calls of the revoke command are shown.

Figure 5.3.: Function call sequence for CMP initial request operation

The diagram in Figure 5.5 shows the processing of a certificate management opera-
tion when the request is executed via the CLI tool. First, the genCmpClient instantiates
a CmpClient in CMPclient_init() where the OpenSSL library is initialized. Afterwards,
in CMPclient_prepare() the internal CMP context data structure is allocated and the
CMP parameters which are common to all use cases are set-up. This parameter set
contains the network address of the HTTP server, the client and server authentication
certificates and the enrollment options. A complete list of all supported parameters is
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Figure 5.4.: Function call sequence for CMP revocation request operation

provided in the OpenSSL 3.0 manual [Aut22]. After this step, the use case specific
functions are called which in return execute the actual CMP operation. In case of
imprint, bootstrap and update a new certificate is returned by the function which is
then saved by the application before termination. Otherwise the command is directly
completed by deallocating the CMP context and all internal data structures in the
CMPclient_finish() function.

5.4.2. Configuration

Instead of passing the parameters of a command through the CLI to the application, it
is an OpenSSL best practice to specify them in a configuration file. Listing 5.1 shows
the parameter set for initializing the genCmpClient. It contains the address of the
HTTP server on which the PKI management entity (the Sub_CA implementation) is
deployed. As described in Section 3.2, the initial certificates have been specified with
the certificate of Root_CA as trust anchor and the device certificate as authentication
method. The options implicitConfirm and popo have been activated in order to
comply with the profile features specified in Section 3.5. Now, for the certificate
management operations in the configuration file additional sections are defined where
information such as the subject and the path to the new public key and its key type,
or in case of revocation the reason code, are provided.
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Figure 5.5.: Procedure for certificate management operation when executing a
genCmpClient command

5.4.3. Integration of Dilithium2 Signature Scheme

By default, the genCmpClient uses any OpenSSL version higher than version 1.1.0
which is assumed to be already installed on the system. To support post-quantum
certificates, we migrated the project to use the libOQS crypto library [SM21]. In
particular, we use OQS-OpenSSL_1_1_1 [SM22] – a fork of OpenSSL 1.1.1s that
adds quantum-safe key exchange and authentication algorithms using liboqs for
prototyping and evaluation purposes. Replacing the standard OpenSSL installation
with OQS-OpenSSL requires installing it manually: Listing 5.2 shows how the library
was configured to be used as a shared library with debug flags. It is necessary to set
the RPATH variable for the OpenSSL library path when enabling the shared option
to ensure OpenSSL uses the correct libssl and libcrypto libraries after installation.
The genCmpClient was then rebuild with a custom OPENSSL_DIR pointing to the OQS-
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[CmpRa] # LightweightCmpRa

# message transfer

server = http://10.163.28.209:6000/onlinelra

# client authentication

cert = pqc-credentials/cmp-creds/trusted/Device_Chain.crt.pem

key = pqc-credentials/cmp-creds/Device.key.pem

#server authentication

trusted = pqc-credentials/cmp-creds/trusted/Root_CA.crt.pem

# certificate enrollment

subject = "/CN=Client Test Application"

out_trusted = pqc-credentials/cmp-creds/trusted/Root_CA.crt.pem

popo = 1

implicit_confirm = 1

Listing 5.1: genCmpClient configuration

OpenSSL installation directory. Additionally, it turned out that the libsecutils

library was using a custom definition of bool for logging purposes which conflicted
with the OQS-OpenSSL installation. Therefore, the macro was renamed in order
to fix this issue. Another problem was caused by the use of the memory error
detector AddressSanitizer [Ser+12] in libsecutils, as it is not supported on ARM64
architectures. So, deactivating this feature resolved previous runtime errors. Since
the cryptographic operations are all encapsulated in the OpenSSL library, no changes
in the implementation of genCmpClient and cmpossl were required.

We used the OQS-OpenSSL to generate both the ECDSA and the Dilithium
certificates for the initialization of the End_Entity and the Sub_CA. For this, first
a root certificate, i. e., self-signed certificate, was created. Then a certificate signing
request was created for the device certificate using the OpenSSL req command.
Afterwards, the device certificate was signed with the root certificate using the
OpenSSL ca command. In a similar fashion, the certificate for the Sub_CA has been
created.

To run the genCmpClient with Dilithium certificates we adapted the configuration
described in the previous section and replaced the ECDSA certificates with their
Dilithium certificate equivalent.

./config -Wl, -rpath=OPENSSL_LIB_PATH -Wl,--enable-new-dtags shared --prefix=

OPENSSL_DIR --openssldir=OPENSSL_DIR no-asm -g3 -O0 -fno-omit-frame-pointer -fno

-inline-functions

Listing 5.2: Build config command for OQS-OpenSSL_1_1_1
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5.5. PKI Management Entity

The functionality of the Sub_CA is realized with the lightweightCmpRa applica-
tion [KO22c] which uses the cmpRaComponent. Figure 5.6 shows the components
of the cmpRaComponent which main task is the processing of CMP messages from
the End_Entity. The RA Upstream block refers to an externally provided CA which
issues and revokes certificates. In our prototype this functionality is covered by a
mockCA which performs these tasks in a rudimentary way. The RA Downstream block is
the interface at which the CMP requests are received. The necessary cryptographic
functions are encapsulated in the component cryptoservices which is used for message
generation, protection, and validation. The Sub_CA functionality is implemented
on a Ubuntu Server 20.04.1 SMP virtual machine, deployed with a 32-core Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz and 64 GB of memory.
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Figure 5.6.: Component design of CmpRaComponent [KO22a]

Figure 5.7 shows the interaction of the cmpRaComponent with its downstream and
upstream interfaces. The configuration interface accessed by the lightweightCmpRa

is used to instantiate the cmpRaComponent. At the downstream interface, i. e., HTTP
server on the Sub_CA, the messages of the End_Entity are received and forwarded
to the RA as a request for processing. After validating the message, the upstream
interface, i. e., the mockCA is contacted to either get a new certificate issued or a
certificate revoked. When this upstream exchange is completed, the response message
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is generated and protected by the cmpRaComponent and sent to End_Entity via the
downstream interface.

Figure 5.7.: Sequence diagram for instantiating the CmpRaComponent [KO22a]

The configuration of the authentication options and the trusted certificates is
provided by YAML files which are used during the initialization of the HTTP server.

5.5.1. Integration of Dilithium2 Signature Scheme

The cryptographic primitives of the lightweightCmpRa are provided by the Bouncy
Castle library, version 1.72 [Leg22]. This software version already supports post-
quantum algorithms, in particular Dilithium2. However, in order to use the PQC
functions it is necessary to instantiate a new Java Security Provider, the BouncyCastle

Post-Quantum Security Provider (BCPQC) in the cryptoservices component. The
X509 certificate handling functionality is assigned to the default provider whilst only
PQC primitives are in BCPQC. Therefore, the cryptoservices as well as the message
generation, protection and validation classes have been extended with a case distinction
for ECDSA and Dilithium. Doing so, it is required to switch the security provider in
the specific functions executing the cryptographic primitives sign and verify depending
on the currently active algorithm.

ImplementationObstacles Due to the distribution of the functionality in the different
components, the integration of Dilithium2 proved to be more complex than initially
expected. Especially, the fact that the Bouncy Castle library encapsulates the
cryptographic primitives in two different security providers made the integration
more difficult. In the end, the integration could not be successfully completed. The
latest status is, that during the message validation, the cmpRaComponent calls the
standard Bouncy Castle security provider instead of BCPQC, although the latter is
initialized in the function context. We verified with the Java debugger that the
messages sent by the End_Entity are received correctly and well-formatted. However,
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the message processing aborted with an error before the message generation step
could be executed.

5.6. Impact of Post-quantum Cryptography on End Entity

In this work, one main requirement for the certificate management system is to
pursue a lightweight approach for the end entity as it is run on a constrained device
(REQ 2). Therefore, we assess the memory consumption and the execution time of our
prototype as it has been described in the previous sections. The goal is to assess the
impact of the integration of post-quantum signature schemes and certificates in the
certificate management system. For this, we use the ECDSA algorithm with curve
P-384 as baseline for our comparison. The evaluation is performed on a Raspberry
Pi 4 Model B Rev 1 running with Ubuntu 20.04 LTS. The Pi 4 is equipped with an
ARM Cortex-A72 (ARM64 architecture) and 8 GB RAM.

5.6.1. Certificate and Message Sizes

The first aspect of this assessment is the size of certificates and CMP messages. The
certificates used in the prototype are generated with OQS-OpenSSL; Table 5.3 list
the sizes of the certificates. For operational and application certificates, we can only
provide an estimate based on the other certificate sizes as they could not be obtained
via the CMP implementation. Nevertheless, it is evident that the Dilithium certificates
are approximately 6 times larger than the ECDSA certificates.

Certificate type ECDSA size (Bytes) Dilithium2 size (Bytes)

Root 671 4259
Device 781 4369
Sub_CA 659 4247
Operational ∼ 710 ∼ 4300
Application ∼ 710 ∼ 4300

Table 5.3.: Sizes of DER-formatted certificates

This directly influences the size of the CMP messages transmitted to and received
from the Sub_CA. Reviewing the message fields as they are specified in Section 3.3
and Section 3.4, the biggest contributing factor to the message size are the public
keys, signatures and certificates conveyed in them. Table 5.4 provides the number
of each depending on the message type. Knowing the sizes for these parameters
from Table 2.2 and Table 5.3, the following estimates can be made: Based on these
numbers, it can be assumed that the size of the request messages for new certificates
and updating certificates (ir/cr/kur) increases by factor 10 when changing from
ECDSA to Dilithium. The response messages ip/cp/kup are estimated to be 7.5
times larger with Dilithium than with ECDSA. And finally, the message sizes for
certificate revocation rr/rp approximately increase by factor 8. Since the other fields
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in the certificates and the messages stay the same in terms of their size, the estimates
derived here are assumed realistic. In the worst case, up to 11 kByte of data would
be transmitted over the network in a single CMP message when using Dilithium2
certificates.

Message type # public keys # signatures # certificates

ir/cr/kur 1 2 1
ip/cp/kup – 1 2
rr/rp – 1 1

Table 5.4.: Number of public keys, signatures and DER-formatted certificates in CMP
messages

5.6.2. Execution Time

Algorithm Sign Verify Sign/s Verify/s

384 bits ecdsa (nistp384) 0.0362s 0.0241s 276 414
dilithium2 0.0005s 0.0002s 2091.0 6629.7

Table 5.5.: OpenSSL performance benchmark of signature algorithms on Raspberry
Pi 4

To assess the execution time of a CMP transaction, we performed a benchmark of
the sign and verify functions of the ECDSA-p384 and Dilithium2 algorithms as these
cryptographic operations take up the main part of the run time. For the benchmark,
the OQS-OpenSSL performance test application speed has been used to measure the
execution time of the cryptographic primitives provided by the OQS-OpenSSL library.
The benchmark results on the Raspberry Pi 4 are provided in Table 5.5. They are
calculated by running each function for 10 s and then determining the average time
for a single execution and the average number of completed executions per second. In
direct comparison, the values show that a Dilithium2 signing operation is indeed 7.24
times faster than the ECDSA signing operation. For the signature verification, the
difference is even larger: The average time to verify a Dilithium2 signature is 120.5
faster than a ECDSA signature.

Table 5.6 summarizes the number of sign and verify operations in genCmpClient for
each message type. Together with the benchmark, the expected execution time for
processing a CMP request or response can be extrapolated. In case of the request
messages ir/cr/kur/rr the execution time is expected to be 7.24 times faster for
Dilithium2 compared to ECDSA, and for the response messages ip/cp/kup/rp by a
factor of 120.5, respectively. So, in terms of execution time the certificate management
system benefits from the migration to Dilithium certificates, improving the necessary
processing time significantly.
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Message type # Sign # Verify

ir/cr/kur 2 -
ip/cp/kup - 3
rr 1 -
rp - 2

Table 5.6.: Number of sign and verify operations in genCmpClient for each message
type

Requirement Fulfillment status

REQ 1 Security zones (X) (Section 5.2.2)
REQ 2 Lightweight end entity X (Sections 3.5 and 5.4)
REQ 3 Self-contained messages X (Sections 3.3.2, 4.5 and 5.4)
REQ 4 Automation (X) (Section 5.3)
REQ 5 PQC support (X) (Sections 5.4.3 and 5.5.1)

Table 5.7.: Overview of requirements and their fulfillment status

5.7. Discussion

Table 5.7 summarizes the fulfillment status of the requirements specified in Section 5.1.
Some of the requirements could only be fulfilled in the design concepts developed in
this thesis, but not fully implemented in the prototype. Therefore, their fulfillment
is considered only partially complete and marked with (X). With the use of the
Lightweight CMP Profile requirements REQ 2 and REQ 3 are met. The latter has been
formally verified with computer-aided verification in Chapter 4. The automation
concept in Section 5.3 enables a fully automated certificate update, certificate requests
require minimal user interaction, but not directly with the certificate management
system. Due to the incomplete implementation of the PKI management entity
functionality described in Section 5.5, the impact of PQC could not be evaluated
in detail. However, the assessment in Section 5.6 already indicates that the use of
Dilithium2 would require less execution time than ECDSA with the cost of up to 10
times larger message sizes.
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With the increasing interconnectedness of devices in modern IIoT networks the demand
for authenticated communication has risen. The current best practice for this is the
use of digital certificates and PKIs. As industrial networks grow, it can become
difficult for network administrators and device operators to manually manage the
number of devices and certificates. Automated certificate management can scale to
handle large networks, ensuring that all devices have up-to-date and valid certificates.
Moreover, with the long lifetime of IIoT devices it is desired to use future-proof
cryptographic algorithms, which protect against threats such as attacks aided by
quantum computers.

Therefore, in this thesis an approach for automated post-quantum certificate manage-
ment for IIoT infrastructures has been developed. Based on the current Internet-Draft
for Lightweight CMP Profile [BOF23] we specified a reduced feature set that supports
the most crucial certificate management operations for IIoT devices: requesting new
certificates, renewing and revoking them. Moreover, we formally analyzed the security
properties of the protocol using the verification tool Verifpal. As a result, we showed
that the protocol messages as they have been modeled in Section 4.4 are unforgeable
for a Dolev-Yao attacker, which formally corresponds to the authentication notion of
injective agreement. Additionally, we developed a PKI architecture embedded in the
IEC62443 security zones introduced in Section 2.1.1 and provided a concept to reduce
human interaction with the proposed certificate management system. As a result, the
certificate update is fully automated except for the notification of the user. A proof
of concept has been implemented using an existing CMP application and extended
with Dilithium2 algorithm support. In a first assessment, it has been estimated that
the execution time of the certificate management operations can be reduced with the
use of Dilithium2 instead of ECDSA signature scheme approximately by factor 7 for
request messages, and factor 120 for response messages. However, this comes at the
cost of significantly increased certificate and message sizes due to the large public key
and signature sizes of the Dilithium algorithm.

Future Work We propose to extend our approach with a MAC-KEM as message
protection mechanism. In the NIST standardization process the lattice-based KEM
Kyber has been chosen to be standardized [CSR22]. As MACs are in general much
smaller than digital signatures, this approach can reduce the message sizes with the cost
of additional communication to establish a shared secret between the communication
partners using Kyber [Bro+23]. However, the use of symmetric cryptography might
enhance the execution time when implemented in hardware.

Another research direction could address the issue of initial trust establishment. So
far, in our work, we made the assumption that both the PKI management entity and
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the end entity possess initial certificates. Especially on the side of the control devices,
a concept for secure certificate provisioning should be evaluated.

This thesis focused on a solution for post-quantum certificate management. An open
question here is, whether migrating from classical to post-quantum certificates affects
the security of the certificate management protocol. To the best of our knowledge,
currently there are no restrictions in the Lightweight CMP Profile [BOF23] on using
a less secure certificate to request a certificate with stronger security properties. So,
it should be investigated how the protocol can be utilized in the migration process
and if its security properties hold in this use case.
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A. Appendix

Figure A.1.: Sequence diagram for enrollment of end entity
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A. Appendix

Figure A.2.: Sequence diagram for certificate requests
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Figure A.3.: Sequence diagram for automated certificate renewal
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A. Appendix

Figure A.4.: Sequence diagram for certificate revocation

82


	Abstract
	Zusammenfassung
	Acronyms
	Introduction
	Scope of this Thesis
	Industrial Internet of Things
	Research Questions

	Outline

	State of the Art
	Industrial Communication Systems and Networks
	Security Zones and Conduits
	Machine to Machine Communication

	Post-quantum Digital Signatures
	Definitions and Security Notions
	Candidates Signature Schemes
	Related Work

	X.509 Public Key Infrastructure and Certificate Management
	PKI Components
	Certificate Life-cycle Management
	Comparing Existing Certificate Management Protocols
	Post-quantum X.509 Certificates
	Related Work

	Computer-Aided Security Protocol Verification
	Security Models
	Authenticity as Security Property
	Comparing Existing Verification Tools in the Symbolic Model
	Cryptographic Protocol Analysis with Verifpal


	Protocol Overview of Selected Lightweight CMP Profile
	Requirements for Industrial and IoT Scenarios
	Revised Architecture
	Generic Aspects of CMP Messages
	CMP Message Header
	CMP Message Protection

	Supported PKI Management Operations
	Enrolling an End Entity
	Updating a Valid Certificate
	Revoking a Certificate

	Profile Summary

	Security Analysis of Lightweight CMP Profile using Verifpal
	Assumptions and Preliminaries
	Security Assumptions
	Certificate and CMP Message Representation
	Trust Anchor Establishment

	Security Goals
	Attacker Model
	Protocol Models
	Enrolling End Entities
	Updating a Valid Certificate
	Revoking a Certificate

	Analysis Results

	Proof of Concept: Automated Post-Quantum Certificate Management
	Requirements for Certificate Management in iiot
	Composition of the Certificate Management System
	Existing CMP Implementations
	PKI Architecture in IIoT Networks

	Automation of the Certificate Management Operations
	Certificate Request
	Automated Certificate Update
	Certificate Revocation

	Lightweight CMP End Entity
	Functionality
	Configuration
	Integration of Dilithium2 Signature Scheme

	PKI Management Entity
	Integration of Dilithium2 Signature Scheme

	Impact of Post-quantum Cryptography on End Entity
	Certificate and Message Sizes
	Execution Time

	Discussion

	Conclusion
	Bibliography
	Appendix

