
Enhancing Efficiency in HAR Models: NAS Meets

Pruning

Yexu Zhou, Tobias King, Yiran Huang, Haibin Zhao, Till Riedel, Tobias Röddiger, Michael Beigl

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

{yexu.zhou, tobias.king, yiran.huang, haibin.zhao, till.riedel, tobias.roeddiger, michael.beigl}@kit.edu

Abstract—Real-time monitoring of human activities using
wearable devices often requires the deployment of machine
learning models on resource-constrained edge devices. State-of-
the-art Human Activity Recognition models suffer from excessive
size and complexity. Furthermore, our systematic analysis reveals
that even worse, the computational cost and model size of most
SOTA HAR models escalate significantly with increasing sensor
channels. With advances in sensor technology that make it easier
to scale sensor deployments that capture human activities, ad-
dressing this challenge becomes critical for practical applicability.
In this work, we propose an integrated neural architecture
search framework to further lighten HAR models. The proposed
framework simultaneously selects and reduces the number of
sensor channels, prunes filters, and decreases the temporal
dimensions while training the model on optimized hardware. This
results in smaller and less complex models. Experiments on three
HAR datasets demonstrate that our framework outperforms two
state-of-the-art pruning methods in reducing model size and com-
plexity, while achieving superior performance. Furthermore, we
successfully applied our proposed framework to the deployment
of a HAR model on a microcontroller, highlighting its feasibility
for real-world implementation.

Index Terms—human activity recognition, automated machine
learning, hardware-aware neural architecture search

I. INTRODUCTION

Pervasive sensing systems are designed to sense, collect and

analyze environmental data with minimal human intervention.

Within this expansive domain, Human Activity Recognition

(HAR) emerges as a prominent task [1]. HAR primarily

utilizes data obtained from (multiple) Inertial Measurement

Units (IMUs) to identify and categorize human activities.

Recently, neural network models have outperformed tradi-

tional machine learning methods in the field of HAR [2]–[4].

This success can be attributed to the ability of neural networks

to automate feature learning and extraction. To enhance the

efficiency of these models, various deep learning architectures

have been proposed. However, a significant challenge arises

from the excessive size and complexity of these models, often

surpassing the hardware limitations of edge devices, thereby

hindering their deployment in real-world applications.

Furthermore, our investigations have revealed a direct cor-

relation: as the number of sensor channels increases, there is a

corresponding increase in both model size and complexity. For

This work was partially funded by the German Ministry for Research and
Education as part of SDI-S (Grant 01IS22095A) as well as by the Ministry of
Science, Research and the Arts Baden-Wuerttemberg as part of the SDSC-BW
project and by the Carl-Zeiss-Foundation as part of the JuBot project.

example, as detailed in Figure 2, when the number of sensor

channels doubles, the necessary memory and computational

demands also almost double. This scenario poses a significant

challenge when dealing with data collected from multiple IMU

sources, resulting in oversized models.

To address this issue, we conducted a comprehensive anal-

ysis of the structure, design, and computational complexity of

the model. Most HAR models primarily employ individual

convolutional layers at the initial stage, consuming a sig-

nificant portion of computational resources. Based on these

insights, we have developed a NAS framework tailored for

the lightweight optimization of HAR models. The framework

filters sensor channels, prunes filters per layer, reduces the

temporal dimension, and optimizes the model structure in an

end-to-end manner.

• We systematically analyze the design of state-of-the-art

HAR models, illustrating the causes of oversized models

and excessive model complexity.

• Based on these findings, we propose a NAS framework

for the lightweight optimization of HAR models.

• We demonstrate that our proposed NAS framework sig-

nificantly reduces the size and computational require-

ments while achieving better performance than SOTA

pruning algorithms on the three benchmark datasets.

• Finally, we evaluate the framework on an embedded

system we use for wearable prototyping, the STMi-

croelectronics STM32 Nucleo-144 Development Board

(NUCLEO-L552ZE-Q) equipped with an STM32L552

microcontroller unit (MCU), to demonstrate its real-world

applicability and efficiency.

II. RELATED WORK

A wide variety of complex neural network architectures

have been proposed to enhance feature extraction capabilities

and achieve SOTA performance. These architectures include

hybrid models that combine Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs)[5]–[7], as

well as attention-based models[8]. The work of Ismail et

al. [9] has employed NAS approaches to discover effective

neural network models. Although these models have achieved

exceptional performance, they often prove impractical for

deployment on edge devices due to their size.

Subsequent efforts, such as [2], have focused on design-

ing lightweight models through expert knowledge. However,

adapting the deployment for different application scenarios or

hardware constraints still requires expert knowledge. Other

works [10], [11], have utilized hardware-aware NAS tech-

niques to obtain lightweight models, considering hardware

limitations during optimization. Although these optimized

models have yielded more favorable results, they are still

too large for deployment on devices with extremely limited

resources, such as MCUs.

A. Overview of HAR Model Architecture

Local Context

Extraction

Cross-Channel

Interaction

Cross-Channel

Fusion

Temporal

Dependency
Extraction

DeepConvLSTM

1D Individual

Convolutional

Block

x Flatten LSTM

Attend and

Discriminate

1D Individual

Convolutional

Block

Cross-Channel

Interaction

Encoder

Flatten
Attentional GRU

Layer

IF-Conv

Transformer

Complementary

Filter + 1D

Individual

Convolutional

Block

Cross-Channel

Interaction

Encoder

Flatten + 1D

Convolution

Layer

Transformer

Block

DeepSense

1D Individual

Convolutional

Block

x

Flatten + Merge

Convolutional

block

GRU

TinyHAR

1D Individual

Convolutional

Block

Cross-Channel

Interaction

Encoder

Flatten + Fully

Connected Layer

Attentional LSTM

Layer

AttnSense

1D Individual

Convolutional

Block

x
Attention-fusion

Subnet

Attentional GRU

Layer

GlobalFusion

1D Individual

Convolutional

Block

Spatial

Convolutional

Block

Modality

Convolutional

Block

GRU

ALAE-TAE-

CutMix

1D Individual

Convolutional

Block

Adaptive Latent

Attention

Encoder

Flatten
Attentional LSTM

Layer

input

Stage 1 Stage 2 Stage 3 Stage 4

Fig. 1. Overview of the architecture design of HAR models.

The challenge in predicting activities lies in precisely

capturing local context, multi-modal interactions, and global

temporal information from multidimensional sensor data [2],

[12]. As illustrated in Figure 1, the design of feature extraction

can be segmented into four stages [2]: extraction of local

context, sensor information interaction, sensor information

fusion, and temporal information extraction. This architecture

design accounts for the characteristics of the data. In line with

these design principles, as illustrated in the table in Figure 1,

the architecture of most SOTA HAR models, such as Attend-

and-Discriminate [4], If-ConvTransformer [5], DeepSense [3],

AttenSense [12], TinyHar [2], AttenSense [12], GlobalFu-

sion [8] and ALAE-TAE [1] models, can be categorized into

these stages. The distinction between these models lies in their

approach to sensor fusion and temporal information extraction.

However, nearly all these networks initially utilize identical

individual convolution blocks in the initial stage for local

context extraction, acknowledging that each sensor channel

uniquely captures information for specific activities.

III. PRELIMINARIES

A. Problem Definition

The aim of HAR is to use a classification model to map seg-

ments of sensor readings to specific activity classes. Consider

X0 ∈ R
f0×c0×s0 as the input segment, where s0 indicates the

length of the input segment, and c0 represents the count of

sensor channels. Given the unprocessed nature of the raw data,

the feature dimension is initially set at f0 = 1. In this study,

the subscript notation i = 0, 1, 2, ..., L represents the specific

model layer associated with a variable, with i = 0 explicitly

indicating the input layer of the model.

B. HAR Model Complexity and Size

9 18 27

DeepConvLSTM TinyHAR Attend IFConv

1000k

800k

600k

400k

200k

400M

300M

200M

100M

0

N
u
m
b
e
r
o
f
P
a
r
a
m
e
te
r
s

Number of Sensor Channels:

N
u
m
b
e
r
o
f
M
A
C
s

DeepConvLSTM TinyHAR Attend IFConv

500M

Number of Sensor Channels: 9 18 27 Blue for stage 1

Green for stage 2-4

Fig. 2. Impact of the number of sensor channels.

In this research, we focused on four distinct models and

evaluated their model complexity at each stage. For measuring

model complexity, we used Multiply-Accumulate Operations

(MACs) as the metric. To highlight the complexity of the initial

stage, we divided the four stages into two parts: the first part

solely includes the first stage, while the second part comprises

the subsequent stages. This evaluation was carried out in the

context of the UCI-HAR data scenario [13], which uses a

single IMU, equal to nine sensor channels, for data acquisition.

Furthermore, we modified the count of sensor channels to

mimic scenarios that involve the use of additional IMUs. This

adjustment facilitates the check of how the number of sensor

channels affects both the size and complexity.

As shown in Figure 2, the first stage accounts for the

majority of MACs in all models analyzed. This is primarily

due to the fact that the temporal dimension of the HAR data

is significantly larger than the other dimensions. The first

stage operates directly on these original dimensions, leading

to a high computational intensity. This observation suggests

that an effective way to reduce the complexity of the model

is to shorten the length of the temporal dimension in this

convolutional stage. A significant reduction in the temporal

dimension in the first stage can also benefit subsequent stages.

For example, the cross-channel interaction encoder [4] and

various temporal information extraction blocks, which operate

along the temporal dimension, would require less computation

following this reduction. Furthermore, we found that the

number of convolutional filters in the first stage of these

HAR models is generally uniformly predefined [4], [7]. Thus,

reducing the number of filters in this stage could further

decrease the complexity of the model.

Surprisingly, we discovered that increasing the number

of IMUs leads to a dramatic increase in both the model’s

parameters and complexity. Specifically, when the number

of sensor channels increases from 9 to 18, the size of the

model and the computational cost nearly double. This increase

is attributed to the individual convolutions performed on the

expanded sensor channels. Another factor contributing to this

increase is the model’s use of a flatten operation followed by

a Fully Connected (FC) layer for feature fusion. Alternatively,

the model directly feeds the vectorized features into the sub-

sequent temporal extraction stage, which also includes many

FC layers. It is well known that the number of parameters

and model complexity of an FC layer is proportional to its

input and output dimensions. Therefore, an increase in sensor

channels enlarges the input dimension for these FC layers,

significantly enlarging its computational demands.

In summary, to make the model more lightweight, the most

effective strategies include optimizing the first stage by aiming

to reduce the temporal dimension size as much as possible,

selecting efficient sensor channels, and decreasing the number

of filters in each convolutional layer.

IV. METHODOLOGY

Based on the previous findings, we have designed an NAS

framework that can be applied to any HAR model featuring

an individual convolution as the first stage.

A. Sensor Channel and Convolutional Filter Pruning

⊙ =

Input Segment

𝑐

𝑠!

DCS

𝒃!
Active sensor channel size

�̂� = 𝑠𝑢𝑚(𝒃!)
= 1

= 0

𝑠"

𝑐

𝑓

𝒃"
Active filter size
+𝑏" = 𝑠𝑢𝑚(𝒃")

⊙ =

Output Feature Map
of Layer i

DCS

Fig. 3. DSC layer for the input layer and convolutional layer.

To facilitate the reduction of both the sensor channels

and the convolutional filters, a pruning strategy is integrated

into the framework. Specifically, a Differentiable Channel-

wise Scaling layer (DCS)[14] (We’ve changed its name in

the original paper for ease of understanding) is inserted at

the outset of the model and subsequently at the end of

each convolution, as depicted in Figure3. The mathematical

formulation of this process is represented as follows,

Xi = bi ⊙Xi i = 0 (1)

Xi+1 = bi ⊙ (Xi−1 ∗wi) i = 1, 2, · · · , L (2)

In this equation, the symbol ∗ denotes the convolution oper-

ation, while ⊙ represents element-wise multiplication. When

i = 0, which indicates the input layer, there is no convolutional

layer. The initial DCS layer is crucial to prune the sensor chan-

nels within the original data, with b0 ∈ R
1×c0×1. In contrast,

subsequent DCS layers focus on pruning filters in the con-

volutions preceding them, with bi ∈ R
f×1×1, i = 1, 2, · · · , L.

Each value of the parameter bi acts as an indicator of the

importance of the corresponding sensor or filter channel. A

value of 1 signifies importance, ensuring the retention of the

corresponding feature map portion for subsequent layers. On

the contrary, a value of 0 indicates irrelevance, leading to

the nullification of the corresponding feature map section.

Thus, the tasks of filtering the sensor channel and pruning

the filter become a binary optimization problem dependent on

the parameter bi.

To address the issue of gradient back-propagation related

to this parameter, the Straight-Through Estimator (STE) [15]

technique was employed. The forward and backward propa-

gation processes are defined as follows,

Forward : bi =

{

0 vi ≤ thres

1 vi > thres
(3)

Backward :
∂L

∂vi

=
∂L

∂bi

(4)

In this context, vi is a continuous parameter, while bi

is binarized, derived from vi. The threshold value thres
is a hyper-parameter, set at 0.5 in this study. Through the

integration of DCS layers and the STE method, both the model

parameters wi and the policy pruning parameters vi can be

trained simultaneously.

B. Search Space

As mentioned in the previous section, in addition to pruning

sensor and filter channels, it is imperative to condense the

temporal dimension as effectively as possible. To this end, we

have devised a search space, as shown in Figure 4. This space

is structured through the intersection of convolutional layers

with strides of 2 and those with strides of 1. The number

of convolutional layers with a stride of 2 is determined by

the length of the inputs. To avoid excessive reduction in the

temporal dimension, a specific strategy is employed. We define

the number of layers with a convolution stride of 2 as follows:

N = ⌊log2
(

s0
4

)

⌋. The denominator 4 ensures that, when all

convolutional layers with a stride of 2 are utilized, the resulting

size in the temporal dimension will be at least 4.

C
o

n
v
o

lu
tio

n
 S

trid
e
 =

 2

C
o

n
v
o

lu
tio

n
 S

trid
e
 =

 1

C
o

n
v
o

lu
tio

n
 S

trid
e
 =

 2

C
o

n
v
o

lu
tio

n
 S

trid
e
 =

 1

C
o

n
v
o

lu
tio

n
 S

trid
e
 =

 2

C
o

n
v
o

lu
tio

n
 S

trid
e
 =

 1

Conv

K=1

Conv

K=3

Conv

K=5

Conv

K=7
Identity

𝛼𝑖2 𝛼𝑖3 𝛼𝑖4 𝛼𝑖5𝛼𝑖1

DCS 𝒗i1 DCS 𝒗i2 DCS 𝒗i3 DCS 𝒗i4 DCS 𝒗i5

C
o

n
v
o

lu
tio

n
 S

trid
e
 =

 2

C
o

n
v
o

lu
tio

n
 S

trid
e
 =

 1

𝑠0 𝑐𝑓=1

Input

segments

𝑠𝑖−1
For layer : i=3

𝑠𝑖
Fig. 4. Search space.

Regarding each convolution layer, the available operations,

as presented in Figure 4, include convolutions with kernel

sizes of 1, 3, 5, and 7, along with an identity operator. Each

candidate operator is associated with a architecture parameter

αj
i , j = 1, 2, 3, 4, 5. When a layer is designated as an identity

layer, it contributes to reducing the total number of layers in

the model. Additionally, the use of layers with a stride of

2 is crucial in facilitating the compression of the temporal

dimension. For selecting operators for each layer, we adopt

the DARTS methodology [16] combined with the Gumbel-

Max trick approach [17]. This approach involves sampling an

operator during forward inference as follows.

pi = Onehot Encoding

(

argmax
j

(

gj + log
(

αj
i

))

)

(5)

where gi are independent samples drawn from a standard

Gumbel distribution (gi ∼ Gumbel (0, 1)). pi is a one-hot

encoded vector representation, with a probability proportional

to the value of αj
i . The forward process is as follows:

Xi+1 =

5
∑

j=1

p
j
iop

j
i (Xi−1) (6)

At any given instance, only one operator is applied. During

gradient back-propagation, we compute the gradient of the

argmax in equation 5 through a differentiable approximation

as follows:

G Softmax
(

αj
i ;α

)

=
exp

((

log
(

αj
i

)

+ gji

)

/τ
)

∑5
k=1 exp

((

log
(

αk
i

)

+ gki
)

/τ
)

(7)

Here, τ is the temperature parameter controlling the approxi-

mation’s fidelity to discrete one-hot vectors. Consequently, this

allows the model to be trained with discrete operations, using

equations 5 and 6 for the forward pass and the differentiable

equation 7 for gradient backpropagation.

C. Optimization

following the work [16], the entire optimization process can

be mathematically defined as follows,

min
α

Lval (w
∗ (α) ,v∗ (α) ,α) (8)

s.t. w∗ (α) ,v∗ (α) = argmin
w,v

Ltrain (w,v,α) (9)

where Ltrain and Lval denote the training and validation

loss, respectively. This is a typical bi-level optimization prob-

lem [16], with α as the upper-level variable and the model

weight w and learnable scaling factors v as the lower-level

variable. The optimization of these two parameters will follow

the iterative optimization procedure used in the DARTS.

where Ltrain and Lval denote training and validation

losses, respectively. This formulation represents a typical bi-

level optimization problem [16], with α as the upper-level

variable, and the model weights w and the learnable scaling

factors v as the lower-level variables. The optimization of

these parameters will follow the iterative optimization pro-

cedure used in DARTS. In equation 8, the loss function com-

prises the cross-entropy loss Lcrossentropy and hardware-

aware constraints as follows:

L = Lcrossentropy + β1Lcomplexity + β2Lmemory (10)

The hardware-aware constraints include the model complexity

constraint and peak memory usage constraints. β1 and β2

are trade-off parameters that adjust the impact of efficiency

and memory usage on overall loss. During the total loss

minimization process, a policy is learned that decides whether

to remove or keep a layer, as well as alter its number of filters

and sensor channels. The model complexity loss Lcomplexity
is analytically estimated as follows:

Lcomplexity =
L
∑

i=1

5
∑

j

p
j
i

∣

∣

∣

∣

b̂i−1 · b̂
j
i · ĉ0

·si−1

ti
· kji · 1

∣

∣

∣

∣

2

(11)

For each layer i, the computational complexity of the

selected opji is included in the L2 norm regularization.

b̂
j
i = sum

(

b
j
i

)

denotes the active filter number of the se-

lected operator, representing the output dimension. b̂i−1 rep-

resents the input dimension. ti denotes the stride of the current

layer. kji denotes the current kernel size. The size of the active

sensor channel ĉ0 = sum
(

b̂0

)

is taken from the first DCS

layer for the input segment.

When an edge device has a very limited amount of SRAM,

it is crucial to factor in peak memory usage into the training

loss. To calculate the maximum memory consumption of an

architecture, we use the analytical estimation method proposed

in [18]. The memory required to perform an operation is

estimated as follows:

mem (op) = mem (input) +mem (output) + extra (op)
(12)

To execute an operation in a neural network, both the input

and output tensors of the operation need to be present in

memory. Additionally, some operations, such as those of the

CMSIS-NN kernel library, require extra memory for com-

putation. The maximum memory consumption PMem(α,v)
can be computed as the maximum memory requirement in all

operations. The loss for peak memory consumption is defined

as follows:

Lmemory =

{

log
(

PMem(α,v)
L Mem

)

, ifPMem (α,v) > L Mem

0, otherwise
(13)

A penalty is applied when peak memory usage exceeds the

defined maximum memory limit L Mem.

V. EXPERIMENTS AND DISCUSSIONS

A. Experiment Setup

1) Datasets: We use three HAR benchmark datasets to val-

idate the proposed framework and provide empirical evidence

of its generalizability. These three datasets are chosen because

of their great diversity in terms of the sensing modalities

used and the activities to be recognized. The Skoda [19]

dataset contains 10 manipulative gestures performed in a car

maintenance scenario. The 30 signals from the 10 sensors

attached to the right-hand body are used. All sensor signals are

segmented by a sliding window of 196 readings (2 seconds)

with 50% overlap. Following the work [1], the first 80% of the

data is used for training, the next 10% for validation, and the

remaining for testing. The UCI-HAR dataset [13] are collected

from a group of 30 volunteers, who perform 6 activities while

wearing a smartphone on the waist. The data are already

segmented in sliding windows with fixed width of 2.56 s and

50% overlap. Following the default setup in [13], the data from

user id 2,4,9,10,12,13,18,20,24 are used as a test dataset. The

Motion Sense dataset [20] was collected from 24 volunteers

who kept a phone in their front pocket and performed 6 daily

activities. Following the suggestion [5] , a sliding window of

128 readings (2.56 s) with 10 reading overlap is adopted to

segment the sensor signals, and trial id greater than 10 are

used as test sets. The signals of each sensor are z-normalized.

2) HAR Models: To demonstrate the applicability of the

proposed framework to various models, we consider three

HAR models in our experiments: DeepConvLSTM (DCL),

TinyHAR, and Attend-and-Discriminate (Attend). All three

models utilize an individual convolution block at the initial

stage. Therefore, we replace only the initial stage with our

proposed searchable framework, while the structure of the

subsequent stages remains consistent with the original works.

3) Compared Pruning Approaches: To make the model

lightweight, pruning is a commonly used method. In addition

to our proposed method, we also consider two SOTA pruning

methods: AutoSlim [21] and PaS [14] as a baseline. We did

not modify these two algorithms, so they can only prune the

number of filters in each layer. However, our algorithm can

prune not only the Sensor channels and the Filters of each

layer but also reduce the length of the Temporal dimension.

Therefore, we have named our model SFTNAS.

4) Training&Evaluation Protocol: To optimize the model

weights w and the scaling parameters v, we use the Adam

optimizer with default parameters and an initial learning rate

of ξw = 10−4. The learning rate decays by 0.9 after reaching

a patience threshold of 10 epochs. The maximum number of

training epochs is set to epochmaximum = 200, and the batch

size is set to 256. For the optimization of the architecture

parameters α, we employ an additional Adam optimizer with

a learning rate of ξα = 5×10−3, momentum β = (0.5, 0.999),
and weight decay of 10−3. The parameters α are initialized to

10−3. The temperature τ is initially set to τ0 = 5.0, with its

decay equation being τ = τ0 × exp (−0.05× epoch). Given

the imbalance in the HAR data, we use the macro F1 score

(F1M) as the evaluation metric.

B. Optimization Results

The three tables,I,II, and III, provide performance results

for the algorithms applied to different HAR models across

three datasets: Motion Sense, UCI-HAR, and SKODA. The

algorithms with the best performance are highlighted in bold.

From a general point of view, SFTNAS consistently stands out

as the most effective algorithm in reducing model size across

all datasets and models. It achieves significant reductions in

the number of parameters compared to the original models.

In addition, SFTNAS also proves to be highly efficient in

terms of model complexity reduction, achieving the lowest

MMACs across all combinations of datasets and models. This

indicates that it can significantly improve the inference time.

AutoSlim and PaS also contribute to reducing model size and

complexity, but not as effectively as SFTNAS. Regarding the

classification performance of the algorithms, SFTNAS helps

all three HAR models to have the smallest model size and the

least model complexity on the Motion Sense and UCI-HAR

datasets, and achieves optimal results. Only on the SKODA

dataset does SFTNAS achieve slightly lower results than the

other two pruning algorithms. However, it is important to

emphasize that the decrease in both model size and model

complexity on the SKODA dataset is significant compared to

the other two pruning algorithms. This is due to the fact that

the proposed SFTNAS not only reduces the number of filters,

but also reduces the size of the temporal dimension as well as

performs the pruning of the sensor channel. One shortcoming

is that the proposed SFTNAS can only optimize the initial

stage, and the subsequent model structures are Fixed.

TABLE I
PERFORMANCE ON MOTION SENSE DATA SET

Model + Methods Parameters MMACs F1m

DCL 522.57 k 138.73 92.23

DCL + SFTNAS 81.92 k 2.32 89.88

DCL + AutoSlim 131.24 k 35.14 88.67

DCL + PaS 95.33 k 25.33 88.21

Attend 519.11 k 155.62 94.42

Attend + SFTNAS 56.45 k 3.74 91.37

Attend + AutoSlim 81.76 k 24.92 90.98

Attend + PaS 73.15 k 19.02 90.46

TinyHAR 322.76 k 47.17 92.12

TinyHAR + SFTNAS 41.28 k 1.79 90.17

TinyHAR + AutoSlim 50.03 k 7.69 89.21

TinyHAR + PaS 54.27 k 6.15 90.20

TABLE II
PERFORMANCE ON UCI-HAR DATA SET

Model + Methods Parameters MMACs F1m

DCL 424.26 k 105.95 92.51

DCL + SFTNAS 33.74 k 1.86 92.49

DCL + AutoSlim 46.21 k 11.72 91.83

DCL + PaS 37.89 k 9.64 92.04

Attend 445.38 k 120.55 94.07

Attend + SFTNAS 41.11 k 1.37 93.29

Attend + AutoSlim 48.62 k 13.59 92.88

Attend + PaS 39.89 k 11.2 92.71

TinyHAR 298.18 k 36.27 94.58

TinyHAR + SFTNAS 13.96 k 0.767 94.36

TinyHAR + AutoSlim 39.99 k 6.21 93.58

TinyHAR + PaS 21.34 k 3.56 94.19

TABLE III
PERFORMANCE ON SKODA DATA SET

Model + Methods Parameters MMACs F1m

DCL 1.11 M 534.44 91.12

DCL + SFTNAS 61.66 k 3.54 90.01

DCL + AutoSlim 173.93 k 83.72 88.45

DCL + PaS 187.93 k 70.42 89.33

Attend 962.0 k 592.41 92.39

Attend + SFTNAS 63.87 k 5.03 91.04

Attend + AutoSlim 139.17 k 90.44 91.23

Attend + PaS 150.82 k 87.65 91.59

TinyHAR 470.73 k 183.2 90.48

TinyHAR + SFTNAS 38.01 k 4.27 87.48

TinyHAR + AutoSlim 141.73 k 57.53 87.01

TinyHAR + PaS 104.38 k 43.01 88.31

C. Experimental deployment on Micro-controller

We also performed an evaluation on the NUCLEO-L552ZE-

Q, equipped with a STM32L552 (Single core, ARM Cortex-

M33, 80 MHz CPU clock, 512 kB flash, 256 kB SRAM),

using the UCI-HAR dataset. Given the extreme limitations of

this hardware, the three models, as well as the variants pruned

by AutoSlim and PaS, could not be deployed on it.

To deploy the model on this hardware, we applied the

proposed SFTNAS to TinyHAR. In addition to considering

the model complexity during training, we also included peak

memory in the training loss, with L Mem set to 96 kB.

After the model was trained, this optimized architecture was

further fine-tuned using quantization-aware training, and later

the resulting model was deployed to the MCU using int 8

quantization. Adjusting the size of β1, we could obtain models

with different computational complexities. We experimented

with various values of β1 and plotted the trade-off between the

inference time and the performance of the resulting models

in Figure 5 (a). This experiment demonstrates SFTNAS’s

ability to find architectures under different model complexity

constraints. When higher model complexities are allowed,

classification performance increases.

We further analyze the distribution of the number of filters

per layer in the optimize models and plot the distribution in

Figure 5 (b). As can be observed from the figure, there is

an increasing trend in the number of filters as the number of

layers increases. This trend can serve as a heuristic for the

manual design of models.

(a) (b)

Fig. 5. (a) Trade-off between inference time and performance. (b) Distribution
of optimized filter numbers.

VI. CONCLUSION

In this work, we have optimized the design of individual

blocks in the HAR model by using NAS in combination with

a pruning technique. This approach is designed to minimize

the size of various dimensions, namely the sensor channel

dimension, time dimension, and filter dimension, without

significantly sacrificing the model’s performance. It has been

experimentally demonstrated that the proposed method can

significantly reduce the size and complexity of the model while

maintaining its performance. In many cases, the complexity

is only about 2% of the original. This observation indirectly

shows that reducing the complexity of the model in the first

stage can also benefit subsequent computations. Finally, we

demonstrate the usability of the proposed method by applying

it on a microcontroller.

REFERENCES

[1] N. Ahmad and H.-f. Leung, “Alae-tae-cutmix+: Beyond the state-
of-the-art for human activity recognition using wearable sensors,” in
2023 IEEE International Conference on Pervasive Computing and

Communications (PerCom), IEEE, 2023, pp. 222–231.
[2] Y. Zhou, H. Zhao, Y. Huang, T. Riedel, M. Hefenbrock, and M. Beigl,

“Tinyhar: A lightweight deep learning model designed for human
activity recognition,” in Proceedings of the 2022 ACM International

Symposium on Wearable Computers, 2022, pp. 89–93.
[3] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense: A

unified deep learning framework for time-series mobile sensing data
processing,” in Proceedings of the 26th international conference on

world wide web, 2017, pp. 351–360.
[4] A. Abedin, M. Ehsanpour, Q. Shi, H. Rezatofighi, and D. C. Ranas-

inghe, “Attend and discriminate: Beyond the state-of-the-art for human
activity recognition using wearable sensors,” Proceedings of the ACM

on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 5,
no. 1, pp. 1–22, 2021.

[5] Y. Zhang, L. Wang, H. Chen, A. Tian, S. Zhou, and Y. Guo, “If-
convtransformer: A framework for human activity recognition using
imu fusion and convtransformer,” Proceedings of the ACM on Inter-

active, Mobile, Wearable and Ubiquitous Technologies, vol. 6, no. 2,
pp. 1–26, 2022.

[6] Y. Zhou, M. Hefenbrock, Y. Huang, T. Riedel, and M. Beigl, “Au-
tomatic remaining useful life estimation framework with embedded
convolutional lstm as the backbone,” in ECML PKDD 2020, Springer,
2021.

[7] F. J. Ordóñez and D. Roggen, “Deep Convolutional and LSTM Recur-
rent Neural Networks for Multimodal Wearable Activity Recognition,”
Sensors, vol. 16, no. 1, p. 115, 2016.

[8] S. Liu, S. Yao, J. Li, et al., “Giobalfusion: A global attentional deep
learning framework for multisensor information fusion,” Proceedings

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-

nologies,
[9] W. N. Ismail, H. A. Alsalamah, M. M. Hassan, and E. Mohamed,

“Auto-har: An adaptive human activity recognition framework using
an automated cnn architecture design,” Heliyon, 2023.

[10] X. Wang, X. Wang, T. Lv, L. Jin, and M. He, “Harnas: Human
activity recognition based on automatic neural architecture search using
evolutionary algorithms,” Sensors,

[11] X. Wang, M. He, L. Yang, H. Wang, and Y. Zhong, “Human activity
recognition based on an efficient neural architecture search framework
using evolutionary multi-objective surrogate-assisted algorithms,” Elec-

tronics, vol. 12, p. 50, 2022.
[12] H. Ma, W. Li, X. Zhang, S. Gao, and S. Lu, “Attnsense: Multi-level

attention mechanism for multimodal human activity recognition.,” in
IJCAI, 2019, pp. 3109–3115.

[13] D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-Ortiz, et

al., “A public domain dataset for human activity recognition using
smartphones.,” in Esann, vol. 3, 2013, p. 3.

[14] Y. Li, P. Zhao, G. Yuan, X. Lin, Y. Wang, and X. Chen, “Pruning-
as-search: Efficient neural architecture search via channel pruning and
structural reparameterization,” arXiv preprint arXiv:2206.01198, 2022.

[15] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,”
arXiv preprint arXiv:1308.3432, 2013.

[16] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[17] E. J. Gumbel, Statistical theory of extreme values and some practical

applications: a series of lectures. 1948, vol. 33.
[18] H. Benmeziane, K. El Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba,

and N. Wang, “Hardware-aware neural architecture search: Survey and
taxonomy.,” in IJCAI, 2021, pp. 4322–4329.

[19] P. Zappi, C. Lombriser, T. Stiefmeier, et al., “Activity recognition
from on-body sensors: Accuracy-power trade-off by dynamic sensor
selection,” in EWSN 2008.

[20] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi, “Mobile
sensor data anonymization,” in Proceedings of the international confer-

ence on internet of things design and implementation, 2019, pp. 49–58.
[21] J. Yu and T. Huang, “Autoslim: Towards one-shot architecture search

for channel numbers,” arXiv preprint arXiv:1903.11728, 2019.

