KIT | KIT-Bibliothek | Impressum | Datenschutz

How Transferable are Attribute Controllers on Pretrained Multilingual Translation Models?

Liu, Danni ORCID iD icon 1; Niehues, Jan ORCID iD icon 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Customizing machine translation models to comply with desired attributes (e.g., formality or grammatical gender) is a well-studied topic. However, most current approaches rely on (semi-)supervised data with attribute annotations. This data scarcity bottlenecks democratizing such customization possibilities to a wider range of languages, particularly lower-resource ones. This gap is out of sync with recent progress in pretrained massively multilingual translation models. In response, we transfer the attribute controlling capabilities to languages without attribute-annotated data with an NLLB-200 model as a foundation. Inspired by techniques from controllable generation, we employ a gradient-based inference-time controller to steer the pretrained model. The controller transfers well to zero-shot conditions, as it is operates on pretrained multilingual representations and is attribute- rather than language-specific. With a comprehensive comparison to finetuning-based control, we demonstrate that, despite finetuning’s clear dominance in supervised settings, the gap to inference-time control closes when moving to zero-shot conditions, especially with new and distant target languages. ... mehr


Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 03.2024
Sprache Englisch
Identifikator ISBN: 979-8-89176-088-2
KITopen-ID: 1000169455
Erschienen in Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics. Vol. 1. Ed.: Y. Graham
Veranstaltung 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2024), St. Julian's, Malta, 17.03.2024 – 22.03.2024
Verlag Association for Computational Linguistics (ACL)
Seiten 334–348
Externe Relationen Abstract/Volltext
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page