Update on the booster design

Acknowledgements:

Thanks to F. Antoniou and T. Tydecks for their input!

4th FCC Week Amsterdam 12 April 2018 Bastian Haerer (CERN) for the FCC-ee lattice design team

What is new since Berlin?

- 1. New parameters for injector chain
- 2. Lattice and optics update
- 3. We converged on 20 GeV injection energy
- 4. Wigglers were installed to mitigate IBS and decrease damping time at injection energy
- 5. Dynamic aperture studies

Parameter overview

6 GeV linac & damping ring at 1.5 GeV

optional **pre-booster synchrotron** 6-20 GeV

100 km top-up booster

20 GeV – 182.5 GeV

Accelerator	FCCe	e-Z	FCC	Cee-W	FCC	Cee-H	FC	Cee-tt
Energy [GeV]	45.6		80		120		182.5	
Type of filling	Full	Top-up	Full	Top-up	Full	Top-up	Full	Top-up
BR # of bunches	166	40	2	000	3	93	,	39
BR cycle time [s]	51.74		14.4		7.53		5.49	
#of BR cycles	10	1	10	1	10	1	20	1
Filling time (both species) [sec]	1034.8	103.5	288	28.8	150.6	15.06	219.9	11.0
Injected bunch population [10 ¹⁰]	3.3	0.16	6.0	0.12	8.0	0.16	16.9	0.34

Layout

Lattice and optics

- 90°/90° optics for H an tt
- $60^{\circ}/60^{\circ}$ optics for W and Z
- Non-interleaved sextupole scheme, 1 family per plane

Long arcs $L_{cell} \approx 54 \text{ m}$ R = 13.15 km FCC-hh disp. suppressor L_{cell} = 56.6 m R = 15.06 km Straight section with RF
L_{cell} = 100 m

Equilibrium emittances

beam energy (in GeV)	emittance booster (in nm rad)	emittance collider (in nm rad)	
182.5 120.0 80.0 45.5	1.30 0.55 0.73 0.24	1.48 0.63 0.84 0.24	90°/90° optics 60°/60° optics

Low synchrotron radiation at 20 GeV beam energy:

$$\rightarrow$$
 ε_{x} = 15 pm rad (90°/90° optics)
 τ_{x} = 10.05 s

Emittance with IBS

Emittances after 0.7 s

Emittance blow-up due to IBS $\varepsilon_x = 722 \text{ pm rad}$ $\approx 48 \times \varepsilon_x \text{ without IBS}$

Wiggler parameters and locations

Wiggler parameters			
B _{pole}	(T)	1.8	
B _{wiggler}	(T)	1.45	
L _{pole}	(cm)	9.5	
g	(cm)	5	
# poles		79	
L	(m)	9.065	
# wigglers		16	
T _X	(s)	0.1	
ε _x (60°/60°)	(pm rad)	235	
ε _x (90°/90°)	(pm rad)	196	

Emittance evolution with wigglers

New damping time: $\tau_x = 104 \text{ ms}$

New eq. emittance: $\varepsilon_x = 196 \text{ pm rad}$

Emittances after 7 damping times:

$$\varepsilon_{\rm x}$$
 = 197 pm rad

≈ 1.003 ×
$$\varepsilon_x$$
 without IBS

$$\varepsilon_{\rm v}$$
 = 1.96 pm rad

≈ 1.000 ×
$$\varepsilon_{\rm v}$$
 without IBS*

* assuming 1 % coupling

Additional synchrotron radiation

E (GeV)	U ₀ (MeV)		U ₀ (MeV) with wiggler	
20.0	1.3	\rightarrow	126.2	\checkmark
45.5	34.7	\rightarrow	681.3	X
182.5	9.057.1	\rightarrow	19981.2	X

- Wigglers need to be ramped down during the acceleration process
- RF voltage was increased to $V_{rf} = 140 \text{ MV}$
- Synchrotron radiation power per wiggler: P_w ≈ 2.1 MW (Z, full filling)

Dynamic aperture studies

The studies include

- radiation damping and quantum excitation
- 100 µm quadrupole misalignments (100 seeds)
- 55 µm resolution

and were performed for 20 GeV beam energy

DA of 60°/60° optics with misalignents

• with $\varepsilon_x = 45$ pm rad and $\beta_x = \beta_y = 100$ m $\rightarrow x_{max} = 16.0$ mm

 \rightarrow y_{max} = 9.7 mm

On-axis on-energy injection foreseen.

Without wigglers

Ideal lattice*
Lattice with misalignments (100 seeds)

* for 1 % coupling

DA of 90°/90° optics with misalignments

• with $\varepsilon_x = 15$ pm rad and $\beta_x = \beta_y = 100$ m

$$\rightarrow$$
 $x_{max} = 8.7 \text{ mm}$

$$\rightarrow$$
 y_{max} = 2.6 mm

On-axis on-energy injection foreseen.

Without wigglers

Ideal lattice*
Lattice with misalignments (100 seeds)

* for 1 % coupling

Momentum aperture

Without wigglers

Energy spread of injected beam:

$$\sigma_{\text{E}}/\text{E} \approx 0.001 \text{ (pre-booster)}$$

 $\approx 0.01 \text{ (linac)}$

DA with wigglers

196 pm rad (with wiggler)

Emittance ε_x = 15 pm rad (no wiggler)

0.4 mm \simeq sawtooth amplitude

Outlook

- Move wigglers to RF sections
- Finalise DA studies with wigglers
- Studies of TMCI due to resistive wall are ongoing (E. Belli)
- Tolerance studies of gradients and fields will allow to determine the minimum injection energy

Thank you for your attention!

