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Abstract—Tiny edge systems used in IoT devices, wearables
or smart textiles are characterized by the need of processing
complex sensor data streams under various device constraints.
Due to the high number of constraints and the complexity of the
optimization of the hyper-parameter space for machine learning
based processing, genetic algorithms (GAs) seem to be a perfect
fit to enable AutoML for those embedded devices. However, due to
aspects such as the high interdependence between optimization
parameters, the simultaneous existence of multiple conflicting
objectives and complex effects of embedded feature engineering,
we made the experience that GA approaches fail to converge
within this high dimensional design space. We introduce a
novel Genetic Algorithm (GA) customized for AutoML tasks,
addressing the unique challenges posed by highly embedded
machine learning domains. The proposed approach addresses
parameter interdependencies through utilizing the Baldwin-effect
in biological evolution, enhances resource utilization by early
elimination of less promising individuals, and augments the
insufficient capabilities of existing machine learning features via
the integration of carefully designed neural network features.
Empirical evaluations conducted on two benchmark datasets
support the superiority of our proposed method over conventional
genetic algorithms. Furthermore, we demonstrate the effect of the
different components introduced by our algorithms through an
ablation study.

Index Terms—wearable human activity recognition, genetic
algorithm, Baldwin effect

I. INTRODUCTION

Tiny edge systems with Artificial Intelligence (AI) capa-
bilities are invisibly driving digital transformation in a wide
range of industries. As these systems evolve, particularly IoT
devices, wearables and smart textiles, they show significant
trends across multiple sectors. The application of machine
learning (ML) powered sensors and actuator systems seems
without limits. However, edge devices are typically battery
powered, and challenges are encountered when running mul-
tiple applications with limited resources concurrently, e.g.,
device endurance. Additionally, the need for real-time services
requires that models on these devices to be low-latency. Cur-
rently, optimizing these models relies on specialized knowl-
edge and manual tuning, such as hyperparameter adjustment,
which can be time-consuming and often inefficient.

Automatic Machine Learning (AutoML) represents a
method for automating the ML process, particularly effective
in enhancing the model’s objective under constraints. For tiny
edge systems, AutoML means automatically selecting features,

model and model parameters that suit both software and
hardware limitations of the edge system, such as computation
core, latency, and memory capacity. These techniques are
varied and primarily fall into two categories: heuristic and
gradient based search strategies. Gradient based systems like
Neural Architecture Search (NAS) typically incorporate hard-
ware factors into a loss function and refines the constrained
model architecture using methods such as gradient descent, as
demonstrated in approaches like NEAT [1]. In contrast, heuris-
tic searches are based on interactive candidate suggestions
and evaluation. As it is often complicated to formulate the
valid optimization space (such as complex resource constraints
on the target hardware) and complex objective functions in
NAS. Our research focuses on the heavily extensible methods
based on Genetic Algorithms (GA). GAs have the additional
advantage that parallelism can be easily exploited on a any
training hardware [2].

Despite extensive research, the target domain of tiny em-
bedded systems prevents the direct application of existing GA
methods. These challenges include:

• Multimodal data streams often result in large feature sets.
For example, in human activity recognition applications,
data typically includes inputs from various sensors across
different body parts. Tools such as TsFel [3] can extract
up to 198 features from each single channel. Considering
a standard benchmark dataset like PAMAP2 [4], TsFel
can extract as many as 3564 different features for a
given data sample. The huge feature set can result in two
major issues when using conventional GA methods: (i)
an overemphasis on feature selection at the expense of
other parameters, and (ii) increased evaluation time and
evaluation time variance among different candidates. This
phenomenon is especially noticeable when comparing K
Nearest Neighbor (KNN) with more complex models like
stochastic gradient descent. The latter takes about 25
seconds for one evaluation on the PAMAP2 dataset. It
is about 100 times that of the former.

• Optimizing for a target hardware involves balancing
multiple, often conflicting objectives, e.g., model perfor-
mance and latency. This often leads to a proliferation of
non-dominated solutions, reducing the search efficiency
of the conventional GA.



• The complexity of edge tasks necessitate intricate feature
sets. For example, in daily life activity recognition task,
models are expected to distinguish actions like brushing
teeth and washing dishes. These activities are character-
ized by complex patterns, large subject variations, and
extended duration. This compels the inclusion of features
from diverse domains such as temporal, spatial, and fre-
quent. However, traditional time-series feature extraction
methods like TsFel are inadequate for extracting such
multidimensional features.

• Optimizing embedded ML architectures involves a large
number of parameters of different types and interde-
pendencies, e.g., the specific model parameters depend
on the chosen model. In addition, while most model
parameters are numerical, feature and model selection are
categorical. Different types of parameters require differ-
ent optimization approaches to be addressed effectively.

Based on this, this paper introduces an innovative adaptation
of genetic algorithms, demonstrating enhanced performance in
solving AutoML problems within tiny edge systems. This ad-
vanced method recognizes the interdependence of parameters,
treating the optimization of partial parameters as akin to the
growth of individuals in a generation, reflecting the Baldwin
effect of evolutionary development. It conserves resources
by early elimination of suboptimal individuals. In addition,
it uses process pooling and early selection to minimize the
impact of extended fitness evaluation times, thus reducing
excessive waiting. Moreover, the proposed approach harmo-
nizes conflicts between multiple objectives by integrating
them into unified optimization goals with different focus. To
address the inherent limitations of feature extraction in ML, we
customize a neural network. This network is adept at extracting
features from the spatial, temporal, and frequency domains,
thus expanding the range of potential features available for
selection.

II. RELATED WORK

GA are designed and developed using the principles of
natural biological evolution. Their primary goal is to find
optimal solutions by mimicking natural evolutionary pro-
cesses. A conventional GA algorithm consists of key stages:
coding, population initialisation, fitness evaluation, selection,
crossover and mutation. Since GA cannot interact directly with
the parameters of the problem space, it represents potential
solutions as individuals in a genetic space. For example, in
feature selection scenarios, individual features can be encoded
as Boolean values, indicating their inclusion or exclusion in
model training.

Innovative applications have been proposed in recent years.
Magdum et al. [5] use an advanced GA to improve Artificial
Neural Network (ANN) performance in Optimal Power Flow
(OPF) applications, modifying ANN training to select optimal
weights and biases, thereby reducing error rates and costs. Ali
et al. [6] use a hybrid filter-GA feature selection approach
to improve cancer classification accuracy in high-dimensional
micro array datasets. This method uses filter feature selection

Fig. 1. The pipeline of the proposed algorithm.

techniques, such as information gain and chi-squared, to
identify significant features, followed by a GA to further refine
these features and improve machine learning performance
metrics. However, these methods are highly task specific and
may not be easily adaptable to other domains.

In terms of algorithmic advances, Blanchard et al. [7]
propose the use of masked language models to automate
mutation generation in GAs, optimising molecular string repre-
sentations for drug similarity and synthesizability. This method
identifies common subsequences within a population to create
a vocabulary that tokenises each genome. A masked language
model trained on this data generates potential genome rear-
rangements, overcoming the limitations of traditional point-
wise mutation methods. While it is effective at the molecular
level, its application to time series is hampered by a lack of
consistent patterns and is resource-intensive, requiring further
exploration. GAs demonstrate significant task dependency,
primarily due to variations in the coding of individuals. This
necessitates the creation of specialized designs focused on tiny
edge systems.

III. METHOD

The proposed algorithm represents a specialized adaptation
of the GA tailored for tiny edge systems, adhering to the
conventional GA process. Fig. 1 delineates the algorithm
workflow. In this section, we will systematically unveil the
method, aligning with the sequential stages of the GA’s
workflow.

A. Individual Coding Design

The proposed algorithm aims to enhance the efficacy of
models utilized in tiny edge systems through optimizing the
training pipeline. It encompasses the refinement of the selec-
tion of features, models, and model parameters.

In the conventional GA, each individual is depicted as
a sequence with constituent elements mirroring the values
of parameters in problem space. However, when applied to
typical tasks such as wearable human activity recognition



(WHAR), this approach encounters two significant hurdles: the
variable length of sequences contingent upon model selection
and an extensive search space for feature selection attributed
to the multimodal data.

In the proposed method, we distinguish the optimization of
model parameters from the other parameters. Individuals in
the method are represented with a Boolean array for feature
selection and an integer to indicate the model choice. On
this basis, each individual maintains a function that fine-tunes
the parameters of the selected model and yields the fitness
score, reflecting the trained model’s performance relative to
its objective. It is worth highlighting that the selection of
the model parameters does not act as part of an individual
chromosome. It is not involved in the crossover and mutation
stage of the genetic algorithm. Instead, it is a reflection of the
individual’s growth. As the algorithm iterates, the model pa-
rameters are gradually optimized. Additionally, each individual
possesses an extra attribute: a fitness table named ’result’ with
two columns that log the number of times model parameters
are fine-tuned within the individual and the respective optimal
fitness scores achieved.

B. Populations Generation

The optimization of tiny edge models presents inherent
complexity, given their multi-objective nature that often in-
volves conflicting goals. To mitigate this, one strategy is to
normalize and combine these sub-objectives. By drawing a
parallel with the division of academic tracks into arts and
sciences in China, we suggest the establishment of distinct
population groups, each guided by a blend of sub-objectives
with varying emphasisThis approach permits certain popula-
tions to focus on specific sub-objectives while preserving a
comprehensive equilibrium. In addition, by distinguishing pop-
ulations during their generation and encouraging interactions
during the crossover phase, we aim to create a synergistic
effect that produces offspring with improved characteristics,
while also actively preserving diversity within the population.

C. Individual Growth and Fitness Calculation

Unlike the general GA where an individual’s fitness score
is fixed upon creation, the proposed method allows for the
optimization (growth) of individuals, as reflected by the opti-
mization of model parameters. Given that these parameters are
predominantly numerical, we utilize Bayesian Optimization
(BO) for fine-tuning, with the goal of enhancing the overall
fitness of the corresponding individual. BO operates on prior
probability distribution to emulate the behavior of the objective
function. This distribution is iteratively refined through the
evaluation of candidate points in the search space, increasingly
aligning the distribution with the objective function’s real
distribution.

Additionally, we have introduced the concept of ’age’
to track the number of evaluations conducted by BO. All
individuals initially commence with an age of zero. In each
iteration of the proposed method, those that are younger than
a set threshold undergo the optimization (growth) process.

Fig. 2. The processes executed in process pool.

The fitness scores and corresponding ages are subsequently
documented in the fitness table ’results’.

Due to the large number of samples in edge device tasks
and the considerable feature number per sample, there is an
extended growth duration (running time of the BO optimiza-
tion) for each individual. To address this issue, we utilize
process pool to parallelize individual growth. A process pool
is created with its size matching the number of CPUs present
on the device. As depicted in Fig. 2, individuals are enqueued
into the process pool, and as processes become available, the
subsequent individual is granted the opportunity to grow. The
queuing order of the individuals is determined by the sequence
in which they are introduced to the pool.

It is important to note that not all individuals undergo
the selection process at each iteration. Significant variance
in growth duration among individuals implies that waiting
for all to complete the growth process before proceeding to
the selection stage would be inefficient. Hence, we apply
’early selection’ technique for process pool. Concretely, we
set a threshold: once the number of individuals that have
completed the growth process exceeds this threshold, they
proceed directly to the selection stage. Those still in the pool
bypass the current selection stage and move to the next cycle
of individual selection.

D. Individual Selection

Each individual possesses a fitness table ’results’, which
varies in the number of rows, reflecting the differing ex-
periences of each individual. To equitably rank matrices of
varying sizes, we address this by giving preference to younger
individuals who have attained superior scores and to relatively
older individuals who have more experience. Consistent with
this idea, we employ Algorithm 1 for ranking purposes.
After the ranking, lower-ranked individuals are systematically
archived, with all pertinent data, including feature and model
selections, optimal parameters, and peak fitness scores, metic-
ulously recorded in an external file for future reference. This
wealth of information is instrumental in the generation of new
individuals.

E. Crossover and Mutation

We adopt a dual-tier crossover strategy that includes both
intra-population and inter-population information exchanges,
as outlined in Algorithm 2. The selection of candidates within
each population group is randomized and the exchange of
characteristic and model values is carried out according to a



Algorithm 1 Individual Selection
Require: results: A dictionary with DataFrames, ratio: Ra-

tio of Individual to keep
Ensure: li keep: list containing individual ids to keep

1: all ages← sorted unique ages from results
2: Initialize rank df as a DataFrame with index as all ages
3: for each age in all ages do
4: Initialize lists: scores, ids
5: for each id, df in results do
6: if age is in df [′age′] then
7: score← score for the given age in df
8: Append score to scores and id to ids
9: end if

10: end for
11: ranks← rank scores in descending order
12: for each id, rank in ranks do
13: Assign rank to rank df for the corresponding age

and id
14: end for
15: end for
16: average ranks← mean of rank df
17: li keep← top items of average ranks based on ratio
18: return li keep

predefined probability. We favor this stochastic approach over
a deterministic half-swapping due to the pattern of extracted
features observed in TsFel, which tends to cluster correlated
features. This clustering can concentrate high-quality features
within certain areas of the feature array, potentially diminish-
ing the effectiveness of simple half-swapping.

Algorithm 2 Crossover for Feature
Require: individual1, individual2
Ensure: child1, child2: Two new feature arrays derived from

the parents
1: parent1← individual1.features
2: parent2← individual2.features
3: Initialize child1 and child2 as zero arrays of the same

shape as parent1 and parent2
4: Generate a mask bool array with random value of the

same length as parent1
5: for each index i in the range of length of parent1 do
6: if mask[i] is 1 then
7: child1[i]← parent2[i]
8: child2[i]← parent1[i]
9: else

10: child1[i]← parent1[i]
11: child2[i]← parent2[i]
12: end if
13: end for
14: return child1, child2

The mutation process is aligned with the crossover strategy,
based on a predetermined probability to determine the feature
and model mutations. Upon activation, the mutation causes

the selected feature or model values to deviate from their
established state, thus injecting new variation into the GA
search process.

F. New Individual Generation

Due to the vast search space, exploration relying solely on
GA crossover and mutation is inefficient. To overcome this, we
utilize heuristic methods, guided by the data retained from the
selection process, to facilitate the creation of new individuals,
thus enhancing the efficiency.

In developing specialized methods for different components
of an individual based on their unique characteristics, we have
implemented separate strategies for feature and model candi-
date generation. For the feature candidate, inspired by [8], we
train two distinct multilayer perceptron (MLP) networks: one
as a generator and the other as an evaluator. The generator
network uses Gaussian noise to produce a one-dimensional
float array with values ranging within the [0,1] interval. By
applying a predefined threshold to this output, we generate
a candidate feature array. In contrast, the evaluator network
accepts a feature array and a model selection value as input,
and outputs a single float value to estimate the fitness score
of the given feature-model combination.

We train the evaluator network using the stored external
file and a mean squared error (MSE) loss function. Once the
evaluator network is trained, we fix its weights and integrate
it with the generator network. This integration allows the
generator output, paired with a random model value, to serve
as the input for the evaluator. We then train the generator
network by maximizing the evaluator’s output, employing
the straight-through estimator for effective gradient descent
between the two networks. The injection of noise as input to
the generator guarantees the diversity of the generated feature
candidates.

For model selection, we apply the Upper Confidence Bound
strategy, as documented in [9]. The strategy aggregates the
total number of trials v, the number of times the model i was
visited vi and their corresponding mean fitness scores f from
the external file, and ultimately calculates a score for each
model i to guide the selection of the model:

scorei = f + γ

√
vi
v
,

where γ is the weight of exploration. The model with the
highest score is selected. This established approach strikes a
balance between exploitation and exploration, thus optimizing
the identification of the most viable models.

The proposed method iterates the above processes, growth,
selection, crossover, mutation, and individual generation, until
a predefined condition is reached.

G. Neural Network Feature Extraction

The multimodal data handled by tiny edge systems is
often highly complex, placing high demands on the features
extracted from the data. To this end, we designed a simple
neural network. The structure of the network is shown in



Fig. 3. The neural network for feature extraction.

Fig 3. It consists of three branches. Each branch contains a
two-layers convolutional layer with output channel size 16.
The network extracts features from multimodal data in terms
of temporal, spatial, and frequent, respectively, and combines
these features for target prediction. In the figure, T denotes
the duration of time for each prediction sample, S denotes
the number of sensor channels, and c denotes the number
of channels generated by layers of the Convolutional Neural
Network (CNN). After model training, the features generated
in each branch are collected and, together with the features
extracted with the ML method, serve as candidate features for
target model training.

IV. EXPERIMENT

In this section, we design an experiment to validate the
efficacy of our proposed algorithm. With the experiment,
we aim to first compare the performance of our method
with state-of-the-art genetic algorithms, and secondly examine
the impact of each constituent component of the proposed
algorithm, thereby isolating and understanding the contribution
of individual elements to the overall effectiveness.

A. Benchmark Models

To demonstrate the performance of the proposed model
and the function of each component, we compare the per-
formance of the following algorithms: (i) the conventional
genetic algorithm (baseline); (ii) the neural network proposed
in the algorithm with three branches (nn); (iii) the proposed
algorithm without using the neural network suggestion (no-
Suggestion); (iv) the proposed algorithm without individual
growth (noGrowth); (v) the proposed algorithm without using
the features generated by the designed neural network (noNN);
(vi) the proposed algorithm with running the fitness calculation
until all jobs in the pool finish (noEarlySel); (vii) the proposed
algorithm (proposed); The experiment is run on Intel Xeon
Gold 6230 processor with 96GB of memory.

B. Benchmark Datasets

In order to test the proposed method in various scenarios and
at the same time maintain experimental consistency with other
work, we adopt two benchmark datasets that are widely used
in Wearable Human Activity Recognition (WHAR), namely
HAPT [10] and PAMAP2 [4].

C. Experiment Setup

We apply the Raspberry Pi Zero W with 512Mb mem-
ory size as the potential running device. Throughout the

experimental phase, for the proposed method, the maximum
generation is set at 30. The selection and crossover ratios are
set to 0.1 and the mutation ratio is set to 0.01. The number
of evaluations applied in each growth process is set to 5.
We set three sub-objectives, that is, maximizing prediction
accuracy, f1 score and minimizing inference time. We set
a hard constraint according to the memory size. When the
memory utilized larger than 100Mb, we set the fitness value
to -1. To calculate the utilized memory, we apply the ’getsize’
function of ’os’ package after saving the trained model with
’joblib’. Considering that subtle differences in inference time
are difficult to detect in application, we use (latency%0.02)λ to
calculate the latency fitness, where λ denotes the weights. We
created two population groups, each contains 50 individuals.
The objective of each group is the combination of the above
three objectives with weight [0.7, 0.2, 0.1] and [0.2, 0.7, 0.1].
We use 5-fold cross-validation to compute the fitness score to
improve algorithm stability. To demonstrate the generalizabil-
ity of the model, we divide the dataset into a training set and
a test set with the leave-one-subject-out method. We use the
training set to find the optimal parameter settings and report
its performance on the test set. For the conventional genetic
algorithm, we set the maximum generation to 150 to keep the
number of evaluations the same as the proposed model. We
keep the other parameters of the genetic algorithm the same
as those of the proposed algorithm.

According to [11], to train the generator, evaluator, and
feature extraction networks, we use Adam optimizer [12]
with an initial learning rate of 10−3. Batch training was
implemented with a designating a batch size of 16. The cross-
entropy loss [13] was used as an objective function for the
feature extraction network. Neither early stopping nor learning
rate adjustment was employed. The maximum training epoch
was set to 50.

D. Discussion

The experimental results are summarized in TABLE I. It is
evident from the data that the proposed model surpasses the
baseline in both scenarios, thereby underscoring the efficacy
of the proposed algorithm. Additionally, it was observed that
the synergistic approach, combining neural network features
with machine learning features, yields enhancements in perfor-
mance compared to ’noNN’ and ’nn’ algorithms. A notable de-
cline in performance was detected in the ’noSuggestion’ algo-
rithm, attributable primarily to model overfitting to the training
dataset. Comparatively, the performance of the ’noEarlySel’
and the ’proposed’ algorithms are closely aligned. However,
a significant difference was observed in their computational
efficiency. The proposed algorithm completed its run in ap-
proximately 21 hours, whereas the ’noEarlySel’ algorithm
required 29 hours to achieve a similar outcome. This dis-
tinction highlights the improved computational efficiency of
the proposed algorithm. In addition, the reference time for all
models after optimization is less than 0.02s.



TABLE I
ACCURACY PERFORMANCE OF THE PROPOSED ALGORITHM

baseline nn noSuggestion noGrowth noNN noEarlyCal proposed
HAPT 94.2 95.1 95.1 95.4 95.2 95.8 95.7

PAMAP2 85.3 80.1 73.3 85.1 83.5 85.8 85.6

V. CONCLUSION

Tiny edge systems, characterized by constraints on energy
consumption, inference time, and model complexity, require
specialized optimization strategies. This paper presents a novel
GA variant tailored to optimize AutoML tasks in tiny edge
systems, addressing the unique challenges of these environ-
ments. It includes accommodating large parameter search
spaces, interdependencies between parameters, longer compu-
tation times for fitness evaluation, significant computational
variances between individuals, and the inherent complexity of
tiny edge data.

In addition, it is important to emphasize that while the
algorithm is specifically designed for optimizing tiny edge sys-
tems, its applicability extends beyond this domain. In practical
scenarios, it can be effectively applied to any optimization
problem that exhibits one or more of the aforementioned
characteristics.

For future work, first, more comprehensive experiments are
needed for the proposed algorithm to assess its strengths and
weaknesses. This includes conducting additional comparative
studies with state-of-the-art methods. While our current com-
parisons involve high-quality methods, the range of methods
evaluated is limited. Moreover, detailed exploratory experi-
ments are required, particularly in understanding the influence
of each component on end performance and determining
optimal parameter selection for new datasets. Furthermore, the
dataset utilized in our experiments is restricted, focusing pri-
marily on the human activity recognition domain. Expanding
the dataset to include other applications relevant to tiny edge
systems is essential.

Second, while our proposed method optimizes tiny edge
system from an algorithmic perspective, further investigation
into the specific limitations of tiny edge systems in practical
applications is warranted. It is crucial to recognize that not
all methods are feasible for implementation on edge systems,
making the definition of hardware-associated search spaces
before applying the proposed algorithm particularly significant
in this field. In addition, factors such as the duration of feature
extraction and model computation, which depend on hardware
specifications, must be considered in the optimization objec-
tive.

Third, experiments have shown that the simultaneous use
of ML and neural network features can improve final per-
formance. However, is this effect specific only to designed
networks in the proposed algorithm, or can it be generalized
to state-of-the-art networks utilized in the WHAR domain
or networks generated through NAS? This is a question that
deserves further investigation.
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