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ABSTRACT
The sharp local minimality of feasible points of nonlinear opti-
mization problems is known to possess a characterization by a
strengthened version of the Karush–Kuhn–Tucker conditions,
as long as theMangasarian–Fromovitz constraint qualification
holds. This strengthened condition is not easy to check algo-
rithmically since it involves the topological interior of some set.
In this article, we derive an algorithmically tractable version
of this condition, called strong Karush–Kuhn–Tucker condi-
tion. We show that the Guignard constraint qualification is the
weakest condition under which a feasible point is a strong
Karush–Kuhn–Tucker point for every continuously differen-
tiable objective function possessing the point as a sharp local
minimizer. As an application, our results yield an algebraic
characterization of strict local minimizers of linear programs
with cardinality constraints.
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1. Introduction

We consider nonlinear optimization problems of the form

P : min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

with defining functions f ∈ C1(Rn,R), g ∈ C1(Rn,Rp) and h ∈ C1(Rn,Rq).
Here and in the following, inequalities on vectors aremeant componentwise. The
feasible set of P will be denoted by X, ∇f (x) stands for the gradient of f at x, and
∇g(x),∇h(x) are the (transposed) Jacobians of g and h, respectively, at x.With the
active index setA(x̄) = {i ∈ {1, . . . , p} | gi(x̄) = 0} of x̄ ∈ X thematrix∇gA(x̄)(x̄)
possesses the a := |A(x̄)| columns∇gi(x̄), i ∈ A(x̄). Subsequently, we will briefly
denote it by ∇gA(x̄).

We will be interested in necessary and sufficient optimality conditions for
sharp local minimizers of P, that is, points x̄ ∈ X for which a neighbourhood
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U and some α > 0 exist with

∀ x ∈ X ∩ U : f (x) ≥ f (x̄) + α‖x − x̄‖.

Example 1.1: For n = 2, let f (x) = x1 + x2, g1(x) = −x1, g2(x) = −x2 and
g3(x) = x1x2. It is not hard to see that x̄ = 0 is a sharp local minimizer with
respect to the Euclidean norm, where one may choose U = R2 (i.e. x̄ is even a
sharp global minimizer) and α = 1.

Sharp local minimizers are also called strong [1], strongly unique [2], or strict
of order one [3]. They play prominent roles in the development of necessary and
sufficient optimality conditions [1, 3] and in the convergence analysis of approxi-
mation algorithms [2]. From an application point of view, sharp local minimizers
are often considered convenient since they enjoy particularly good stability prop-
erties [4]. They also appear in the discussion of sufficient conditions for isolated
local minimizers of order two (cf., e.g. [5] and the references therein).

Since sharp local minimizers x̄ of P are local minimizers, under some con-
straint qualification they are necessarily Karush-–Kuhn–Tucker (KKT) points,
that is, there exist λ ∈ Ra and μ ∈ Rq with

∇f (x̄) + ∇gA(x̄)λ + ∇h(x̄)μ = 0, λ ≥ 0. (1)

Moreover, since sharp local minimizers are special local minimizers, one may
expect that they also satisfy a strengthened version of the KKT conditions, and
that this condition may even be sufficient for sharp local minimality. Such a con-
dition is given in [1, Theorem 3.6] under the Mangasarian–Fromovitz constraint
qualification (MFCQ) at x̄, which assumes rank∇h(x̄) = q and the existence of
some vector d ∈ Rn with ∇gA(x̄)ᵀd < 0 and ∇h(x̄)ᵀd = 0. Note that (1) may be
rewritten as follows:

−∇f (x̄) ∈ {∇gA(x̄)λ + ∇h(x̄)μ | λ ∈ Ra, μ ∈ Rq, λ ≥ 0}.

Theorem 1.2 ([1]): Let the MFCQ hold at x̄ ∈ X. Then, x̄ is a sharp local
minimizer of P if and only if

− ∇f (x̄) ∈ int{∇gA(x̄)λ + ∇h(x̄)μ | λ ∈ Ra, μ ∈ Rq, λ ≥ 0} (2)

holds.

We remark that condition (2) is also used in [6] for the investigation of unique
minimal points of problems P with convex feasible sets. In the present article,
however, we do not impose any convexity assumption on P.

The aimof this article is twofold. Firstly, wewill derive an algorithmicallymore
tractable version of the condition (2) and, secondly, we wish to identify the weak-
est constraint qualification under which sharp local minimality is characterized
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by (2). Both tasks can be carried out using techniques which were introduced
for the characterization of sharp minimizers of linear semi-infinite problems
in [7] and, independently, of strict local Pareto optimal points of order one in
multicriteria optimization [8, 9].

As, to the best of the authors’ knowledge, the corresponding results in single
objective nonlinear optimization have not been formulated explicitly so far, the
present article first closes this gap by introducing the concept of strong Karush-
Kuhn-Tucker points in Section 2 as well as the related stationarity condition and
constraint qualifications in Section 3. In Section 4, we show that the Guignard
constraint qualification is the weakest possible condition for the characterization
of sharp local minimality by the strong KKT property, and in Section 5, we apply
our results to strict local minimizers of cardinality-constrained linear optimiza-
tion problems. Section 6 closes this article with some final remarks. The appendix
contains the proof of an auxiliary result.

2. Strong Karush–Kuhn–Tucker points

In the sequel, the following notion will be useful.

Definition 2.1: We call x̄ ∈ X a strong Karush-Kuhn-Tucker point if

rank(∇gA(x̄),∇h(x̄)) = n (3)

holds and if there exist λ ∈ Ra, μ ∈ Rq with

∇f (x̄) + ∇gA(x̄)λ + ∇h(x̄)μ = 0, λ > 0. (4)

We remark that (3) is not a constraint qualification (cf. Example 4.3 below).
The linear independence constraint qualification (LICQ) rank(∇gA(x̄),∇h(x̄)) =
a + q, the identity a+ q = n and the strict complementary slackness condition
λ > 0 are sufficient for x̄ ∈ X to be a strong KKT point. These conditions are,
however, not necessary since at strong KKT points a+ q>n may hold, and the
multipliers λ and μ do not need to be unique.

Example 2.2: In Example 1.1, we have ∇f (x̄) = (1, 1)ᵀ, A(x̄) = {1, 2, 3} and
∇gA(x̄) = ( −1 0 0

0 −1 0
)
so that LICQ is violated at x̄ while (3) is satisfied. Indeed, x̄

is even a strong KKT point with the (nonunique) multiplier λ = (1, 1, 1)ᵀ > 0.

We will characterize strong KKT points by means of Tucker’s theorem of the
alternative.

Lemma 2.3 ([10]): For matrices A and B, with A being nonvacuous, exactly one
of the following alternatives hold:

(a) Ax ≤ 0, Ax 	= 0, Bx = 0 possesses a solution x.
(b) Aᵀy + Bᵀz = 0, y>0 possesses a solution (y, z).
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The proof of the following characterization is almost identical to the one for the
multicriteria case from [8, Theorem 3.4] where, however, a weaker assertion is
stated as the result of the proof. A proof of the same result from the point of view
of linear semi-infinite programming is given in [7, Theorem 3.1] and used in,
e.g. [11, 12]. For completeness, we repeat the arguments here. We define the set
C≤(f , x̄) = {d ∈ Rn | ∇f (x̄)ᵀd ≤ 0} of (potential) descent directions for f at x̄ ∈
X and the linearization cone L(g, h, x̄) = {d ∈ Rn | ∇gA(x̄)ᵀd ≤ 0, ∇h(x̄)ᵀd =
0} to X at x̄.

Lemma 2.4: A point x̄ is a strong KKT point of P if and only if x̄ ∈ X and
C≤(f , x̄) ∩ L(g, h, x̄) = {0} hold.

Proof: With Aᵀ = (∇f (x̄),∇gA(x̄)) and Bᵀ = ∇h(x̄) we have C≤(f , x̄) ∩
L(g, h, x̄) = {0} if and only if the systemAd ≤ 0,Bd = 0 possesses only the trivial
solution d = 0. The latter is equivalent to the fact that, both, the system Ad = 0,
Bd = 0, d 	= 0 is unsolvable, and the system Ad ≤ 0, Ad 	= 0, Bd = 0 is unsolv-
able. The unsolvability of the first system is equivalent to the linear independence
of the n rows of the matrix (Aᵀ,Bᵀ), that is, to

rank(∇f (x̄),∇gA(x̄),∇h(x̄)) = n. (5)

Moreover, by Lemma 2.3, the second system is unsolvable if and only if there
exist κ > 0, λ > 0 with κ∇f (x̄) + ∇gA(x̄)λ + ∇h(x̄)μ = 0. After division of this
equation by κ (and renaming λ) this is condition (4). Finally, under (4), (5) is
equivalent to (3). �

The following reformulation of Lemma 2.4 will be useful, where A◦ = {v ∈
Rn | vᵀd ≤ 0 ∀ d ∈ A} denotes the polar cone of a cone A ⊆ Rn. By the third
assertion in [13, Example 6.22] any closed, not necessarily convex, coneA satisfies

intA◦ = {v ∈ Rn | vᵀa < 0 ∀ a ∈ A \ {0}}. (6)

We provide a brief self-contained proof of (6) in the appendix.

Lemma 2.5: A point x̄ is a strong KKT point of P if and only if x̄ ∈ X and

− ∇f (x̄) ∈ int L◦(g, h, x̄) (7)

hold.

Proof: It is well known that the Farkas lemma yields

L◦(g, h, x̄) = {∇gA(x̄)λ + ∇h(x̄)μ | λ ∈ Ra, μ ∈ Rq, λ ≥ 0}. (8)

Since L(g, h, x̄) is a closed cone, (6) implies

int L◦(g, h, x̄) = {v ∈ Rn | vᵀd < 0 ∀ d ∈ L(g, h, x̄) \ {0}}. (9)

Therefore, (7) is equivalent to C≤(f , x̄) ∩ L(g, h, x̄) = {0}, and the assertion fol-
lows from Lemma 2.4. �
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As a direct consequence of Lemma 2.5 and (8) we obtain that condition (2)
in Theorem 1.2 is equivalent to x̄ ∈ X being a strong KKT point, where the
strong KKT property is easier to check algorithmically than the topological
condition (2).

Theorem 2.6: A point x̄ is a strong KKT point of P if and only if x̄ ∈ X and
condition (2) hold.

Theorem2.6 allows us to reformulate Theorem1.2 as the statement that, under
the MFCQ at x̄ ∈ X, this point is a sharp local minimizer of P if and only if it is a
strong KKT point.

Remark 2.7: The strong KKT property at x̄ ∈ X admits the following geomet-
ric interpretation which is, however, less suitable for a transparent discussion of
constraint qualifications. Indeed, by Lemma 2.5, we have v ∈ int L◦(g, h, x̄) if and
only if x̄ is a strong KKT point for theminimization of fv(x) := −vᵀx overX. The
latter is equivalent to the rank condition (3) and v ∈ {∇gA(x̄)λ + ∇h(x̄)μ | λ ∈
Ra, μ ∈ Rq, λ > 0}. Therefore, int L◦(g, h, x̄) 	= ∅ is characterized by (3), and
under (3) one has

int L◦(g, h, x̄) = {∇gA(x̄)λ + ∇h(x̄)μ | λ ∈ Ra, μ ∈ Rq, λ > 0}. (10)

On the other hand, (4) may hold while (3) is violated, −∇f (x̄) ∈ int L◦(g, h, x̄)
can then not be concluded from (4), and x̄ is not a strong KKT point, but only a
KKT point satisfying strict complementarity (see Example 4.2 below).

Remark 2.8: The last step in the proof of Lemma2.4, which removes the gradient
of the objective function from (5) and thus establishes (3) as a condition purely
on the feasible set, is not possible in the multicriteria setting. There only one
of the finitely many gradients of objective functions could be removed from the
condition, so that the rank condition (5), with the (transposed) Jacobian ∇f (x̄)
of the vector-valued objective function f, is usually not stated in such a reduced
form. As a consequence, int L◦(g, h, x̄) may be empty at strong KKT points of
multicriteria problems [14, Definition 2.8] and, in particular, strong KKT points
even exist for smooth unconstrained multicriteria problems.

3. A stationarity condition and constraint qualifications

In Example 1.1, the point x̄ = 0 is, both, a sharp local minimizer and a strong
KKT point, while the MFCQ is violated there. This raises the question of
whether in Theorem 1.2 the MFCQ can be replaced by some weaker constraint
qualification.



6 O. STEIN ANDM. VOLK

In the following we use the (Bouligand) tangent cone:

T(X, x̄) = {d ∈ Rn | ∃ tk ↘ 0, (xk) ⊆ X : lim
k

(xk − x̄)/tk = d}

toX at x̄. The proof of the following result employs similar ideas as the ones of [9,
Theorem 4.1] and [1, Theorem 3.2].

Lemma 3.1: A point x̄ is a sharp local minimizer of P if and only if x̄ ∈ X and
C≤(f , x̄) ∩ T(X, x̄) = {0} hold.

Proof: Let x̄ ∈ X not be a sharp local minimizer of P. Then for each k ∈ N there
exists some xk ∈ X with ‖xk − x̄‖ ≤ 1/k and f (xk) < f (x̄) + (1/k)‖xk − x̄‖. The
sequence (tk) with tk = ‖xk − x̄‖ satisfies tk ↘ 0 and, by the compactness of
the unit sphere, without loss of generality the sequence of directions dk = (xk −
x̄)/tk converges to some d ∈ T(X, x̄) with ‖d‖ = 1. Moreover, the differentiabil-
ity of f yields∇f (x̄)ᵀd = limk(f (xk) − f (x̄))/tk with (f (xk) − f (x̄))/tk < 1/k for
all k and, thus,∇f (x̄)ᵀd ≤ 0. Thismeans that d 	= 0 lies inC≤(f , x̄) ∩ T(X, x̄) and
therefore C≤(f , x̄) ∩ T(X, x̄) � {0} holds.

On the other hand, let C≤(f , x̄) ∩ T(X, x̄) � {0} for x̄ ∈ X and choose some
d 	= 0 from C≤(f , x̄) ∩ T(X, x̄). Then, there exists some tk ↘ 0 and (xk) ⊆ X
with dk = (xk − x̄)/tk → d. Assume that x̄ is a sharp local minimizer. Then,
with some α > 0, for all sufficiently large kwe have (f (xk) − f (x̄))/tk ≥ (α‖xk −
x̄‖)/tk = α‖dk‖. This yields the contradiction 0 ≥ ∇f (x̄)ᵀd = limk(f (xk) −
f (x̄))/tk ≥ α‖d‖ > 0. �

Example 3.2: In Example 1.1, we have C≤(f , 0) = {d ∈ R2 | d1 + d2 ≤ 0}
and T(X, 0) = X = (R≥ × {0}) ∪ ({0} × R≥). Therefore C≤(f , 0) ∩ T(X, 0) =
{0} holds, and Lemma 3.1 shows that x̄ = 0 is a sharp local minimizer, without
the need to specify U and α.

As the relation T(X, x̄) ⊆ L(g, h, x̄) is true without further assumptions, the
combination of Lemmas 2.4 and 3.1 yields that being a strong KKT point is suffi-
cient for x̄ ∈ X to be a sharp localminimizer. If additionally theAbadie constraint
qualification (ACQ) L(g, h, x̄) ⊆ T(X, x̄) holds at x̄, then the same combination
implies that being a strong KKT point is necessary for x̄ ∈ X to be a sharp local
minimizer. Therefore, in Theorem 1.2, the MFCQ can be replaced by the weaker
ACQ.

However, in Example 1.1 also the ACQ is violated at x̄ while this point is,
both, a sharp local minimizer and a strong KKT point. To formulate an even
weaker constraint qualifcation, we state a reformulation of Lemma 3.1 which
is analogous to the reformulation of Lemma 2.4 by Lemma 2.5. In fact, the
proof runs along the same lines, using the closedness of the cone T(X, x̄) when
evoking (6).
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Lemma 3.3: A point x̄ is a sharp local minimizer of P if and only if x̄ ∈ X and
−∇f (x̄) ∈ intT◦(X, x̄) hold.

Lemmas 2.5 and 3.3 imply that also under the condition

intT◦(X, x̄) ⊆ int L◦(g, h, x̄) (11)

being a strong KKT point is necessary for x̄ ∈ X to be a sharp local minimizer.
Condition (11) is a consequence of the Guignard constraint qualification (GCQ)

T◦(X, x̄) ⊆ L◦(g, h, x̄)

which, in turn, follows from the ACQ. Hence, in Theorem 1.2, the MFCQ may
even be replaced by the GCQ. The GCQ does hold at x̄ = 0 in Example 1.1, since
the sets T◦(X, x̄) and L◦(g, x̄) both coincide with {v ∈ R2| v ≤ 0}.

We have thus shown the following result.

Theorem 3.4: Let the GCQ hold at x̄ ∈ X. Then, x̄ is a sharp local minimizer of P
if and only if it is a strong KKT point.

As (11) is a consequence of the GCQ, one may ask why in Theorem 3.4
the GCQ is not replaced by this potentially weaker condition. Indeed, in the
subsequent section we will show that the GCQ is the weakest condition under
which sharp local minimality can be characterized by the strong KKT property.
Therefore the condition (11) cannot be strictly weaker than the GCQ.

The following explicit proof of this result sheds somemore light on the under-
lying reason. Observe that T◦(X, x̄) coincides with the regular normal cone
N̂(X, x̄) to X at x̄ [13], so that the GCQ at x̄ may be rewritten as N̂(X, x̄) ⊆
L◦(g, h, x̄), and (11) as int N̂(X, x̄) ⊆ int L◦(g, h, x̄).

In this notation, Lemma 3.3 states that x̄ is a sharp local minimizer if and only
if x̄ ∈ X and −∇f (x̄) ∈ int N̂(X, x̄) hold. Thus we are only interested in the case
int N̂(X, x̄) 	= ∅.

Proposition 3.5: For int N̂(X, x̄) 	= ∅ the condition (11) implies the GCQ at x̄.

Proof: For int N̂(X, x̄) 	= ∅, the convex set N̂(X, x̄) and, under (11), also
L◦(g, h, x̄) are full dimensional, so that their relative interiors coincide with
their interiors. Therefore [15, Theorem 6.3] implies cl int N̂(X, x̄) = cl N̂(X, x̄) =
N̂(X, x̄) as well as cl int L◦(g, h, x̄) = cl L◦(g, h, x̄) = L◦(g, h, x̄), where the respec-
tive second identities follow from the closedness of polar cones. Since (11) yields
cl int N̂(X, x̄) ⊆ cl int L◦(g, h, x̄), the GCQ follows. �

We remark that (11) is trivially fulfilled at any x̄ ∈ X with int N̂(X, x̄) = ∅. In
this case, the GCQ may be violated at x̄, as the example X = {x ∈ R2 | x31 ≤ 0}
with x̄ = 0 shows.
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4. The weakest constraint qualification

Recall from [16] that the GCQ is the weakest condition under which a point x̄ ∈
X is a KKT point for every f ∈ F(X, x̄), where F(X, x̄) denotes the set of at x̄
continuously differentiable functions possessing x̄ as a local minimizer on X.

In view of Theorem 3.4 and Proposition 3.5, the GCQ at x̄ may also be the
weakest condition under which a point x̄ ∈ X is a strong KKT point for every
f ∈ Fs(X, x̄), where Fs(X, x̄) denotes the set of at x̄ continuously differentiable
functions possessing x̄ as a sharp local minimizer on X. The following result
verifies this.

Theorem 4.1: The weakest condition under which a point x̄ ∈ X is a strong KKT
point for every f ∈ Fs(X, x̄) is the GCQ at x̄.

Proof: ByTheorem 3.4, theGCQat x̄ is some condition under which x̄ is a strong
KKT point for every f ∈ Fs(X, x̄). On the other hand, let x̄ be a strong KKT
point for every f ∈ Fs(X, x̄). We will show that then the GCQ (i.e. N̂(X, x̄) ⊆
L◦(g, h, x̄)) necessarily holds at x̄.

In the first step, we show that under the current assumption the GCQ trivially
holds at x̄ in the case int N̂(X, x̄) = ∅, since then no continuously differen-
tiable function f can possess x̄ as a sharp local minimizer. Indeed, Lemma 3.3
would then imply −∇f (x̄) ∈ int N̂(X, x̄), in contradiction to int N̂(X, x̄) = ∅.
This implies Fs(X, x̄) = ∅ and, therefore, the trivial correctness of the assertion.

In the remainder of the proof, let int N̂(X, x̄) 	= ∅. Then by Proposition 3.5
it is sufficient to show (11) for the proof of the GCQ at x̄. Indeed, choose v ∈
int N̂(X, x̄). By Lemma3.3 the linear function fv(x) = −vᵀx possesses x̄ as a sharp
local minimizer on X, implying fv ∈ Fs(X, x̄). By assumption x̄ is then also a
strong KKT point of fv on X, that is, rank(∇gA(x̄),∇h(x̄)) = n holds and there
exist λ > 0 and μ with

v = ∇gA(x̄)λ + ∇h(x̄)μ.

For all d ∈ L(g, h, x̄) \ {0} this implies

vᵀd = λᵀ∇gA(x̄)ᵀd + μᵀ∇h(x̄)ᵀd ≤ 0.

Moreover, in the case vᵀd = 0 we would obtain

0 = λᵀ∇gA(x̄)ᵀd + μᵀ∇h(x̄)ᵀd

which, in view of λ > 0, is only possible for∇gA(x̄)ᵀd = 0. Therefore we arrive at
dᵀ(∇gA(x̄),∇h(x̄)) = 0. The rank condition (3) implies d = 0, which contradicts
the choice d 	= 0. We have thus shown vᵀd < 0 for all d ∈ L(g, h, x̄) \ {0}. By (9)
thismeans v ∈ int L◦(g, h, x̄), so that (11) is shown, and the proof is complete. �

The following examples illustrate two situations of a sharp local minimizer at
which the GCQ is violated.
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Figure 1. Normal cones and polars of linearization cones. (a) Example 4.2. (b) Example 4.3.

Example 4.2: In Example 1.1, let us replace the function g1(x) = −x1 by g̃1(x) =
−x31 and set g̃2 := g2, g̃3 := g3. Then the setX remains unchanged, so that x̄ = 0 is
still a sharp local minimizer, and we still have N̂(X, x̄) = {v ∈ R2| v ≤ 0}. On the
other hand, the linearization cone becomes L(̃g, x̄) = {d ∈ R2| d2 ≥ 0} with the
polar cone L◦(̃g, x̄) = {v ∈ R2| v1 = 0, v2 ≤ 0} (Figure 1(a)). Hence the GCQ is
violated at x̄.

By Theorem 4.1, there exists at least one function f ∈ Fs(X, x̄) for which x̄ is
not a strong KKT point. Indeed, the function f (x) = x1 + x2 from Example 1.1
serves this purpose, where neither condition (3) nor (4) can be fulfilled (x̄ is only
a Fritz-John point).

In fact, by Lemma 3.3 the set Fs(X, x̄) contains exactly the at x̄ continu-
ously differentiable functions f with ∇f (x̄) > 0, but due to int L◦(̃g, x̄) = ∅ and
Lemma 2.5, x̄ is not a strong KKT point for any of them. For the latter conclu-
sion, one may also argue that (3) is violated independently of the choice of f, so
that int L◦(̃g, x̄) is empty and x̄ can thus not be a strong KKT point for any f.
With respect to Remark 2.7 note, however, that x̄ is a KKT point satisfying strict
complementarity for f (x) = x2 on X.

The next example verifies that the violation of GCQ at x̄ does not force the
violation of (3) (as in Example 4.2), so that int L◦(g, x̄) is then nonempty and x̄ is
a strong KKT point at least for some f ∈ Fs(X, x̄).

Example 4.3: In Example 1.1, we replace the functions g1 and g2 by ĝ1(x) = −x31,
ĝ2(x) = −x32, set ĝ3(x) := g3(x) = x1x2, and add the constraints ĝ4(x) = −2x1 −
x2 ≤ 0 and ĝ5(x) = −x1 − 2x2 ≤ 0. The set X then still remains the same, x̄ = 0
is a sharp local minimizer, and N̂(X, x̄) = {v ∈ R2| v ≤ 0} holds. The lineariza-
tion cone, however, becomes L(̂g, x̄) = {d ∈ R2| ĝ4(d) ≤ 0, ĝ5(d) ≤ 0} with the
polar cone L◦(̂g, x̄) = {v ∈ R2| 2v1 ≤ v2 ≤ v1/2} (Figure 1(b)). Hence again the
GCQ is violated at x̄.

As in Example 4.2, by Lemma 3.3 the set Fs(X, x̄) contains exactly the at x̄
continuously differentiable functions f with∇f (x̄) > 0.Moreover, by Lemma2.5,
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x̄ is a strong KKT point if and only if −∇f (x̄) ∈ int L◦(̃g, x̄) = {v ∈ R2| 2v1 <

v2 < v1/2} holds. Thus, for f (x) = x1 + x2 from Example 1.1 x̄ is a strong KKT
point, while for f̂ (x) = 3x1 + x2 with f̂ ∈ Fs(X, x̄) it is not.

5. Application to cardinality-constrained linear programs

In linear programming, every unique minimizer is a vertex of the feasible set
and, hence, satisfies the rank condition (3).Moreover, since theGoldman–Tucker
theorem [17] states that every solvable linear program possesses a strictly com-
plementary optimal point, any unique minimizer is strictly complementary and,
thus, satisfies (4). Therefore, in linear programming every unique minimizer is a
strongKKTpoint. An alternative line of arguments for this result uses that unique
minimizers of linear programs are necessarily sharp. Since the ACQ and, thus,
the GCQ are satisfied everywhere in a polyhedral set, by Theorem 3.4 the unique
minimizers of linear programs are even characterized by the strong KKT prop-
erty. The latter also implies that a basic optimal point is strictly complementary
if and only if it is the only optimal point [18], since this may be rephrased as the
fact that minimizers with (3) satisfy (4) if and only if they are unique, and since
minimizers of linear programs are characterized as KKT points.

The above characterization of unique (global) minimizers as strong KKT
points in the case of LPs also holds for more general problem classes in a local
version, as formulated in the following result. Recall that a local minimizer x̄ is
called strict if f (x) > f (x̄) holds for all x ∈ (X ∩ U) \ {x̄} for some neighbour-
hood U of x̄. A global minimizer is strict if and only if it is unique. Every sharp
local minimizer is strict, while a strict local minimizer need not be sharp.

The following theorem is an immediate consequence of Theorem 3.4.

Theorem 5.1: Consider a nonlinear optimization problem P satisfying the follow-
ing properties:

(a) The GCQ holds everywhere in the feasible set X.
(b) Every strict local minimizer of P is sharp.

Then x̄ is a strict local minimizer of P if and only if it is a strong KKT point.

FromExample 1.1 onemay expect that assumptions a and b fromTheorem 5.1
hold for all linear programs with complementarity constraints (LPCCs [19, 20]).
The following example shows that this is not the case.

Example 5.2 ([21, Example 3]): Let

X = {x ∈ R3| x1, x2 ≥ 0, x1x2 ≤ 0, −4x1 + x3 ≤ 0, −4x2 + x3 ≤ 0}
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and x̄ = 0. SinceX is a (nonconvex) polyhedral cone, [13, Theorem 6.46] implies
T(X, x̄) = X. Furthermore

L(g, x̄) = {d ∈ R3| d1, d2 ≥ 0, −4d1 + d3 ≤ 0, −4d2 + d3 ≤ 0}

holds. Since the vector (−1,−1, 1)ᵀ lies in T◦(X, x̄), but not in L◦(g, x̄) (due to
(1, 1, 3)ᵀ ∈ L(g, x̄)), the GCQ is violated at x̄. In particular, the minimization of
f (x) = x1 + x2 − x3 over X constitutes an LPCC at whose unique global mini-
mizer x̄ the GCQ is violated. In fact, x̄ is not even a KKT point, let alone a strong
one.

It turns out, however, that an application relevant subclass of LPCCs can
be treated by Theorem 5.1, namely cardinality-constrained linear programs
(CCLPs). They possess the form

CCLP : min
x∈Rn

cᵀx s.t. Ax ≤ α, Bx = β , ‖x‖0 ≤ κ ,

where the number ‖x‖0 of nonzero entries of the vector x is bounded above by
some κ ∈ {1, . . . , n − 1}. In [22] the continuous relaxation

RCCLP : min
(x,y)∈Rn×Rn

cᵀx s.t. Ax ≤ α, Bx = β ,

eᵀy ≥ n − κ ,
0 ≤ y ≤ e,
xiyi = 0, i = 1, . . . , n

of a mixed-integer reformulation of CCLP is studied, where e denotes the all-
ones vector in Rn. Note that RCCLP is an LPCC if the system Ax ≤ α includes
nonnegativity constraints on x. By [22, Theorem 3.2] a point x̄ is a global mini-
mizer of CCLP if and only if there exists some ȳ ∈ Rn such that (x̄, ȳ) is a global
minimizer of RCCLP.

By [22, Corollary 4.5], the GCQholds everywhere in the feasible set ofRCCLP,
so that we have the following result.

Lemma 5.3: Every problem RCCLP satisfies condition a from Theorem 5.1.

For the proof of condition b in Theorem 5.1 we recall the local patch structure
of the feasible set Z of RCCLP presented in [22]. For z̄ := (x̄, ȳ) ∈ Z we define the
active index sets

I±0(z̄) = {i ∈ {1, . . . , n}| x̄i 	= 0, ȳi = 0},
I00(z̄) = {i ∈ {1, . . . , n}| x̄i = 0, ȳi = 0},
I0+(z̄) = {i ∈ {1, . . . , n}| x̄i = 0, ȳi ∈ (0, 1)},
I01(z̄) = {i ∈ {1, . . . , n}| x̄i = 0, ȳi = 1},
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and for each I ⊆ I00(z̄) the local patch

ZI(z̄) = {(x, y) ∈ Rn × Rn |Ax ≤ α, Bx = β , eᵀy ≥ n − κ ,

xi = 0, yi ∈ [0, 1], i ∈ I0+(z̄) ∪ I01(z̄) ∪ I,

yi = 0, i ∈ I±0(z̄) ∪ (I00(z̄) \ I)}.

Lemma 5.4 ([22, Proposition 4.1, Lemma 4.2]): Every z̄ ∈ Z possesses some
neighbourhood U with

U ∩ Z = U ∩
⋃

I⊆I00(z̄)

ZI(z̄), (12)

and the tangent cone to Z at z̄ satisfies

T(Z, z̄) =
⋃

I⊆I00(z̄)

T(ZI(z̄), z̄). (13)

Lemma 5.5: Every problem RCCLP satisfies condition b from Theorem 5.1.

Proof: Let z̄ = (x̄, ȳ) be a strict local minimizer of RCCLP. Then the standard
stationarity condition for local minimizers of nonlinear optimization problems
(i.e. B-stationarity in the terminology of MPCCs) yields −c ∈ N̂(Z, z̄). For −c ∈
int N̂(Z, z̄) Lemma 3.3 implies that z̄ is a sharp local minimizer. Thus it remains
to show that −c ∈ bd N̂(Z, z̄) results in a contradiction to z̄ being a strict local
minimizer.

Indeed, by

int N̂(Z, z̄) = intT◦(Z, z̄) = {v ∈ Rn | vᵀd < 0 ∀ d ∈ T(Z, z̄) \ {0}}
and the closedness of N̂(Z, z̄), from −c ∈ bd N̂(Z, z̄) we obtain the existence of
some d ∈ T(Z, z̄) \ {0}with cᵀd = 0. In view of (13) there exists some I ⊆ I00(z̄)
with d ∈ T(ZI(z̄), z̄). Since the patch ZI(z̄) is a polyhedral set, together with (12)
we obtain z̄ + td ∈ ZI(z̄) ⊆ Z for all sufficiently small t>0. Due to cᵀ(z̄ + td) =
cᵀz̄ this rules out that z̄ is a strict local minimizer. �

Lemmas 5.3 and 5.5 together with Theorem 5.1 yield the main result of this
section.

Theorem 5.6: In any problem RCCLP the set of strict local minimizers coincides
with the set of strong KKT points.

From an application point of view, an even more interesting result would state
that the set of strict local minimizers of any problem CCLP coincides with the
set of strong KKT points of RCCLP. However, this cannot be expected, since [22,
Examples 2, 3] show that RCCLP may possess spurious local minimizers, that
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is, local minimizers (x̄, ȳ) for which x̄ is not a local minimizer of CCLP. While
these examples employ a nonlinear objective function, the following example
shows by a similar construction that this effect persists for CCLPs, and also that
a sharp global minimizer of CCLP does not need to correspond to a sharp global
minimizer of RCCLP.

Example 5.7: The problem

CCLP : min
x∈R3

x1 s.t. ‖x‖1 ≤ 1, ‖x‖0 ≤ 2

possesses the sharp globalminimizer x̄ = (−1, 0, 0)ᵀ. Any corresponding ȳ ∈ R3

such that (x̄, ȳ) is a global minimizer of

RCCLP : min
(x,y)∈R3×R3

x1 s.t. ‖x‖1 ≤ 1, eᵀy ≥ 1,

0 ≤ y ≤ e, xiyi = 0, i = 1, . . . , n,

needs to satisfy ȳ1 = 0, ȳ2, ȳ3 ∈ [0, 1] and ȳ2 + ȳ3 ≥ 1. Since the choices of ȳ2
and ȳ3 are nonunique, (x̄, ȳ) is a nonstrict global minimizer of RCCLP and there-
fore not a sharp global minimizer of RCCLP. More explicitly, for no ȳ ∈ R3 such
that (x̄, ȳ) is a global minimizer of RCCLP there exist a neighbourhood U of
(x̄, ȳ) and some α > 0 such that f (x) ≥ f (x̄) + α‖(x, y) − (x̄, ȳ)‖ holds for all
(x, y) ∈ Z ∩ U.

Moreover, the point (̃x, ỹ) with x̃ = (0, 0, 0)ᵀ and ỹ = (1, 0, 0)ᵀ is feasible for
RCCLP with objective value f (̃x) = 0, and for every feasible point (x, y) from
a sufficiently small neighborhood of (̃x, ỹ) the condition y1 	= 0 enforces x1 = 0
and, therefore f (x) = 0 = f (̃x). Hence (̃x, ỹ) is a localminimizer ofRCCLP, while
it is easily seen that x̃ is not a local minimizer of CCLP.

In Example 5.7, the cardinality constraint ‖x‖0 ≤ 2 is inactive at x̄. As observed
in [22, Proposition 3.5], better results can be formulated for feasible points x ∈
X of CCLP with ‖x‖0 = κ . This is due to the fact that, with S = {i ∈ I| xi 	= 0}
denoting the support of x and Sc = I \ S, for (x, y) ∈ Z the constraints of RCCLP
imply yS = 0, 0 ≤ ySc ≤ e and eᵀySc ≥ n − κ , where the value eᵀySc ranges in the
interval [0, |Sc|] = [0, n − ‖x‖0]. Therefore, in the case ‖x‖0 = κ , the point y is
uniquely determined to y(x) with yS(x) = 0 and ySc(x) = e. On the other hand,
for ‖x‖0 < κ the condition (x, y) ∈ Z possesses more than one solution y.

By [22, Theorem 3.4] for every local minimizer x of CCLP, there exists
some y ∈ Rn such that (x, y) is a local minimizer of RCCLP. In the case
‖x‖0 = κ this means that (x, y(x)) is a local minimizer of RCCLP. Moreover, by
[22, Theorem 3.6] for any local minimizer (x, y) with ‖x‖0 = κ the point x is a
local minimizer ofCCLP. Therefore, a point xwith ‖x‖0 = κ is a local minimizer
of CCLP if and only if (x, y(x)) is a local minimizer of RCCLP. Strengthening the
latter statement to strict local minimizers yields the following result.
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Corollary 5.8: For any problem CCLP the set of strict local minimizers x̄ with
‖x̄‖0 = κ coincides with the set of strong KKT points (x̄, ȳ) of RCCLP with
‖x̄‖0 = κ .

Proof: In view of Theorem 5.6, the set of strongKKTpoints (x̄, ȳ) ofRCCLPwith
‖x̄‖0 = κ coincides with the set of strict local minimizers (x̄, ȳ) of RCCLP with
‖x̄‖0 = κ . Hence, it remains to show the mentioned correspondence between
strict local minimizers of CCLP and RCCLP. The proof of this part uses similar
arguments as the ones presented in [22].

Indeed, let x̄ be a strict local minimizer of CCLP with ‖x̄‖0 = κ . Then there
exists a neighbourhood U of x̄ such that f (x) > f (x̄) holds for all x ∈ U ∩ P
with ‖x‖0 ≤ κ , where we put P = {x ∈ Rn | Ax ≤ α, Bx = β}. As seen above,
the point (x̄, y(x̄)) is feasible forRCCLP.With the neighbourhoodV := {y ∈ Rn |
‖y − y(x̄)‖∞ < 1/2} of y(x̄) all points (x, y) ∈ (U × V) ∩ Z satisfy x ∈ U ∩ P
and yi 	= 0 for all i ∈ Sc. The latter implies xSc = 0 and therefore ‖x‖0 ≤ κ . By
assumption we have f (x) > f (x̄), so that (x̄, y(x̄)) is a strict local minimizer of
RCCLP with ‖x̄‖0 = κ .

On the other hand, let (x̄, ȳ) be a strict local minimizer of RCCLP with ‖x̄‖0 =
κ . This implies ȳ = y(x̄), and there exist neighbourhoods U of x̄ and V of y(x̄)
with f (x) > f (x̄) for all (x, y) ∈ (U × V) ∩ Z. We will show that f (x) > f (x̄)
holds for all x ∈ U ∩ P with ‖x‖0 ≤ κ , which completes the proof. In fact, for
sufficiently small U all x ∈ U fulfill xi 	= 0, i ∈ S. This yields ‖x‖0 = κ for all
x ∈ U with ‖x‖0 ≤ κ , and the supports of x and x̄ need to coincide. As a con-
sequence, also y(x) and y(x̄) coincide, so that all x ∈ U ∩ P with ‖x‖0 ≤ κ fulfill
(x, y(x)) = (x, y(x̄)) ∈ (U × V) ∩ Z, and f (x) > f (x̄) follows. �

We mention that generically the cardinality constraint is active at minimizers
of cardinality-constrained nonlinear optimization problems with twice contin-
uously differentiable defining functions [23, Theorem 4]. While this does not
necessarily imply the same result for CCLPs, it suggests that also the cardinality
assumption of Corollary 5.8 may be satisfied for CCLPs with defining functions
in general position and can, thus, be considered a weak assumption.

6. Final remarks

The nonuniqueness of the minimal point set of RCCLP in Example 5.7 suggests
to study extensions of the present investigation to the concept of weak sharpmin-
ima [24], which takes nonuniqueness into account. A different route to the study
of sharp minimizers of CCLPs via RCCLPs would be the introduction of partial
sharpness for problems which depend on two groups of decision variables, x and
y, where the first order growth condition is only measured with respect to x. We
leave such extensions to future research.
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To see ⊇ in the asserted identity choose any v̄ ∈ {v ∈ Rn | vᵀa < 0∀ a ∈ A \ {0}}. This
implies ϕ(v̄) < 0 and, by the continuity of ϕ, the existence of some neighborhoodU of v̄ with
ϕ(v) ≤ 0 for all v ∈ U. The latter yields U ⊆ A◦ and, thus, v̄ ∈ intA◦.

For the proof of ⊆ , let v̄ 	∈ {v ∈ Rn | vᵀa < 0 ∀ a ∈ A \ {0}}. Then, there exists some ā ∈
A \ {0} with v̄ᵀā ≥ 0. For any t> 0, this implies (v̄ + tā)ᵀā > 0, so that v̄ + tā 	∈ {v ∈ Rn |
vᵀa ≤ 0∀ a ∈ A} = A◦ holds. This rules out v̄ ∈ intA◦. �
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