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Zusammenfassung

NachhaltigeEnergie ist eines derwichtigstenSysteme in dermodernenGesellschaft.
Um das Ziel einer nachhaltigen Energieversorgung zu erreichen, hat Äthiopien in
den letzten Jahrzehnten erhebliche Investitionen in erneuerbare Energieressourcen
getätigt, was zu einem erheblichen Anstieg der Stromerzeugung geführt hat. Die
wachsende Nachfrage nach Strom und die ungleiche räumliche Verteilung von
Erzeugungs- und Verbrauchszentren haben jedoch zu Überlastungen des Strom-
netzes und häufigen Stromausfällen geführt. Diese lokalen Ausfälle können zu
weitreichenden Stromausfällen im ganzen Land eskalieren. Lösungen hierfür
können die Modernisierung und der Bau neuer Leitungen sein, die erhebliche
Investitionen erfordern und für eine sich entwickelnde Wirtschaft zusätzlich zu
den laufenden großen Erzeugungsprojekten eine Herausforderung darstellen. Ein
alternativer Ansatz besteht darin, die Nutzung bestehender Übertragungsleitungen
und Infrastrukturen durch den Einsatz von Echtzeit-Überwachungssystemen zu
optimieren. In dieser Dissertation wird eine Echtzeit-Überwachung der Strom-
tragfähigkeit (oder Strombelastbarkeit) vorgestellt, die als Dynamic Line Rating
(DLR) bezeichnet wird. DLR beinhaltet die kontinuierliche Überwachung von
Freileitungen unter Berücksichtigung der umgebenden Wetterbedingungen. Bei
dieser Methode werden die meteorologischen Vorhersagen an die lokalen Wet-
terbedingungen entlang der Freileitung angepasst. Außerdem kann die Platzierung
der Wetterstationen optimiert werden, um Bereiche oder Stellen zu überwachen,
an denen die Freileitung ihre höchsten Temperaturen erreichen könnte. Das DLR-
System bietet den Vorteil, die Strombelastbarkeit in Notfällen oder bei plötzlichen
Lastschwankungen zu erhöhen und damit die Sicherheit des Stromnetzes (z. B.
bei Stromausfällen) zu verbessern.
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Zusammenfassung

Das DLR nutzt ein maschinelles Lernmodell, um die Übertragungsnetzbe-
treiber (ÜNB) beim Engpass- und Überlastmanagement in Verbindung mit
der Überwachung von Netzfrequenzabweichungen zum Ausgleich von Ange-
bot und Nachfrage zu unterstützen. Dies trägt erheblich zur Verbesserung
des Netzbetriebs, der Netzsteuerung und der Netzplanung bei. Die Analyse
von Mechanismen zur Risikovermeidung bei der Ampazitätsvorhersage ist für
Netzbetreiber jedoch von entscheidender Bedeutung. Die meisten bestehen-
den DLR-Ampazitätsvorhersagetechniken basierten auf einem deterministischen
Vorhersagemechanismus, der fehleranfällig ist. In dieser Dissertation wird die
probabilistische DLR-Prognose (Quantile regression forest, QRF) für die OHTL-
Ampazitätsprognose verwendet. QRF ist gut geeignet für kurzfristigeVorhersagen
wie Minuten bis Stunden bei der Stauüberwachung. Die vorgestellten Rahmenbe-
dingungen für die Bestimmung der DLR auf der Grundlage probabilistischer
Prognosen zeigen, dass niedrige Quantile das Risiko für die Entscheidungsträger
reduzieren, Überschätzungen vermeiden und Verluste im Vergleich zur determin-
istischen DLR-Prognose minimieren können.

Die Aufrechterhaltung des Frequenzgleichgewichts ist von entscheidender Be-
deutung für eine effektive Überwachung von Leitungsüberlastungen und die
Gewährleistung der Sicherheit des Stromnetzes (d. h. die Vermeidung von
Stromausfällen). Die Kombination der DLR-Überwachung mit der Vorhersage
von Frequenzabweichungen kann Stromunterbrechungen durch die Aufrechter-
haltung einer konstanten Stromnachfrage-Stromversorgungskette reduzieren. Ab-
weichungen von der Referenzfrequenz von 50 Hz (wie in Äthiopien) entstehen
durch Ungleichgewichte zwischen Stromangebot und -nachfrage aufgrund von
Lastschwankungen. Dies erfordert ein leistungsfähiges Echtzeit-Überwachungs-
system für denAusgleich vonAngebot undNachfrage zusätzlich zurÜberwachung
von Überlastungen in den Übertragungsleitungen. Im äthiopischen Netz wird die
Stromerzeugung in der Regel lastabhängig geplant. Bei starken Lastschwankun-
gen und Unwägbarkeiten muss schnell reagiert werden, und es sind rasche Anpas-
sungen erforderlich, ummögliche Stromausfälle und kaskadenartige Blackouts zu
verhindern. Um die Frequenzstabilität in einem derart komplexen und unsicheren
Umfeld zu gewährleisten, überwachen die ÜNB das System intensiv und setzen
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Zusammenfassung

teure Regelreserven ein. Ein besseres Verständnis der Frequenzdynamik, der
Leitungsüberlastung und ihrer Wechselwirkung mit dem Ungleichgewicht zwis-
chen Stromnachfrage und -angebot könnte die Kontrollbemühungen erheblich
erleichtern und zur Stabilität des Stromsystems beitragen.

In dieserDissertationwird ein kosteneffizientes drahtloses Sensornetzwerk vorges-
tellt, das sich für den Einsatz in Äthiopien und anderen Entwicklungsländern
eignet. Die Studie konzentriert sich auf die Schaffung energieeffizienter draht-
loser Maschennetzwerke unter Verwendung der LoRa-Modulationstechnologie
(mit großer Reichweite) von Semtech. Das Netzwerk ist für die Überwachung
von Stromnetzinfrastrukturen gedacht, die sich über Dutzende bis Hunderte von
Kilometern erstrecken. Das Hauptziel ist es, Daten aus den Netzen zu sam-
meln, um ein für DLR-Zwecke implementiertes Machine-Learning-Modell zu
unterstützen. Die Leistung des vorgeschlagenen Protokolls wird zunächst durch
Simulation und dann mit einem Demonstrationsnetz auf dem Universitätsgelände
analysiert. Die Ergebnisse zeigen, dass das vorgeschlagene Netzwerk eine ausre-
ichend hohe Paketübertragungsrate erreicht, um die Überwachung von statischen
Infrastrukturen über geografische Gebiete hinweg zu ermöglichen.

Schließlich wurde ein webbasiertes Tool zur Visualisierung von Echtzeit- Erzeu-
gungsdaten, Übertragungsnetz- und Lastdaten, Wetterdaten und der voraus-
sichtlichen Kapazität der Übertragungsleitungen entwickelt, sobald das System
in Betrieb ist (d. h. sobald es installiert ist und läuft). Dieses Tool führt auch
Leistungsfluss- und Transientenanalysen durch, um zu beurteilen, ob vorüberge-
hende Engpässe bewältigt werden können, ohne dass die maximalen Leitertem-
peraturen überschritten werden. Es schlägt eine Lösung zur Unterstützung eines
flexiblen Stromnetzes für einen Kurzzeitplan vor, der eine entscheidende Kom-
ponente für die optimale Nutzung der bestehenden Infrastruktur und einen erfol-
greichen Energiewendeplan darstellt.

iii





Abstract

Sustainable energy is one of the most important systems in modern society.
To achieve the sustainable energy provision goal, Ethiopia has made significant
investments in renewable energy resources in the last decades, resulting in a
substantial increase in power generation. However, the growing demand for
power consumption and uneven spatial distribution of generation and consumption
centers have caused electrical network overloads and frequent power outages.
These local outages can potentially escalate into widespread blackouts across the
country. Solutions for this may be upgrading and construction of new lines, which
require substantial investments, and are challenging for a developing economy in
addition to ongoing big generation projects. An alternative approach involves
optimizing the use of existing transmission lines and infrastructure through the
implementation of real-time monitoring systems. This dissertation introduces a
real-time current carrying capacity (or ampacity) monitoring known as dynamic
line rating (DLR). DLR involves continuously monitoring overhead transmission
lines (OHTLs) by taking into account surrounding weather conditions. The
method involves adjustingmeteorological forecasts to the local weather conditions
along the transmission line. Furthermore, weather station placement can be
optimized to monitor areas or spots where the transmission line might reach its
highest temperatures. The DLR system offers the benefit of increasing ampacity
during emergencies or sudden load fluctuations, thus improving power system
security (i.e., blackouts).

DLR utilizes a machine learning model to assist transmission system operators
(TSOs) in congestion and overload management in coupling with grid frequency
deviation monitoring for supply and demand balancing. This contributes signif-
icant improvement to grid operation, control, and planning. However, analyzing
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risk avoidance mechanisms in ampacity prediction is essential for grid operators.
Most existing DLR ampacity forecasting techniques were based on a deterministic
forecasting mechanism, which is prone to errors. In this dissertation, Quantile
regression forest (QRF) probabilistic DLR forecasting is used for OHTL ampac-
ity forecasting. QRF is well-suited for short-term predictions like minutes to
hours in congestion monitoring. The presented frameworks for determining DLR
based on probabilistic forecasts demonstrate that low quantiles can reduce the risk
for decision-makers, avoiding overestimation and minimizing losses compared to
deterministic DLR forecasting.

Maintaining frequency balance is crucial for effective line congestion monitoring
and ensuring power system security (i.e., avoiding blackouts). Combining DLR
monitoring with frequency deviation prediction can reduce power interruption by
maintaining a constant demand-supply power chain. Deviations from the refer-
ence frequency of 50Hz (case in Ethiopia), result from imbalances in power supply
and demand due to fluctuations in load patterns. This needs a strong real-time
monitoring system for demand-supply balancing in addition to transmission line
congestion monitoring. In the Ethiopian grid system, the generation scheduling
response is usually load following. During high load variation and contingencies,
it needs a fast response and requires rapid adjustments to prevent potential power
outages and cascading blackouts. To guarantee frequency stability in such a com-
plex and uncertain environment, TSOs intensively monitor the system and allocate
expensive control reserves. An improved understanding of the frequency dynam-
ics, line congestion, and its interaction with power demand-supply imbalance
could greatly facilitate control efforts and contribute to power system stability.

This dissertation presented a cost-effective wireless sensor network design suit-
able for implementation in Ethiopia and other developing nations. The study
focuses on creating energy-efficient wireless mesh networks (LPWMNs) utilizing
Semtech’s LoRa (long-range) modulation technology. The network is intended
for monitoring power grid infrastructures that span tens to hundreds of kilometers.
The key objective is to gather data from the grids to support a machine-learning
model implemented for DLR purposes. The performance of the proposed proto-
col is analyzed first by simulation and then with a demonstrator network on the

vi



Abstract

university campus. The findings indicated that the proposed network achieves a
sufficiently high packet delivery ratio (PDR) to enable the monitoring of static
infrastructures extended over geographical areas.

Lastly, a web-based tool was created to visualize real-time generation data, trans-
mission grid and load data, weather data, and transmission lines predicted capacity
once the system is operational (i.e., once installed and running). This tool also
conducts power flow and transient analyses to assess whether temporary conges-
tion can be managed without exceeding maximum conductor temperatures. It
proposes a solution to support a flexible electrical grid for a short-duration plan,
which is a crucial component for the optimal utilization of existing infrastructure
and a successful energy transition plan.
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1 Introduction

1.1 Background

Ethiopia has undergone a significant transformation in its power generation and
infrastructure development, with substantial investments in renewable energy
leading to a major increase in power generation over the past two decades. The
Government’s commitment and substantial budget allocations for infrastructure
development [1] have led to a remarkable surge in energy production, with ongo-
ing several projects, particularly from wind, solar, hydro, and geothermal sources.
This push aligns with the country’s efforts to address the mounting energy re-
quirements due to population growth, economic activities, and urbanization [2,3].
Looking ahead, the socio-economic context and population increase imply a
continuous rise in electricity demand. Consequently, assessing the current in-
terconnected transmission system’s effectiveness becomes crucial, and strategic
expansion plans are necessary to cater to the country’s future energy needs.

However, the transmission grid expansion has not kept pace with significant
changes in power generation. The power transmission grid is crucial for integrating
renewable energy sources, transporting electricity to high power consumption ar-
eas, facilitating long-distance interconnection, and cross-border energy exchange,
thus ensuring power system security (i.e., avoiding blackouts). As a result, there
is a growing consensus that the grid will need reinforcement and partial redesign
in the coming years.
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1.2 Motivation

Despite improvements in power generation, the country still faces frequent power
outages due to ever-growing load demand, transmission line trips, and distribution
network failures. These outages present significant challenges for the manufac-
turing sectors, leading to high operation costs, reduced productivity, and heavy
reliance on imported goods [4,5]. To cope with the unreliable power supply, many
manufacturers continue to depend on backup generators, further impacting their
profitability.

With the current electricity generation capacity, it is sufficient for grid-connected
load needs. However, the primary cause of persistent power outages is the inad-
equacy of the transmission and distribution networks at high-power consumption
centers. This is especially evident during peak demand hours when the existing
infrastructure struggles to handle the growing electricity consumption demand.
As a result, transmission line trips and transformer overloading failures take place,
resulting in local power outages that are prone to power total blackouts. To re-
solve this problem, there’s a need for real-time monitoring of supply-demand
power mismatch, and transmission line congestion monitoring. However, the
current Ethiopian grid lacks effective mechanisms to tackle these problems.

Recently, Artificial intelligence-based solutions have been introduced in many
areas of applications, including the energy sector. Artificial intelligence-assisted
real-time management of active power balancing can offer new opportunities with
respect to power system operation and control. While the grid frequency is sup-
posed to be a fixed value, for example, 50 Hz in Ethiopia, however, perturbations
always exist due to the aforementioned reasons, and the dynamic stability should
be maintained. The instability of grid frequency can lead to a higher cost of
operation and energy consumption, which means a higher loss for the electric
utility.

Monitoring the grid frequency can serve as an indicator of active power balance,
and this dissertation introduces a method for predicting frequency perturbations
or deviations in the next few minutes to anticipate power imbalances before

2



1.2 Motivation

outages occur. As demand for electricity continues to grow steadily and generation
patterns fluctuate in response to load changes, the need for vigilant real-time
monitoring and proactive active power balancing becomes essential to ensure a
stable power supply. This can be achieved by continuously tracking power balance
discrepancies and alerting decision-makers to potential issues before they happen,
to ensure a dependable power supply and minimize frequency deviations from the
nominal setting range.

On another hand, the government of Ethiopia is working extremely on generating
renewable energy sources from various sources such as wind, solar, hydro, and
geothermal sources to supply the growing demand. This has a burden on the
existing grid infrastructure by creating congestion on transmission lines, pushing
it closer to its thermal stability limits [6, 7]. In this case, the active power con-
trol method or frequency deviation prediction alone cannot solve the congestion
problem and expansion measures are essential to achieve economic and demand
growth targets. This is particularly important, for thermally limited transmis-
sion and distribution networks at high-load centers. However, in Ethiopia, it has
been observed that the expansion of transmission lines and distribution network
capacity has not kept phase in line with power generation efforts.

The reinforcement or expansion of electricity infrastructure is undoubtedly a
capital-intensive project and requires the government of Ethiopia (GoE) to prior-
itize investment options, as a result, the government focuses more on generation
buildup, construction of long-distance high power transmission lines for electric-
ity export to neighboring countries, and access rate expansion. On top of that, the
distances between the generation and the main consumption points are far apart,
and the construction of new transmission lines is necessary to transport electricity
to load centers. This requires significant investments in the transmission network
to ensure a reliable and efficient power supply to high-load centers. Therefore, the
performance of the existing transmission system facilities must be investigated,
and appropriate expansion planning may be carried out to supply the growing
demand of the country.
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This dissertation proposes an alternative grid optimization solution through the
implementation of Overhead Line Monitoring Systems before reinforcement and
expansion planning, which enable the determination of the conductor’s maximum
current carrying capacity, also known as ampacity. This approach allows for
real-time monitoring of overhead transmission lines also called Dynamic Line
Rating (DLR). DLR serves as a cost-effective and short-term investment solution
to prioritize investment options for the government at the same time provide
real-time transmission line congestion and ampacity monitoring.

In order to take advantage and the functionalities of DLR, we need new algo-
rithms and methods that will be integrated them into the planning and operation
of the power system. DLR integration into existing infrastructure enables the
efficient exploitation of overhead transmission lines (OHTL). The current carry-
ing capacity of OHTL varies dynamically based on external parameters such as
weather conditions and loading history [8]. In contrast, the design time rating
method uses static line rating (SLR) based on worst-case weather conditions such
as high ambient temperature, total solar radiation, and low wind speed. The use
of SLR often underestimates the actual current-carrying capability of overhead
conductors. Therefore, fast assessment of OHTL overloading has significant im-
provement in real-time operation, congestionmonitoring, and dispatchmonitoring
measures [9–11]. It is essential to couple DLR congestion monitoring with grid
frequency deviation predictions and existing centralized active power balancing
tasks in Ethiopia’s grid system.

The majority of DLR systems currently on the market offer real-time estimations
of current carrying capacities. However, the decision-making process heavily
relies on single-point forecasts for real-time monitoring. This dissertation pro-
poses a solution to address the limitations of existing approaches, presenting
a probabilistic current-carrying forecasting tool for transmission line operators’
reluctance toward the use of DLR in their systems.
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1.3 Research objectives

The close connection between economic growth and energy consumption under-
scores the need for expanding infrastructure and investing in power transmission
networks. To ensure the smooth transmission of electricity from new hydropower
plants to areas with high demand and consumption, it is essential to invest in
constructing new power lines, enhancing existing transmission and distribution
grids, and modernizing networks, especially in major consumption hubs. While
the construction of new transmission lines demands substantial financial commit-
ment from the Ethiopian government, there is an opportunity to leverage dynamic
line rating, particularly for transmission and distribution grids at high-load centers.
This approach involves real-time monitoring to make use of existing infrastruc-
ture, which often provesmore cost-effective than other options. This dissertation’s
primary goal is to explore and suggest alternate strategies for optimizing the grid,
including techniques like active power balancing andDynamic LineRating (DLR).
These measures aim to alleviate congestion problems and reduce power blackout
problems within the Ethiopian grid. Furthermore, the research aims to examine
the economic impact of power outages on individual households and industrial
firms in Ethiopia.

Research Objective 1 To analyze the cost of power outages. (Chapter 4)

The World Bank Enterprise Survey data [12] has been utilized to analyze the
economic consequences of power outages on households and industrial firms in
Ethiopia. By examining the effects of power interruptions on individual house-
holds and industrial entities, it becomes evident that these outages can lead to
substantial financial, environmental, and health-related losses. Their impact ex-
tends acrossmultiple sectors, impeding economic activities and everyday routines.
Therefore, it is crucial to evaluate the expenses associated with power outages in
order to identify opportunities for enhancement and potential investment avenues.

Research Objective 2 To develop machine learning models that improve fre-
quency deviation prediction to monitor active power balancing. (Chapter 6)
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In order to accomplish this goal, it is necessary to develop a system that can
effectively forecast frequency deviation. To address the research question posed
in this dissertation, an investigation was conducted to evaluate various machine
learning algorithms and their input features. As part of this exploration, the
dataset was transformed into an embedding matrix reconstruction and a distinct
analysis was conducted (see Section 5.3.5).

Research Objective 3 To exploit the capacity of existing overhead transmission
lines and reduce the risk of overload/congestion in the Ethiopian power grid.
(Chapter 8)

The dissertation aimed to address its research objective by conducting an explo-
ration of the quantile regression forest machine learning algorithm and its input
feature set (Section 5.4.4). The dataset was divided into two parts: weather ob-
servations and predictions. Subsequently, prediction analysis was performed to
gain insights from the data (Section 8.3.2).

DLR can be utilized for the efficient exploitation of overhead transmission lines
to integrate more RES into existing infrastructure. However, this action itself may
create additional planning and operational challenges, it may create overloading
and line congestion due to overestimation problems with the point forecast. To
avoid the risk of overestimation, quantiles were employed for DLR forecasting
(Chapter 8). A probabilistic DLR scheme to avoid risks arising from weather
prediction errors and TSO reluctance toward DLR acceptance.

The resulting system relies on comprehensive data collection [13]. Installing
sensors at each electrical tower is ideal, but this option is costly for Ethiopia’s
economy. Hence, the fourth research objective focuses on exploring the im-
plementation of low-cost wireless sensors for data collection, ensuring a simple
deployment process that aligns with the country’s economic requirements.

Research Objective 4 To implement a wireless sensor network for overhead
transmission line data collection, while maintaining low-cost investment options.
(Chapter 10)
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In this dissertation work, a LoRa wireless mesh network (WMN) is proposed
for wireless sensors that collect data and communicate with monitoring stations.
LoRa WMN requires minimal additional investment for grid operators relative to
legacy communication infrastructures. Then ML algorithm translates collected
sensor data into the current carrying of OHTL and transformers. This offers po-
tential benefits such as increased capacity utilization, improved safety, minimized
investments, and enhanced operational efficiency.

1.4 Dissertation structure organization

This dissertation is structured around its contribution and organized as follows.

Chapter 1 lays the foundations by providing context and a comprehensive under-
standing of the solution development process. In Chapter 2, the current state of the
Ethiopian power sector, energy transition plan, and problems with existing energy
infrastructures are presented to establish a basis for understanding the Ethiopian
energy landscape. Chapter 3 focuses on defining the electrical power system,
describing its traditional structure, discussing the challenges posed by frequency
perturbations and dynamics due to the increasing integration of renewable energy
sources, exploring the mechanism of blackout occurrence, and presenting state-
of-the-art transmission line expansion strategies to reduce blackout (security)
risk.

Chapter 4 explores the economic costs of power outages for individual households
and industrial firms in Ethiopia. In Chapter 5, the machine learning algorithms
utilized in this dissertation are explained in detail. Chapter 6 presents the frame-
work of frequency deviation prediction, highlighting its relevance for enabling
system operators to take proactive measures in response to contingencies. The
study is based on measurement data of the Ethiopian electric grid network.

Chapter 7 provides a general overview of weather-dependent overhead line opera-
tion, including the fundamental equations for calculating current-carrying capacity
based on weather conditions and an analysis of the current state-of-the-art in this
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field. Chapter 8 focuses on probabilistic dynamic line ratings as a means of
reducing the risk associated with overestimation errors. The chapter details the
development process of current-carrying capacity forecasting models, including
a case study and evaluation of machine learning model performance. The study
specifically focuses on overhead transmission lines in the Ethiopian electric grid
and emphasizes the positioning of weather stations along the lines.

Chapter 9 highlights the importance ofwireless sensor networkmonitoring for grid
management in real time. It reviews existing legacy wireless network varieties and
low-power wireless technologies, ultimately presenting the LoRa and LoRaWAN
systems. Chapter 10 presented the design architecture and requirements of a LoRa
wireless mesh network (WMN) and presented the results of simulation and field
test results. The chapter also addressed sensor data logging tool. Chapter 11
addressed the integration and positioning of sensor locations along overhead lines
and a web-based data grid monitoring and visualization tool.

Lastly, Chapter 12 provides a final summary and a discussion of the dissertation’s
achievements. It also outlines the next steps required to ensure ongoing growth
and support for the energy transition plan in the coming years.
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2 Developing Countries Grid
Infrastructure - The Case of
Ethiopia

This chapter aims to provide a comprehensive overview of electricity access, grid
infrastructures, the challenges and opportunities associatedwith grid development
in the context of developing nations, mainly focusing on the Ethiopian case. Also,
it examines the current grid infrastructure of Ethiopia to create a foundation for
subsequent chapters. a compressive

2.1 Access to electricity and grid
infrastructure in developing countries

The United Nations established the 17 Sustainable Development Goals (SDGs) to
provide a global framework for guiding actions from 2015 to 2030 [14]. Among
these goals, SDG 7 emphasizes the importance of "Ensuring access to affordable,
reliable, sustainable and modern energy for all". The key aspects of sustainability,
security, and affordability in energy supply are expected to play a pivotal role in
the future development of the power sector. Energy infrastructure is a critical
concern for achieving Sustainable Development Goals. Yet, the current global
energy infrastructure is significantly unequal, leading to varying levels of access
and affordability among nations (Figure 2.1).

Access to energy is fundamental for global development. It serves as the corner-
stone for economic progress and is a critical concern for all nations. However, the

9



2 Developing Countries Grid Infrastructure - The Case of Ethiopia

Figure 2.1: Significant contrast in electricity accessibility between high-income nations and low-
income nations (Data Source: World Bank).

availability of energy resources significantly varies among countries, with approx-
imately two billion people worldwide lacking access to modern energy sources.
For those reliant on traditional resources like fuel wood and animal dung, devel-
opment remains stagnant. Notably, no nation has managed to effectively alleviate
poverty without a substantial increase in energy usage, enabling the transition
from manual labor to more efficient energy sources.

Energy consumption in developing nations especially Sub-Saharan African coun-
tries is highly linked to various social challenges, including poverty reduction,
education, healthcare, population growth, employment, communication, urban-
ization, and gender equality. For instance, using poorly ventilated stoves adversely
affects health, while millions spend extensive time gathering firewood and water
daily. The absence of electricity leads to inadequate lighting, limited communica-
tion, and a lack of access to essential devices and income opportunities. In some
cases, mostly in sub-Saharan African countries, urban areas may have a relatively
stable power supply, while rural areas might face frequent power outages or have
limited access to the grid.
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Expanding renewable energies offers a crucial opportunity to address both de-
velopmental and social challenges simultaneously due to the increased flexibility
and grid responsiveness. In recent years, there has been a significant development
of alternative energy technologies, both in terms of performance and cost reduc-
tion [15]. Some developing countries are exploring renewable grid generation
technologies to improve the efficiency, reliability, and sustainability of their elec-
tricity grids. Modernizing grid infrastructure improves energy efficiency, better
demand management, reduces losses in transmission and distribution, and en-
hances the integration of renewable energy sources. These benefits align with the
sustainable development objectives of many developing nations.

However, the development of on-grid renewable energy resources demands grid
infrastructure expansion. Many sub-Saharan African countries face challenges
in expanding and maintaining their existing electricity grids due to factors such
as insufficient financial resources, technical constraints, rapid population growth,
and rapid urbanization.

Therefore, to tackle financial constraints in the development of renewable ener-
gies and smart grid initiatives, effective utilization of the existing grid structure
measures before reinforcement has a significant advantage. Effective utilization
of existing grid infrastructure is the main core of this dissertation focusing on
Ethiopian grid infrastructures. It explores digital communication technologies to
enhance grid efficiency, reliability, and resilience, addressing some of the chal-
lenges faced by traditional grids.

2.2 The Current and future states of Ethiopia’s
energy sector

Ethiopia is a large country in the Horn of Africa (see Figure 2.2 [16]), occupying
a high plateau characterized by mountain ranges that are separated by the East
African rift valley. The country’s diverse topography leads to significant variations
in climate ranging fromdesert regions to tropical forests andmoderate-temperature
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zones, soil types, natural vegetation, and the distribution of settlements. Ethiopia,
the second most populous country in Africa, has a multi-ethnic population of
approximately 120.3 million people, the majority, about 77% in 2022 [17], reside
in rural areas. Projections estimate that the population will reach 130 million
by 2030. Despite the predominantly rural population, there is a noticeable trend
of urbanization [18], with an annual growth rate of 4.79% [17] and is expected
to rise rapidly [19]. Urban areas, particularly the capital city of Addis Ababa
and the surrounding areas of Oromia state, are growing more due to economic
growth [2,3,18]. Urbanization is associated with higher energy consumption and
can be an indicator of energy inefficiency [20].

Figure 2.2: Geographical location of Ethiopia and study area [16].

Ethiopia has experienced an average annual economic growth of 10.6% for ten
consecutive years from 2005/06 to 2015/16, almost double compared to the re-
gional average growth of 5.4% [21]. There are changes in lifestyles and industries,
such as increased urbanization and industrialization [22]. As of 2022, Ethiopia’s
gross domestic product (GDP) amounted to $111.27 billion [17]. Figure 2.3 de-
picts the evolution of Ethiopia’s GDP in recent years [23]. From 2009 to 2011,
the growth was stagnant due to a decline in the international balance of payments.
However, it rebounded, and in 2012, the growth rate reached approximately 36%.
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Subsequently, the GDP continued to rise, with growth rates ranging from approx-
imately 10% to 17%. However, there was a slight slowdown in growth from 2020
to 2022 attributed to the impact of the COVID-19 pandemic and a civil war. As a
result, GDP growth fell to 6.1% in 2022 but remained above East Africa’s average
(4.4% in 2022). Inflation rose to 34% in 2022 from 26.6% in 2021. Both growth
and inflation were adversely impacted by internal conflict, drought, and the effects
of Russia’s invasion of Ukraine on commodity prices [24].

Figure 2.3: Trends of Ethiopia’s GDP growth from 1988 to 2028: Source, IMF 2023 [23].

Ethiopia is rich in natural resources, including abundant sunlight, water, and
wind, which present a potential for renewable energy generation sources. There
is significant untapped potential from hydropower and wind power generation.
The estimated hydropower potential is around 45 GW, but currently, only 5%
of this potential is being exploited. Similarly, the estimated wind potential is
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1,350 GW, but the actual utilization is much lower, with less than 1% being
harnessed. Additionally, Ethiopia possesses some reserves of natural gas, coal,
and biomass [25].

In Ethiopia, energy is primarily sourced from three main categories: biomass,
petroleum, and electricity. Among these, only petroleum products are imported.
In 2018, the energy supply breakdown showed that biomass contributed 87% of
the total, petroleum products made up 10%, coal 1%, and electricity accounted
for 2% of the supply (see Figure 2.4 (a)). The sectors consuming the most energy
were households, accounting for 88%, and transportation, responsible for 9% of
the total energy consumption. The industry and construction sectors combined
consumed 2%, followed by the commercial sector with 1% (see Figure 2.4 (b)).

Figure 2.4: Energy supply and consumption in Ethiopia by type and sector: (a) Energy supply by
type in 2018. (b) Energy consumption by sector in 2018 [26].

The majority of the population in rural areas heavily depends on traditional
biomass energy for cooking and heating. Urban areas have almost achieved uni-
versal access to electricity, with 96% of the population having access, compared to
only 27% in rural regions. The total electricity access rate stands at approximately
47%, with a per capita consumption of 143 kWh [27]. Ethiopia’s electricity de-
mand is rising due to factors such as population growth, urbanization, energy
export plans, and improving living standards. This increasing demand, coupled
with the power system’s poor performance, has led to electricity supply insecu-
rity. This low level of electricity consumption in Ethiopia indicates the need for
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further development and expansion of energy infrastructure to meet the increasing
demands of the population.

In the past decade, Ethiopia’s electricity sector has also experienced significant
progress. From 2005 to 2022, the coverage of electricity services expanded from
648 towns and rural villages to 7,959, and the number of electricity customers rose
from 800,000 to over 4.3 million [28]. Ethiopia’s electricity access for 2020 was
51.09%, a 3.03% increase from 2019 [29], with per capita electricity consumption
of 118 kWh, where the average for Africa is at 500 kWh and for Germany is 3,113
kWh [30]. The electricity demand is expected to grow at a rate of 13.7% annually,
reaching 62,000 GWh by 2030 compared to 13,800 GWh in 2021 [24]. To meet
this increasing demand, Ethiopia has plans to enhance its generation capacity to
17.1 GW by 2030 [31]. The rapid growth in the electricity sector has presented
significant challenges for the Ethiopian utilities1, the utility responsible for power
generation and transmission. These constraints can be attributed to several factors:

• The expansion of transmission and distribution infrastructure has not kept
up with the increasing demand and generation capacity, even though the
government has invested heavily in the construction of new power genera-
tion.

• Efforts to increase connectivity and access to electricity services have been
inadequate.

• The implementation demands of numerous large-scale projects and opera-
tional challenges have strained the resources and capabilities of utilities.

1 In Ethiopia, the electric power utility is solely governed by two state-owned electricity enterprises:
(1) the Ethiopian Electric Power Company (EEP), responsible for building generation plants,
power transmission and substation, wholesale of electricity, compliance research, design, and
survey work; and (2) the Ethiopian Electric Utility (EEU), responsible for power distribution,
sales and implementation of the Universal Electricity Access Program (UEAP). In addition, the
GoE established a federal electricity sector regulator, the Ethiopian Energy Authority (EEA) [31].
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• The low electricity tariff, despite recent revisions, poses a significant con-
straint to scaling up electricity access. The flat tariff rate, currently at 2.1240
ETB (or US$0.039/kWh), is one of the lowest in the world [28].

Addressing these challenges often requires a multi-faceted approach that involves
policy reforms, investment in infrastructure, improvements in regulatory frame-
works, and efforts to diversify and modernize the energy mix. The detailed
electricity development plan of the government of Ethiopia was discussed in Sec-
tion 2.5. Sustainable and reliable electricity is crucial for economic development,
and overcoming these obstacles can significantly benefit businesses and the overall
development of a country.

2.3 Transmission and substation network

Ethiopia’s electricity generation is predominantly green electricity, with 90.70%
of its installed generation capacity being from hydropower, 6.61% from wind,
2.03% from diesel, 0.15% from biomass and 0.51% from geothermal sources [31].
Figure 2.5 illustrates installed energy share by sources. Geothermal, wind energy,
and hydropower are predicted to become increasingly important components of
the country’s energy mix in the near future [22].

The country has made substantial investments, resulting in a current power pro-
duction capacity of over 5,330 MW. This capacity is expected to exceed 10,000
MW once the Grand Ethiopian Renaissance Dam (GERD)2 is completed.

Ethiopian Electric Power (EEP) currently manages an interconnected system con-
sisting of hydroelectric, wind, geothermal, and solid waste power plants [31].
The main high voltage levels of the power transmission lines in the EEP grid are
500 KV, 400 KV, 230 KV, and 132 KV. Among them, the 400 KV and 230 KV

2 The Grand Ethiopian Renaissance Dam (GERD), formerly known as the Millennium Dam, is a
5.15GW hydropower dam that Ethiopia is constructing on the Abbay/Blue Nile River. Ethiopia
generates 86% of the Nile flow, with a total average annual flow of 77 billion cubic meters.
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Figure 2.5: Ethiopia’s current share of installed capacity by sources (%).

transmission lines are the most important for the power flows and interconnecting
seven regional power systems. The transmission network is extended to Djibouti
on the East and the Republic of Sudan to the North West [31].

A geographic interconnected diagram of the high voltage network of the Ethiopian
power grid is shown in Figure 2.6, consisting of 19 sets of 400KV and 34 sets
of 230KV transformers, 19 transmission lines with 400KV and 47 with 230KV.
These power systems are dynamic, with network topology frequently changing
with load demand. The National Load Dispatch Center (NLDC) has the jurisdic-
tion to control the high voltage substations, transmission lines, and power plants.
Currently, the total installed generation capacity is over 5,330 MW, and the peak
load is now up to 4324.3 MW [32], which is slightly equivalent to electricity
consumption by the German Baden-Württemberg state.

Recently, the power infrastructure in Ethiopia has been facing significant chal-
lenges due to its scattered nature and the growing demand for electricity in both
domestic and industrial sectors. These challenges have made the system highly
susceptible to even minor disruptions, resulting in frequent power outages and
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Figure 2.6: Geographical interconnection diagram of the dual voltage of Ethiopia power grid [33].

sometimes partial or complete blackouts. These effects have severe societal and
economic consequences, threatening the nation’s industrial and socioeconomic
development and hindering the achievement of short and long-term development
plans. The transmission and distribution networks are troubled by issues such
as aging infrastructure, insufficient maintenance, and inadequate investment for
the construction of new lines. As a result, the quality of the power supply is
compromised, leading to an average of 42 local power outages per month for
typical businesses, primarily caused by cable disconnections and circuit breaker
problems [4, 5, 34, 35].
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2.4 Assessment of distribution grid

The distribution system is the largest portion of the network in the electrical power
system. It can be defined as the part of a power system that distributes power
to various customers in ready-to-use form at their place of consumption. Hence,
utilities have to ensure reliable and efficient cost-effective service, while providing
service voltages and power quality within the specified range.

The Ethiopian distribution grid is mostly configured in radials, except the main
distribution circuit in Addis Ababa, the capital city. A radial system is arranged
like a tree, where each end-user has one source of supply and breaks and does not
fulfill the N-1 contingency criteria. In a radial system, long distribution feeders
experience voltage drop (power factor distortion) requiring capacitors or voltage
regulators to be installed.

Furthermore, the distribution grids (medium voltage (MV) and low voltage (LV)
networks) lack a real-time monitoring system, due to a lack of sensors and com-
munication systems. Supervisory Control and Data Acquisition (SCADA) is only
limited to the transmission network and has limitations in providing real-time
access to the distribution system. The facilities management system implemented
by EEU has also been limited to load assessment and voltage evaluations at the
distribution feeders level and lacks real-time monitoring of distribution trans-
formers and secondary distribution grids. The detection of faults in feeder lines
is limited due to the allocation of monitoring points or Remote terminal units
(RTUs) locations in the network and is too shallow to detect problems in local or
customer premises. As a result, utility providers rely on customer complaints or
maintenance inspections to identify power outages or equipment failures [36].

Table 2.1 presents an example of equipment survey assessment results for sub-
stations as measured by the facilities management system implemented by EEU.
This sample survey showed from the entire Addis Ababa distribution network 53
percent of medium voltage (MV) feeders, 58 percent of distribution transformers,
and 82 percent of low voltage (LV) feeders are experiencing overloading [37].
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Table 2.1: An example of distribution network condition assessment result.

Substation Feeder Voltage Issues Loading issue (% of
conductor rating)

Addis Alem ALM-15-01 yes -
Addis Alem ALM-15-02 yes -
Addis Center ADC-15-04 yes 179.6
Addis Center ADC-15-07 yes 173.8
Addis Center ADC-15-10 x 181.1

To analyze the current state of the distribution network in more detail, the Japan
International Cooperation Agency (JICA) study team conducted a one-week field
survey study with detailed load measurements [37], shown in Figure 2.7.

Figure 2.7: An example of transformer loading measurement result (Transformer rated capacity:
200kVA).

The findings, summarized in Table 2.2, reveal that many transformers are consis-
tently overloaded, with a maximum utilization rate of 151% and utilization rates
nearing overload levels. Transformers with a relatively low utilization ratio of
around 40% are those that have recently undergone capacity increases through the
grid rehabilitation program.
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Table 2.2: Summary of detailed load assessment result.

Utilization rate Measurement result
Maximum 151 %
Minimum 42 %
Average 85 %
Over 100 % 6 units
Over 80 % 8 units

To mitigate the risks associated with distribution transformer overload, it is cru-
cial to implement an intelligent monitoring system with a cost-effective solution
that fits the economy. Proactive measures must be taken to prevent transformer
failures due to overload, as their consequences can be severe and catastrophic for
businesses and the overall power supply.

One work in this dissertation proposed a monitored substation and distributed
transformer condition status by utilizing distributed sensor data and weather in-
formation [191]. This framework can enable the implementation of predictive
maintenance and repair plans before any issues occur, thus helping to prevent
eventual breakdowns and financial losses.

2.5 Ten-year strategic development plan of the
government of Ethiopia

In 2021, theGovernment of Ethiopia (GoE) revealed its 10-YearDevelopment Plan
[38] that spans from 2020 to 2030, replacing the prior Growth and Transformation
plans (I and II)3. The previous plans aimed at restructuring the economy and
society to elevate Ethiopia to a middle-income status by 2025. The new 10-Year

3 GTP I from 2011-2015 and GTP II from 2016-2020 were adopted by GoE II. They are a
comprehensive strategy to improve the economic condition of Ethiopia and include energy and
renewable energy targets guiding the country’s development.
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Plan aspires for Ethiopia to emerge as ‘Africa’s Beacon of Prosperity,’ placing
significant emphasis on bolstering the economic and infrastructure sectors. Within
its energy development objectives, the plan targets a substantial increase in the
electricity customer base from 5.8 million4 to 24.3 million, an increase in power
service accessibility from 33% to 96%, and a reduction in electricity loss. The
overall aim of the energy development strategy is to offer equitable, affordable, and
dependable electricity access while expanding high-quality energy infrastructure.

Through these national development programs, it is planned to increase electricity
service coverage from 44% to 100%, increase power generating capacity from
4,180 MW to 17,208 MW, build distribution lines from 16,018 km to 21,728
km, and ultimately increase annual per capita electricity consumption from 86
kWh to 1,269 kWh. This means that Ethiopia needs to significantly increase its
power production, transmission, and distribution capacity to drive its expanding
economy and provide access to electricity to its rural people.

4 As indicated in the GoE’s Ten Year Strategy Document. EEU reports 4.3 million registered
metered connections. The difference might be due to a mix of meter sharing, off-grid clients, and
unregistered EEU customers.
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This chapter aims to explore the distinctions between the traditional electrical
power system and the modern renewable environmentally-friendly grid system.
It focuses on the challenges associated with the integration of more renewable
energy sources (RES) into the existing system. The chapter begins by providing
a theoretical definition of the electrical network, analyzing stability in power
systems and frequency dynamics when contingencies occur. It then delves into an
explanation of power blackout mechanisms, followed by a comprehensive review
of congestion management measures, specifically outage management.

3.1 Traditional Power Systems

Electric power is generated at generating stations and distributed to consumers
through an interconnected network of transmission and distribution lines known
as grids. Conventional power systems, also called centralized power systems,
rely on large power plants that generate electricity and transmit it through this
network. The conventional power system design is based on the concept of
"economies of scale," where a few large-scale generators transmit power through
bulk transmission systems to substations. The voltage is reduced at the substations
to a safer level for residential, commercial, and industrial areas (illustrated in
Figure 3.1). These power plants primarily use fossil fuels, such as coal, natural
gas, and oil, and are situated in centralized locations.

The advantage of conventional power systems is that they can generate significant
amounts of electricity and can be easily scaled up to meet growing demand.
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Figure 3.1: A high-level structure of modern power grid.

However, their drawbacks include their reliance on finite fossil fuel resources,
which contribute to pollution and climate change. Moreover, these systems are
susceptible to natural disasters and power outages that can disrupt the entire grid.

Global events profoundly impact fossil fuel and nuclear power plants, which are
costly and detrimental to the environment. As a solution, an energy transition is
occurring worldwide, shifting away from fossil fuel-based thermal power plants
towards renewable energy sources [39]. Solar, wind, hydro, and geothermal
energy are considered sustainable options as they do not produce emissions. Power
system networks are undergoing substantial infrastructural changes to optimize the
utilization of renewable energy. These changes involve installing new transmission
lines, integrating flexible loads, and promoting self-sufficiency through microgrid
implementation [40]. The rise in renewable energy injections from distant sources
to high-load centers has led to more congestion in the transmission grid. Given
the high cost of building new transmission lines, it’s crucial to explore alternative
solutions [41].

A significant challenge for utilities is managing transmission constraints and bot-
tlenecks [42]. The increase in congestion and loop flows within transmission
systems compromises system reliability, raises energy costs, and limits the effi-
cient use of existing infrastructure [43, 44]. Active power flow control becomes
crucial for grid optimization. The control of real power flow is essential for
system operation and supporting electricity markets, as customers purchase real
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power (megawatts and MW-Hrs). Congested networks not only affect system
reliability but also restrict cost-effective power supply from low-cost generators to
interested customers. Additionally, uncontrolled loop flows can cause overloads
on existing lines, even if neighboring lines have capacity. To address these issues,
cost-effective series VAR solutions are needed to modify power line impedance
and voltage angles for power flow control. While traditional series reactive com-
pensation is often limited to long transmission lines due to cost and complexity,
dynamic thermal line rating (DLR) implementation emerges as a potential solu-
tion (see Chapters 7 and 8), especially for short-distance transmission lines near
high-load centers [192].

3.2 Principles of active power flow control

Active power flow control strategies are designed to efficiently manage and en-
hance the flow of real power within a transmission network. By dynamically
adjusting the behavior of devices and components, these strategies work to alle-
viate congestion issues and improve the overall reliability of the power system.
Active power flow control involves the active management and regulation of real
power flow within an electrical power system, ensuring its effectiveness and de-
pendability [45]. To provide a visual representation of this concept, consider the
simplified equivalent circuit for a two-bus transmission system, which is depicted
in Figure 3.2.

Figure 3.2: Active and reactive power transfer between a two-bus transmission system.

The active power flow (P) and reactive power flow (Q) through a transmission
line that links two voltage buses are primarily influenced by the magnitudes of
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the voltages (V1 and V2) at the buses and the phase angle difference δ = δ1 - δ2
between these voltages.

P =
V1V2 sin δ

XL
(3.1)

Q =
V 2
1 − V1V2 cos δ

XL
(3.2)

where XL is the impedance of the line, assumed to be purely inductive.

For controlling the real power flow, adjustments need to be made to either the
angle δ or the line impedance XL. Changing the angle δ or line impedance XL

can be achieved through the deployment of a phase-shifting transformer or a series
compensator that modifies the effective reactive impedance (XL) of the line. This
adjustment enables the manipulation of real power flow between the two buses.
The change in impedance is realized by inserting a passive capacitive or inductive
element into the line. Another option is to employ a static inverter, which facilitates
the implementation of a controllable active element that doesn’t introduce losses,
such as a negative or positive inductor, or a synchronous fundamental voltage that
is orthogonal to the line current [46, 47].

Active power flow control and congestion monitoring are essential aspects of
managing modern power systems efficiently and ensuring the reliable delivery
of electricity. They involve strategies and technologies aimed at preventing or
mitigating congestion issues and maintaining the optimal operation of the power
grid.

Congestion in a power system occurs when the available transmission capacity
is insufficient to accommodate the desired power flows between different regions
or nodes. It can lead to increased costs, reduced system stability, and potential
reliability issues [6]. Congestion monitoring involves the continuous assessment
and analysis of the power grid to identify areas where transmission lines are
heavily loaded or where power flows are causing bottlenecks. More detailed
methods are explained in Section 3.6.
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In combination, congestionmonitoring and active power flow control enable power
system operators to proactively address congestion issues, optimize power flows,
enhance grid stability, and ensure efficient energy delivery. These strategies are
becoming increasingly critical with the integration of renewable energy sources
and the growing complexity of modern power systems. In a renewable-dominated
power system, the interaction between renewable energy resources and the existing
grid differs significantly from conventional plants due to their unique physical
characteristics and power electronics-based interface. This situation increases
significant concerns for grid operators regarding power stability, and thermal
limit issues [48].

3.3 Stability in Power System

Stability in power systems refers to the ability of the power system to maintain
a balanced state under different operating conditions. The stability of the power
system is affected by various factors such as load demand, generation capacity,
transmission line losses, voltage, and frequency control, among others [49].

The stability of a power system is crucial due to its nonlinearity, and the changing
environmental conditions. Disconnecting or isolating a critical component of
the system can have significant consequences on the system’s overall structure.
When a fault occurs, it can propagate to other devices in the system, resulting
in disturbances in power flow, network voltage, and machine rotor speeds. This
impact becomesmore severe if the fault affects a critical component. Power system
stability can be classified as follows depending upon the severity of disturbance
[50],

• Steady-state stability is the ability of the power system to maintain a stable
operating condition under normal load demand and generation capacity.

• Transient stability is the ability of the power system to recover from a
disturbance such as a fault, generator outage, or a sudden change in load
demand.
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• Dynamic stability is the ability of the power system to maintain a stable
operating condition under small disturbances, such as changes in load or
generation. Dynamic stability is the main concern of this dissertation.

A failure of a critical component alters power flow in the power grid, which is
leading to changes in network voltage and machine rotor speeds. The voltage
variations in turn trigger the voltage regulation systems of generators and trans-
mission lines, while the rotor speed variations activate the prime mover, which
leads to frequency variations. The loads in the power system, depending on their
characteristics, are affected by voltage and frequency variations, and the protec-
tion devices for these loads may also be triggered. The cascading effect of these
protection devices can weaken the system, increasing the risk of the power system
entering a volatile state that could ultimately result in a total system collapse [51].

Addressing the grid voltage stability problem requires a comprehensive approach.
It involves increasing power generation capacity to meet the growing demand
and upgrading and modernizing the transmission and distribution infrastructure.
Frequency change perturbations and congestion monitoring are related to real-
time monitoring, so addressing these via some sensors’ actions and artificial
intelligence modeling is crucial. Thus, the main focus of this dissertation is more
on frequency stability monitoring and congestion management based on existing
infrastructure in the Ethiopian power grid system.

3.4 Frequency stability

Frequency stability is the system’s ability to maintain the grid frequency within an
acceptable range according to operational guidelines. This is crucial for ensuring
the operational security of the power system. Deviations in frequency outside
the specified range can trigger protective measures, such as under-frequency load-
shedding devices, which are designed to prevent cascading failures and potential
blackouts [52]. Significant frequency deviations typically occur due to the loss of
a large generator or load, or a fault in a transmission line connecting a major load
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area. These events disrupt the balance between power generation and demand in
the system.

A simplified equation that governs the frequency dynamics of an electrical grid is
given by [53]:

dfgrid
dt

=
Pgen − PL

M
=

∆P

M
(3.3)

Where fgrid represents the synchronous frequency, dfgrid
dt represents the rate of

change of frequency (RoCOF), and M denotes the effective inertia constant of
the system. M is a measure of the combined normalized inertia constant of
all rotation-based generators. Equation (3.3) illustrates the inverse relationship
between RoCOF andM .

The frequency dynamics of the power grid reflect the balance of supply and
demand of the power grid. An excess of generation increases the frequency, and
a shortage of generation reduces the frequency value. To keep the power grid
stable, the frequency must be controlled and maintained at a nominal frequency
[51]. However, it is not easy to maintain a set frequency across an entire power-
grid system; systems vary in size and structure, energy sources such as wind or
photo-voltaic generators [54, 55] can be unpredictable, and dispatch of electrical
energy and market activity [56, 57] also have an influence on overall dynamics.
Unlike synchronous generators in conventional plants, which contribute inertia
to the system, wind or photo-voltaic generators lack inherent inertia capabilities
[52]. As a result of reduced synchronous inertia, frequency events exhibit larger
frequency deviations and higher RoCOF in modern renewable energy-dominated
generations. With the projected increase in the replacement of conventional units
with wind or photo-voltaic generators, the severity of these frequency events is
expected to worsen and further complicate load-supply balancing and frequency
control [58].
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3.5 Cascading blackout event

Apower outage refers to the temporary or prolonged loss of electricity in a specific
area, ranging from a single building to an entire city. Thus, a complete loss of
electricity in the entire country or part of the country is known as a blackout, while
minor disruption in a specific area is referred to as a power outage. Both blackouts
and outages have significant impacts on various sectors, including industries,
households, and commercial establishments, leading to the inability to perform
daily activities and shortages of products. A failure of one component may lead
to other components and a cascade of this event is called cascading outage, finally
total blackout will take place [59]. Blackouts or cascading outages are costly
events that threaten the integrity of electric energy systems.

Cascading failure triggered by a severe fault leads to out-of-step tripping, line
outages, and the loss of synchronism. Actually, a blackout happens when a severe
fault in the power system causes one or more groups of coherent generators to
be out-of-step. These events will continue until the blackout has spread to a
large part of the network. In some cases, the progression of blackouts after the
occurrence of initiating events could follow two steps, steady-state progression,
and transient progression [60]. Figure 3.3 clearly describes these phases, which
are precondition, initiating events, cascading events, final state, and restoration.
Among these five phases, cascade events can be further divided into three phases
in the process of some blackouts: steady-state progression, triggering events,
and high-speed cascade. After the initiating event takes place, the steady-state
progression phase will take a longer time before entering the high-speed cascade
stage. So, it is possible to take remedial action during the steady-state progression
phase to prevent a cascading blackout event with proper real-time monitoring
applications [61].

To prevent catastrophic outcomes, power systems are designed to withstand single
or double failure events, known as N-1 or N-2 criteria. However, human errors or
hidden failures can extend outage propagation, causing further cascading. Such
outages cause the redistribution of power flows, causing other components to
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Figure 3.3: Power grid cascading outage development phases.

become overloaded. As seen in Figure 3.4 voltage collapse, frequency collapse,
cascading overload, system separation, and loss of synchronism are the five types
of faults that can lead to blackouts [61, 62].

Figure 3.4: Mechanism of blackouts [61]

Voltage collapse occurs when there is insufficient reactive power reserve, leading
to a decline in voltage, tripping of equipment, and eventual blackout. Frequency
collapse happens when there is an imbalance between production and consump-
tion, causing a collapse in frequency. Congestion or cascading overload occurs
when lines become heavily congested, leading to redistributed power flow, over-
loading of other lines, and potential blackouts. System separation occurs when
critical lines or transformers are lost, resulting in isolated subsystems and potential
voltage or frequency collapse. Loss of synchronism or islanding occurs when two
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interconnected power systems experience an imbalance, leading to power oscilla-
tions and possible system splitting. Preventing blackouts involves measures such
as using FACTS devices, reactive resources, and under-frequency load shedding.

One of the key solutions to mitigating blackouts involves predicting system re-
sponse and identifying appropriate remedial actions usingmachine learningmeth-
ods. Machine learning techniques, specifically frequency prediction, show poten-
tial in anticipating frequency deviations in the power grid. Utilizing fast simulation
and AI predictions can enable real-time simulations that look ahead, allowing the
grid to self-adjust and perform what-if analyses to avoid disturbances. This self-
adjusting of the grid would aid in advance repairing measures and/or adaptation
to new conditions following an outage. Grid control centers with AI algorithms
would then run failure scenarios to determine the optimal corrective response,
which operators would approve and implement. If the line still failed, sensors
within the network would detect voltage/frequency fluctuations and communicate
this information to nearby substation processors. These processors would reroute
power through alternative sections of the grid. As a result, customers in the wider
area might experience only a brief flicker of lights or may not even be aware of
any problem at all.

3.6 State-of-art transmission expansion
strategies

The aging power system infrastructure and the growing integration of fluctuat-
ing energy sources call for substantial investments in power system infrastructure.
This review discusses various expansion measures, focusing on transmission tech-
nologies used to strengthen and expand the transmission network. The primary
objective of these enhancements is to boost transmission capacity and improve
power system security (i.e., avoid blackouts). The review outlines the key features
of each technology and compares their effectiveness in addressing power system
security issues.
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3.6.1 AC transmission lines reinforcements

Alternative current (AC) transmission is a mature and reliable technology widely
used in transmission expansion planning. It offers simple connectivity between
nodes and allows easy power injection and withdrawal along transmission paths.
Constructing additional AC transmission links has several benefits, including
congestion relief, alleviating instability, and enhancing stability aspects. AC
transmission is preferable for shorter distances, while compensation and Flexible
AC Transmission Systems (FACTS) devices are suitable for distances up to 300-
400 km.

There are three main types of AC transmission technology: Overhead Lines,
cables, and Gas-Insulated Lines (GIL). Overhead lines are cost-effective and
perform well in power systems. Cables and GIL have limitations in transmission
length due to reactive compensation requirements. Cables have lower transmission
capacities due to overheating, while GIL is less widely accepted due to the use
of SF6 gas 1. However, for short distances (e.g. up to 30-40 km for cables and
60-80 km for GIL) and when public acceptance for new overhead lines is an issue
(e.g., in Europe), cables or GIL may be preferred options [63].

To enhance power transmission infrastructure, one can consider line reinforce-
ments, which involve either replacing existing conductors with HTLS conductors
or upgrading to higher voltage levels. Upgrading voltage levels, especially from
132 KV or 220 KV to 400 KV (for Ethiopian systems), is deemed the most ef-
fective measure for enhancing power system security. On the other hand, HTLS
conductors can alleviate congestion by increasing network capacity, but they have
limitations. Despite enhancing line capacity, other equipment like transformers,
breakers, or disconnectors may require upgrades to handle higher loading.

1 SF6 is a gas used as an insulating medium known to be a potent greenhouse gas and has been of
concern due to its potential contribution to climate change.
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3.6.2 Flexible AC Transmission Systems devices

Flexible AC Transmission Systems (FACTS) devices are designed to enhance the
stability and efficiency of AC grids by injecting or withdrawing reactive power
at weak network points. FACTS includes various equipment like mechanical
reactors, capacitors, Phase-Shifting Transformers, and power electronics-based
devices. Power electronics-equipped FACTS can actively manage voltage and
active power flow in the grid. FACTS technology can enhance the transfer capacity
in power systems that are constrained by stability issues. This enhancement can
result in a 20-30% increase in transfer capability, allowing more electricity to be
delivered to consumers in a shorter time and with lower investment costs [64].

FACTS can be categorized into two main types: shunt compensation and series
compensation. Shunt compensation includes devices like shunt reactors/capaci-
tors, Static Var Compensators (SVCs), and STATCOMs, which primarily provide
voltage support. SVCs and STATCOMs with power electronics can actively con-
trol voltage, enhance voltage stability, dampen inter-area oscillations, and reduce
reactive loading during transient instability. STATCOMs, utilizing voltage-source
technology, outperform standard SVCs, particularly in low network voltage sce-
narios.

On the other hand, series compensation involves Fixed Series Compensation
(FSC), Thyristor Controlled Series Compensation (TCSC), and Phase-Shifting
Transformers (PST). These devices increase line flows and contribute to voltage
and transient stability. TCSC and PST can actively control power flow, preventing
parallel line overloads and assisting in power oscillation damping more effectively
than SVC or STATCOM.

3.6.3 High voltage direct current transmission

High Voltage Direct Current (HVDC) technology is a more economical solu-
tion for long-distance overhead line transmission exceeding 400 km. It offers
advantages such as active power flow control to prevent overloading on parallel
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AC lines and the ability to help dampen inter-area oscillations when compared
to AC systems. Currently, there is a 2,000 MW HVDC power transmission link
between the national electricity systems of Ethiopia and Kenya, through a 1,000
km HVDC overhead line. The HVDC operates as a bipolar configuration (±500
KV), although a monopolar operation is allowed.

There are two main types of HVDC technology: Line commutated converter
(LCC) and voltage source converter (VSC). LCC-HVDC has been in use for
over 50 years and requires a robust AC network and extensive filters. VSC-
HVDC, on the other hand, is more versatile, operating well in weaker networks,
requiring fewer compensatory components, and offering independent control of
active and reactive power. While LCC technology has lower losses and higher
transmission capacity, VSC technology is advantageous for forming HVDC grids
that accommodate bidirectional flows. The lack of a commercial-scale DC circuit
breaker is a current limitation, but recent developments suggest its availability in
the near future, enabling the practical realization of DC grids [65].

3.6.4 Dynamic line rating application

Dynamic line rating (DLR) offers an innovativeway for electric utilities to optimize
the safe capacity of transmission lines, enabling them to carrymore power without
the need for costly upgrades. This is achieved by continuously monitoring factors
like weather conditions and conductor temperatures to calculate the line’s real-
time capacity. Data on conductor conditions and the surrounding environment
are collected and used to calculate the DLR for the line using wireless sensor
networks along an overhead transmission line. DLR allows utilities to save on
transmission upgrades, reduce congestion, and ultimately save money. DLR is
more effective for shorter transmission (e.g. 80 km).

By implementingDLR, utilities can enhance grid efficiency and reliability without
the need for new construction. This technology can be deployed quickly, provid-
ing immediate benefits and helping meet the rising demand for electricity due to
electrification, giving alternative investment options and reducing congestion on
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the transmission network [63, 66] by optimization of grid topology. These allow
increased solar and wind integration, reduce curtailment for these variable renew-
able energy sources, andmake power generation dispatch more cost-effective [67].
This concept is one of the main objectives of this dissertation and is presented in
Chapter 8.

Prioritizing hotspots is essential when deploying DLR for transmission line mon-
itoring due to potential financial constraints. Instead of implementing DLR on
all lines, it is more prudent to select transmission segments based on their typical
load levels, with priority given to heavily loaded lines [68]. This selection pro-
cess should consider optimizing power generation costs, load shedding, and the
integration of renewable energy systems. By carefully considering these factors,
the implementation of DLR can achieve a balance between economic feasibility
and efficient resource utilization [69].

3.6.5 Cost comparison and evaluation

In general, it’s challenging to estimate the cost of deploying different technologies
because it varies significantly depending on specific factors like location, environ-
ment, and politics. However, some efforts have been made to provide a relative
cost comparison, as demonstrated in Figure 3.5 for primary transmission media
in Germany [70].

Figure 3.5 outlines various transmission options and their corresponding tech-
nologies. These options include:

• Basic: This option utilizes a 380 KV AC overhead line.

• FLM: It involves the use of Dynamic Line Rating technology.

• TAL: This option entails modifying existing lines by incorporating high-
temperature conductors.
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• Hybrid: It combines an 800 km 4400 MW HVDC transmission from
Schleswig-Holstein (north) to Baden-Württemberg (southwest) with an ad-
ditional 3100 km of AC overhead lines.

• GIL: This choice involves the use of Underground Gas Insulated Lines.

• HVDC: It’s important to note that the values for HVDC correspond to
underground cables, while for AC, they refer to overhead lines. Hence, a
direct cost comparison between them is not entirely feasible.

Figure 3.5: Dena grid study II expansion and annual costs associated with various transmission
options in Germany. Source: dena [70].

The dena grid study ( [70]) found that for short transmission distances and low
capacity (100 km / 1000 MW), 380 KV AC overhead lines were the best choice.
However, for long transmission distances and high capacity (400 km / 4000MW),
HVDC lines performed better. For situations in between, a combination of both
technologies was optimal. It’s important to note that these conclusions can’t be
applied universally because each project has unique characteristics.

Additionally, comparing costs for AC line reinforcements or FACTS devices is
challenging due to project-specific factors. Nonetheless, it’s expected that new
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AC, GIL, or HVDC lines will generally be more expensive than reinforcements
like DLR or HTLS, as well as FACTS devices like TCSCs or SVCs.

Due to the advantages that the dynamic line rate demonstrates for overhead trans-
mission as an alternative investment option, we will mostly focus on the DLR
technology as an expansion and grid optimization measure.
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4 Case Study – Power outage
economic cost

Energy consumption and economic growth are closely interconnected, and access
to reliable electricity is crucial for economic development [71]. However, many
developing countries face frequent and prolonged power outages, which hinder
firms’ ability to plan and carry out production activities. According to data from
the National Load Dispatch Center, Ethiopia experiences a concerning frequency
of blackouts, averaging 12 blackouts per year or at least one blackout per month
[72]. Policymakers need to understand the costs incurred byfirms due to unreliable
electricity supply, as this information can guide investment decisions in the energy
sector [5].

Despite recent advancements in Ethiopia’s energy sector, the country still faces
frequent power outages due to various challenges such as growing load demands
and increasing new connections [36]. Power outages have significant impacts on
various sectors, including industries, households, and commercial establishments,
leading to the inability to perform daily activities and shortages of products. While
assessing the economic damages caused by a power outage can be relatively
straightforward as they can be quantified in monetary terms, evaluating damages
to the quality of life, institutional disruption, environmental harm, and safety
impacts requires a conversion factor that determines how much damage in one
category is equivalent to damage in another category. These assessments involve
multidimensional considerations and might require the involvement of various
stakeholders and experts.
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The focus of this chapter is only limited to examining the cost of power outage
and its impact on individual households, and industrial firms based on Enter-
prise Survey data. Furthermore, while both the industry sector and residential
consumers contribute equally (38%) to the country’s electricity consumption, it
is projected that firms’ consumption will surpass that of households. Therefore,
understanding and analyzing firms becomes crucial in this context.

4.1 Power outage economic cost for
households in Ethiopia

Ethiopia has relatively low access to electricity, with a household access rate
of 47% [28] and the majority still relies on biomass for cooking, and biofuels
account for the largest share of the country’s primary energy supply [32]. The
National Electrification Program (NEP)1 aims to expand electrification efforts and
increase grid connections to reach 96% by 2030, along with a focus on off-grid
solutions [73].

Power outages in Ethiopia have a significant impact on households, leading to
financial losses, disruption of daily activities, and damage to appliances. The
duration and frequency of outages vary across the country, with an average outage
lasting around 8 hours according to World Bank Enterprise Survey data [12].
Despite significant investments in the power sector, the problem of electricity
outages persists due to the country’s rapid economic and population growth,
which strains the existing power infrastructure with an inefficient transmission
and distribution network.

To analyze the impact of power outages on households, a nationally representative
urban household survey [34] conducted in 2019 was used in this dissertation for
power outage economic analysis. Around 54 percent of the sample resides inAddis

1 NEP is an action plan launched in 2017 for achieving universal electricity access nationwide by
2025.
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Ababa, the capital city. The survey revealed that households in Ethiopia had an
average monthly electricity bill of 275.39 ETB2 (US$18.9), accounting for about
3.7% of monthly household expenditure. The average price per kWh of electricity
was approximately 2.12 ETB (3 US cents). The frequency and duration of outages
varied significantly among households, with some experiencing frequent and long
outages. On average, households reported 10 outages per month with a total
duration of 48.24 hours.

Despite the prevalence of outages, only 3% of households reported using backup
power sources during outages, indicating limited access to alternative solutions.
The study also found that households spent additional defensive expenditures
to cope with outages, with monthly expenses ranging from 60 to 77 ETB
(US$2.9–$3.7) depending on the monthly hours of outages. These defensive
expenditures could account for up to 14% of the average monthly electricity bill.
The sample summary statistics are shown in Table 4.1.

Table 4.1: Households power outage descriptive statistics.

Variables Mean Median Std.dev Min Max
HH size 5.05 5 2.13 1 13
HH monthly expen-
ditures

7295.9 5606.17 11809.91 214.5 253440.7

Monthly electricity
bill (in ETB)

298.38 199.10 399.86 3 6872

kWh 275.39 200.82 342.48 2.03 5985.98
Frequency of out-
ages in per month

10.50 7 9.40 1 70

Total hours of out-
ages per month

48.24 45 36.46 0.8 168

Backup source ex-
penditure

39.37 0 130.42 0 1533

2 ETB is the Ethiopian currency.
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To mitigate these costs, it is important for the government and energy utilities to
invest in improving the efficiency of transmission and distribution networks and
to invest more in distributed renewable energy sources to ensure a steady power
supply for households.

Providing electricity to households in rural areas involves three primary tech-
nological options: extending the grid, implementing mini-grids, or employing
off-grid (stand-alone) systems. Figure 4.1 illustrates indicatives of costs of elec-
tricity for on-grid, mini-grid, and off-grid technologies in sub-Saharan Africa3,
4. The cost-effectiveness of options 2 and 3 often surpasses that of grid extension
due to the high expenses associated with extending the electricity grid, especially
in regions with low population density [74].

Figure 4.1: Indicative levelised costs of electricity for on-grid, mini-grid, and off-grid technologies in
sub-Saharan Africa, 2012.

3 The costs of grid extension are computed based on extending the medium-voltage grid by a certain
distance (e.g., 1km) to each community on a levelised cost basis.

4 Notes: Costs are indicative and could vary significantly depending on local conditions and a range
of factors such as population density, electricity tariffs, and the delivered cost of diesel. The
quality of service for the different technologies also varies: additional investment in batteries or
backup power may be needed to compensate for the variability of renewables or intermittent grid
supply. O&M = operation and maintenance.
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4.2 Power outage economic cost on
manufacturing firms

A reliable electricity supply is vital for the functioning of any business, but
many developing countries face severe challenges in this regard. In Ethiopia,
for instance, the lack of dependable electricity is the main challenge faced by
businesses [4]. To ensure a consistent power supply, improving infrastructure
and enhancing customer service during technical failures is crucial. However,
financing these solutions in developing countries, where outages are frequent
and demand is increasing, poses a significant challenge due to high investment
costs. One potential solution is gradually increasing tariffs to fund incremental
investments. The electricity supply in Sub-Saharan Africa is characterized by
frequent and lengthy outages, partly due to publicly owned energy utilities keeping
tariffs low to satisfy urban constituents. The low tariff rates make the costly
investments needed for supply improvement economically unviable [75].

The study by [5] reveals that power outages impose significant costs on manufac-
turing firms, particularly micro, small, and medium-sized enterprises, in Ethiopia.
On average, these firms incur monthly outage costs of seven times higher than
their average electricity bill. The cost of outages also amounts to 3% of the firms’
monthly sales, representing approximately 61% of the average monthly cost of
using backup generators. The compensating variation for a zero-outage situation
corresponds to about three times the current electricity cost. However, there
is considerable heterogeneity in costs across sectors, firm sizes, and electricity
consumption levels.

For the sake of simplicity in this dissertation, World Bank Enterprise Survey data
was used to analyze the economic cost of power outages to firms in Ethiopia. The
WorldBankEnterprise Survey data collected from848firms in Ethiopia highlights
the impact of electric outages on manufacturing businesses in the country. Table
4.2 provides further details on this analysis. According to the 2015 World Bank
Enterprise Survey [12], about 39.5% of Sub-Saharan African firms identified
electricity shortages as a major constraint to their operations, about 33.3% in
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Ethiopia, which shows an increase from 23.1% in 2011. In 2015, 80% of the
firms in Ethiopia experienced power outages, while the figures for Sub-Saharan
Africa and the world were 76.9% and 50.6% respectively.

The average number of power outages in a typical month for Sub-Saharan Africa
was 8.4, while for Ethiopia was 8.2 in 2015. Consequently, these firms experi-
enced an average loss of 47 hours of economic activity per month due to power
outages. Specifically, Ethiopian firms faced an average loss of 47.56 hours per
month. As a result, Ethiopian firms suffered a sales loss of 6.9% annually, while
the average Sub-Saharan African firm experienced an 8% loss.

Firms in developing countries have implemented various strategies to mitigate
the negative impacts of power outages, including enhancing production flexibility
and improving storage capabilities [5]. One common approach is to invest in
backup electricity sources like diesel generators. However, these generators are
expensive, particularly in Sub-Saharan Africa where they can be three to ten
times more costly than grid electricity [76]. Furthermore, even with a generator,
the self-generated power may be insufficient to operate production at maximum
capacity [77]. Consequently, investing in a diesel generator may not always be
the most cost-effective choice, as the funds could potentially be better utilized to
increase production capacity [78].

Between 2011 and 2015, the ownership of generators by companies in Ethiopia
increased from 40.6% to 49.1%. Additionally, there was a notable rise in the
average proportion of electricity sourced from generators by Ethiopian firms,
growing from 21.6% in 2011 to 48.9% in 2015.

To enhance the reliability of electricity supply in a country, it is essential to
implement long-term and sustainable solutions. This involves investing in gen-
eration and distribution capacity while adjusting and adopting flexible electricity
price-setting mechanisms, such as peak-load pricing. In truth, underpricing is a
significant factor contributing to the shortage of electricity generation capacity in
Africa [75].
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Table 4.2: Firms power outage descriptive statistics

Firm experience
Year 2011 Year 2015

Ethiopia Sub-
Saharan
Africa

World Ethiopia Sub-
Saharan
Africa

World

% of firms experi-
encing power out-
ages

89 76.9 50.6 80 76.9 50.6

Number of power
outages in a typi-
cal month

5.6 8.4 5.3 8.2 8.4 5.3

Average duration
of a typical power
outage (hours)

8.8 5.6 4.1 5.8 5.6 4.1

Average losses due
to power outages
(% of annual sales

4.3 8 4 6.9 8 4

% of firms owning
or sharing a gener-
ator

40.6 52.6 32.1 49.1 52.6 32.1

Average propor-
tion of electricity
from a generator
(%)

21.6 29.7 17.4 48.9 29.7 17.4

% of firms identi-
fying electricity as
a major constraint

23.1 39.5 30.8 33.3 39.5 30.8
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4.3 Electricity supply and ease of doing
business

Electricity is the second most significant obstacle next to access to finance, with
10.1% of firms indicating it as a major challenge (see Figure 4.2). This could
imply that businesses struggle with issues related to power supply, such as power
outages and lack of access to electricity. The sustainable and reliable development
of the electricity sector is therefore an important element in the socio-economic
development and growth targets in Ethiopia. Policymakers and stakeholders need
to address these issues to create amore conducive environment for business growth
and development.

Figure 4.2: Ranking of the top business environment obstacle for firms in Ethiopia: Source: World
Bank, 2015.

Addressing these challenges typically demands a comprehensive strategy encom-
passing policy reforms, investment in infrastructure, improvements in regulatory
frameworks, and initiatives aimed at diversifying and updating the energy source
mix. Ensuring a sustainable and dependable electricity supply is vital for eco-
nomic progress and can significantly benefit businesses and the overall develop-
ment of a country.
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Artificial intelligence (AI) is the concept of machines having human-like intelli-
gence and learning autonomously from data to perform specific tasks, whereas
Machine Learning (ML) is a subfield of AI, where computers can learn from
data without explicit programming. It is a rapidly growing field that has found
applications in a wide range of industries, including healthcare, finance, energy,
and marketing, among others.

The subfield of ML which is capable of learning from large amounts of data is
calledNeural networks and can be used for tasks such as image recognition, speech
recognition, and natural language processing. More recently, deep learning has
emerged as a significant development in machine learning. Deep learning utilizes
neural networks with multiple layers and has achieved breakthroughs in speech
and image recognition, as well as natural language processing.

The general relationship between artificial intelligence, machine learning and deep
learning is illustrated in Figure 5.1. These fields have practical applications in
various sectors, including the energy industry, where they are used for renewable
energy generation prediction and demand forecasts.

This dissertation addresses research questions concerning time series forecasting
using data-driven approaches from the machine learning domain. Due to the vast-
ness and continuous development of both fields, we will concentrate on essential
concepts and techniques relevant to our proposed solutions in the subsequent
chapters.
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Figure 5.1: Venn diagram of AI and its derivations: machine learning and deep learning [79].

5.1 Theoretical concept of Machine Learning

According to a definition by [80] machine learning problems aim to improve the
performance measure P for a given task T by utilizing training experience E.
The first important step in developing a machine learning model is the problem
creation step to deal with specific situations at hand. The problem creation stage
involves precisely defining the task T and the performance measure P . This step
guides the experimental design for collecting appropriate data E to be used for
training the learning machine. After the collection of required data for machine
training and preprocessing of the data take place tomake it suitable for the selected
learning model.

After the preprocessing phase is complete, the learning phase begins by defining
a model for the task T . The model definition involves dividing the training
experienceE into two parts: one for learning themodel’s parameters and the other
for evaluating the model’s performance using the chosen performance measure P .
This phase may include a feedback loop where the model is adapted or modified
if the performance on the task T is not satisfactory.
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5.1.1 Learning Methods

In problem creation of ML, it is crucial to create a model/hypothesis about a
particular scenario inwhichwe can create the presence of an unknown relationship
or dependency that needs to be estimated/learned using ML experiments.

The approach to learning in the machine model can be broadly categorized into
three: supervised learning, unsupervised learning, and reinforcement learning,
depending on the available data, experience, and the task at hand.

Supervised learning involves providing the machine with a dataset consisting of
features (represented as x) and corresponding labels (represented as y) [81]. The
machine is trained to predict y from x by estimating the probability distribution
p(y/x). These variables can take different forms, such as time series, images,
text, or object classes.

In contrast, unsupervised learning algorithms receive a dataset of features x and
aim to learn the underlying structure of the dataset by reconstructing its probability
distribution, p(x). Another important advancement is unsupervised learning,
where models learn from data without explicit feedback.

Reinforcement learning algorithms interact with the environment, establishing a
feedback loop between the learning system and its experiences. They are trained
using a reward or penalty function to optimize the output.

This dissertation specifically focuses on supervised learning methods, and the
subsequent sections will delve into them further to provide a detailed exploration.

5.1.2 Over- and under-fitting

In machine learning contexts, model development follows a set of standard proce-
dures. To execute tasks in the supervised learning method, the utilization of data
features on which machine learn is crucial. The features used to train the machine
learning model are called the training dataset. This dataset includes input data
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and their corresponding target values, allowing the model to learn the patterns
and relationships within the data.

To ensure success in machine learning, accurately defining the problem is essen-
tial, but equally important is determining the appropriate data size. The quality
and informativeness of the data significantly impact the effectiveness of sub-
sequent steps in the machine learning pipeline. In supervised learning, where
input/output modeling is performed, it becomes crucial to have training data that
is representative of the phenomenon under study and adequately covers the input
space. This ensures that the model can learn and generalize effectively from the
available data.

During training, the model adjusts its parameters and weights based on the input
data to optimize its performance and make accurate predictions. Then, the model
is evaluated against the validation dataset, which is a separate subset of data that
is used to assess the model’s performance and generalization ability. This dataset
is not used during the model training phase but is employed during the evaluation
stage. The validation dataset allows us to monitor the model’s performance on
unseen data and check for overfitting or underfitting. By evaluating the model’s
predictions on the validation dataset, we can make adjustments or select the best
model based on its performance metrics, such as accuracy or mean squared error.

In machine learning, overfitting and underfitting are terms used to describe the
performance of a learning algorithm. Overfitting occurs when a model is overly
complex and trained too well on the training data. This means that the model
becomes too specific to the training data and may not generalize well to new,
unseen data. Overfitting can be caused by a complex model with insufficient
training data or excessive training iterations. To detect overfitting, the model’s
performance is evaluated on a separate test set. If the performance on the test set
is significantly worse than on the training set, it indicates overfitting.

Conversely, underfitting happens when a model is too simple and fails to capture
the underlying patterns in the data. Themodel is not specific enough to the training
data and may perform poorly on both the training and test data. Underfitting can
occur when the model lacks the complexity to represent the data adequately or
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when it is trained for too few iterations. To identify underfitting, the model’s
performance is evaluated on the training set. If the performance is poor, it
suggests underfitting.

To mitigate overfitting and underfitting, it is crucial to select a model that is ap-
propriately complex relative to the available training data. It is also important
to stop training the model when overfitting starts to occur. Techniques such as
cross-validation, regularization, and early stopping can be employed to prevent
overfitting and underfitting. These methods help strike a balance between model
complexity and generalization capability, ensuring optimal performance on un-
seen data.

If the performance achieves satisfactory results, the model is deployed into pro-
duction, and its performance is monitored. If model performance degrades, a
re-training is scheduled, using up-to-date training data.

5.1.3 Hyperparameter Optimization

Hyperparameters are parameters that are not learned directly from the data during
the training of a machine learning model. They are set by the user or the model
developer and define the characteristics of the learning algorithm. They influence
how the model is trained and how it generalizes to new data. Examples of hyper-
parameters include the learning rate, the number of layers in a neural network, the
number of trees in a random forest, and the regularization strength.

Hyperparameter optimization methods are techniques used to find the optimal
set of hyperparameters for a given machine learning model. The goal is to find
the combination of hyperparameters that yields the best performance or results in
terms of accuracy, precision, recall, or any other evaluation metric of interest.

There are several approaches to hyperparameter optimization, including:
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• Grid search: In this method, a predefined set of hyperparameter values is
specified, and themodel is trained and evaluated for each combination of hy-
perparameters. The best combination is selected based on the performance
metric.

• Random Search: Similar to grid search, random search involves specify-
ing a range or distribution for each hyperparameter. However, instead of
exhaustively searching all combinations, random combinations of hyperpa-
rameters are selected and evaluated.

• Bayesian Optimization: Bayesian optimization builds a probabilistic model
of the objective function (the performance metric) and uses it to select the
most promising set of hyperparameters for evaluation. It iteratively updates
themodel based on the evaluation results and focuses on themost promising
regions of the hyperparameter space.

5.2 Time series forecasting

A time series is a sequence of ordered historical observations or measurements
of a particular phenomenon, with each observation y as yt indexed by t being the
temporal index.

The problem of time series forecasting involves predicting future values of a given
quantity based on a set of historical observations. To generate accurate forecasts,
assumptions are made about the informative nature and underlying dynamics of
the time series. The fundamental assumption is that the observed data up to
the last available sample (up to time t) contains relevant information that can be
utilized to predict future values. If the future is independent of past observations,
accurate forecasts cannot be generated based on historical data alone.

The autoregressive model is commonly used to represent the unknown data-
generating process:

[yt+h, · · · , yt+1] = F (yt−d, · · · , yt−d−m+1) + et (5.1)
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where the unknownprocessF generates future values of the time series {yt+h, · · · , yt+1},
based on the values of the previous m time steps, with an optional delay term d.

From Equation (5.1), the main parameters of this model are the form of the
unknown function F (linear or nonlinear), the model order (or lag) m and
the noise term et. The noise term et represents stochastic and independently
distributed processes with null mean and fixed variance σ2.

5.2.1 Univariate time series forecasting

5.2.1.1 One-Step univariate forecasting

The simplest time series forecasting is one-step forecasting, i.e., predicting the
next step in the future in a single step. The main objective is to predict the next
step in the future. This problem can be defined as estimating a Single-Input,
Single-Output (SISO) autoregressive mapping: f : Rm → R.

yt+1 = f(yt−d, · · · , yt−d−m+1) + et (5.2)

where et is the noise term or missing information (stochastic i.e., process with
null mean and fixed variance), d is the delay, andm > 0 is called the model order
(or embedding lag).

The formulation described is applicable for estimating both linear (Auto-Regressive,
AR) and nonlinear (Non-linear Auto-Regressive, NAR) mappings, making it suit-
able for the implementation of supervised machine learning algorithms [82].

In a linear autoregressive formulation (AR), the function f is a linear combination
of the previousm values of the time series. This means that the value of the time
series at a given time step is predicted based on a weighted sum of its previousm
values, as expressed in Equation (5.3).

f(yt−d, · · · , yt−d−m+1) =

t−d∑
i=t−d−m+1

aiyi (5.3)
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On the other hand, in a non-linear autoregressive (NAR) formulation, the function
f is non-linear and non-parametric. This allows for greater flexibility inmodeling,
enabling the use of machine learning techniques for one-step-ahead time series
forecasting after a specific preprocessing phase [82]. The preprocessing phase
transforms the original univariate time series forecasting problem into the task of
learning the unknown input-output mapping f through supervised learning. This
means that historical data is used to train a model that can predict the value of the
time series at the next time step based on its previous values. Once the model of
the mapping f is learned, it can be utilized to generate one-step-ahead forecasts,
providing predictions for future values of the time series.

5.2.1.2 Multi-step-ahead univariate forecasting

Unlike the one-step-ahead learning approach, when dealing with multiple-step-
ahead forecasting, the target variable to predict is no longer a single value but a
vector of h elements, where h represents the forecast horizon [82–84]. In this
approach, the goal is to forecast multiple future values of the time series rather
than just the immediate next value. There are two strategies [82–84] for multiple-
step-ahead forecasting tasks: single output and multiple output. The first strategy
includes the iterated and direct approaches, and the second approach employs
Multi-Input Multi-Output (MIMO) approach.

• Iterated approach: In the iterated approach, also known as the recursive
approach, a one-step-ahead model is used to generate forecasts, and these
forecasts are then iteratively fed back into the model to predict subsequent
values until the desired forecast horizon is reached [85]. Defined as frec :
Rm → R.

yt+1 = frec(yt, · · · , yt−m+1) + et (5.4)

The model is recursively applied h times to generate multiple-step fore-
casts. However, errors can accumulate in each step, leading to less accurate
predictions as the forecast horizon increases [86].
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• Direct approach: The Direct approach [83, 85] learns independently h

models simultaneously fh : Rm → R, h = 1, ...,H

yt+h = fh(yt, · · · , yt−m+1) + et (5.5)

The Direct approach generates a multi-step-ahead forecast by concatenating
the predictions from allH models. One advantage of this approach is that it
does not rely on estimated values as inputs, reducing the risk of accumulating
errors from previous predictions. However, it does not consider conditional
dependencies between the predictions [87–89]. As a result, these methods
often require more complex models to capture the dependency between
distant time points compared to iterative strategies [90]. For example, in a
traditional neural network [91, 92], this can be achieved by using multiple
neurons in the output layer to predict different horizons.

• MIMO approach: The MIMO approach, also referred to as the Joint ap-
proach, offers an alternative to the Direct strategy’s assumption of condi-
tional independence between future values [88, 89, 93]:

[yt+h, ..., yt+1] = F (yt, · · · , yt−n+1) + w (5.6)

where t ∈ n, · · · , N − h, F : Rd → Rh is a vector-valued function [94],
and w ∈ H is a noise vector with a covariance that is not necessarily
diagonal [95].

The MIMO approach involves training a single multiple-output model to
capture the relationships between different inputs and outputs. This ap-
proach allows for a more comprehensive understanding of the data and
enables better predictions by considering the interdependencies among the
variables. These strategies are useful when forecasting multiple related
variables that have interdependencies and need to be considered together.
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A recurrent neural network (RNN) is famous for sequence modeling due to its
ability to capture nonlinear relationships, discussed in Section 5.4.2. In this dis-
sertation, for our evaluation of multi-step time series prediction, we have selected
deep learning models. Univariate time series data predictive were modeled with
the Long Short-Term Memory (LSTM) model, LSTM Encoder-Decoder, and the
Bi-directional LSTM (BLSTM) model for the MIMO approach. In addition,
the One-Dimensional Convolutional Neural Network (CNN) was evaluated. Our
evaluation study seeks to determine the accuracy of each model as the prediction
horizon increases.

5.2.2 Multivariate time series forecasting

In contrast to univariate time series that consist of a single variable, multivariate
time series incorporate multiple variables that may interact and influence each
other over time. A multivariate time series with n observed variables and N ob-
servations is typically represented in the matrix representation, with each column
representing a specific variable, and the rows representing different time steps.
This arrangement creates a matrix of size N × n.

Like univariate case (Section 5.2.1) direct, iterated, and MIMO approaches can
be performed multiple-step-ahead forecasting for multivariate datasets [84].

Two forms of modeling exist for multivariate forecasting, local modeling, and
global modeling. In local modeling, each time series in a multivariate forecasting
task is treated independently, resulting in a separate model being estimated for
each series [96]. This approach decomposes the task into individual Single Input
Single Output (SISO) or Multiple Input Single Output (MISO) tasks. For SISO
tasks, each forecasting task is treated as an independent problem, disregarding
any cross-dependencies with other series.

In the case of MISO (Multiple Input, Single Output) tasks, it is possible to utilize
multiple series as input covariates to predict a single time series. This means
that instead of using just one series to forecast the output, several other series
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can be incorporated as additional inputs to improve the accuracy and predictive
capabilities of the model. By considering multiple related series as covariates,
the forecasting model can leverage the information and patterns present in these
input series to make more accurate predictions for the target time series.

In the context of global modeling, the multivariate forecasting problem is ap-
proached as a single Multiple Input Multiple Output (MIMO) problem. This is
achieved by utilizing a Non-linear Vector Auto-Regressive (NVAR) formulation.

5.3 Data preprocessing and engineering

It is possible to improve the accuracy and/or reduce the computational complexity
of a model by modifying the inputs of the problem. To enhance data quality, a
significant phase following data collection is preprocessing. During this step, raw
data is analyzed and modified to optimize the model’s learning performance for
subsequent fitting. Processing the data can improve the quality of the predictions,
increase training speed, and transform data into more meaningful representations
to facilitate model training. Here, we will only focus on the relevant techniques
pertaining to time series forecasting, our domain of interest.

5.3.1 Missing value handling

A common assumption in supervised learning is that all samples in a dataset are
sampled from the same data-generating process and are independent of each other.
However, this assumption does not hold in the case of time series forecasting, as it
overlooks the existence of temporal dependence among the values to be estimated
(represented by the unknown mapping f ). Consequently, it is not advisable to use
general-purpose missing value imputation techniques in this context, and instead,
specific techniques tailored for temporal data should be preferred.

Various techniques for handling missing values in time series data are available
in the literature [97], along with their corresponding implementations. These
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techniques encompass a range of approaches, starting from basic replacement
methods such as Last Observation Carried Forward (LOCF) or Next Observation
Carried Backwards (NOCB), which involve using the last available value to fill in
missing data points.

More advanced techniques include model-based approaches that rely on forecasts
generated by autoregressive models, Kalman filtering, or exponential smoothing.
These methods utilize the inherent temporal structure of the data to make pre-
dictions and impute missing values. Additionally, statistical techniques such as
interpolation or rolling statistics can be employed to estimate missing values based
on the surrounding data points.

5.3.2 Feature selection

Traditional supervised learning algorithms are typically designed for problems
with a small input space and relevant input variables. However, they can perform
poorly when applied to tasks with limited data and numerous input variables.
To address this, feature selection is commonly used to eliminate irrelevant fea-
tures. Feature selection approaches can be categorized into three main types:
filter methods, wrapper methods, and embedded methods. Filter methods assess
feature relevance solely from the data, while wrapper methods evaluate subsets
of variables based on their usefulness to a specific learning technique. Embedded
methods incorporate variable selection as part of the learning procedure and are
tailored to specific learning machines.

5.3.3 Data scaling

In the presence of input variables having different orders of magnitude, a rescaling
process is necessary to ensure a meaningful learning process. The purpose of this
rescaling process is to adjust the scale of the variables, aligning their magnitudes
with each other while attempting to preserve the original distribution of the
variable under consideration.
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One commonly used rescaling technique is the min-max scaling Equation (5.7),
where the minimum and maximum values of the variable are determined, and
then each value is transformed to a new range between a specified minimum
and maximum. This method ensures that the variable’s values are adjusted
proportionally within the new range while preserving the original distribution.

xscaled =
x− xmin

xmax − xmin
(5.7)

or
xscaled =

x− xmean

xmax − xmin
(5.8)

Another option for rescaling is the interquartile scaling Equation(5.9). In this
approach, the interquartile range (the range between the 25th and 75th percentiles)
of the variable is determined. Each value is then transformed based on its position
within the interquartile range, effectively preserving the variable’s distribution
while adjusting its magnitude to be compatible with the other variables.

xscaled =
x−Q1(x)

Q3(x)−Q1(x)
(5.9)

where min(x), max(x),Q1(x) andQ3(x) represent the minimum, maximum, 1st

and 3rd quartile of the x variable, respectively.

Alternatively, if it can be assumed that the variable follows a normal distribution,
the z-score rescaling method (5.10) can be employed. This rescaling technique
ensures that the variable’s mean is equal to zero and its variance is equal to one,
thus standardizing the variable.

xscaled =
x− µx

σx
(5.10)

where µx and σx represent the mean and the standard deviation of the x variable,
respectively.
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5.3.4 Feature engineering

Feature engineering (or feature pre-processing) in time series forecasting involves
creating relevant and informative input features that can improve the accuracy
and performance of a forecasting model. Time series data is characterized by its
temporal nature, where the order and dependencies of data points over time play
a crucial role in forecasting future values [98].

In cases where the available data has limited informative content, feature engi-
neering is conducted to generate new features from the existing data. This process
involves creating additional features by combining the original N variables using
both linear and non-linear methods. By constructing these new features, the aim
is to enhance the information present in the data and improve the performance of
machine learning algorithms. This action aims to capture these temporal patterns
and provide meaningful inputs to the forecasting model.

Rolling averages, rolling counts, and rolling standard deviations are commonly
used in sliding window-based feature engineering in time series data. If a time
window of sizew is considered, the resulting new feature is a time series of length
N − w.

5.3.5 Learning phase reconstruction

The native format of time series data is typically not suitable for addressing the
forecasting problem using supervised learning techniques. To overcome this chal-
lenge, an embedding or reconstructing phase procedure is necessary to reorganize
the existing observational data. It is commonly used in time series forecasting to
capture the underlying patterns and relationships within the data.

Thus, following the feature engineering process, we apply the embedding pro-
cedure to the original time series data. Through this process, the original one-
dimensional time series is transformed into a higher-dimensional format suitable
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for the learning process [99]. To perform embedding reconstruction, methods
such as delay embedding or phase space reconstruction can be used.

Phase space reconstruction (PSR) is a specific method used in nonlinear time
series analysis to reconstruct the underlying dynamics of a system from observed
time series data. It assumes that the system’s dynamics can be represented by
a trajectory in a higher-dimensional space called the phase space. The process
of phase space reconstruction requires selecting an appropriate embedding di-
mension m and time delay τ . The embedding dimension is determined by the
number of variables or features used to represent the system, while the time delay
represents the lag between successive observations. These parameters are chosen
to capture the dynamics and preserve the topological structure of the original
system.

In PSR, if we have a one-dimensional time series data represented as x =

x1, x2, · · · , xN , the embedding dimension is denoted as m, and the delay time
is represented as τ . Using these parameters, the set of time series reconstructed
through phase space can be mathematically expressed as in Equation 5.11.

X1

X2

...
XM




x1 x1+τ · · · x1+(m−1)τ

x2 x2+τ · · · x2+(m−1)τ

...
... · · ·

...
xM xM+τ · · · xN

 (5.11)

where M = N − (m− 1)τ .

The phase space reconstruction procedure involves two steps, the first is choosing
an embedding delay τ , and the second concerns choosing an appropriate number
of embedding dimensions to embed the time series. One way to estimatem is by
False Nearest Neighbor (FNN) analysis [100].
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5.4 Machine learning algorithm

This section provides a theoretical overview of the key machine learning algo-
rithms utilized in the study. The primary focus is on artificial neural networks,
which serve as the foundation for understanding other neural network models.
Specifically, recurrent neural networks (RNNs) and convolutional neural networks
(CNNs) were themain forecastingmodels employed for frequency fluctuation pre-
diction. Additionally, the study utilized a quantile regression forest for conducting
risk-averse analysis in dynamic line rating.

5.4.1 Artificial Neural Networks

The concept of Artificial Neural Network (ANN) is inspired by the structure of
biological neural networks found in animals’ central nervous systems. These
biological networks consist of interconnected cells (neurons) that process infor-
mation. The strength of connections between neurons can change over time in
response to external stimuli, allowing the network to learn from experiences.

In deep learning, ANN is a mathematical model designed to replicate the struc-
ture and functions of biological neural networks. At its core, an artificial neural
network consists of artificial neurons, which are simple mathematical models
governed by three fundamental operations: multiplication, summation, and ac-
tivation. When inputs are fed into an artificial neuron, they are multiplied by
individual weights, which represent their relative importance. The weighted in-
puts, along with a bias term, are then summed within the neuron. Finally, the
sum is passed through an activation function, also known as a transfer function,
at the neuron’s output. This entire process is illustrated in Figure 5.2. Neurons in
the network are interconnected by weighted links, allowing signals to propagate
from one neuron to another. The output signal of a neuron is transmitted through
its outgoing connection, which splits into multiple branches, carrying the same
signal. These branches terminate at the incoming connections of other neurons
within the network.
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Figure 5.2: The basic structure of an artificial neuron (perceptron structure): Each input element is
weighted by a corresponding weight. The combined sum is used to make a decision. The
neuron computes the weighted sum of the input signals and compares the results with a
threshold value of the activation function.

In our task, we will focus on a specific type of ANN called the Feedforward Neural
Networks (FNNs), also known as Multilayer Perceptrons (MLP) [101–103] as
illustrated in Figure 5.3. The MLP is organized into layers, with each layer fully
connected to the next layer. FNNs consist of three types of layers: input, hidden,
and output layers. Each layer is composed of neurons or nodes, with connections
between nodes in adjacent layers throughweighted interconnections or links [104].

Figure 5.3: Shows a single hidden layer of MLP network, with x = (x1, x2, · · · , xn)T rep-
resents n input vector, S = (S1, S2, · · · , Sh)T represents h hidden layer, while
y = (y1, y2, · · · , ym)T represents m output vector in the output layer. wh and wo

represent hidden neurons biases, and output neurons biases, respectively.
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In an artificial neuron, information is received through weighted inputs, multi-
plying each input by a corresponding weight. The inputs are then summed along
with a bias term, and the sum is processed using an activation or transfer func-
tion. The processed information is then passed through the neuron’s output(s).
The simplicity of the artificial neuron model can be observed in its mathematical
representation as:

y(k) = F (

m∑
i=0

wi(k).xi(k) + w0) (5.12)

Where, xi(k) is the input value in discrete time k where i goes from 0 tom,wi(k)

is the weight value in discrete time k where i goes from 0 to m, w0 is bias, F is
an activation function, yi(k) is output value in discrete time k.

The optimal weights, w1, w2, · · · , wn for the connections between neurons, are
found in the training process using an optimization algorithm. Especially in deep
learning, the stochastic gradient descent (SGD) algorithm is applied for this. SGD
is a version of the well-known optimization algorithm gradient descent (GD), in
which the whole training set is divided into small sets, called mini-batches, to
reduce the calculation time while still getting a good optimum estimation.

Gradient descent runs iteratively to find the optimal values of the parameters
corresponding to the minimum value of the given cost function J(w0, w1). Math-
ematically, the derivative technique is essential to minimize the cost function
because it helps get the minimum point. The derivative refers to the slope of the
function at a given point. We need to know the slope so that we know the direction
(sign) to move the coefficient values to get a lower cost on the next iteration.

The simplest cost function for neural networks is given as:

J(w0, w1) =
1

2m

m∑
i=0

(hw(xi)− yi)
2 (5.13)
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Where h(w) refers to the output of activation functions mapping from input
features to output target variable for a specific i value, indicating the predicted
line using the equation 5.14 for one-dimensional input data case. m number
of training samples, yi denotes the value of the actual data point we’ve already
obtained. The i value represents the count of data points for which we have
computed the differences.

hw(x) = w0 + w1x (5.14)

Gradient descent is just the differentiation of the cost function. It is given as:

∂J(w0, w1)

∂wj
=

∂

∂wj

1

2m

m∑
i=0

(hw(xi)− yi)
2 (5.15)

For j=0 and j=1,

∂J(w0, w1)

∂w0
=

1

m

m∑
i=0

(hw(xi)− yi) (5.16)

∂J(w0, w1)

∂w1
=

1

m

m∑
i=0

(hw(xi)− yi)xi (5.17)

and gradient descent 5.18, repeat until convergence for every j.

wj := wj − α
∂J(w0, w1)

∂wj
(5.18)

In the above equation, α is known as the learning rate, determining the pace of
descent along the slope. A small αmeans slow convergence, while a large αmay
not converge. If α is excessively high, it might skip the minimum error point,
leading to inaccurate results. Conversely, if it’s too low, model optimization takes
longer, wasting computational resources. Too low value of learning rate leads to
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the solution getting stuck in local minima instead of the global minima of the cost
function. Hence, selecting an optimal α value is crucial. Figure 5.4 illustrated the
effect of learning rates over epoch [105].

Figure 5.4: Shows the effects of different learning rates. At low learning rates, progress is steady and
linear. With high learning rates, the improvements become more rapid, even exponential.
Higher rates accelerate loss reduction but risk getting trapped in poorer states of loss
(green line). This happens due to excessive "energy" in the optimization process, causing
parameters to bounce around, and preventing them from finding a stable position in the
optimization landscape.

The derivative of a function (J(w0, w1)) on each parameter (weight) tells us
the sensitivity of the function with respect to that variable or how changing the
variable impacts the function value. Gradient descent, therefore, enables the
learning process to make corrective updates to the learned estimates that move
the model toward an optimal combination of parameters (w0, w1). The cost is
calculated for amachine learning algorithm over the entire training dataset for each
iteration of the gradient descent algorithm. In Gradient Descent, one iteration
of the algorithm is called one batch, which denotes the total number of samples
from a dataset that is used for calculating the gradient for each iteration. The GD
algorithm optimizes by following the direction of the gradient of a cost function. It
converges when this gradient tends to zero. The cost function in machine learning
is usually the sum of the training examples of a per-example loss function.

66



5.4 Machine learning algorithm

A numerical calculation of the gradient to execute the SGD algorithm can be com-
putationally expensive. Therefore, its estimation for the cost function, J(w), with
respect to its parameters, is typically done using the backpropagation algorithm.
The procedure consists of applying the chain rule recursively to execute the deriva-
tive of the loss function with respect to the output vector, y, as a multiplication of
the derivatives of the outputs of each neuron for its respective inputs.

The choice of the transfer function, or activation function, is a crucial aspect of
the artificial neuron model. Activation functions define the behavior of the neuron
and can be any nonlinear function. Figure 5.5 illustrated the most commonly used
activation functions in neural networks, including Sigmoid, Tanh, and rectified
linear unit (ReLU) a. These functions introduce non-linearity to the network’s
computations, enabling it to learn complex patterns and relationships. The final
output of the network is determined by the weights leading up to the output layer.
To compute a prediction, the output is passed through an activation function.

Figure 5.5:Mostly used activation functions, Sigmoid, tanh, and ReLU.
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Sigmoid (red line):
f(x) =

1

1 + e(−x)
(5.19)

Tangens Hyperbolicus, tanh (blue line):

f(x) = tanh(x) =
2

1 + e−2x
− 1 (5.20)

Rectified Linear Unit, ReLU (green line):

f(x) = max(0;x) (5.21)

Deep feed-forward neural networks were introduced to address the limitations of
single-layer neural networks, which struggle to learn complex dependencies, par-
ticularly spatio-temporal dependencies. The architecture of a deep feed-forward
neural network is similar to that of a single-layer network but with the key dif-
ference lying in the number of hidden layers which determines the depth of the
network. The following section presents variants of deep neural networks.

5.4.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) [91] introduce recurrent connections in the
hidden layers of a feed-forward network, enabling them to model dynamic tempo-
ral dependencies in the input data. RNNs process sequential or time-series data
and feed the output from the previous step as input to the current stage [92]. They
have a "memory" that allows them to impact current input and output based on
past elements in the sequence. Figure 5.6 demonstrates the fundamental architec-
ture of an RNN. It depicts the components involved in the RNN model, namely
the input (Xt), hidden state (St), and output (Ot) at each time step (t). The
parameters U , V , and W are parameters for the hidden matrices and their values
can differ at each time step. The hidden state is computed using the formula
St = f(U(xt) +Ws(t−1)

), where f represents a non-linear activation function.
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Figure 5.6: Basic architecture of Recurrent Neural Network.

RNNs’ outputs are dependent on the previous inputs in the sequence [91], unlike
typical deep neural networks, which presume that inputs and outputs are inde-
pendent of one another. However, standard RNNs face the challenge of vanishing
gradients, making it difficult to learn from long sequences of data. To address
this issue, several popular variants of RNNs have been developed. Among these,
LSTM and GRU are the most popular.

5.4.2.1 Long short-term memory

Long Short-Term Memory (LSTM) [106] has emerged as the most stable and
powerful model for capturing long-range temporal dependencies in various prac-
tical applications, outperforming standard RNNs and their variants [107]. The
repeating LSTM cell’s architecture, depicted in Figure 5.7, is responsible for its
superior performance. LSTM addresses the problem of vanishing gradients by
incorporating special units called gates that enable the network to store data for
long periods. The flow of information into and out of the memory cell is managed
by three gates: the Forget Gate, Input Gate, and Output Gate.

• Forget Gate: determines which information from the previous state is re-
tained or discarded.
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• Input Gate: determines what new information should be added to the
network’s long-term memory (cell state), given the previous hidden state
and new input data.

• Output Gate: controls the outputs or the new hidden state.

Long Short-Term Memory (LSTM) networks enhance simple RNNs by incorpo-
rating a time-varying internal state (ct). They employ a three-step mechanism to
update the internal state, combining the previous output (ht−1) with new input
values (yt) through input and forgetting gates. The updated state (ct) is combined
with the output activation vector (ot) to generate the new neuron output (ht).
Figure 5.7 illustrates the LSTM architecture.

LSTM has a bidirectional variant that connects two hidden layers running in oppo-
site directions, allowing the network to incorporate information from both the past
and the future. Bidirectional LSTMs (BD-LSTM) enhance model performance
by predicting both positive and negative time directions simultaneously [108].
Another variant of LSTM is the encoder-decoder LSTM network (ED-LSTM)
which is a sequence-to-sequencemodel formapping inputs to output vectors [107].
LSTM networks are often used in multivariate and multistep forecasting in hybrid
architectures with linear models.

5.4.2.2 Gated Recurrent Units

Gated Recurrent Units (GRUs) are another variant that uses gating methods to
control information flow within the neural network [109]. GRUs have fewer
parameters compared to LSTMs, with a reset gate (Rt) and an update gate (Zt)
instead of the output gate. This structure allows GRUs to capture dependencies
from large sequences of data adaptively without discarding earlier information.

Like LSTM, Gated Recurrent Unit (GRU) is a method used to avoid the vanishing
or exploding gradient problem by using gates to control the flow of information
to the next time step. Figure 5.8 illustrates the GRU architecture. Unlike LSTM,
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Figure 5.7: Long-Short-Term Memory (LSTM) networks. The LSTM cell denotes memory cells that
use gates and cell memory for remembering long-term dependencies.

GRU does not pass on a cell state to the next step but instead transfers information
using the hidden state, making it faster and more memory-efficient.

Both LSTM and GRU have demonstrated their effectiveness in various ap-
plications, although GRUs may perform better on smaller and less frequent
datasets [110, 111].
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Figure 5.8: An illustration of the basic structure of a gated recurrent unit (GRU) cell consisting of
reset and update gates.

5.4.3 Convolutional Neural Networks

A CNN is a specialized type of feed-forward neural network [112] that incorpo-
rates the convolution layer, ReLU, pooling layers, and fully connected layers. The
key feature of CNNs is their ability to automatically learn hierarchical patterns
and features from input data. This is achieved through the use of convolutional
layers, which apply a set of learnable filters (kernels) to input data. These filters
are convolved with the input, capturing local patterns and spatial relationships
between pixels. The pooling layers reduce the spatial dimensionality and retain
the most salient features. The fully connected layers, located towards the end
of the network, perform classification or regression tasks based on the extracted
features.

Convolutional neural networks (CNNs) offer an alternative architecture for time
series forecasting by considering local temporal dependencies within the input
values. One-dimensional convolution tries to extract features either in the tem-
poral dimension (i.e., within a single time series, over time) or in the spatial
dimension (i.e., across different time series at a fixed time) [113]. Conversely,
two-dimensional convolution works on both dimensions at the same time [114].

Figure 5.9 shows a CNN used for time series prediction using a univariate time
series as input, where multiple output neurons represent different prediction hori-
zons.
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Figure 5.9: One-dimensional convolutional neural network formulti-step ahead time series prediction.

It is worth noting that a multi-output network with h output neurons, one for each
of the h−step ahead predictions to perform, can be employed to model a MIMO
forecasting approach. A multi-output network could also be used to perform
one-step-ahead multivariate prediction.

5.4.4 Quantile Regression Forests

QuantileRegression Forests (QRFs) [115] is a supervisedmachine learningmodel,
probabilistic regression algorithm, which is derived from random forest [81]. In
graph theory, a tree is defined as a continuous graph with no closed loops, which
is built with a set of nodes and edges. Nodes always divide into two other nodes
and their edges have a defined direction.

QRF can predict non-parametric distribution data and deliver an accurate way of
estimating different quantiles for high-dimensional predictor variables. Conse-
quently, QRF is an ensemble learning model based on the aggregation of several
decision trees to establish the model output, as shown in Figure 5.10 using a
QRF algorithm procedure flowchart. A decision tree refers to a decision support
tool that relies on tree-like structures that consist of links and nodes to achieve
potential model outputs (see Figure 5.11). The starting point of each decision tree
is a parent node that serves as a decision point; the parent node keeps creating
branches until a decision is reached. Each tree is trained to predict the observable
target variable Y, for a horizon h, at time t + h using the predictor variables X
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at time t. Then all outcomes held in the leaves for each tree are used to build the
probabilistic forecast.

Figure 5.10: Quantile regression forest algorithm procedure flowchart. Y1, Y2, ..., YN presents the
average response and decision tree output. N denotes the sample sets in which random-
ized and produced N decision tree.

An ensemble of outputs from several binary trees trained with randomly selected
input data element is called a random forest [81]. A random forest prediction result
can be calculated as a weighted average of all outputs of binary trees. A prediction
Y can be calculated as a weighted average of all outputs yi with Equation (5.22),
where the weights wi are defined by Equation(5.23).

Ŷ =
∑N

i=1
wiyi (5.22)

Wi =
1

Nb

Nb∑
k=1

1
{
Xi ∈ Rlk,p

}
̸=

{
q : Xq ∈ Rlk,p

} (5.23)
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Figure 5.11: A multidimensional binary decision tree [116]. Xi denotes predictor variables. The
tree has four internal nodes and five leaves (terminal nodes). Xi ≤ tk and Xi > tk
correspond to the left and right branches of each internal split, respectively. yi denotes
the mean of the observations at leaf i.

Random forest prevents overfittingmost of the time, by creating random subsets of
the features and building decision trees using these subsets. Finally, it combines
all subtrees to generate a single prediction result.

In this dissertation, QRF was utilized to develop a model that can predict the
ampacity of OHTL with a two-year dataset. The reason behind choosing QRF
over other machine learning techniques is associated with its behavior which
allows for the make use of variables outside the point forecast, making it useful
in understanding outcomes of probabilistic forecasting that are non-normally
distributed and nonlinear associated with weather forecasting uncertainties.

5.4.5 Explainable machine learning

Deep neural networks have found significant use in critical areas like healthcare,
self-driving vehicles, and the military, directly impacting human lives. However,
complex ML models are often non-explainable black-boxes, i.e. they do not
provide insights about how inputs are mapped to outputs [117, 118]. This is
particularly problematic for critical infrastructures such as power systems, where
the black-box character poses a security risk [119, 120]. To address this, the
field of explainable machine learning (XAI) has emerged, aiming to create tools
and methods that provide understandable explanations for AI decisions [121].
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In the context of electric power systems, maintaining stable operation requires
adhering to strict frequency limits. Fluctuations and external influences can lead
to significant deviations and increased control efforts. Although machine learning
can model these complex relationships, the lack of transparency in many models
restricts their usability and insights.

In power grids, unpredictable factors like fluctuating renewable energy sources
and societal events can disrupt frequency stability. Tomaintain stability, operators
monitor the system closely and allocate resources. Machine learning (ML) tech-
niques, which are adept at handling vast data sets, including frequency recordings
and various features, offer a way to analyze and predict grid frequency with data-
driven models [116]. However, complex ML models often lack explainability,
making them problematic for critical systems like power grids.

The importance of model explainability in the realm of machine learning be-
comes evident through the usual post-training inquiries. These include queries
about how various features impact predictions, which features hold the most influ-
ence, and whether the seemingly impressive model performance metrics warrant
trust. Understanding these aspects becomes pivotal for multiple reasons, such
as debugging, guiding feature engineering/enhancement, directing future data-
gathering efforts, aiding human decision-making, and establishing confidence in
the model’s outcomes.

This dissertation proposed solution introduces an explainable multivariate (Sec-
tion 5.2.2) ML model that predicts frequency including other external features as
post-modelling explanations for black-box models [122]. Deep learning models
are employed for their strong performance and the ability to calculate SHAP val-
ues, which offer insights into predictions. SHAP stands for “SHapley Additive
exPlanations” and draws from cooperative game theory’s Shapley values. These
values gauge each player’s contributionwithin a coalition toward the final outcome
while ensuring their combined contributions match that outcome. In the model
explanation, SHAP values precisely quantify input feature impacts on individual
predictions.

The advantages of SHAP values over alternative techniques include:
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• Global Interpretability: Beyond displaying feature importance, SHAP val-
ues indicatewhether a feature positively or negatively influences predictions.

• Local Interpretability: SHAP values enable the calculation of contributions
for each prediction, offering insight into how features influence individual
outcomes. This differs from techniques providing aggregated results for the
entire dataset.

• Model Versatility: Unlike certain methods limited to specific model types,
SHAP values accommodate various models, such as linear regression, XG-
Boost, neural networks, and more.

In this work, the model takes input from meaningful features related to load,
generation, and frequency time series. XAI approaches, including inherently
transparent models and post-modeling explanations for black-box models [122],
are used, with SHAP values offering a unified and consistent way to measure
feature effects [123, 124]. The models are fed with significant input features
derived from time series data related to load, generation, and frequency measure-
ments. These models also allow for the quick and efficient computation of SHAP
values [125], which help explain prediction outcomes.

5.5 Evaluation Metrics

The machine learning models can be compared to each other in a benchmark if
tested under the same conditions. For this, a set of evaluation metrics has to be
defined. They primarily consist of the difference between the forecast produced
by the model and the ground truth, or label.

5.5.1 Mean absolute percentage error

In this dissertation, the Mean Absolute Percentage Error (MAPE) was used for
probabilistic DLR performance evaluation. It is defined with Equation (5.24),
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where ŷ is the predicted value, y is the true value, and N is the number of
samples. This metric is expressed in percentage when multiplied by 100. It favors
risk-averse systems. The MAPE gives importance to errors occurring at low
current-carrying capacities, which have a higher probability of being reached in
everyday operations.

MAPE =
1

N

N∑
i=1

(y − ŷ) (5.24)

5.5.2 Mean absolute error

Mean Absolute Error (MAE) was used to train the networks. Given that, ŷ
represents the predicted value of ith the sample and yi is the true value, then the
mean absolute error calculated over N is defined as

MAE =
1

N

N∑
i=1

|y − ŷ| (5.25)

5.5.3 Root mean squared error

Root Mean Squared Error (RMSE) was employed to evaluate the performance of
various algorithms.

RMSE =

√√√√ 1

N

N∑
i=1

(y − ŷ)2 (5.26)
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Frequency Deviation Predictions

Grid frequency is one of the observable variables that inform grid operators of
the status of stability of the power grid. Based on frequency dynamics in the grid,
the system frequency response action may activate certain frequency response
services to maintain the frequency within acceptable limits or inform manual
intervention in critical situations.

The Ethiopian National Load Dispatch Center (NLDC) operating procedure out-
lines the necessary actions for system operators to ensure network security in
the case of contingencies. It also outlines the actions required to maintain sys-
tem variables such as voltage, frequency, and current at nominal values during
day-to-day operation. However, there are instances where the system operates
beyond the initial planning assumptions. Deviations from the assumptions have
consequences if not possible to identify in advance before it happen [126].

In Ethiopia, grid frequency encounters sudden changes due to factors such as
load variations, generator outages, transmission line trips, and transformer fail-
ures [72]. Following the contingencies, in the time frame of seconds, governors
in generators and certain loads automatically adjust to counteract frequency de-
viations. If the problem sustains for minutes, AGC action takes place to bring
frequency to nominal operation. However, for large frequency deviations, addi-
tional frequency response services are deployed to restore the frequency deviation
to setting limit [126].
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6.1 Frequency variation pattern of Ethiopian
grid

Frequency deviation reflects an imbalance in power generation and demand. Fluc-
tuations in the demanddirectly affect the power balance, where demand forecasting
errors and holiday events can lead to significant unexpected frequency deviations.
The variability of renewable energy sources causes additional frequency fluc-
tuations due to their intermittency or generation forecasting errors. Ethiopia’s
frequency deviation range is far wider with respect to German/European, and the
frequency limit is illustrated in Table 6.1. For example, the operating frequency
variation is set at∆f = ±0.50 Hz from a nominal frequency of 50 Hz. Moreover, if
the frequency deviates more than∆f = ±0.50 Hz due to contingencies, the existing
control systems, i.e., primary and secondary control, are activated to compensate
for the imbalance in the power grid and to return the frequency to the nominal
one.

Table 6.1: Frequency limits in the EEP transmission system.

Operating condition Frequency limits
Under normal operation 49.50 Hz to 50.50 Hz
Under system disturbance 49.00 Hz to 51.00 Hz
Maximum band under fault system 48.75 Hz to 51.25 Hz
Under extreme system operation or
fault condition

f<47.50 Hz or f>51.50 Hz for 20 sec.

Mostly the demand evolves continuously as shown in Figure 6.1 (blue color),
however, Ethiopia’s generation pattern is load-following, in which the generation
follows the general trending of load pattern within the day. This is usually
performed by involving the starting and stopping of quick-start hydro facilities.
The spinning reserve strategy helps correct the load balance. Figure 6.1 shows a
typical daily curve with a step-like generation of the Ethiopian grid.
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Figure 6.1: Load trajectory of the electricity supply in Ethiopia on January 28, 2020.

Furthermore, power generation exhibits discontinuous behavior due to renewable
fluctuations, and the resulting changes in the power plant dispatch or spinning
reservoir activation. As a result, the imbalance between the step-like behavior
(Figure 6.1 (red color)) of the generation and the continuous behavior of the load
leads to stochastic frequency jumps at the beginning of the generation response and
spinning reserve response [56]. Figure 6.2 shows power grid frequency fluctuates
over time in the Ethiopian grid system that exhibits non-deterministic frequency
fluctuation behavior.

The nature of load and generation patterns in the grid suggests a strong real-
time monitoring system is necessary for reliable supply. The frequency dynamic
is time-sensitive and highly related to the balance between load and generation
change. Ethiopia’s grid has nowell-established grid optimization system to handle
sudden changes in the grid system. In this study, the focus is on improving the
reliability of the Ethiopian grid network by utilizing a machine learning model
for frequency fluctuation prediction.

Accurate frequency predictions enable precise active power balancing, and effec-
tive resource scheduling, so reducing the risk of outages. The critical task of
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Figure 6.2: Illustration of power-grid frequency fluctuates overtime on December 18, 2020. The
frequency characteristics are influenced by other external factors that are rather exhibiting
a stochastic nature.

managing fast fluctuations in load or generation in a power system is achieved
through centralized control centers sending control signals to generating units
and responsive loads capable of fast adjustments. These strategies ensure balance
during regular power system conditions. Practical tools to forecast power system
frequency in the next few minutes can significantly aid grid operators in making
timely and well-informed decisions. Frequency forecasting aids in understanding
load trends and is vital for power system planning, and economic dispatch.

One typical grid disturbance occurred in Ethiopia on October 7, 2022, when a
transmission line to Djibouti tripped at 3 pm as shown in Figure 6.3. The line
trip caused generation at the center and the frequency rose to 50.84 above the
normal operation. Due to this, Gilgel Gibe III (GGIII) hydropower generators
were activated to reduce generation.

6.2 Feature engineering and data
reconstruction

The necessary data for this dissertation was collected from Ethiopian Electric
Power, Ethiopian Electric Utility, the Ethiopian National Meteorology Agency,
and the Ethiopian National Load Dispatch Center (NLDC) office.
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Figure 6.3: Grid outage disturbance due to transmission line toDjibouti trip. (a) Djibouti transmission
line outage and Gilgel Gibe III (GGIII) units response, (b) Grid frequency response.

6.2.1 Data preparation

The time series data were normalized before training the deep learning networks.
This involved creating the distribution of features between [-1, 1] as discussed in
section 5.3.3. The maximum and minimum values of the data were recorded to be
used later for the denormalization process of converting the predicted frequency
value back to its original scale.

Two forms of data were considered data used in this dissertation, first historical
frequency data which has a sampling rate resolution of one second, and second
generation mix and load data that have a 15-minute resolution.

6.2.2 Feature engineering

Since the data for power grid frequency is in the form of a time series, time series
forecasting techniques discussed in Chapter 5 were utilized. Themachine learning
algorithm learns from past and current observed values to make predictions for
future frequency fluctuations. The algorithm undergoes a training process where
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it learns the mapping function (Y = f(X)) between input and output datasets,
continuously adjusting its parameters to achieve accurate predictions. The work-
flow of the machine learning algorithm development in this work is illustrated in
Figure 6.4.

Figure 6.4: Flowchart of deep learning forecasting model development process.

After the scaling process, the dataset is categorized into specific time intervals.
The optimal embedding dimension w = 30 and prediction horizon h = 10 were
determined to incorporate richer temporal features by manual tuning. Then the
deep learning model is constructed by using the embedding matrix formation (see
Section 5.3) as the training and target set and employing grid research and cross-
validation to optimize the hyperparameters of the network. Data was divided into
80% training and 20% testing for validation purposes then undergoing testingwith
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unseen datasets. The details of hyperparameter tuning were explained in Section
5.1.3. The trained deep learningmodel was adopted to predict the frequency value
of future time steps.

Finally, the frequency deviation prediction value returned by the deep learning
model was denormalized by applying the maximum and minimum values, and
then the actual frequency forecasting value was obtained.

6.2.3 Data Reconstruction and learning phases

The fundamental assumption in supervised learning is the existence of an un-
known stochastic dependency, which describes the relationship between the input
variables x and the output (target) variable y. It can be represented as:

y = f(x) + e (6.1)

where e represents the noise term, assumed to have a zero mean and constant
variance. The noise term accounts for all unmeasured factors contributing to
the variability of y. Additionally, we assume that each sample in the observed
dataDN is independent and identically distributed, generated from the stochastic
process described by f .

The step in developing the learning phase involves the creation of a structured
dataset of the observable dataset into a higher-dimensional format suitable for a
multi-step-ahead learning process. Figure 6.5 shows the form of the reconstructed
dataset in a tabular form. The training set was defined as k samples. The test set
N−(ω−1+h) samples. For each network, a sequenceX is randomly selected and
prepared for training. The preparation involves defining an embedding window
of size ω = 30 and several steps ahead h = 10, satisfying the conditions:
h < ω < k < N .

The generated dataset was represented as a structured matrixM ×D, whereN is
original dataset length,D = ω + h andM = N − (ω − 1 + h), composed ofM
pairs < xi, yi > (also named samples) of observations xi and the corresponding
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Figure 6.5: Example of generic datasetM ×D ofM samples, resulting of feature engineering of the
original N variables, split into a training set Mtrain of k training samples and a testing
set Mtest ofM − k testing samples, where h < ω < k < N .

targets yi. Moreover, as part of the learning model, the dataset will be divided
into two parts: a training set used for training the model parameters and a testing
set used for validating its accuracy, to assess the performance and generalization
ability of the trained model.

6.3 Determination of deep network structure

Deep learning models often require setting various hyperparameters. The effec-
tiveness of adjusting these hyperparameters significantly impacts the accuracy of
prediction models. Poorly chosen hyperparameters can result in a notable rise in
prediction errors. The configuration of hidden layers in a deep neural network
significantly impacts prediction outcomes. Finding the right balance is crucial
to avoid under-fitting or over-fitting. Adjusting the number of hidden layers is
more influential than the number of neurons within each layer, so neurons are
kept constant to identify the optimum hidden layer. The number of hidden layer
architecture were chosen based on empirical observations. To enhance prediction
accuracy in the models, a cross-validation approach is employed to optimize these
parameters. This is depicted as a red dotted line in Figure 6.4.

86



6.3 Determination of deep network structure

For the input layer of the models, since the original load data is input to deep
learning models after passing through the embedding matrix, the number of the
input layer neurons of models does not need to be tuned and can be directly set to
embedding dimensions ω. For the model output layer, when the model input is
a row of elements in the embedding matrix, it is equivalent to input the position
vector of the moving point in the embedding matrix at a certain moment. Then
it needs to output the predicted value of the moving point position vector at the
next moment. The optimum embedding window size and prediction horizon are
set after optimum hyperparameters are determined.

To optimize the hyperparameters of the model, we perform a grid search over se-
lected parameter values and evaluate the performance via 2-fold cross-validation
on our training set. Then, we retrain the optimal model with optimal hyperparam-
eters on the whole training set and calculate the ML prediction of the frequency
deviations for every minute ti in the unseen test set. We evaluate the performance
on the test set using the RMSE.

We use rectifier linear units (Relu) in all the respective models. All models
shared the same architecture and training approach, consisting of 2 hidden layers
and a dense layer with a size equivalent to the number of steps ahead required for
prediction.

We conduct experiments for hyperparameter optimization with the following
parameter definition:

batchsize : [32, 64, 72, 128, 256],

learningrate : [0.01, 0.005, 0.001, 0.0005],

neurons : [64, 128, 256, 512],

epochs : [10, 20, 50, 80]

Finally, batch size = 64, epochs=50, learning rates = 0.005, and hidden neurons =
256 were chosen as hyperparameters.
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6 Machine Learning for Grid Frequency Deviation Predictions

The training and validation loss values are significant indicators that offer insights
into the learning performance changes across epochs. They aid in identifying
issues leading to underfitting or overfitting. The networks undergo 20 epochs of
training using the Adam optimizer with learning rates ℓ = 0.005. The primary
objective is tominimize theMean Squared Error (MSE) loss between the predicted
values and the targets. The outcomes of the proposed models are graphically
depicted in Figure 6.6, with the orange curve representing validation and the blue
curve illustrating training. Notably, model results exhibit a high training accuracy
of 98% and minimized training loss of 0.0028. This suggests favorable predictive
outcomes, particularly for power grid system diagnosis.

Figure 6.6: Training and validation loss values over several training epochs.
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6.4 Model evaluation for frequency forecasting

The study evaluates various deep learningmodels including LSTM, Bi-directional
LSTM, Encoder-decoder LSTM, GRU, and CNN. While their error range and
prediction accuracy are comparable, the Encoder-decoder LSTM (ED-LSTM)
performs best in prediction accuracy, while CNN excels in computational speed,
showing its practicality in real-world applications. For this purpose, we measure
the computation time of the proposed forecasting methodology in generating a
forecast for the minutes ahead. The time required to calculate each sample is just
8 milliseconds (ms) with Intel(R) Xeon(R) CPU E5-2699A v4@ 2.40 GHz with 8
GB RAM, which proves that the proposed given models can be used for real-time
frequency dynamics diagnosis using Python scripts.

TheMSEwas utilized for training the networks, while RMSEwas employed as the
performance evaluation metric among different algorithms. Performance metrics
are based on multi-step frequency predictions compared to empirical benchmarks
like the naïve persistence model (NPM), where the forecast for the next period is
simply the same as the current period’s value. The lower RMSE values indicate
better performance. We used the RMSE (see section 5.5) as themain performance
measure for the different prediction horizons in test data. Table 6.2 illustrates the
result for the simulated frequency prediction in terms of the RMSE, where the
lower values indicate better performance.

Table 6.2: Forecasting performance evaluation in terms of RMSE.

Model used RMSE (%)
1min ahead 3min ahead 5min ahead 7min ahead 10min ahead

LSTM 0.0953 0.1101 0.1113 0.1253 0.1478
GRU 0.0915 0.1234 0.1245 0.1277 0.1527
BD-LSTM 0.0904 0.1092 0.119 0.1252 0.1476
ED-LSTM 0.0881 0.1054 0.1071 0.1186 0.1391
CNN 0.0749 0.1087 0.1227 0.1298 0.1493
Benchmark 0.0592 0.1022 0.1257 0.1395 0.1656
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6 Machine Learning for Grid Frequency Deviation Predictions

For verification, the RNNmodels and CNNmodel are tested alongside the bench-
mark to predict the frequency of December 28, 2020, using historical data from
December 27 as a training dataset from Ethiopian Electric Power. As illustrated
in Figure 6.7 there is a decline in prediction accuracy as the prediction hori-
zon increases, yet deep learning techniques still outperform the benchmark, with
ED-LSTM being the most effective.

Figure 6.7: 10-step ahead prediction performance evaluation in terms of RMSE as error bars.

The graph illustrated in Figure 6.8 presents the predicted frequency values com-
pared to actual measurements for 2- steps ahead for the December 28, 2020,
measurement. Figure 6.9 illustrates 10-steps ahead of a 30-minute frequency
forecast that follows the general trend of the actual frequency measurements, fur-
thermore, it shows frequency prediction deterioration as the prediction horizon
increases.
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Figure 6.8: Example of 30-minute frequency forecast for 2-steps ahead for interval 7:00 a.m.-7:30
a.m. on December 28, 2020. Where ∆f = f − f0, f = 50.

6.5 Model prediction explanations

Understanding the dynamics of the power grid, including its frequency, is crucial
for the safe operation of existing and future power grids. In section 6.4 historical
frequency data has been the basis for forecasting frequency time series. Yet,
there’s a query: How might we incorporate extra details, such as generation mix
or power demand changes? Figure 6.10 depicts the influence of generation changes
and line trips on frequency.

To improve the accuracy of the power grid frequency fluctuation forecast, a new
post-disturbance power grid frequency forecast model in multidimensional sce-
narios was proposed in this dissertation. A predictive model, specifically the
CNN model, was employed to make predictions, and the aim is to explain these
predictions using a technique called SHAP values [124]. These values were cal-
culated on a test dataset to provide insights into the CNN model’s predictions.
They quantify how different features related to generation and load impact the
model’s predictions across various time points. This model used a dataset with
a 15-minute resolution, which was selected due to the availability of external
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6 Machine Learning for Grid Frequency Deviation Predictions

Figure 6.9: Examples of 30-minute frequency forecast with 10-steps ahead predictions for interval
7:00 a.m.-7:30 a.m. on December 28, 2020. Where ∆f = f − f0, f = 50.

data, such as load and generation information from the Ethiopian Electric Power
company, at this granularity and frequency data was also downscaled to 15 min-
utes. By leveraging the SHAP method and employing multivariate predictions,
the intention is to enhance the understanding of the CNNmodel’s predictions and
unveil the factors contributing to deviations in power grid frequency.

The input matrix for the forecasting methodology is denoted as X , defined as a
matrix composed of three components: power system frequency (f ), power system
load (P ), and power system generations (G) with 20 elements. This matrix is
processed sequentially by the neural network in the proposed methodology.

Global explanations of the model’s predictions highlight significant features using
different representations, such as the normal summary plot and the bar summary
plot. The normal summary plot, illustrated in Figure 6.12, showcases the top
twenty influential features of the CNN model and their effects on the predictions.
This plot compares the importance percentages categorized by feature types in
a frequency prediction model. It showcases the significance of each feature
in predicting frequencies. It shorts the features by decreasing order. The graph
reveals that theGibe III feature exerts themost substantial influence on predictions,
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6.5 Model prediction explanations

Figure 6.10: Illustrates some additional information for grid frequency perturbations. Measurement
was taken from a disturbance that occurred in Ethiopia’s grid on May 11, 2022. GERD
generator loss triggered overload or power shortage, so frequency declined in response
and led to a transmission line trip that extended to Beles bus bar.

followed by total load and aggregate scheduled generation, both of which also have
a noteworthy impact. Conversely, the Tis Abay II feature contributes the least
to frequency prediction. The features Adama Wind II and Genale Dawa exhibit
a nearly identical effect on frequency prediction. Importantly, this plot solely
focuses on elucidating the importance of features and does not encompass other
aspects.

The feature importance plot is solely informative about feature significance, lack-
ing additional details. Contrarily, the summary plot integrates both feature im-
portance and their effects. Every point on this plot denotes a Shapley value corre-
sponding to a feature and instance, positioned along the y-axis by the feature and
along the x-axis by its Shapley value. Additionally, color coding reflects feature
values, varying from low to high. To address overlapping points, they’re dispersed
along the y-axis to visualize the distribution of Shapley values per feature. These
features are arranged in order of their importance. Figure 6.12 illustrates an al-
ternative representation of the summary bar plot, known as a feature-importance
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6 Machine Learning for Grid Frequency Deviation Predictions

plot. Essentially, the normal summary plot illustrates predictions by revealing the
importance of features and how they affect prediction outcomes.

For example, high values of the Adama Wind II variable have a high negative
contribution to the prediction, while low values have a high positive contribution.
High values of GIBE III, scheduled generation, and total active load have a high
positive contribution to the frequency deviation prediction, whereas low values
have a negative contribution. Gibe III hydro plant, total scheduled generation
forecast, and active load have the most impact, causing predictions to increase
with lower values. Conversely, the Tis Abay II feature has minimal impact
on prediction frequency. Changes in Adama wind II generation lead to lower
predictions for higher values and vice versa. The influence of smaller power
generation plants like Tis Abay II and Ashegoda Wind on predictions is relatively
limited, whether its values are high or low. Higher Melka Wakena values result in
higher predictions, while increased Genale Dawa values lead to lower predictions.

94



6.5 Model prediction explanations

Figure 6.11: Model summary bar plot for identification of predictors of frequency deviation predic-
tions. The SHAP feature importance as the mean absolute Shapley values. The amount
of Gibe III was the important feature, changing the predicted absolute frequency devia-
tion probability on average by 11% (0.011 on the x-axis)
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Figure 6.12: Effect of different generations and total active load on the frequency deviation predictions.
The summary plots illustrate how SHAP effects impact frequency deviations, which have
been normalized by their highest absolute value for better clarity and visualization.

96



7 Dynamic Line Rating for
Overhead Transmission Line
Monitoring

The current-carrying capacity of a transmission line conductor is set by utilities
during design time as a static value based on worst-case weather conditions, the
so-called, Static Line Rating (SLR). For Ethiopian utility, conservative weather
conditions for calculating the thermal capacity of the conductor are shown in
Table 7.1.

Table 7.1: Surrounding weather conditions.

Items Figures
Thermal emissivity 0.9
Solar radiation energy 0.09W/cm2

Wind velocity 0.6 m/s
Ambient Temperature 25◦C
Allowable Temperature 75◦C

Instead of relying on conservative assumptions that only apply a few days a year,
Dynamic line rating (DLR) can be applied to continuously monitor the thermal
rating of overhead power lines which is tremendously varying throughout the
day due to its dependence on weather conditions [127]. This involves installing
temperature sensors on the conductor or using nearby weather stations to gather
data. By utilizing this data information, utilities can calculate the dynamic change
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in the current-carrying capacity of the line. However, the significant temporal
variations in the thermal rating pose challenges for operators to fully utilize the
benefits of DLR in real-time [128]. Figure 7.1 illustrates the variation in current-
carrying capacity over time for a specific overhead line in the case studymentioned
in the dissertation. The graph illustrates a significant fourfold increase in the line’s
transmission capacity, occurring approximately at 7 AM.

Figure 7.1: Sample of current variation throughout the day for three different transmission lines.

DLR offers a more accurate assessment by addressing both the issue of underuti-
lizing transmission capacity and the potential hazards linked to surpassing rated
capacity. DLR inherently improves the efficiency of transmission line operations
and boosts the network’s ability to manage issues after contingencies. As a result,
utility companies can make the most of their current infrastructure and prevent ex-
pensive upgrades. Furthermore, the likelihood of overloading the line, leading to
power outages or service interruptions, is significantly reduced. In the short-term
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plan strategy, there is a possibility to delay or push back investments intended for
enhancing transmission line infrastructure.

7.1 Thermal rating of overhead lines

DLR involvesmonitoring the capacity of power lines by analyzing the heat balance
of the conductor at each time step and considering weather and system conditions.
The thermal heat balance OHTL equation is used to calculate the temperature
of a transmission line based on the heat generated by current flow and the heat
dissipated through various mechanisms [129]. Two prominent models developed
by IEEE and CIGRE are used for calculating the line’s heat balance, particularly
for overhead lines. The heat balance analysis takes into account factors such as
ambient temperature, solar radiation, wind speed, and other relevant parameters
to determine the safe operating capacity of the line.

Due to the principles of thermodynamics, the temperature variation of an overhead
line is influenced by the exchange of heat between the line and its surrounding
environment. This heat balance can be described using Equation (7.1), which
considers the heat gained from the Joule effect, magnetic heating, and solar radia-
tion, as well as the heat lost through radiative, convective cooling, and evaporative
cooling. The balance between these heat gains and losses determines the change
in temperature of the conductor over time. The conductor’s temperature change
is further influenced by its mass per unit length (m, kgm−1) and its heat capacity
(c, Jkg−1K−1).

Heat balance of the overhead transmission line, according to the CIGRE loading
guidelines [130] is defined as:

mc
dTc

dt
= PJ + PS + PM + Pi − Pc − Pr − Pev (7.1)

where PJ is a Joule heating, [W/m], Ps is a solar heating, [W/m], Pc is a
convective cooling, [W/m] and Pr is a radiative cooling, [W/m], PM is magnetic
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heating, [W/m]; Pi is a corona heating, [W/m] and Pev is an evaporative cooling,
[W/m].

Solving Equation (7.1) involves analyzing the conductor’s temperature in an un-
steady state or transient analysis. This approach captures the dynamic behavior of
temperature changes over time. Alternatively, a steady-state solution (dTc

dt → 0)
can be employed to determine the maximum temperature the conductor can reach,
assuming the surrounding conditions remain constant for an extended period.

7.1.1 Joule heating

Joule heating represents the heat generated by the current flow in the conductor. As
current flows through the line, it encounters resistance, resulting in the generation
of heat. The heat generated is proportional to the square of the current and the
resistance of the line and can be represented as:

PJ = I2Rdc (7.2)

where I is the root-mean-square (RMS) value of AC current flowing through a
conductor (A), Rdc is the DC resistance per unit length (Ωm−1) solved as,

Rdc = R20(1 + α(Tc − 20)) (7.3)

whereR20 is the conductor AC resistance at 20 °C (Ω,m−1), α is the temperature
coefficient of resistance (K−1), Tc is the average temperature of aluminum strand
layers (◦C). The catalog value of conductor DC resistance represents maximum
aluminum resistance after stranding at a certain temperature, most often 20◦C.

7.1.2 Convective cooling

Convective cooling represents the heat dissipated through convection. Convection
refers to the transfer of heat through the movement of air around the transmission
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line. It is the most important cooling factor for overhead transmission lines.
The amount of heat dissipated through convection depends on factors like the
temperature difference between the line and the surrounding medium, the velocity
of the fluid or air, and the surface area of the line.

Pc = πλ(Tc − Ta)Nu (7.4)

Where Ta is the ambient temperature in (◦C)

The formula describes the relationship between the thermal conductivity of air
(λ,Wm−1K−1), the temperature difference between the conductor and ambient,
and the dimensionless Nusselt number (Nu).

The thermal conductivity of air (λ) represents how efficiently heat is transferred
between the surface of the transmission line and the surrounding air. It is in-
fluenced by factors such as air velocity, temperature gradient, and the physical
properties of both the air and the transmission line surface.

λ = 2.368× 10−2 + 7.23× 10−5 × Tf − 2.763× 10−8 × T 2
f (7.5)

where Tf = 1
2 (Tc − Ta) for Tf < 300◦C

The value of the Nusselt number is influenced by the wind conditions, specifically
whether the heat transfer occurs through natural convection or forced convection.

7.1.3 Radiative cooling

This term represents the heat dissipated through radiation. Radiation refers to
the heat transfer through electromagnetic waves emitted by the transmission line.
The amount of heat dissipated through radiation depends on factors such as the
temperature of the line and its surface characteristics, including emissivity.

The radiative cooling equation is typically given as:

Pr = πDσBϵS [(Tc + 273)4 − (Ta + 273)4] (7.6)
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Where D is the conductor diameter (m), σB is Stefan-Boltzmann constant, ϵS is
the conductor surface emissivity.

7.1.4 Solar heating

Solar heating describes the phenomenon of solar radiation heating transmission
lines in power grids. When sunlight interacts with the conductors and structures of
the transmission lines, some of the solar energy is absorbed, resulting in temper-
ature rises along the line. This phenomenon can be mathematically represented
by the transmission line solar heating equation:

Ps = αsDS (7.7)

where D is conductor diameter(m), αs is the absorptivity factor (with values
between 0.2 and 0.9), and S is the solar irradiance (Wm−2).

Solar irradiance represents the amount of solar radiation incident on the transmis-
sion line surface. It depends on factors such as time of day, season, cloud cover,
and geographic location.

7.1.5 Current-carrying capacity

The current carrying capacity of an overhead line, also known as ampacity,
can be calculated from the heat balance equation considering that the steady
state condition applies, i.e., the conductor has reached its maximum permissible
temperature (Tc = Tc,max). Inserting the Joule heating Equation (7.2) into
Equation (7.1) and considering dTc

dt → 0 (steady state),

0 = I2RMSRdc + PS + PM + Pi − Pr − Pc − Pev (7.8)

While all other heat balance components in equation (7.1) play a significant role
in heat balance, the effect from magnetic, corona heating, and evaporative cooling
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have a less substantial impact on the resulting current and conductor surface
temperature and Equation (7.1) is expressed as:

mc
dTc

dt
= PJ + PS − Pc − Pr (7.9)

Each part of the heat balance equation is a function of several parameters that
determine the current-temperature relation for each time instant. The steady state,
heat balance as a function of weather and load conditions, is then defined by

PJ(IRMS , Tc) + PS = Pc(Ta, Tc, Vspeed) + Pr(Ta, Tc) (7.10)

where Ta is an ambient temperature [◦C]; Tc is the conductor temperature [◦C];
Vspeed is a wind speed [m/s].

By substituting Joule heating Equation (7.2) into Equation (7.10) as current mag-
nitude can be expressed

IRMS =

√
Pc + Pr − PS

R(Tavg)
(7.11)

where R(Tavg) is the AC resistance per unit length at the temperature Tavg

([Ω/m]); Tavg is the average temperature across the conductor’s cross-section
([◦C])

By combining equation (7.10) and (7.11), the effective current can be represented
as a function of ambient conditions and pre-defined system parameters as:

IRMS =

√
Pc(Ta, Ts, Vspeed) + Pr(Ta, Ts)− PS

R(Ta, Tc)
(7.12)

The maximum current rating of the overhead transmission line at each time step
is a function of the weather parameters such as ambient temperature, wind speed,
wind direction, and solar radiation, and of maximum allowable temperature limits
for Overhead transmission lines. The maximum allowable temperature of the line
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is different for power networks in different countries, and is usually chosen to
provide high safety of operation. By using equation (7.12) and a constant value
for maximum allowable conductor temperature Tmax

c = constant, the maximum
allowable conductor current can be represented by,

IRMS =

√
Pc(Ta, Tc, Vspeed) + Pr(Ta, Tmax

c )− PS

R(Ta, Tmax
c )

(7.13)

and can be further simplified to,

IRMS =

√
Pc(Ta, Vspeed) + Pr(Ta)− PS

R(Ta)
(7.14)

7.1.6 Dynamic state

The steady-state method provides a convenient and straightforward approach to
determine the allowable ampacity based on weather conditions. However, this
method overlooks the thermal inertia of the power line. The knowledge of the
conductor temperature over time gives TSOs the flexibility to solve momentary
congestion cases, without reaching the maximum conductor temperature. The
time-dependent conductor temperature is obtained from the heat Equation (7.9)
given the electrical current and theweather conditions during the period of study. It
is a non-linear ordinary differential equation and can be solved either by numerical
integration or by linearizing the radiative cooling term [131,132].

The Cigre-601 method suggests that this equation can be solved numerically to
calculate the temperature of the line, with 5-15 minute time steps as suitable [8].
However, it is not suitable to use this method for fault current applications. In
these cases, due to the short time frame of a high current fault, it is more suitable
to consider adiabatic conditions.
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7.2 State-of-art conductor dynamic line rating

There are also plenty of technologies [133, 134] used for the exploitation of
overhead dynamic line ratings, for instance, sag-based techniques that monitor
the sag of the conductors through optical sensors [135], tension-based techniques
which use sensors installed on OHTLs to determine the tension of the conductor
[136, 137], temperature-based techniques that monitor the operating temperature
of the conductor through sensors installed on the OHTLs [138–140] and current
rating-based methods that calculate the maximum current rating by monitoring
or estimating the weather conditions and feeding them into one of the standard
models. The last category, the main focus in this work for its interesting features
and direct link between the thermal states of overhead conductors and energy
harnessed from intermittent renewable resources.

DLR can be classified as indirect or direct dynamic rating methods. Direct
dynamic line rating (DLR) methods involve installing measuring devices directly
at the location of the line span or on the line itself, providing higher accuracy
and real-time information but requiring a larger investment and more complex
installation. Indirect DLR methods, such as numerical weather models (NWM)
and weather forecasts (WF), utilize existing historical weather data and existing
weather measuring devices located at sites. Although indirect methods may not
offer high accuracy and have limitations on maximum ratings, they require lower
investment and can be installed easily.

One example of a direct DLR technique is Power Donut, the first commercial sys-
tem to be directly installed on the conductor, monitoring conductor temperature
that translates to conductor sag value [140]. Other sensor systems, like the Emo
System and Overhead Transmission Line Monitoring (OTLM) sensor system,
measure conductor temperature from a single spot. Indirect temperature measure-
ment systems, such as Ampacimon and Astrose, use low-frequency mechanical
vibrations or sensor node angles to derive line sag and conductor temperature.
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Optical systems, such as LiDAR1 developed by Lindsey, also plays a great role
in Overhead line monitoring (OLM). It is installed on electrical towers or on the
ground, simplifying installation and maintenance. However, careful calibration
and model checking is necessary to ensure accurate observations. An example of
each measuring sensor device is shown in Figure 7.2.

Figure 7.2: Overhead line monitoring sensors:(a)Power Donut [141];(b)Emo system [142];(c)OTLM
[143];(d)Ampacimon [144]; (e)Astrose [145];(f)Lindsey-TLM sensor [146].

OLM systems have been available for many years but have not been widely applied
in electrical system operations due to the challenges of temporal variations in
thermal rating [128]. Recent efforts have focused on current-carrying capacity
forecasts, allowing TSOs to plan power plant relaxed operation in advance.

1 LiDAR stands for Light Detection And Ranging. It is a remote sensing method that uses light in
the form of a pulsed laser to measure distances to objects or surroundings.
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8 A Methodology for Assessing
Risk of Dynamic Line Rating
Utilization

Managing power flow in transmission networks amidst the increased integration
of renewable energy sources and the limitations in constructing new transmission
corridors due to financial constraints and social opposition requires innovative
strategies.

Recently, Ethiopia has witnessed a significant rise in energy demand driven by
various factors, including universal electrification, rapid industrial park develop-
ment, extensive agricultural irrigation schemes, and plans for power exports to
neighboring countries [27]. The Ethiopian government has been heavily investing
in renewable power generation to meet the growing energy demand. However,
large-scale renewable power generation faces challenges from transmission and
distribution network development due to line overloads and network congestion
caused by limited network capacity. Expansion of the transmission and distribu-
tion grid infrastructure poses economic, social, and political challenges for the
country. To address this, the nation should look for innovative approaches that op-
timally use the current transmission and distribution grid systems. Constructing
new transmission lines is complex due to land rights, high cost, and project time
requirements factors. To overcome this issue, this dissertation proposed a real-
time overhead transmission line monitoring scheme for congestion monitoring at
high-load centers. Furthermore, shorter transmission lines covering distances of
just a few tens of kilometers are constrained by thermal factors [147]. Real-time
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weather conditions significantly affect the heat-handling capabilities of overhead
lines [8].

Effectively controlling the thermal capacity of power lines through dynamic line
rating (DLR) is a method that involves continuouslymonitoring the temperature of
the lines and the weather conditions surrounding them. This approach ensures the
safe operation of power grids. Furthermore, by using DLR, it becomes possible to
utilize the increased thermal capacity of overhead lines when weather conditions
are favorable, thus optimizing their performance through dynamic management
and allowing formaximumaccommodation of renewable power in the existing grid
before considering new line expansions. This approach also opens up alternative
investment options, such as short-term expansion planning.

Despite DLR advantages for monitoring ampacity, including AC-Optimal Power
Flow [148] and economic optimization [149], there will always be uncertainty
in line rating [150, 151]. Understanding the advantages of DLR under various
sources of uncertainty is crucial for optimizing grid operations and enhancing
power system reliability. This dissertation recognizes the presence of forecast
uncertainty and aims to incorporate the most realistic inputs possible. Studies
in this area focus on accurately modeling DLR through probabilistic forecasting
methods, taking into account feasible risks, rather than relying solely on point
estimates from deterministic forecasts with no indication of the distribution of
possible errors [152–154].

8.1 Probability-based dynamic line rating
models

Transmission SystemOperators (TSOs) rely on accurate predictions of the current-
carrying capacity to effectively plan power generation and prevent congestion in the
electrical grid. The capacity of transmission lines is influenced by local weather
conditions, which can vary based on factors such as vegetation, mountains, and
rivers in the surrounding topography. To obtain precise predictions, combining
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weather measurements taken along the transmission lines with meteorological
prediction models is crucial. This combination enables TSOs to acquire reliable
estimates of the current-carrying capacity, empowering them to make informed
decisions regarding power generation and grid management.

Deterministic models were largely presented in CIGRÉ and IEEE models, and a
probability-based model was developed in this study. Probability-based models
offer advantages due to their ability to work with distributions that provide more
accurate descriptions of environmental and load conditions. These models also
allow for the inclusion of a risk factor associatedwith these probabilities, providing
additional information for system operators. The conductor temperature depends
on five main factors, including four environmental variables (wind speed, wind
direction, ambient temperature, solar radiation) and one load variable (conductor
current). To calculate conductor temperature and DLR, accurate predictions for
these environmental variables are necessary.

Figure 8.1 depicts the sequential steps followed in this case study. The dataset
employed for this case study encompassesweather observations, weather forecasts,
conductor properties, and the corresponding current-carrying capacities for design
time weather conditions. The data has been formatted to train and test machine
learning models. Finally, the dataset is organized as a two-dimensional structure,
comprising timestamps and weather parameters such as ambient temperature,
wind speed, wind direction, and solar radiation.

The model considered in this work utilizes two distinct sources of information:
weather observations collected from nearby weather stations and corresponding
weather extrapolation along overhead lines. Since there are no direct weather
stations alongOHTLs, weather extrapolationwas employed for the case study. The
machine learningmodel then extracts useful information fromweather observation
and forecasts to generate dependable current carrying capacity predictions from
the thermal model of the conductor.

The attainment of accurate results depends on the utilization of appropriate
pre-processing methods and machine learning algorithms. Quantile Regression
Forests (QRF) [115] have been utilized to develop a model that can predict the
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Figure 8.1: Summary of machine learning forecast model.

ampacity of OHTL with a two-year dataset. QRF is chosen over other machine
learning techniques due to its ability to incorporate variables outside the point
forecast, making it useful in understanding non-normally distributed, and non-
linear outcomes associated with weather forecasting uncertainties. The aim is to
implement a DLR algorithm for the Ethiopian power grid, specifically to monitor
congestion at high-load centers.
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8.2 Dynamic line rating integration into
Ethiopian grid

As explained in chapter 2, the power demand in the capital city and the surrounding
area is anticipated to rise significantly, from 835 MW in 2014 to 3,576 MW in
2034, due primarily to population growth and development plans [37]. To address
this issue, there has been a significant amount of investment in the power sector,
resulting in the establishment of new power plants, and an increase in the power
generation capacity of existing stations. However, it has been observed that the
construction of transmission and distribution networks, including substations, has
not kept pace with the rapid economic growth and demand rise. To support future
economic growth, it is essential for the power sector in Ethiopia to prioritize the
improvement of transmission and distribution networks. One option could be
the construction of new lines to cope with power demand growth in the future.
However, this will take intensive investment and time. Another option which is
the main focus of this dissertation is to exploit the latent current-carrying capacity
of existing overhead transmission lines. It takes into account applying DLR
in real-time rather than SLR, line ampacity forecast, and power flow analysis.
Probabilistic forecasts for the current rating of transmission lines are generated,
paying particular attention to the reliability of the lower part of the probabilistic
distribution to reduce the risk of prediction error [155].

Long-distance transmission lines are transporting high power lines to the high-
load area in the Ethiopian grid system. Those transmission lines at the load center
are associated with the most severe line overload/congestion, or sometimes result
in partial or total blackout in the country. These line overloads are predominantly
along the highest voltage transmission lines (400 KV & 220 KV) connecting
the regional power systems of the country to Addis Ababa, the capital. Almost
all the line overloads affect the high-load centers, i.e., Addis Ababa and central
regions. The loading violation contingency is up to 204.1% for the most severe
line outages [72].
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Themain high-voltage transmission grid of the Ethiopian grid and this dissertation
interest area is shown in Figure 8.2. Implementation of DLR all over transmission
lines is not awise idea, as it is not cost-effective. Therefore, it is good to applyDLR
to specific lines (or hotspots) that have economic benefits and a high probability
of high current flow or congestion. Consequently, the 220 KV lines that transport
electricity to Addis Ababa and the central part of Ethiopia are the most important
transmission lines and were considered in this dissertation for the evaluation of
DLR. They connect high-power transmission lines from hydropower generators
and wind farms to high-load centers, which leads to a high probability increase in
the ampacity that leads to most blackouts in the country.

Figure 8.2: High Voltage Grid layout of the Ethiopian grid, including the dissertation focus area.
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Figure 8.3 illustrated the main transmission network of the study area. The
transmission line is configured in a ring shape to surround the center of the city.
However, the Addis Center substation, Addis West substation (ADW), Addis East
substation (ADE), etc., which are the important feeding points for power demand
are supplied as a radial line from the 132 KV ring network. Therefore, these
substations do not satisfy the N-1 criteria.

Figure 8.3: Illustrate the main transmission network of the study area. It is part of the network that
interconnects central Ethiopia and Addis Ababa to other regional networks.
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The case study was done by representing the long transmission lines that extend
from generation stations to transmission stations (i.e., from the generators to
transmission stations surroundings of Addis Ababa) by infinite bus and generators
to characterize short transmission lines that extend around Addis Ababa (more
detail explanationwas presented in reference [192]). The test networkwasmeshed
and has two voltage levels, 230 KV, and 132 KV. The 220 KV transmission lines
between Sululta and Lagatefo, Legetafo and Kaliti I, and Sebata and Geferesa are
adopted for the case study. The study was first carried out using the simulation
software PSS/E for static power system analysis such as power system security;
optimum power flow, state estimation, and continuation of power flow, as shown
in Figure 8.4. Newton-Raphson method is used for load flow studies due to its
good convergence. PSS/E simulation was also run to assess for the overload of
respective lines as shown in Figure 8.5.

Figure 8.4: PSS/E simulation for the portion of the main transmission grid network of Addis Ababa,
the capital city, and the surrounding area.

Capacities of critical spans are forecasted based on the interpolated weather
forecasts from the nearby National Meteorology Agency of Ethiopia (NMA)
weather stations. Hourly measurements of historical records for wind speed, wind
direction, solar radiation, ambient temperature, and other weather parameters
relevant to the calculation of DLR, for the year 2018-2020 have been used for this
case study.
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Figure 8.5: The transmission grid network with PSS/E simulation, the blue area shows the region
with more overload area to other regions.

Transmission lines are widely protected by distance relays due to their simple
operation and high coordination characteristics [156]. The operation of distance
relays is based on impedance calculation by measurement of voltage and current
at the relay location. In principle, the operating principle of a relay is that it should
trip only when a fault or unstable swing occurs. However, the short period of
overload phenomenon may cause the mal-operation of distance relays. Figure 8.6
illustrates the impedance locus seen by the relay was changed and moved from the
load area into the third zone area and may activate the relay many times to trip.
Unintended tripping occurs when the impedance trajectory enters the impedance
locus of the distance relay (inner circle of zone 3) because of impedance reduction
due to overload, despite that no conductor temperature exceeds the set point. The
subsequent operation of distance protection in response to the overload power
swing will lead to unnecessary outages.

Dynamic ratings can be used to describe the delayed variation in conductor tem-
perature in response to a change in the current loading on the transmission line.
The dynamic line ratings are calculated based on real-time measurements rather
than conservative weather conditions. The delayed response of the conductor
temperature to a change in line current is depicted in Figure 8.7.

Application of the DLR algorithm into a distance protection relay can prevent
a trip off the line, even if its nominal load is exceeded since the conductor
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Figure 8.6: Trajectory of impedance during unintended tripping (blue color,Zag), the load impedance
decreases and enters transmission line relay protection zones from the load area.

remained below permissible levels. This can restrain the relay from operation
tripping, allowing the line to operate safely for short time overload conditions
under favourable weather conditions.

8.3 Ampacity forecasting models

8.3.1 Forecasting methodology

The approach introduced in this dissertation offers a way to predict the ampacity
of overhead power lines using quantile regression forests (QRF) a nonparametric
probabilistic method (see Section 5.4.4). This enables the selection of forecasts
with low ampacity overprediction risk for OHTL monitoring. However, it’s im-
portant to note that no power grid is completely risk-free, and even a conservative
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Figure 8.7: A step change in the current from initial current Ii to final current If and exponential
curve for conductor temperature from initial temperature Ti to final temperature Tf .

SLR safety margin has inherent risks. The proposed method establishes a model
connecting local observations and weather-based forecasts. It utilizes historical
weather measurements and statistically adjusted local measurements to generate
ampacity of the line. The methodology’s application in a case study involving
Ethiopian utility transmission lines, involved both weather measurement stations
and statistical adjustments, as discussed in Section 8.3.2.

The weather variables are used as inputs for the QRF model [192], which was
employed to predict ampacity from minute- to hour-ahead in the future. Unlike
previousmethods, which focused on fixed point forecasts, a probabilistic approach
produces a probabilistic prediction. Point forecasts often come with uncertainty,
which can be represented as prediction intervals. These intervals define a range
of potential values within which the forecasted magnitude is expected to fall
in the future with a predefined probability. Traditionally, a parametric approach
estimates the parameters of a probability density function (PDF), often assuming a
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Gaussian distribution, resulting in symmetric prediction intervals centered around
point forecasts. Nevertheless, ampacity prediction depends on wind speed, which
follows an asymmetric Weibull distribution and is further complicated by varying
wind behavior.

Addressing these challenges with a nonparametric approach, predictions are made
without assuming a specific PDF shape. Empirical prediction intervals or quantiles
can be computed, accommodating potential asymmetry and lack of alignment
with point forecasts. Consequently, expressing probabilistic forecasts as quantiles
becomes crucial. These quantiles are defined with a probability parameter τ ,
indicating the likelihood of the forecasted value X̂τ

t+h exceeding the observed
value Xt+h, as represented in Equation 8.1.

P (X̂τ
t+h > Xt+h) = τ (8.1)

In this work, different probability levels of τ (1%, 2.5%, 5%, 10%, and 25%)
were tested.

8.3.2 Weather data forecast models

A machine learning model uses weather data to predict ampacity or conduc-
tor temperature. The data needed for the ampacity forecast are the historical
weather station measurements and the regional numerical weather prediction
(NWP) model forecast. In the forecasting process, the NWP output is adapted
to the site where the OHTL is located. Algorithms utilize forecasts from the
NWP model, offering predictions up to 24–48 hours ahead. These predictions
are used to anticipate upcoming weather conditions around the conductors [152].
However, these forecasts lack precision in considering local wind effects on con-
ductors. To enhance accuracy, adjustments are needed, achieved through physical
or statistical methods. The physical approach combines an atmospheric model
with a terrain model (downscaling) to correct systematic errors. Forecasts are
then interpolated based on distance, and a wind speed correction is applied using
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a wind profile power law [128] to account for terrain roughness. The forecasts are
validated by comparing the historical weather forecasts and the historical weather
measurements. An uncertainty analysis is carried out, giving as a result some
uncertainty indicators. The uncertainty indicators are important because they
validate the value of a given forecast. Figure 8.8 provides an overview of the
system’s processes, and a more detailed explanation for ampacity prediction is
given in Section 8.4.

Figure 8.8: Summary of ampacity forecasting process. This system falls under the category of an
indirect dynamic line rating system, using weather forecasts to determine ratings.

Due to the relatively high cost of weather stations, the resolution of the weather
station network is coarse for OHTL monitoring applications. Typically, meteoro-
logical departments install weather stations at specific locations such as airports,
agricultural areas, and areas with high-density populations. According to WMO
regulations [157], weather stations provide measurements for different weather
elements at specific altitudes, such as 2 m for air temperature and 10 m for wind
measurements. For OHTL monitoring applications, a minimum of one year of
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weather measurements is required to build a machine learning-based monitoring
model along the span of the transmission line.

The ampacity of OHTL depends strongly on the weather conditions along the
entire length of the transmission line. Hence, the probabilistic ampacity fore-
casting for transmission lines can be computed from the corresponding weather
forecasting along the neighborhood of the entire line span. For this, a distributed
weather measurement system has to be installed on the transmission line tower and
along the entire line-span, which measures local weather conditions and provides
statistical weather predictions.

There were no weather sensors installed along the transmission line towers for
the considered model in this dissertation. Hence, weather forecasts from nearby
weather stations are spatially interpolated into chosen spans using the inverse
distance weighting [158–160]. Weather predictions at each selected span are
approximated as a weighted average of predictions from the neighborhood of
weather stations, as shown in equation (8.2),

ŷ(k) =

∑n
i w(di,k)y(i)∑n
i=0 w(di,k)

(8.2)

Where ŷ(k) is the predicted value at the unsampled location, n is the number of
measured points used for the interpolation, y(i) is the known value, the weighting
factor w(di,k) is the inverse square distance between points and is defined as in
equation (8.3):

w(di,k) =
1

d2i,k
(8.3)

The height of the weather station considered for this study is at a different height
from that of OHTL towers usually in ranges from 15 to 55 meters, wind speed
predictions VSho

are thus corrected using the wind profile power law, as illustrated
in equation(8.4) [158, 161]:

VSh
= VSho

(
h

ho
)a (8.4)
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where, ho height of weather station, h height of the tower, the exponent a for
different ground types can be found in [161].

By integrating extrapolated weather forecasts and localized weather observations,
this model aims to provide more precise forecasts of the current-carrying capacity
of power lines, contributing to improved grid monitoring planning and stability.

Five weather stations were selected around Addis Ababa and its vicinity, as
depicted in Figure 8.9 for modeling weather parameters along the transmission
line. The choice aimed to create realistic geographical setups resembling the
routes of the line. This study relies on measurement records spanning from 2018
to 2020, documented hourly.

Figure 8.9: Case study - selected weather stations from Addis Ababa and its area.

121



8 A Methodology for Assessing Risk of Dynamic Line Rating Utilization

8.4 Probabilistic ampacity forecast

To benefit from DLR, operators need necessary information in advance and suffi-
cient time to respond to changes in the current-carrying capacity of power trans-
mission lines. This requires minutes-to-hours-ahead forecasts to effectively re-
spond to changes in line capacity. In this regard, the focus is to accurately model
DLR through probabilistic forecasting methods to predict future values of ampac-
ity variables, considering potential risks [152–154]. The methodology combines
time series analysis and weather forecasts using machine learning algorithms to
generate reliable ampacity forecasts for areas or spans with complex terrain.

Figure 8.10 shows the Mean Average Percentage Error (MAPE) for up to 24-hour
forecasting period which is below 20% as set by FlexNet report from the Twenties
Project [155, 162] which refers to a maximum MAPE acceptable by most of the
TSO in Europe. Moreover, the most important prediction hours are the first 0–2
hours for real-time congestion and overload monitoring. Considering that the
actual current-carrying capacity of an overhead line is smaller than predicted, it
is necessary to react on time to avoid overloads. The generation adjustment for
conventional power plants takes from six to eight hours. In the case of Ethiopia,
given that enough water in dams, hydro generation adjustment will take in few
minutes.

The static line rating is set by Ethiopian Electric Power (EEP) TSO based on the
manufacturer’s data sheet and theworst weather scenario under steady-state condi-
tions. For dynamic line rating modeling, the overhead lines rating is monitored in
real-time to decide loading limits using weather stations’ weather interpolations.
Therefore, in SLR constant loading limits are used whereas in DLR time-varying
loading limits are set [192]. The ampacity calculations were based on the Ostrich
ACSR 176 conductor a typical conductor used by Ethiopian Electric Power (EEP),
with the following features listed in Table 8.1.

QRF machine learning model is modeled for up to 24-hour ampacity prediction
and loading limits. QRF with different quantiles is used to exploit the capacity
of OHTL in real-time. Thus, the proposed method provides better enhancement
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Figure 8.10: Mean Absolute Percentage Error (MAPE) for 24-hour forecasting model, trained on a
variableDtrain ranging from 1 to 24.

and safe operation for the lowest quantiles probabilistic prediction to mitigate
decision-makers risk-averse. The QRF input-output structure is shown in Figure
8.11. Past weather observations enter the model. The QRF then forecasts the
current-carrying capacity directly, obtaining 24models, one for each forecast hour,
using the direct prediction approach discussed in section 5.2. The actual capacity
values are calculated from the actual weather measurements along the overhead
line.

In the training and test processes, the past and the future are relative. In both
cases, a sliding window is used. It has as its center the present time, to, and from
there, the past and future are defined. In reality, to corresponds to real-time. The
number of past time steps, Dtrain, to consider for each input weather parameter
was optimized. This value can range from one, i.e., only the current observation;
to the entire measurement history.
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Table 8.1: Specification of the typical Conductor under study.

OHTL conductor Ostrich (ACSR 176)
Dia [mm2] 17.28
Al [mm2] and dia AL [mm] 152.2 (26/2.73)
St [mm2] and dia St [mm] 24.71 (7/2.12)
Solar absorptivity 0.5
Thermal emissivity 0.9
Max. conductor temperature 75◦C

Figure 8.11: Structure of QRF forecasting development scheme.

For better simulation and experiment consideration, it is very crucial to consider
the spatial distribution ofweather datameasurement along theOHTL in preference
to weather data measured from a single point around the OHTL [127, 163] to
forecast the ampacity of the OHTL conductor. However, for this case study, it is
difficult to get spatially distributed weather stations.

The modeling of probabilistic DLR forecasting was implemented considering the
weather parameters from the Ethiopian National Meteorology Agency. The most
important weather parameters for this model contain different weather features
such as temperature (◦C), solar radiation (W/m2), wind speed (m/s), and wind
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direction (◦). For the sake of training and testing phases, first, the hourly measured
weather data must be preprocessed. Then a forecast model was produced for the
number of past measurements that have to be given as input to the model (Dtrain)
to forecast for n hours.

A technique has been developed for predicting the ampacity of overhead power
lines, taking into account various risk levels. This method uses empirical prob-
abilistic forecasts derived from weather predictions to predict ampacity. This
forecast is valuable for managing grid operations and scheduling. The method
presented in [192] adapts statistical weather forecasts to the scale of power line
spans. Its goal is to generate dependable predictions that assist Transmission Sys-
tem Operators (TSOs) and Distribution System Operators (DSOs) in choosing a
conservative risk level to avoid excessive heat in overhead conductors. Figure 8.12
for visualization of ampacity values associated with different risk levels examined.
The dataset is split into two data subsets: the training data subset, which is used
only to train the model, and the test subset, which is used to assess the proposed
model. Accordingly, for the training subset, data from the year 2018 was used as
explained in section 8.3.2. After training was done, a test set representing the year
2019 was used to predict the probabilistic ampacity and calculate the accuracy of
the proposed model.

The primary focus of this work is to predict highly reliable DLR forecasts to
enhance the performance of the lowest quantiles for risk-averse TSO decision-
makers. This is crucial because conductor ampacity needs to be set with a very
low probability of overestimation to ensure that the operating temperature remains
below the allowable point (75◦C). TSOs can select values from the distribution’s
tail with very low probability levels of being overestimated. As shown in Fig-
ure 8.12, the lower quantiles (up to 25%) were consistently below deterministic
observations and 50% quantiles, reducing the likelihood of overestimation in
DLR forecasts. This probabilistic approach allows for better decision-making
and reduces losses associated with DLR.

Thus, deploying DLR based on below 50% forecasted quantile leads to increased
economic benefits while also improving network safety, with fewer instances when
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Figure 8.12: Quantile of ampacity quantile forecasts, and observational models for a 24-hour fore-
casting model, trained on a variable Dtrain ranging from 1 to 24. We notice a very
close agreement between the computed 0.5 quantiles and the deterministic rating.

the N-1 criterion is not met. The selection of the optimal quantile dynamically
varies at each time step based on the risk profile of the line where DLR is applied.
This approach offers a promising solution to enhance the efficiency and reliability
of DLR forecasting in power systems.

The proposed frameworks for setting DLR based on probabilistic forecasts rec-
ommend using low quantiles for real-time monitoring of the OHTL network.
This approach reduces the risk-averse nature of decision-makers and avoids both
overestimation and higher losses associated with deterministic DLR forecasting.
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9 Intelligent sensors network for
Power Grid Monitoring

This chapter focuses on introducing and explaining the fundamental ideas required
to establish a mesh-based wide area network (LPWAN) that is both economical
and energy-efficient. It offers insights into various LPWAN technologies, outlines
key routing protocols, and highlights their constraints. This knowledge is crucial
for comprehending the proposed methodology.

9.1 LPWANs and LoRa technology overview

9.1.1 LPWAN networks

A Low Power Wide Area Network (LPWAN) is a communication network de-
signed for long-range coverage while consuming minimal power. LPWANs are
well-suited for sending small data packets from remote sensors to a base station,
often at speeds under 50 kbit/s for two-way communication [164]. This technol-
ogy is particularly suitable for relaying sensor data such as temperature, humidity,
or oil levels. NB-IoT (Narrowband IoT), LTE-M, SigFox, and LoRaWAN are
among the main LPWAN technologies [165]. They offer different advantages and
cost considerations. While NB-IoT is easily deployable through cellular carriers,
SigFox requires a subscription with a network operator, and LoRaWAN is an open
standard with no subscription needed.

LPWANs address the limitations of legacy wireless systems regarding coverage
range by enabling data transmission across several kilometers. However, this range
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is insufficient for extensive infrastructures like transmission lines in developing
countries like Ethiopia. To tackle this challenge, a mesh network based on the
LoRa protocol is proposed as a solution to extend transmission distance in this
dissertation.

9.1.2 LoRa and LoRaWAN technology

Low RangeWide Area Network (LoRaWAN) is an open standard communication
protocol that utilizes the LoRa modulation on the physical layer, enabling long-
range, low-power wireless communication. LoRa is a physical layer modulation
that was developed and patented by Semtech [166]. In contrast, LoRaWAN is
a MAC layer standard that coordinates the medium as specified by the LoRa
Alliance [167].

The LoRaWAN network topology consists of three main components: network
servers, gateways (GWs), and end nodes. End nodes communicate with the
network server (or data server) via GWs, and Node-to-GW communication can
be either LoRa or FSKmodulationwith different data rates and channels. Network
servers manage the GWs through standard IP technology and data frames are sent
through end nodes, received by GWs, and routed through the network server. An
overview of the LoRaWAN architecture is presented in Figure 9.1 with a star
topology between GW and sensor nodes.

LoRa networks operate in the unlicensed ISM (Industrial, Scientific, andMedical)
bandwidths (USA: 915MHz, EU: 433MHz and 868MHz, and Asia: 433 MHz).
This allows private networks to be established and requires a lower cost of instal-
lation setup compared to other LPWANs. A LoRa message can be of two types:
uplink or downlink. The message structure is similar in both cases, however, only
the uplink message adds a verification code (CRC) to ensure the integrity of the
payload (PHYPayload). To facilitate bidirectional communication, LoRaWAN
defines three device classes: class A, B, and C.
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Figure 9.1: Schematic structure of LoRaWAN architecture.

9.1.3 LoRaWAN Protocol Architecture

Figure 9.2 illustrates the protocol architecture of LoRaWAN, which comprises
a MAC layer and an application layer, utilizing the LoRa physical layer. The
packet format is depicted in Figure 9.3, and the maximum payload lengths change
according to the data rate, as specified in reference [168].

Figure 9.2: LoRaWAN protocol architecture.
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• Medium access control (MAC): The MAC layer processes packets con-
taining a MAC Header (MHDR), MAC Payload, and Message Integrity
Code (MIC). In a join process for end node activation, the MAC Payload
can be swapped with join request or join accept messages. Both the MAC
Header and Payload are used to calculate the MIC using a network ses-
sion key (NwkSKey) to prevent message forgery and authenticate the end
node [169].

• Application layer: The application layer deals with the MAC Payload,
which comprises an FRMHeader (FHDR), FPort, and FRMPayload. FPort
varies with the application, and the FRM Payload is encrypted using an
application session key (AppSKey) through the AES128 algorithm.

Figure 9.3: LoRaWAN packet format.

Each LoRaWAN node possesses a unique device identifier called DevEUI, which
is 64-bit long and must be globally unique. The node also requires knowledge of
its join server, with its identifier called the JoinEUI which is also 64-bit long, and
the intended network for joining.

A LoRaWAN network is distinguished by a 24-bit NetID, assigned by the LoRa
Alliance [168]. This network comprises various components, including end
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nodes, LoRaWAN gateways, a network server, a join server, and an application
server. Communication via the LoRa physical layer takes place only between end
nodes and gateways, while other communication uses standard internet protocols.
End nodes periodically transmit data, which is received by gateways and then
forwarded to the network server. Depending on the message type, the network
server directs the message to the join server or the application server, serving as
a communication endpoint at layer 2. The network server manages the data rate
and frequency of each end node to optimize transmission.

LoRaWAN networks are encrypted and support over-the-air activation [169].
During this process, devices are provisioned with two root keys: AppKey and
NwkKey, both known by the join server. To join the network, a device sends a join
request to the join server, including DevEUI and JoinEUI. While the join request
isn’t encrypted, a message integrity code (MIC) is calculated using NwkKey and
added to the message. Upon receiving the join request, the join server verifies the
message’s integrity with the shared NwkKey. Upon successful verification, the
join server generates a new pair of keys, AppSKey and NwkSKey, for encrypted
data transmission. The join server responds with a join accept message containing
the unencrypted NwkSKey and an AppSKey encrypted with AppKey, along with
NetID and device address. This confirms that both device and join server possess
the root keys, establishing successful network entry.

An alternative encryption method is activation by personalization, where pre-
configuredAppSKey andNwkSKey are used. Devices don’t require a join process,
having a device address and NetID in advance. To ensure secure communication,
devices encrypt every transmitted data packet with the AppSKey.

9.1.4 LoRa physical layer

LoRa is a unique physical layer modulation technique derived from chirp spread
spectrum (CSS) technology [170]. It operates in wideband sub-GHz frequency
bands, setting it apart from other wireless networks. LoRa’s CSS modulation
allows for increased sensitivity, enabling long-distance connectivity [171] and
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making it a promising candidate for ITIV Smart-e-Meter joint project for grid
monitoring in Ethiopia.

Tomaximize efficiency, LoRa offers various options for orthogonal transmissions,
including carrier frequency (CF), spreading factor (SF), bandwidth (BW), and
coding rate (CR). These parameters enable collision-free communications and
allow for data rates ranging from 250 bps to 5.5 kbps using CSS modulation and
up to 50 kb/s with FSK modulation [164]. SF, CR, BW, and CF are transmission
parameters in LoRa that need to be defined [172] during setup. SF is an integer
value ranging from 7 to 12, and it inversely affects the data rate (DR). Increasing
SF leads to longer symbol lengths, resulting in a lower DR. Thus, users can trade
data rate for an extended range by adjusting the spreading factor of the transceiver.
Multiple Spreading Factors are available to control the bit rate, improve range,
and reduce energy consumption.

LoRa’s modulation technique also called LoRa spread spectrum (LSS) is based on
CSS modulation [170]. In CSS, the data is encoded into the phase shift between
the modulated chirp and the reference chirp. A chirp is a signal whose frequency
increases or decreases over time. With the bandwidth Bc of the chirp, the chirp
duration Tc, and the minimum frequency fo a linear chirp can be defined by

kr =
Bc

Tc
(9.1)

y(t) = cos(2π(fo + krt).t) (9.2)

where kr denotes the frequency change in time, also called the chirp rate. This
creates a signal that linearly increases its frequency from fo to fo + Bc within a
time span of Tc. An exemplary linear chirp is displayed in Figure 9.4 with the
momentary frequency plotted on the right side. The linear characteristics of the
chirp signal can be seen in the frequency ramp on the right side.

Tomodulate data onto the signal using CSS, the chirps are circularly shifted inside
each symbol period. This means that the chirp does not start with fo, but with
a higher frequency fo + foff . The time τoff where the frequency of the chirp
reaches fo is also shifted with respect to the start of the symbol period. These
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Figure 9.4: Chirp with bandwidth Bc = 20 kHz, chirp duration Tc = 1 ms and minimum frequency
fo = 0 Hz.

shifts depend on the data being transmitted and the number of bits per symbol
Nb. They are all related to each other and can be expressed as a fractional offset
γ with the following equation:

γ =
fo + foff

Bc
= 1− τoff

Ts
=

data in decimal

2Nb
(9.3)

Figure 9.5 shows the chirp with the data modulated on it. The frequency and the
time offset can be seen in the frequency curve on the right side.

Figure 9.5: Data ’101’ modulated on a chirp with bandwidthBc = 20 kHz, chirp duration Tc = 1 ms
and minimum frequency fo = 0 Hz.
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To decode a modulated chirp at the receiver, the modulation parameters need to
be known. The bandwidth and symbol time can be extracted from the signal, but
the number of bits per symbol Nb needs to be known. This is because the offset
can be retrieved from the signal, but withoutNb the granularity of the modulation
is not known.

Themain difference between LoRa spread spectrum and the chirp spread spectrum
lies in the introduction of the spreading factor. This SF controls the number of
bits (Nb = SF ) that are encoded in each symbol, as well as the symbol time (Ts).
The symbol time is also influenced by the chosen bandwidth (Bc) and is defined
as follows:

Bc =
2Nb

Ts
(9.4)

This means that the symbol time doubles with every increment of the spreading
factor. The LSS also introduces a variable forward error correction (FEC) that
is controlled with the code rate parameter CR. It specifies the number of parity
bits that are added for every 4 bits of data, and can have values from 1 to 4 [173].
With this, the effective bit rate Rb can be calculated as

Rb = SF.
4

4 + CR
.Rs (9.5)

It becomes obvious, that the spreading factor has the biggest influence on the
performance of the system because it controls the symbol time and number of bits
per symbol. Together, this defines the energy per bit Eb that reaches the receiver.
When increasing the spreading factor by one, the symbol time is doubled, but
only one extra bit is encoded into each symbol. Because of this, Eb is higher for
larger spreading factors, allowing transmissions over longer distances. But the
trade-off for this is a reduced data rate, and thus the transmission time tair for
the same number of bits is increasing for higher spreading factors. Without cyclic
redundancy checking (CRC), the air-time of a packet can be calculated as:

tair = Npre + 12.25 + [(8Npay + 4SF + 28)/4SF ](4 + CR))Ts (9.6)
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whereNpay is the number of payload bytes the packet is carrying andNpre is the
length of the preamble.

9.2 Wireless mesh networks

Many existing wireless transmission systems are limited in coverage range [174,
175]. However, LPWAN technologies enable long-range transmission of small
data packets with low energy consumption, making them suitable for battery-
powered devices [176, 177]. For infrastructure projects that are distributed over
a wide geographical area, even LPWAN with star topology (see Figure 9.6(a))
may not be enough, so it is crucial to extend the transmission distance of the end
node via a mesh network to the gateway as illustrated in Figure 9.6(b). Therefore,
a mesh network based on the LoRa protocol proposed in this dissertation was
devised to close this gap.

Figure 9.6: Sample networks with a star topology (a) and a mesh topology (b).
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The proposed network protocol aims to establish an affordable LoRa Wireless
Mesh Network (WMN) that can cover extensive areas without relying on numer-
ous gateways. A related study in [178] also explored using LoRa modulation
from Semtech to expand the reach of LPWANs. In this WMN, nodes can es-
tablish multiple connections, not just with gateways but also with other nodes,
ensuring connectivity in remote regions. Most nodes in the mesh network have
multiple links, creating multiple communication paths with gateways. While this
redundancy can be beneficial, it may cause more collisions as the node count
increases. To enhance connection quality and decrease collisions, the network
employs a strategic process called routing. Routing is a vital concept in modern
communication protocols and is crucial for comprehending network operations.

Routing protocols, defined at the network layer, do not directly influence collisions
like the MAC layer but can reduce collisions by eliminating unfavorable links and
optimizing overall network traffic.

9.3 Routing

The core challenge in establishing a network is routing, which involves finding
paths to a destination across multiple hops. Routing algorithms aim to connect
nodes that are not direct neighbors. The algorithms select the best path based
on predefined metrics or policies when multiple paths are available. Routing
tables store path information, and they can be either static (unchanged since
network startup) or dynamic (constantly updated to adapt to changes in network
topology) [179]. Routing protocols differ based on when path information is
exchanged between nodes: proactive routing sends information periodically to
neighboring nodes, while reactive routing gathers information from incoming
packets.

The following section introduces various routing protocols, which will serve as
the basis for selecting a suitable routing protocol in chapter 10.
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9.3.1 Flooding

Flooding is a basic routing protocol where a packet is broadcast to all neighbors
when it needs to be sent to a specific node with address A. All receiving nodes
then forward the packet as a broadcast to their neighbors, leading to the packet
spreading throughout the entire network until it reaches its destination at node A.
This process is displayed in Figure 9.7.

Figure 9.7: Schematic displaying the flooding algorithm on a simple three-by-three grid network.

However, this approach has significant disadvantages. The packet can return to
the sender, causing the sender to forward it again unknowingly. Similarly, all
other nodes also rebroadcast the packet, resulting in an ever-increasing number of
packets in the network, eventually leading to network congestion and communi-
cation failure. To address these issues, each packet is given a limited time-to-live
(TTL). As the packet is forwarded, its TTL decreases, and when it reaches zero,
it is no longer forwarded. This prevents indefinite packet circulation.

9.3.2 Data-centric

Data-centric routing differs from other routing algorithms by focusing on the data
itself rather than the addresses of specific nodes. Instead of requesting data from a
particular node, data-centric routing seeks any node that can provide the required
data. Before sending any data, it must be requested by the interested node (sink)
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issuing an interest in the specific data resource [180]. This interest propagates
through the network through flooding or geographic routing, known as diffusion.

When a node receives an interest, it checks if it can provide the requested resource.
If it can, it starts transmitting the data to the sink in the form of events. The data
packets are sent over the reverse path of the interest, which may not always be the
most effective path to the sink. To improve the data packet’s path, the sink can
issue another interest with a higher monitoring frequency after receiving the first
events. This new interest serves as a reinforcement message, and nodes receiving
it prioritizes one neighbor for further communications related to this interest. This
reinforcement process creates a more efficient communication link between the
sender and the sink [181].

Data-centric routing proves to be highly beneficial in diverse networks as it elim-
inates the need to know all nodes in the network to receive their data. Instead, it
enables a flexible and efficient way to access required data resources.

9.3.3 Location-based routing

Location-based routing is an algorithm that prioritizes the position of communi-
cating nodes to improve the efficiency of certain applications. Instead of relying
on routing tables, this approach selects the next hop in a network based on the
shortest distance to a nearby node [180]. The distance between nodes may af-
fect the quality of their communication link. Nodes can obtain their position
information through various methods, such as GPS data, central assignment, or
pre-provisioning before deployment.

The limitation of this approach lies in requiring precise knowledge of the position
of the current node and the positions of all neighboring nodes. This becomes
particularly challenging when dealing with moving nodes, making it an unsuitable
routing algorithm for such scenarios. However, in static networks, where node
positions remain fixed, this approach can prove to be an effective routing algorithm.
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9.3.4 Routing Protocol for Low-power and Lossy
networks - RPL

The Routing Protocol for Low-power and Lossy networks (RPL) is a standardized
protocol by the Internet Engineering Task Force (IETF) primarily designed for
use in IoT projects. It is specifically tailored to operate in lossy networks and
with power-restricted devices. RPL employs distance vector routing and utilizes
directed acyclic graphs (DAGs) to store routing information [182]. It is designed to
be compatible with various MAC protocols, especially those where nodes are not
continuously active. Moreover, RPL is adaptive to changes in network topology
and considers device constraints, such as low battery levels and poor link quality.

In an RPL network, the basic structure is a tree, with an internet-connected router
acting as the root of a subnet. From this root, a destination-oriented directed
acyclic graph (DODAG) is constructed to determine link costs. Join requests are
sent out by the root, and nodes can decide to join the network. If a node is not a
leaf, it rebroadcasts the join request with itself as the root, establishing its distance
to the root, known as node rank [183]. Each node can only be part of one RPL
network, but virtual roots with multiple physical roots in different locations can
achieve broader network coverage

Once the DODAG is constructed, the actual routing information is exchanged
using the distance vector routing protocol. Communication costs of links are
calculated based on a predefined objective function that considers various charac-
teristics such as transmission reliability, encryption, and power sources of nodes.
Nodes broadcast the cost table to their direct neighbors in a DAG information
object (DIO). Upon receiving a DIO, a node updates its routing table with the
communication costs and may adjust its node rank. The iterative process of find-
ing the best routes from each node to the root is driven by the given objective
function [184].
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However, the iterative nature of the algorithm can sometimes lead to issues like
constant changes, resulting in a down-ranking spiral, where nodes keep down-
ranking in response to each other, potentially causing inefficiencies in the net-
work’s operation.

9.4 Combination of LPWAN and WMN

To extend the coverage and capabilities of traditional LPWAN networks, integrat-
ing them with wireless mesh networks appears to be an ideal solution. However,
due to the low-power nature of LPWANs, this combination poses several chal-
lenges. In traditional LPWAN networks, nodes primarily remain in sleep mode
and wake up only to transmit data or optionally allow for downlink communica-
tion. For multi-hop communications in a mesh network, intermediate nodes must
be awake to relay packets. This requires the nodes sending intervals to be syn-
chronized. This can be achieved with scheduled sending intervals, or the nodes
need the ability to wake up when receiving a packet (wake-on-receive). However,
implementing the appropriate synchronization technology depends on the spe-
cific use case. For instance, event-based transmission cannot rely on scheduled
synchronization, and power-limited nodes cannot utilize wake-on-receive as their
receive-detection cannot be put to sleep. Addressing these challenges requires
tailored approaches for each scenario, ensuring efficient and effective communi-
cation within the combined LPWAN and wireless mesh network infrastructure.
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The electricity demand in Ethiopia is rapidly increasing due to population growth,
urbanization, and economic development [2,3,18]. Although the current level of
power production is sufficient for a grid-connected society, there are still frequent
local power interruptions. The current status of the Ethiopian grid and the main
reasons for interruption were explained in Chapter 2. To address this, real-time
monitoring integrated with machine learning tools becomes essential to control
and manage the dispersed and geographically isolated components of the power
grid. Machine learning models for ampacity forecasting have been developed to
improve prediction accuracy, but obtaining the necessary data for training these
algorithms is challenging, especially in developing countries with limited data
transmission networks.

To overcome this challenge, a wireless sensor network with LoRa mesh has been
proposed as a cost-effective solution for data collection in large infrastructure
projects like transmission lines and power distribution networks. The LoRa mesh
network extends the coverage of Low Power Wide Area Networks (LPWANs)
without the need for numerous gateways. This approach allows for regular sensor
data logging and facilitates remote monitoring and control of infrastructures lo-
cated in remote regions where weather measurements are valuable. The lack of
network connectivity in these regions can be addressed by implementing a LoRa
mesh network, providing a cost-effective and suitable solution for the country’s
developing economy.
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The work under this focused on the challenges faced in monitoring and con-
trolling infrastructures in Ethiopia, particularly in remote regions, and proposed
solutions using wireless sensor networks with LoRa mesh network. The proposed
LoRa WMN system communicates at 5-minute intervals, providing continuous
monitoring and analysis of various grid parameters. The integration of real-time
monitoring andmachine learning tools is crucial for ensuring efficient and safe op-
eration of the power grid, especially with the increasing production of renewable
energies and fluctuations in the energy grid.

10.1 Design requirements and design choices

10.1.1 Design requirements

The LoRa mesh system is designed for real-time grid condition monitoring, uti-
lizing a low-cost IoT gateway and sensor module to collect grid data information.
This data is transmitted through the LoRa mesh network, and finally via the
gateway to the server.

As explained previously in chapter 9, the main goal of this network is to monitor
large infrastructure projects such as transmission lines, distribution infrastruc-
tures, and transformers, which are often situated over long distances in remote
areas or urban environments with limited network connectivity and electricity
supply.

Figure 10.1 shows an exemplary transmission line with the points of interest
marked in blue as considered in the simulation of this work. For instance, mon-
itoring the maximum current or ampacity allowed through a transmission line is
essential, as it is primarily limited by the cable’s temperature. The system incor-
porates machine learning algorithms to intelligently monitor potential congestion
and line faults by analyzing the dynamic line rating of OHTL. It utilizes weather
forecasts to estimate the temperature around the transmission line, and the ac-
tual measurements via self-sufficient sensors are used to improve the reliability
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of these forecasts. The temperature at a given current throughput of the line is
closely linked to the outside temperature and the wind speed. These factors are
not changing very fast, so the time between measurements can be quite large,
so measurements from LoRa sensors every 5 minutes interval can fit the design
requirement as a response for DLR to temperature change is usually up to 15
minutes [185].

Figure 10.1: Example of a transmission line with points of interest and availability of network con-
nection and electricity [193].

In areas with unreliable weather forecasts, like inside forests, more frequent mea-
surements are taken. The systememploysmulti-hop connections to reach locations
where direct communication is not possible, ensuring robust data transmission.
However, challenges arise, such as nodes in the forest having connections to a
central node, leading to a higher chance of collisions and unnecessary traffic. To
mitigate these issues, optimized routing strategies and data filtering techniques
may be employed to improve energy efficiency and reduce data redundancy.

The main points to remember from this situation are:

• Limited internet connection: Not all locations have access to the internet,
which requires the transmission of data to a central location with internet
connectivity.
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• No local energy source: Many points of interest lack a local energy source
to provide the required 5V DC for node operation.

• Multi-hop connection: Due to the geographical distribution of nodes,
some nodes are out of reach from the central location with internet access,
requiring multi-hop connections through neighboring nodes to establish
communication.

• Static network topology: The network topology remains fixed, as all nodes
have predetermined positions and will only change if a node fails.

• Routing needed: Some form of routing is essential to manage the number
of transmissions, avoid collisions, and reduce energy consumption in the
network.

10.1.2 Design choices

With the requirements from Section 10.1.1 in mind, an LPWAN mesh network
was developed. The main goal was to enable monitoring structures with long but
narrow shapes, that are hard to cover using networks with star topology due to
their distribution from the control center. The data to be transmitted is assumed
to be less than 100 bytes and the monitoring interval Tmon is not smaller than
5 minutes. The network will carry these packets over multiple hops towards a
central gateway, that provides connectivity to a server, where the data can be
evaluated as illustrated in Figure 10.1.

After evaluating all the requirements and their implications for the network, the
network can be summarized as follows.

• Topology:The proposed topology is a mesh network divided into smaller
cells, each managed by a central arbiter. This design aims to cover the entire
area of interest while adhering to legal specifications and reducing energy
consumption for sensor nodes located close to the central node.
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• Technology:The chosen technology for the network is LoRa. LPWAN,
which offers an open architecture (see Section 9.1.1 and Section 9.1.2).

• Nodes:There are two types of nodes: the central node, which acts as a
gateway to the internet as well as an arbiter for each cell, and sensor nodes,
which are battery-powered with energy harvesting capabilities. Protocol
execution is concentrated at locations with continuous power to simplify
sensor nodes, allowing them to be powered by batteries and solar panels.

• Routing:The routing method employed in the network is location-based
routing (Section 9.3.3) with a central arbiter. The static configuration is
determined at startup, and the distance to the central node serves as the
primary criterion for packet relaying. As the nodes are stationary, support
for dynamic networks is unnecessary.

• Communication principle:Communication among nodes follows a syn-
chronized monitoring interval. Each node is assigned a sending slot, fol-
lowed by additional transmission slots for administrative tasks. This setup
allows nodes to enter sleep mode for the rest of the interval, conserving
energy, and accommodating unplanned administrative operations.

10.2 Protocol Overview

10.2.1 Physical Layer (PHY)

The LoRa modulation technique from Semtech is utilized on the physical layer,
offering excellent resistance to interference and long-range capabilities. Its main
advantage is the ability to function independently of the LoRaWAN protocol
stack. Each LoRa transceiver module provides access to transmission parameters
of received packets, including signal-to-noise ratio (SNR) and received signal
strength indicator (RSSI) after successful reception.
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Since the network was partly tested at Karlsruhe Institute of Technology in Ger-
many, and must comply with the fair-use policy governing the ISM bands in
Europe. The same fair-use policy was adopted for Ethiopia, as there is no current
regulation and standard for sub-GHz technologies. According to European norms
EN 300 220-1 [186] and EN 300 220-2 [187], the policy limits each application
to a one percent duty cycle, meaning it can only use the shared ISM spectrum
actively for one percent of the observation interval Tobs. The duty cycle (DC)
can be calculated based on the cumulative transmission time (Ton,com).

DC =
Ton,com

Tobs
(10.1)

The timing of transmissions within Tobs is flexible, allowing the device to send
consecutively at the beginning of Tobs and remain silent until the next observation
interval starts. Assuming an observation interval Tobs of 1 day (86400 seconds),
the maximum transmission time adhering to the fair-use policy can be determined
as:

Ton,com = DC.Tobs = 0.01× 86400s = 864s. (10.2)

The central node in the network, which receives all the uplink packets, experiences
the highest traffic. The air time tair for each packet depends mainly on the
spreading factor (SF ) and payload size, as described in Equation 9.6. Given a
fixed monitoring interval Imon and the assumption that each packet reaches the
central node only once, the maximum number of nodes Nc,max for each cell can
be calculated.

Nc,max <
0.01× Imon

tair
(10.3)

Additionally, this equation can be utilized to determine the minimum monitoring
interval when the number of nodes is fixed. In the design of the monitoring
application, both the number of monitoring locations and the monitoring interval
are crucial and should be assessed together. Figure 10.2 illustrates various design
possibilities for different spreading factors with a bandwidth (Bc of 125 kHz,
preamble size (Npre) set to 12 bytes, and Npay (payload size) of 26 bytes.
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Figure 10.2: Area of valid application designs with SF = 7, 8 and 10, Bc = 125 kHz, Npre = 12
bytes and a payload ofNpay = 26 bytes.

The network performance is heavily influenced by the spreading factor. For
example, for SF = 7, up to 182 nodes can be connected, while for SF = 10,
this number is reduced to only 29 nodes. However, it is crucial to note that
these figures are theoretical optima and may be significantly lower in practice due
to imperfections in the routing algorithm, where packets might be sent multiple
times.

10.2.2 Medium Access Control (MAC)

The protocol operates without a dedicated MAC algorithm on the physical layer,
employing the ALOHA principle for node communication. Nodes can transmit
packets at any time, and when they have data to send and are not receiving, they
initiate transmission immediately. The application layer will implement strategies
to minimize collisions by coordinating the transmission times of the nodes.

10.2.3 Routing

A routing protocol is essential for the proposed mesh network due to its topology.
A good routing algorithm reduces the number of transmissions, leading to lower
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energy consumption for nodes and longer battery life for sensor nodes. Addi-
tionally, a decreased duty cycle allows for a higher number of nodes or more
frequent measurements in the network. This dissertation work utilizes a location-
based routing algorithm as the routing protocol. However, this approach requires
precise knowledge of the current node’s position and the positions of all neigh-
boring nodes, which can be challenging with moving nodes but effective for static
networks like the one described in this work.

The routing protocol is responsible for directing the packets towards their desti-
nation. The network uses a centralized location-based routing algorithm to direct
packets to their destinations. Each cell in the network acts as an encapsulated
subnetwork, and nodes are assigned a dynamic distance parameter relative to
the central node. To avoid multiple transmissions and collisions, packets are
assigned a unique packet-ID and a relay window is proposed, allowing packets to
be re-transmitted within a specific time interval. The implementation prevents
packets from circulating indefinitely and ensures efficient packet relay in the mesh
network. The implementation of this routing algorithm is quite simple due to the
static positions of the nodes, yet still effective.

Every node has a parameter called distance dn that is representing its location in
the cell relative to the central node. This distance is determined dynamically at
the start-up of the network by a join procedure for all deployed nodes. The logic
for this is implemented in the central node.

When all nodes have been assigned a distance, the setup needed for the routing
protocol is complete. Now the nodes will relay packets that are from the same
network. To improve the efficiency of the routing protocol, every packet is assigned
a unique packet-ID called PID. When relaying a packet, this packet-ID is stored
locally for a fixed amount of time. A packet whose PID is already stored locally
will not be relayed, because this would lead to multiple transmissions of the same
data. Furthermore, a fail-safe is implemented, by limiting the maximum number
of times a packet can be relayed. This maximum number of hops,Nh,max, as well
as the current number of hops, Nh,cur, is transmitted with each packet. When a
packet is relayed, the current number of hops is increased by one. WhenNh,max =
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Nh,cur the packet is not relayed anymore. This prevents a packet from circulating
around the network indefinitely and blocking other transmissions.

Another problem with relaying packets in a mesh network is the multiple re-
transmission of the same packet, leading to collisions. To reduce the likelihood
of this occurring, a relay window Irel was proposed. Within, Irel the packet can
be re-transmitted at any time ttrans, with each start time being equally likely. It
is then occupying the channel for the time tair defined in equation (9.6). This
means the transmission will occur within Irel + tair. Neglecting the propagation
time from the sender to the receiving nodes, all receiving nodes randomly select
a start time ttrans for relaying the packet. Such a scenario is depicted in Figure
10.3.

Figure 10.3: Exemplary relay interval for two nodes without a collision.

The key metric of interest in this scenario is the probability of collisions in
the relay window. This probability can be calculated using the probability of
intersecting intervals, representing the likelihood that n intervals with length ω

randomly placed in a range L ∈ [0; 1] do not overlap. The formula to compute
this probability is:

Pno,int = [1− (1− n)ω]n (10.4)

To calculate the likelihood of a collision-free transmission for a given relaywindow
(Irel) and packet with airtime (tair), the formula can be simplified to:

Pno,coll = [1− (1− n)ω]n = [1− (1− n)
tair

Irel + tair
]n (10.5)

where the relative interval length is ω = tair

Irel+tair
. This probability is crucial in

determining an appropriate value for Irel to avoid excessive transmission times,
which can negatively impact energy consumption.
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In Figure 10.4, the probability of a collision-free relay window is assessed for n
= 2, 3, and 4 nodes, depending on the relative interval length ω.

Figure 10.4: Probability of a collision-free transmission depending on the relative interval length ω,
evaluated for n = 2, 3, 4 nodes.

A successful transmission is still possible even if some intervals intersect because
they all transmit the same packet, and only one of the transmissions needs to
be successful. Additionally, not all nodes are within the transmission range, so
simultaneous transmissions might be received correctly by a node reachable only
by one of the sending nodes. To ensure reliability, a probability threshold of
Pno,coll ≥ 0.5 was chosen for selecting Irel, resulting in a relative interval length
of ω = 0.05, as shown in Figure 10.4. Since the air time for each packet varies
significantly with the selected spreading factor, the relay window size should be
adjusted accordingly. The maximum packet air time tair,max, calculated using
Equation 9.6 and considering the maximum packet payload size Npay,max, leads
to the following definition of Irel:

Pno,int = (
1

ω
− 1).tair,max (10.6)
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10.2.4 Transport and Application layer

The main purpose of the proposed network protocol is to monitor certain param-
eters of an infrastructure project. This is done periodically with the monitoring
interval Imon. Every interval lasts for Imon and has the same structure. Syn-
chronization of the nodes is needed to reduce the active time of the nodes while
still allowing multi-hop connections, The nodes are only active for a time Tact

at the beginning of the interval. For the rest of the interval, the nodes are in
sleep mode to conserve the battery. This means that all communication must take
place in the active part of the interval. This part is again split into two different
paths. The first part is reserved for all scheduled data packets from the nodes.
Every node is assigned a slot in which it is allowed to send. All slots have the
same length, Tslot and thus the time required for all scheduled transmissions is
Tsched =Ncon.Tslot, whereNcon is the number of nodes connected to the central
node of the cell. After the scheduled transmission window is finished, the second
part of the active part of the interval is reserved for unplanned transmissions like
commands. These can only be initiated by the central node and can be used for
administration tasks. The length Text of this interval is fixed at the start of the
network. After the windows for sending commands have ended, the nodes start
sleeping. To ensure the nodes are awake at the beginning of the next interval, they
wake up a bit earlier than needed. This buffer Tbuf is defined at network start-up
and is the same for all nodes. The structure of an exemplary interval with three
connected nodes is shown in Figure 10.5.

Figure 10.5: Structure of a monitoring interval with Ncon = 3 and the time relative to the interval
t(int,start).

Setting up the network is done in three phases. First, the nodes are registering with
the central node and join the cell. After this is completed, the monitoring interval
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is synchronized with all nodes, and they are assigned their respective sending slot
inside this interval. When all nodes have successfully adjusted to the interval, a
command is broadcast to all nodes to start sending. The central node waits until
it has received at least one data packet from each node. After it has done so, the
network was successfully started, and monitoring can begin.

Once the network has been set up, the monitored data is sent to the central
node. Because the nodes have a sending schedule, the successful reception can be
checked. After tint,start + Tsched a receive-check is executed, and it is checked
if a packet was received from all nodes that are currently sending. If a packet is
missing, the central node is sending a command to the node and requests the data
to be sent again. These commands are sent inside the second part Text of the
active part of the interval.

The transmissions in the network will be organized in packets. These packets
consist of a fixed header and the actual payload. The header is also called overhead
because it is not carrying any information that the user is interested in, but it is
needed for routing and other application-specific tasks. The protocol implements
different packet types for different actions the application needs to perform, for
example, the join requests.

10.2.5 Packet structure

The LoRa transceivers from Semtech handle packets in bytes, resulting in byte-
wise structured packets for the proposed network. The packet header has a fixed
size of nine bytes, as shown in Figure 10.6.

Figure 10.6: Byte-wise structure of a packet with a header.
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The first two bytes of the header serve as the application identifier (APP-ID) for
the network. This allows for distinguishing packets from external nodes, as the
same ISM bands are used by other LoRa and LoRaWAN applications. The next
three bytes represent the sender’s node identifier (NID), the node where the packet
originated, and the destination node’s identifier. The destination can be a specific
NID for direct communication or zero for broadcasting to all nodes in the cell.

The fifth byte stores the hop count, limited to a value of 16 to accommodate four
bits. The first four bits represent the maximum hop count (Nh,max), and the
remaining bits indicate the current hop count (nh,cur).

The sixth byte is used for the packet identifier (PID), and the seventh byte stores
the distance and direction of the last node that sent the packet. The first bit of
the seventh byte indicates the packet direction (uplink or downlink), while the
remaining seven bits represent the distance (dn) of the last node.

The eighth byte is reserved for the packet type, classifying the payload contents.
All bytes after the ninth one are used for the payload, with the payload length for
the proposed protocol denoted as Np,pay . It is possible for a packet to have an
empty payload.

10.2.6 Time synchronization

In order for the network to operate smoothly, all nodes must synchronize with each
other. This synchronization is achieved by aligning all nodes with the interval
cycle of the central node. Each monitoring interval has a length of Imon and
is divided into different phases, which must be synchronized with the sending
interval of the nodes. This requires all nodes to start their intervals at the same
time.

To achieve synchronization, a SET INTERVAL command is sent to every node,
containing information to calculate the six timing variables of the nodes. The key
parameter is tnis, which represents the time until the next interval starts. Using
this information along with Toff , Tact, and Imon from the network, the nodes can
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calculate their local timing variables. Additionally, the transmission time tair and
the number of hops nh,cur of the packet are used to estimate the time test when
the packet was sent by the central node. With the estimated time test, the nodes
can calculate three missing timing variables: tint,tstart, tsleep, and tsend.

Once the nodes have successfully calculated their timing variables and aligned
their intervals with the central node, they send an ACK packet. Once all nodes
have acknowledged the interval, the central node can proceed with starting the
network.

To combat drift in the local real-time clock (RTC), the nodes periodically realign
their intervals using RESYNC INTERVAL commands, which only contain the
time until the start of the next interval tnis. The nodes can re-align their local
intervals using the calculations from the SET INTERVAL command. This process
ensures that the network operates accurately and efficiently.

10.3 Simulation

A simulation program for LoRa nodes was created for quick testing of various pro-
tocol designs. A simulator was written in Python and the programwas customized
to suit the intended purpose and facilitate a detailed analysis of transmission fail-
ures.

The simulation operates on entities situated at specific positions within a two-
dimensional world. Unlike event-based simulations, it uses a time-based ap-
proach, which may extend the simulation’s runtime. However, this choice ensures
smoother integration of the simulation code into real hardware in the future. Fig-
ure 10.7 shows the visualization of the simulation of the configuration from Figure
10.1. The simulation allows the possibility to visualize the scenario for a better
understanding.

154



10.3 Simulation

Figure 10.7: Automatically generated schematic for the example configuration with Pc,static = 0.05.
The value next to the arrows indicates the probability of a successful transmissionPsucc

between these two nodes.

10.3.1 Simulation setup

The simulation proved to be highly beneficial for testing various protocol design
points and enabled the gradual development of the network protocol. Initially,
a simple flooding algorithm was used as a reference, resulting in a high packet
delivery ratio (PDR) but an excessive number of sent packets. This negatively
affected network size and energy consumption. However, through the simulation,
the network protocol was refined to reduce the number of transmissions while
maintaining a satisfactory PDR.

Another critical aspect investigated was the network’s topology and the number
of links each node possesses. This evaluation was essential for node placement
outside the areas of interest, where nodes primarily serve as information relays
to the central node. The simulation demonstrated that long chains of single links
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lead to unreliable communication due to the accumulation of transmission error
probability (Pc,static) with each link.

10.3.2 Simulation result

The proposed protocol was evaluated through simulations, using distance-based
and basic flooding as the routing algorithms. Each option was simulated ten times
over a 24-hour period. The simulations measured the packet delivery ratio (PDR),
collision rate (γcol) of packets at the nodes’ transceiver modules, and the total
number of packets (nair) in the air at the central node. The simulation results
were analyzed and presented in Figure 10.8 using a box plot.

The simulations show that basic flooding performs poorly in terms of packet
delivery ratio across all values of Pc,static. However, other relevant parameters
need to be considered. For instance, the average collision rate in the network is
high, with over half of the packets being wasted due to collisions. Additionally,
the main drawback of using basic flooding as a routing parameter is the sheer
number of packets sent. Even in a small scenario, the central node exceeds the
fair use policy of approximately 15,000 packets/day for SF = 7 and a payload
Npay = 26 bytes. In contrast, the proposed distance-based routing only reaches
about two-fifths of that limit.
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Figure 10.8: Simulation results of the example scenario with Tmon = 5 min. Box-plot over 10
simulations for each value of Pc,static. Analyzing the packet deliver ratio PDR (a),
averaged collisions rate γcol overall transceivers (b) and number of packets on the
channel at the central node nair (c).
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To analyze the impact of the number of nodes connected to the central node on
the fair use policy, another set of simulations was carried out by doubling the
length of the sensor chain to fourteen nodes. Figure 10.9 shows the PDR per
node, and all results are available in Figure A.2 in the appendix for this scenario.
The overall packet delivery ratio PDR of the longer scenario is only slightly lower
when compared to the shorter sensor chain. When analyzing the PDR of each
node individually, the far-off nodes have a slightly lower PDR. This is because
these nodes require more hops to reach the central node and are thus more likely
to be corrupted.

Figure 10.9: Number of packets on the channel at the central node for Tmon = 5 min, analyzed for a
sensor chain with 14 nodes.

10.4 Hardware measurement results

Once the network protocol was successfully developed and tested in simulations,
the next step involved deploying it on real hardware for further validation. For
the sensor nodes, Heltec LoRa 32 (V2) development boards were utilized [188],
while a Raspberry Pi with a RAK811 LoRa module [189] was employed as

158



10.4 Hardware measurement results

the central node. Both of these hardware options featured the SX1276 LoRa
transceiver module from Semtech [190], ensuring smooth and compatible data
transmissions.

10.4.1 Central node

The central node was created using a Raspberry Pi and a RAK811 LoRa
transceiver module for LoRa communication. Leveraging Raspberry Pi’s pro-
gramming capabilities in Python, the simulation code could be easily adapted
for real hardware, significantly speeding up the development time. Figure 10.10
shows the hardware setup of the central node.

Figure 10.10: Picture of the hardware used as the central node: RaspberryPi 3B with a RAK811
LoRa module connected over Serial.

The central node operates as a Linux service, continuously running in the back-
ground. Additionally, it hosts a website on the Pi, providing a simple user interface
to control the network and display an estimated network topology. Users can send
commands to the network through this interface. The central node also logs its
operations in a text file for troubleshooting purposes. All received DATA packets
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from the network are stored in an SQL database for later analysis, accessible
through the website for quick evaluations. Figure 10.11 shows a screenshot of the
website.

Figure 10.11: Screenshot of the website used to control the network.

10.4.2 Sensor node

The sensor nodes are constructed using the Heltec LoRa 32 (V2) development
board, equipped with an ESP32 microcontroller, integrated USB to serial inter-
face, and a charge controller for Li-Po batteries. The ESP32 microcontroller
supports various sensors through standard interfaces like SPI and I2C. To test the
network, the MPU6050 inertial measurement unit (IMU) was employed. This
IMU allows the sensor node to measure acceleration in all three dimensions,
providing information about its orientation. The collected data, including ac-
celerometer readings, sensor temperature, and battery level, are transmitted in a
DATA packet.
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To supply the sensor nodes with power, 1200 mAh Li-Po battery was connected
to the Heltec board. This enables the sensor node to run for a couple of days,
due to the increased energy consumption compared to traditional LoRaWAN star
networks. To increase the lifetime of the network, the batteries can be recharged
using solar panels that can be connected to the TP4056 Li-Po charger chip already
present on the Heltec board. Figure 10.12 shows the assembled sensor without
the top of the case assembled.

Figure 10.12: Picture of the real sensor node without assembled top part of the case.

To facilitate outdoor testing of the network, a 3D-printable waterproof case was
specifically designed to protect and shield the assembled sensor nodes from envi-
ronmental elements. This allowed the network to be tested in real-world condi-
tions, ensuring its functionality and reliability.

10.4.3 Range testing

The proposed network protocol was tested on the south campus of KIT. To begin
the evaluation, suitable node placements were determined. A central node was
placed at the ITIV institute, and its single-hop coverage was measured.
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To assess the single-hop link quality, a NEO-6M GPS module was connected to
one of the Heltec boards. The GPS module periodically sent the current location
every 5 seconds once it obtained a valid position. The node with the GPS module
was then moved around the campus to determine the coverage area. Whenever
the central node received these GPS packets, it stored the received data, including
the RSSI and SNR of the packet, in an SQL database. This process resulted in
a collection of positions that had a direct communication link with the central
node. The initial test was performed with SF = 7. The received locations and
their corresponding RSSI values were plotted on a map of the campus, as shown
in Figure 10.13.

Figure 10.13: Range testing for SF = 7 using a GPS module in combination with the Heltec node,
color coding the RSSI the packet was received with.

The theoretical values for the RSSI with the LoRa transceivers are in the range
of -30 dBm to -120 dBm. These values were not reached during testing, as the
minimum RSSI received was around -100 dBm and the maximum was around
-55 dBm. The upper bound can be explained by the fact, that the GPS module
was only working outside the building and the central node was located inside the
department offices.

An analysis of the received positions revealed that most of them were within the
line-of-sight (LOS) of the ITIV office building. This observation might be a
consequence of using the lowest spreading factor SF = 7, which has the smallest
transmission range. To investigate further, the test was repeated with SF = 10,
and the results are presented in Figure 10.14.
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Figure 10.14: Range testing for SF = 10 using a GPS module in combination with the Heltec node,
color coding the RSSI the packet was received with.

In this test, the accuracy of theGPS connection suffered temporarily. One example
of this is visible on the main street. But overall, the results were similar to
SF = 7. This suggests that the spreading factor mainly affects the range in
LOS transmissions over longer distances. Transmissions from lightly obstructed
positions may come through, but they are hindered by normal-sized buildings. As
the spreading factor does not significantly impact the transmission range in urban
environments, SF = 7 was chosen for testing to reduce the air time tair of the
packets.

10.5 Performance analysis

The sensor nodes on campus were strategically placed based on the results of the
range test to assess the multi-hop communication capabilities of the developed
network protocol. The chosen measurement locations were also designed to
resemble the simulated example scenario. The positions of the sensor nodes on
campus were marked with their respective node-IDs on the map in Figure 10.15.

In this test, the nodes were provisioned with node-IDs and placed at their desig-
nated locations on the campus. The central node then initiated the network re-
configuration every 5 minutes (Tmon) until all nodes were successfully connected
within 20 minutes. The network remained stable for two days, experiencing rainy
weather with occasional snow.
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Figure 10.15: Placement and node-ID of the nodes at KIT campus south, red is the central node and
blue is the sensor nodes.

During the two days, the network demonstrated an impressive overall PDR of
99.42%, surpassing the simulation results. This improvement could be attributed
to a lower static packet error rate (Pc,static) on the communication channel. As
observed in the simulation, the communication link quality decreased with the
chain length. Table 10.1 shows the PDR for each node.

Table 10.1: Packet delivery ratio (PDR) and distance dn for each node.

Node PDR in % distance dn
Node 1 100.0% 1
Node 2 100.0% 2
Node 3 100.0% 3
Node 4 99.5% 4
Node 5 98.0% 5
Node 6 99.0% 5

The communication link’s quality in the Low Power Wireless Mesh Network
(LPWMN) decreases with chain length, consistent with the findings from the
simulation. However, the network’s overall reliability remains sufficient for non-
critical monitoring systems.

164



10.6 Energy consumption

Another essential characteristic of the LPWMN is its energy efficiency, which was
also evaluated in the field test. Battery levels of nodes 1, 3, and 4 were analyzed,
as they were transmitted back to the central node with every DATA packet. The
graph in Figure 10.16 displays the battery levels of these nodes.

Figure 10.16: Charge level Cbat(t) of the batteries for nodes 1, 3, and 4.

Since the battery level was sent only after the nodes successfully joined the net-
work, the graph does not start at 100%. Moreover, due to the measurement
inaccuracies of the battery level, the exact time when the nodes received the EN-
ABLE SLEEP command is less clear compared to the simulation. Nonetheless,
the energy consumption observed in the field test allows the nodes to last for ap-
proximately four days, which aligns well with the simulated energy consumption.

10.6 Energy consumption

Continuous monitoring of nodes requires a reliable power source for battery
recharge, and solar panels are commonly used for this purpose. In a network with
four nodes, two nodes were equipped with solar panels while the other two were
not. Figure 10.17 illustrates the battery level of these nodes over time, with nodes
1 and 2 having solar panels connected and nodes 3 and 4 without them.
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Figure 10.17: Charge levelCbat(t) of the batteries during the solar panel testing. Nodes 2 and 3 have
a solar panel connected, whereas nodes 1 and 4 do not.

At approximately t = 150 min, the ENABLE SLEEP command was sent to the
nodes, resulting in a noticeable gradient change in the battery levels, as also
observed in the simulation. Simultaneously, nodes 2 and 3 were connected to the
solar panel, and the impact of the solar panel on the battery levels can be observed
in the graph. The solar panel enables nodes 2 and 3 to recharge their batteries,
ensuring the continued functionality of the network.

The battery level is estimated using voltage measurements across the battery
terminals. With the solar panel charging the battery through the charge chip,
there is a sudden jump in the battery level. This behavior is attributed to the
measurement principle, which is based on the voltage between the battery’s anode
and cathode. The measured voltage is then linearly approximated within the
operational voltages of the battery (3.7V to 4.2V) to estimate the charge status.
This linear approximation works well for the first half of the battery capacity but
deviates for the second half, as evident from the graph.
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11 Intelligent sensors network for
Power Grid Monitoring

This dissertation section focuses on the development of frequency perturbation
predictions and the creation of machine learning models to predict the current-
carrying capacity of overhead lines based on weather conditions by employing a
probabilistic non-parametric approach. Nevertheless, it is essential to integrate
these models into a system that aligns with operational requirements to ensure
their effective implementation for real-time monitoring and control.

11.1 Implementation of a distributed sensor
network

The LoRa wide mesh wide area network was presented in Chapter 10 for overhead
transmission monitoring. An implementation of a distributed sensor network
along an OHTL involves multiple sensors that are geographically distributed and
interconnected to collect and exchange data for determining the current carrying
capacity of different sections of an OHTL at various points in time. However,
the placement of a sensor at every span of OHTL may not be economical and
efficient.

The optimum placement of the sensor at the hotspot location is one of the fun-
damental tasks that has to be considered in DLR implementation for overhead
transmission line monitoring. Identifying critical spans or segmenting overhead
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transmission lines into critical and non-critical sections involves analyzing vari-
ous factors such as temperature, wind speed, and current. The procedure involves
calculating capacities for each span and identifying the spans with hotspots or
with the minimum capacity. This information is then used to create a probability
distribution function, which assesses the likelihood of encountering minimum
current-carrying capacities at different parts of the overhead transmission line
based on observed weather conditions. The histogram in Figure 11.1 shows
hotspot distribution along the overhead transmission line and highlights regions
with a high probability of becoming bottlenecks, where the conductor tempera-
ture frequently reaches its peak. Conversely, there are regions where the capacity
rarely hits its minimum. To filter out less critical points, a threshold (t) is set
by the TSO, and any points below this threshold in the probability distribution
function are disregarded from the list of hotspots along the line.

Figure 11.1: Simulation of a real case of a congested transmission network and positioning of mini-
mum current-carrying capacities along the overhead line. The more frequently current-
carrying capacity minima appear along the overhead line, the more likely it is that the
specific line span will act as a bottleneck for capacity.
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Figure 11.2 illustrates the hotspot filtering threshold (i, e, 5% percentiles) in
which the probability distribution along the line is arranged in ascending order of
probability. The hotspots at the left of the threshold point (or red dot on Figure
11.2) are considered negligibly. Consequently, these elements are rounded down
to zero, retaining only the most probable hotspots. The unfiltered segments of the
line are then rearranged and prioritized in descending order for sensor installation.

Figure 11.2: Example illustrates how to establish the filtering threshold for hotspot analysis. Specifi-
cally, it demonstrates using 5th percentile. Any values falling below this threshold are
set to zero, focusing solely on higher probability locations.

Critical spans induce hot-spot temperature and are vital for determining line am-
pacity. Identifying these critical spans is crucial for utility providers overseeing
expansive overhead transmission networks, as it enables them to pinpoint bottle-
necks and optimize power transfer. The process involves determining the optimal
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number and placement of sensors along the entire line, dividing it into non-uniform
segments with spans considering various terrains. By identifying critical spans,
providers can ascertain the maximum current carrying capacity, allowing for ef-
fective alleviation of transmission line congestion based on permissible vertical
clearance to the ground.

The optimum sensor placement technique is crucial for the effective monitoring
of transmission lines. The goal is to strategically position sensors to maximize
coverage and detection capabilities while considering factors like line length,
thermal constraints, budget constraints, etc. Once the hotspot span is identified
and sorted from highest to lowest hotspot probabilities, the minimum number of
required sensors is determined based on the constraints. After sensor installation,
the current-currying capacity is calculated. This capacity calculation relies on
interpolating weather observations to the electrical towers. It’s important to note
that the implementation of a DLR system is a complex process that requires
collaboration with experts in power systems, meteorology, and sensor technology.
Additionally, local regulations and guidelines should be followed throughout the
installation process.

11.2 Tools for system monitoring

The power grid monitoring tool aims to provide an interactive tool for operators
to engage with grid information. It is designed to provide real-time situational
awareness of power grid conditions and to help operators identify and respond
to potential problems before they lead to outages or other disruptions. For an
effective view of grid monitoring, an interactive website tool was developed and
the first view of the website is shown in Figure 11.3. The software tool offers the
capability to monitor the flow of electricity across the power grid and to respond
to changes in supply and demand in real-time. The tool enables operators to
observe updated data generation and active load consumption. Also, it provides
the opportunity to trace back based on different timescale resolutions.
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Figure 11.3: Figure illustrates an interactive plot of real-time generation and active load analysis.
Specifically, it demonstrates generation sources by type and enables us to observe the
influences of each type of grid frequency perturbations.

The system continuously updates the model as new data arrives for better predic-
tions and creates a unified system that takes real-time grid information for active
power balancing. It creates interactive visualizations depicting the trajectory of
real-time behaviour of grid frequency, forecasts up to 30 minutes ahead, and
updates visualizations instantly. Figure 11.4 illustrates the grid frequency trajec-
tory behaviour with 20 minutes-ahead prediction plus explainable AI prediction.
When significant changes occur in the model’s predictions, explainable AI offers
explanations for disturbance in the system. It emphasizes the key features that af-
fect grid frequency forecasts, visually portraying their significance in influencing
predictions.

Another important feature offered by the grid monitoring tool is a website demon-
stration for overhead transmission line monitoring and visualization, as shown
in Figure 8.9. The line under consideration was one of EEP’s overhead lines
employed in the case study (see [192] for detail) and the overall goal is to include
the entire electrical grid in the monitoring system. The plot shows past 24-hour
weather-based current data and a 24-hour prediction (Figure 11.5). The minimum
capacity for each span section was calculated as the capacity of the line along the
transmission distance.
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Figure 11.4: The example illustrates a grid frequency trajectory for the past 40minutes and 20minutes
ahead predictions with explainable AI predictions.

Another view (Figure 11.6) on the website focuses on transient analysis. By
considering current weather conditions and power flow through the conductor
over time, it calculates changes in conductor temperature (see Section 7.1). Users
can input current flow and analysis time, triggering a warning if the calculated
temperature surpasses the safety limit, along with a notification of when this
could happen. The ability to monitor short-term changes in conductor temper-
ature allows system operators to manage short-duration congestion situations by
leveraging the conductor’s slow thermal response. Usually, the thermal response
time of the conductor occurs between 1 and 15 minutes, based on conductor type
and weather conditions. This enables the transmission of more power than the
current capacity without causing overheating in favorable weather conditions.

The gridmonitoring software includes a tool to calculate how long an overhead line
can handle extra power during congestion. It requires the Transmission System
Operator (TSO) to input the electrical current for a brief period, and the tool
predicts the duration this setting can operate based on current weather conditions.
A user-interface example is illustrated in Figure 11.7. Short-term adjustments
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Figure 11.5: Grid monitoring software tool: view of the overhead line and its ampacity.

Figure 11.6: Grid monitoring software tool: Transient analysis of the conductor temperature under
different loading schemes.

rely on a monitoring system and analysis tool. Redundant measurement systems,
like combined weather stations and conductor temperature sensors, are strongly
recommended to ensure overhead line longevity and system safety.

For instance, in a scenario with an ACSR Mallard overhead line experiencing
sunny, windy, and cool conditions (980W/m2 solar radiation, 2m/s wind speed
perpendicular to the line, 23 ◦C ambient temperature). Initially operated under
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its capacity, the conductor’s initial temperature registers at 30 ◦C. This provides
a window to safely transmit additional power within the line’s thermal constraints
due to the gradual heating characteristics of the conductor. Figure 11.7 illustrates
a short-time congestion measure.

Figure 11.7: Grid monitoring software tool: Case of short time congestion management measure.

The need arises to increase power transmission due to congestion. When the
current reaches the maximum transmission capacity, the conductor temperature
reaches 80 ◦C in 50 minutes. To resolve congestion, the TSO suggests operating
the line at 1.1 times the capacity for at least 5 minutes, confirmed safe by transient
analysis, allowing over 11 minutes before reaching the maximum temperature.
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12 Summary

12.1 Summary

This dissertation presented the development of machine learning models for pre-
dicting frequency deviation and probabilistic Dynamic line rating (DLR) fore-
casting of transmission grids. The system can help transmission system operators
(TSOs) to avoid line congestion scenarios, which is a key point towards the flexible
grid deployment.

Methodology for forecasting the frequency deviation of a power grid can provide
operators with up-to-date information to assess the need for intervention to main-
tain the frequency within the stipulated limits. This was simulated and tested
using the Ethiopian power grid frequency dataset and showed good performance
compared to selected benchmarks. Further investigations revealed that the fore-
casting performance can be affected by the number of hidden layers, neurons,
embedding window, prediction horizon, and learning rate. This methodology was
also able to handle measurement errors and took 8 milliseconds of computation
time for a single forecast, making it suitable for real-life applications.

DLR probabilistic forecasting has been analyzed and simulated for overhead lines
located in the Ethiopian power grid. Quantile regression forest (QRF) is used to
predict DLR as a function of environmental weather conditions for a simulated
Aluminium conductor steel-reinforced cable (ACSR) overhead transmission line.
The numerical testing for 220 KV transmission lines demonstrates the increase
in line rating using this method. The risk analysis shows that the DLR can be
safely integrated into grid monitoring and ampacity forecasting, by considering
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probabilistic forecasts for quantiles below 50% (compared to point forecast bench-
marks) to reduce overestimation and risk of overloading. Furthermore, the Mean
Absolute Percentage Error (MAPE) is less than 20% for 0–2 hours, which will
suit short-term congestion planning or overload monitoring.

For the data collection task of the transmission grid network, LoRa was chosen as
the target technology. It is the Low-power WAN (LPWAN) technology with the
most open architecture, both hardware and software. Only the LoRa modulation
was used, and all LoRaWAN functionality was omitted and replaced by a custom
protocol in this work. But the channel used will be in the same ISM bands
around 868MHz as LoRaWAN, to allow the use of existing hardware as well
as avoiding licensing costs. Therefore, LoRa-mesh offers a cost-effective and
efficient alternative to manual inspection and monitoring techniques. It allows
system operators to continuously monitor their infrastructure and receive timely
alerts, enabling them to take necessary actions before possible failures. This work
can easily extend to the distribution grid and transformer monitoring.

Simulation results indicated that a distributed sensor mesh network can effectively
achieve a high packet delivery ratio (PDR) for monitoring purposes. Subsequent
field tests at KIT on a university campus have further confirmed the efficacy of
this network protocol. This suggests the potential use of the proposed network
for monitoring transmission and distribution lines, thereby enhancing the stability
of power grids in developing countries such as Ethiopia. Initial test outcomes
provide a foundation for future comprehensive analysis and detailed investigation.
A comparison between simulation and field test measurements underscores the
need to implement the proposed system for intelligent grid monitoring.

The network consists of two types of nodes: a central gateway node with continu-
ous power and internet access, and battery-powered sensor nodes without internet
access placed at points of interest to measure the parameters in demand. Cen-
tral nodes have more computing power and server connectivity. Most protocol
implementation occurs on central nodes to reduce sensor node load, simplifying
network control. The network is designed for remote, inaccessible locations for
prolongedmonitoring. Nodes have limited battery life, often just a few days. Solar
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power is used to sustain nodes in remote areas, ensuring uninterrupted operation.
The network consumes more energy than standard LoRaWAN networks but em-
ploys solar panels to offset energy usage, maintaining power without relying solely
on batteries.

The network incorporates redundancy measures to prevent a solitary offline node
from halting the entire system. Every node has multiple connections, boosting the
network’s dependability and ability to recover. The network’s protocol is in line
with LoRa modulation and works with Semtech’s LoRa Transceivers, enabling
smooth integration with existing technologies.

12.2 Outlook

This dissertation is part of the first steps toward a flexible electrical grid. Grid
optimization mechanisms, such as active power balancing and dynamic line rating
forecasting systems, offer a short-term solution to extend the need for the construc-
tion of new overhead lines. Machine learning algorithms showed the possibility
of monitoring frequency dynamics and adjusting the current-carrying capacity of
the transmission line conductor to the surrounding weather conditions.

The provided approach has been assessed and modeled using the Ethiopian trans-
mission network, but it is adaptable to systems of varying scales. Thoroughly
investigating load fluctuations over time and the electricity generation mix should
also be taken into account for forecasting frequency anomalies.

The next step in the development of the forecasting model outlined in this disser-
tation involves implementing the system in a practical environment. Collecting
weather data for a full year after installing the hardware is crucial for the re-
sults of this dissertation. Leveraging transfer learning techniques enables quick
adaptations of pre-trained models in a short timeframe. Furthermore, continuous
learning can be incorporated to ensure that models are regularly updated based on
the latest measurements from the system.
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Future developments include the integration of frequency prediction and DLR
into control and protection systems. Integration of DLR and rate of change of
frequency (RoCOF) into distance relay protection increases the reliability and
security of the renewable-dominated power grid.

The developed LoRa mesh network protocol showed promising signs for imple-
menting low-data rate monitoring tasks at remote locations. However, the energy
consumption of the nodes is still too high to allow long-term monitoring. Thus,
to extend the monitoring time, the nodes can use solar panels to recharge the
batteries during the day. In addition, Wake-on-receive would allow the nodes to
sleep for longer, as they could also sleep between the transmissions. Therefore,
the development of more field tests in Ethiopia is one of the goals of future work.

Finally, the research presented in this dissertation can be expanded for various
practical purposes. One potential extension involves utilizing soil sensors to
closely monitor crop conditions, enabling farmers to optimize fertilizer and pes-
ticide usage with greater precision. Furthermore, the study identifies promising
domains like smart grids, smart cities, air quality management, environmental
monitoring, and improved smart farming infrastructure for future applications.
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A Appendix

A.1 Simulation results

Figure A.1: Automatically generated schematic for the example configuration with double the sensor
chain length with Pc,static = 0.05. The value next to the arrows indicates the probability
of successful transmission of Psucc between these two nodes.
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Figure A.2: Simulation results of the example scenario with double the chain length, with Tmon =
5 min. Box-plot over 10 simulations for each value of Pc,static. Analyzing the packet
deliver ration PDR. Averaged collisions rate γcol overall transceivers and a number of
packets on the channel at the central nair .
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