

Constraints on the FCC-ee lattice from the compatibility with the FCC hadron collider

Bastian Haerer (CERN, Geneva; KIT, Karlsruhe), Wolfgang Bartmann, Michael Benedikt, Bernhard Johannes Holzer, John Osborne, Daniel Schulte, Rogelio Tomas, Jorg Wenninger, Frank Zimmermann (CERN, Geneva), Michael James Syphers (MSU, East Lanning, Michigan), Ulrich Wienands (SLAC, Menlo Park, California)

Future Circular Collider Study

HF2014 Workshop, Beijing, China
9-12 October 2014

Constraints on FCC-ee lattice design
Bastian Haerer (bastian.harer@cern.ch)

Future Circular Collider Study

Consists of three sub-studies:

- FCC-hh: 100 TeV proton collider
- FCC-ee: 91-350 GeV lepton collider
- FCC-he: electron-proton option

Each study has its own requirements, but technology for FCC-hh is most challenging!

Constraints on FCC-hh

- Magnet technology $\left(\mathrm{Nb}_{3} \mathrm{Sn}\right)$
- Shape (racetrack vs. circle)
- Geology
- Overlap with LHC (if used as injector)
- Injection, beam dump, experiments

Not covered today:

- Constraints from housing FCC-hh and FCC-ee in the tunnel at the same time
- Constraints from FCC-he

1) Bending radius

Proton beam energy: 50 TeV
Beam rigidity: $\quad B \rho=p / e \approx 1.67 \times 10^{5} \mathrm{Tm}$

$$
\begin{array}{ll}
\mathrm{B}=20 \mathrm{~T}: & \rightarrow \rho=8.5 \mathrm{~km} \\
\mathrm{~B}=16 \mathrm{~T}: & \rightarrow \rho=10.7 \mathrm{~km}
\end{array}
$$

$B=16 \mathrm{~T}$ achievable with Nb_{3} Sn technology!
(FCC-ee: $B=55 \mathrm{mT}$)

2) Circumference

- Approx. 67\% of circumference C are bends:

$$
\begin{array}{ll}
B=20 \mathrm{~T}, \rho=8.5 \mathrm{~km} & \rightarrow \mathrm{C}=80 \mathrm{~km} \\
\mathrm{~B}=16 \mathrm{~T}, \rho=10.7 \mathrm{~km} & \rightarrow \mathrm{C}=100 \mathrm{~km}
\end{array}
$$

- RF frequency should be a multiple of RF frequency of LHC (bunch to bucket transfer)

$$
\begin{aligned}
& \rightarrow C=3 \times 26.7 \mathrm{~km}=80.1 \mathrm{~km} \\
& \rightarrow \mathrm{C}=4 \times 26.7 \mathrm{~km}=106.8 \mathrm{~km}
\end{aligned}
$$

3) Layout objectives

Hadron machine

- Max. momentum limited by

$$
\oint B(s) d s
$$

\rightarrow High fill factor
\rightarrow As few straight sections as possible

Lepton machine

- Limited by synchrotron radiation power

$$
P_{\gamma}=\frac{2}{3} \alpha \hbar c^{2} \frac{\gamma^{4}}{\rho^{2}}
$$

\rightarrow High fill factor
\rightarrow High bending radius
\rightarrow Many straight sections for RF to limit sawtooth effect

FCC-ee: Sawtooth effect

12 RF sections

Energy loss per turn

4 RF sections

$$
x(s)=x_{\beta}+D \frac{\delta p}{p}
$$

(175 GeV beam energy): $\quad \mathrm{U}_{0}=7.7 \mathrm{GeV}(4.3 \%)$
4) Shape

Circular shape (like LHC)

- Preferred for lepton collider

Racetrack (like SSC)

- Most of the infrastructure can be concentrated at two main sites
- Chromaticity correction easier

Courtesy: John Osborne et al.

5) Geology

Boundary Limits:

- East: Pre-Alps
- South: Rhone, Vuache Mountain
- West: Jura
- North: Lake Geneva

Courtesy: John Osborne

Lake Geneva

- The lake gets deeper to the North
- The Molasse rockhead as well

\rightarrow The tunnel level must be deeper in the earth

80 km circle

Courtesy: John Osborne, Yung Loo

100 km circle

Courtesy: John Osborne, Yung Loo

Constraints on FCC-ee lattice design Bastian Haerer (bastian.harer@cern.ch)

Tilting the tunnel

- LEP/LHC: 1.42 \%
\rightarrow Maximize tunnel extend in Molasse, minimize tunnel extend in Limestone and Moraines
\rightarrow Minimize the depth of the access shafts

Courtesy: John Osborne

100 km circle with tilt

Courtesy: John Osborne, Yung Loo

6) Location relative to LHC

FCC and LHC should overlap, if LHC is used as injector
Required distance L for transfer lines depends on:

- Difference in depth d
- Magnet technology
- Beam energy
- Max. slope of tunnel 5\%

Distance for transfer lines

- Required length: $L=500-1500$ m

7) Length of Long Straight Sections

Space for septum, kicker magnet and absorbers for machine protection

Injection: Energy: 3.5 TeV

- 600 m

Beam dump: Energy: 50 TeV

- 800 m-1000 m (?)

Collimation?

8) Experiments

FCC-hh Interaction Region

Interaction region (IR) design for

- Huge Detectors
$\rightarrow L^{*}=46 \mathrm{~m}!!!$
- Length of single IR: $\rightarrow \approx 1100 \mathrm{~m}$
- Small crossing angle: $\rightarrow 11 \mu \mathrm{rad}$
- $\rightarrow \beta^{*}=1.1 \mathrm{~m}$

Court. R. Alemany, B. Holzer

FCC-ee Interaction Region

Local chromaticity correction scheme

- $\beta_{y}{ }^{*}=1 \mathrm{~mm}, L^{*}=2 \mathrm{~m}!!!$
- Large crossing angle
$\rightarrow 30 \mathrm{mrad}, 11 \mathrm{mrad}$
More about IR design:
Roman Martin's presentation
- IR even longer

Current FCC-ee design

Circular shape, 100 km circumference

- 12 straight sections
\rightarrow Length: 1.5 km
- 4 experiments
- Length of arcs: 6.8 km

$$
\rightarrow \rho \approx 10.6 \mathrm{~km}
$$

Details of the FCC-ee lattice were presented yesterday in my other talk

Resume

- Magnet technology sets constraints on bending radius and circumference
- Injection, beam dump, collimation and experiments define length of the straight sections
- Compromise for the layout must be found
- Geology and transfer lines define location of FCC

色筑
Federal Ministry

Thank you for your attention!

Court. J. Wenninger

Unequally distributed RF

Experiments FCC-ee

Completely different IR design:

- Large crossing angle
- $\beta_{y}=1 \mathrm{~mm}, L^{*}=2 \mathrm{~m}$!!!
- Local chromaticity correction scheme
- IR length: even larger

More about IR design: Roman Martin's presentation

Court. R. Martin

FCC-he design parameters

collider parameters	FCC ERL	FCC-ee ring		protons
species	$e^{-}\left(e^{+}\right.$? $)$	$\boldsymbol{e}^{ \pm}$	$e^{ \pm}$	p
beam energy [GeV]	60	60	120	50000
bunches / beam	-	10600	1360	10600
bunch intensity [10^{11}]	0.05	0.94	0.46	1.0
beam current [mA]	25.6	480	30	500
rms bunch length [cm]	0.02	0.15	0.12	8
rms emittance [nm]	0.17	1.9 (x)	0.94 (x)	0.04 [0.02 y]
$\beta_{x, y}{ }^{*}[\mathrm{~mm}]$	94	8, 4	17, 8.5	400 [200 y]
$\sigma_{x, y}{ }^{*}[\mu \mathrm{~m}]$	4.0			equal
beam-b. parameter ξ	($D=2$)	0.13	0.13	0.022 (0.0002)
hourglass reduction	$\begin{gathered} 0.92 \\ \left(H_{D}=1.35\right) \end{gathered}$	~0.21	~0.39	F.Zimmermann ICHEP14, June
CM energy [TeV]	3.5	3.5	4.9	
luminosity [$\left.10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	1.0	6.2	0.7	Preliminary

LHeC: IR layout

Interaction Regions for ep with Synchronous pp Operation

Still work in progress: may not need half quad if $L^{*}(e)<L^{*}(p)$

Courtesy Max Klein

- A similar interaction scheme needs to be designed for FCC-he

