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Abstract

So far, the Standard Model of particle physics has been proven well compatible with data
obtained from collider experiments. The discovery of a Higgs boson at the Large Hadron Col-
lider about 10 years ago represents the last big milestone of this remarkable success story, but
also marked the beginning of the precision era in Higgs physics for the measurement of all its
properties and couplings in order to identify potential inconsistencies between prediction and
experiment. These searches are well motivated, since there are several hints for the incom-
pleteness of the Standard Model as the full theory up to arbitrary high energies. Especially
the Higgs channels provide a testing ground for sectors of the Standard Model that are yet
to be precisely explored, for which the structure of the Higgs potential is a prime example.

The absence of prominent signals in the data sets suggests that a significant scale separation
between the relevant energies of collider experiments and the new physics sector persists.
This would be a scenario in which new physics effects are consistently described in a model
agnostic way by an effective field theory approach. In order to provide reliable predictions of
deviations from purely Standard Model behaviour, higher orders in perturbative calculations
also in the effective field theory extensions of the Standard Model are imperative. This
thesis aims to clarify some aspects in the application of effective field theory extensions of
the Standard Model for high precision predictions, thereby presenting calculations in the
dominant channel of single- and di-Higgs production at a proton-proton collider, the gluon
fusion channel. Moreover, the phenomenology of these theories in di-Higgs production is
investigated.

Necessary theoretical techniques for perturbative calculations are briefly recapitulated and
the main features of the two prevalent extensions of linear (SMEFT) and non-linear (HEFT)
effective field theory together with their power counting are introduced. Subsequently, the rel-
evant calculational steps of di-Higgs production at full NLO QCD for the leading contributions
of HEFT and SMEFT are presented. The phenomenology of the two theories is contrasted
at the level of total cross section and distributions, and the effect of different truncation op-
tions for dimension-6 operator insertions in the SMEFT is investigated. As calculations at
higher loop orders almost exclusively employ dimensional regularisation schemes, we study
the structure of two different, well-defined schemes for the continuation of γ5 to D dimensions
in the SMEFT for the single-Higgs production process. Consistency of physical predictions
then leads to the derivation of relations between parameters in the SMEFT that can be
used to translate parameter values in different γ5 scheme choices. Having understood this
structure, the subleading SMEFT contribution to di-Higgs production of the chromomagnetic
and 4-top operators is calculated in the two γ5 schemes. The relevance of the corresponding
Wilson coefficients is investigated and compared with the leading contribution of SMEFT.
The impact of different γ5 scheme choices on a naive single Wilson coefficient variation is
exemplified, highlighting the importance of being inclusive enough in the parameter space in
order to derive scheme independent results.

Zusammenfassung

Bis zum heutigen Tag hat sich das Standardmodell der Teilchenphysik als gut vereinbar mit
den Messungen an Teilchenbeschleunigern erwiesen. Die Entdeckung eines Higgs-Bosons am
Large Hadron Collider vor etwa 10 Jahren stellt den letzten großen Meilenstein dieser Erfolgs-
geschichte dar, was zugleich den Startpunkt für die Präzisionsära in der Physik des Higgs-
Bosons markiert, um all seine Eigenschaften und Kopplungen zu erforschen und potentielle



x

Unvereinbarkeiten zwischen Vorhersage und Experiment zu finden. Diese Untersuchungen
sind gut begründet, da es einige Hinweise auf die Unvollständigkeit des Standardmodells
als komplette Theorie für beliebig hohe Energien gibt. Die Kanäle der Higgs-Produktion
bieten hierfür ein Testgelände für Sektoren des Standardmodells, welche bisher nicht präzise
bestimmt wurden, worunter insbesondere das Higgs-Potential fällt.

Das Fehlen von direkten Signalen in den Datensätzen deutet darauf hin, dass eine deutliche
Skalenseparation zwischen den relevanten Energien der Beschleunigerexperimente und dem
Sektor der neuen Physik vorherrscht. Dies würde ein Szenario darstellen, in welchem Ef-
fekte von neuer Physik konsistent und modellunabhängig mit den Methoden von effektiven
Feldtheorien beschrieben werden können. Um verlässliche Vorhersagen für Abweichungen
vom reinen Standardmodell Verhalten zu beschreiben, sind Rechnungen in höheren Ordnun-
gen der perturbativen Entwicklung auch für Erweiterungen des Standardmodells in effektiver
Feldtheorie vonnöten. Diese Arbeit zielt darauf ab, einige Aspekte der Anwendung von ef-
fektiven Feldtheorien des Standardmodells für die Vorhersage bei hoher Präzision anhand
von Rechnungen für den dominanten Produktionskanal der Gluon-Fusion für Higgs-Boson-
und Higgs-Paarerzeugung an einem Proton-Proton Teilchenbeschleuniger zu klären. Darüber
hinaus wird die Phänomenologie dieser Theorien für Higgs-Paarproduktion erforscht.

Die notwendigen theoretischen Methoden der Störungsrechnung werden kurz rekapituliert
und die Haupteigenschaften der zwei vorherrschenden Erweiterungen der linearen (SMEFT)
und nichtlinearen (HEFT) effektiven Feldtheorie zusammen mit deren Vorschrift zum Ordnen
der Operatorstrukturen eingeführt. Anschließend werden die relevanten Schritte zur vollen
NLO QCD Berechnung von Higgs-Paarproduktion für den dominanten Beitrag der HEFT
und SMEFT präsentiert. Die Phänomenologie der beiden Theorien wird für den totalen
Wirkungsquerschnitt und in Verteilungen gegenübergestellt und der Effekt von verschiede-
nen Arten der Trunkierung der Beiträge von SMEFT Operatoren der Dimension-6 unter-
sucht. Da höhere Schleifenordnungen fast ausschließlich in Vorschriften der dimensionalen
Regularisierung berechnet werden, untersuchen wir die Struktur von zwei wohldefinierten
Vorschriften für die Fortsetzung von γ5 in D-dimensionaler Raumzeit in SMEFT für den
Prozess der Higgs-Boson Erzeugung. Aus der Konsistenz physikalischer Vorhersagen wer-
den Relationen zwischen den Parametern der SMEFT hergeleitet, welche für eine Überset-
zung von Parameterwerten bei unterschiedlichen Vorschriften für γ5 genutzt werden kön-
nen. Mit dem daraus abgeleiteten Wissen wird der subdominante Beitrag der SMEFT zur
Higgs-Paarproduktion durch den chromomagnetischen Operator und 4-Top Operatoren für
zwei unterschiedliche Vorschriften für γ5 berechnet. Die Bedeutung der zugehörigen Wilson
Koeffizienten wird untersucht und mit dem dominanten Beitrag der SMEFT verglichen. Die
Auswirkung von unterschiedlichen Wahlen der Vorschrift für γ5 auf die naive Variation einzel-
ner Wilson Koeffizienten wird veranschaulicht und dabei die Wichtigkeit für eine ausreichend
inklusive Auswahl an Parametern für vorschriftsunabhängige Resultate hervorgehoben.
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CHAPTER 1

Introduction

The Standard Model of particle physics (SM) ranks high among the greatest scientific accom-
plishments of the last century. The discovery of a scalar particle at the Large Hadron Collider
(LHC) [1,2] which very well fulfills the expected properties of the Higgs boson, the until then
last missing constituent of the SM, just underpins the success. With only 19 free parame-
ters, the theory of the SM is predictive after only very few measurements and the amount of
self-consistency of SM predictions in comparison with various experiments is remarkable.

However, despite the tremendous achievements, it is a well known fact that the SM cannot be
viewed as ‘the theory of everything’ of the quantum world. There are many observations and
theoretical signs of incompleteness which the SM cannot address. Therefore, the SM should
be regarded as an effective theory that is valid at currently measured energies and up to the
observed precision so far, for which the extension, also called ultraviolet (UV) completion in
the jargon of effective field theories (EFT), is yet to be found.

Absence of direct signals in form of bumps in measured distributions pushes the community
to search for deviations on the precision frontier between SM calculations and experimental
results. A necessary complement is then given by precision calculations considering effects
beyond the SM (BSM) in order to measure potential deviations. As there is a plethora of po-
tential realisations of BSM extensions, the pragmatic approach parameterises BSM effects in
a generic, but consistent way, with the help of bottom-up EFTs. These EFTs are constructed
only with minimal assumptions on the BSM physics and are equipped with a systematic
expansion that allows to include effects up to arbitrary precision.1

Within a bit more than 10 years after the announcement of the Higgs discovery, a lot of
progress was made in the determination of the Higgs properties and measurement of inter-
actions [3, 4], however there are still some areas where potential BSM deviations could show
up. A particular interesting showcase is given by di-Higgs production, as it provides direct
insight to the Higgs self interaction.

Throughout this work, we express all formulas in natural units, i.e. we effectively set

ℏ = 1, c = 1, ϵ0 = 1 . (1.1)

1It is important to stress, however, that there are potential BSM models that cannot adequately be described
using EFTs. Therefore, we do not advocate to completely ignore the investigations of well motivated, concrete
model realisations.
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Therefore, the notion of time, length and energy is used interchangeably, in particular in
the context of high energy, UV and short distance, and low energy, infrared (IR) and long
distance physics we refer to the same scale separation.

The present document is divided into two parts. In Part I of the thesis, we briefly revisit
the necessary theoretical concepts for precision applications of bottom-up EFTs at the LHC.
Hence, Chapter 2 serves as a quick introduction to the relevant content of the SM also
mentioning some shortcomings to highlight the need for a more general theory. In Chapter 3
the techniques used for higher order perturbative corrections of QCD induced processes are
introduced and also the technical difficulties of chirality in dimensional regularisation are
addressed. Moreover, in Chapter 4 we establish the basic concept of EFTs and the two
canonical bottom-up EFTs in Higgs physics.

Part II of this thesis is dedicated to the concrete application of the introduced methods
in Higgs pair production in the gluon fusion channel gg → hh. Chapter 5 highlights the
importance of Higgs pair production and the gluon channel in particular. In addition, an
overview of the current theoretical status is presented. Subsequently, some recent results of
the application of EFTs in precision calculation are reviewed.

In Chapter 6 the work of Ref. [5] is discussed which considers the effect of the leading con-
tribution of the EFTs at full NLO QCD. The relevant formulas of the calculation in the two
EFTs are presented and practical differences pointed out. After definition of different trunca-
tion options for the Standard Model effective field theory (SMEFT), the two EFT realisations
are contrasted at the level of total cross section and distributions. Moreover, the effect of the
different truncation options is investigated.

Afterwards, the intricacy of γ5 scheme choices at higher orders in the context of EFTs is
revisited for the example of single Higgs production in Chapter 6 following the work of
Ref. [6]. Thereby, a subset of operators in the SMEFT framework is considered and the
explicit scheme dependence of single Wilson coefficients is elaborated.

Having understood the structure of the γ5 scheme in the presence of EFT operators, the
knowledge is applied to the subleading SMEFT contribution in gg → hh including insertions
of chromomagnetic and 4-top operators in Chapter 8. The potential sensitivity of the process
on the considered Wilson coefficients is investigated. In addition, the effect of γ5 scheme
choices in naive observations of single Wilson coefficient contributions is demonstrated. Thus,
the results point to the importance of being sufficiently inclusive in the selection of Wilson
coefficients for parameter fits and bounds, as γ5 scheme independent results are only obtained
if operator combinations are considered. The discussion of the chapter follows closely the
results in Ref. [7].

Finally, in Chapter 9 we derive conclusions and provide an outlook for further directions of
research.
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CHAPTER 2

The Standard Model of particle physics in a nutshell

As already highlighted in the introduction, the importance of the SM as the basis of modern
particle physics cannot be stressed enough. Its development to the final version has a history of
many significant contributions over a few decades. A few milestones are worth mentioning: the
Brout-Englert-Higgs mechanism (Higgs mechanism in the following) [8–11] that describes the
generation of mass terms in the SM, the Glashow-Salam-Weinberg theory of electroweak (EW)
interactions [12–14] and the description of asymptotic freedom of quantum chromodynamics
(QCD) [15, 16]. The following chapter provides a very brief overview about the relevant
structure of the SM.

SM is a renormalisable quantum field theory (QFT) which is based on a chiral gauge theory.
The SM fields enter in the scalar, vector and spinor representations of the Lorentz group
SO(3, 1) and particles are considered as the quantised excitations of the associated fields. On
top of their Lorentz representation, they are specified by their local transformation properties
under the gauge group

G = SU(3)QCD × SU(2)L × U(1)Y . (2.1)

SU(3)QCD is the gauge group of QCD and acts non-trivially on the ‘coloured’ fields of the SM.
The SU(2)L×U(1)Y is the unified group of EW interactions, where subscript L denotes that
that the gauge group is chiral and only acts on the left-handed (LH) fermion fields whereas
right-handed (RH) fermion fields are left invariant. The U(1)Y coupling is defined by the
hypercharge Y of the field.

The field content in interaction eigenstates and the respective representations is summarised
in Table 2.1. Ga are the gauge bosons of the SU(3)QCD gauge group of strong interactions,
W i and B are the EW gauge bosons of the SU(2)L and U(1)Y gauge group, respectively. The
fermions are collected according to their transformation properties, where quarks are coloured
and couple to the strong interactions, whereas leptons are only subject to EW interactions.
The LH fermion fields are collected in pairs forming doublets under SU(2)L the RH fields
are singlets of that gauge group. All fermion species enter with three copies of the same
transformation properties, the so called quark and lepton families, but they differ according
to their coupling to the Higgs doublet ϕ and hence their mass after EW symmetry breaking.
The different kinds of quarks and leptons are also called flavours.
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Field Representation

Type Symbol SU(3)QCD SU(2)L Y

Gauge bosons

Strong Ga 8 1 0

EW
W i 1 3 0

B 1 1 0

Fermions

Quarks

qiL =


uL
dL

 ,

cL
sL

 ,

tL
bL

 3 2 1/6

uiR = {uR, cR, tR} 3 1 2/3

diR = {dR, sR, bR} 3 1 −1/3

Leptons
liL =


νe
eL

 ,

νµ
µL

 ,

ντ
τL

 1 2 1/2

eiR = {eR, µR, τR} 1 1 1

Scalar

Higgs ϕ 1 2 1/2

Table 2.1.: Field content of the SM with its representations.

For the covariant derivative, the sign convention

Dµ = ∂µ − igsGaµT a − ig1W i
µ

τ i

2
− ig2BµY , (2.2)

is employed throughout the thesis. T a are the generators of SU(3)QCD,
τ i

2
are the generators

of SU(2)L given by the Pauli matrices τ i and Y is the hypercharge associated to U(1)Y . Since
we refer to different colour factors throughout the thesis, we briefly introduce the relevant
combinations of the SU(3)QCD colour algebra:

TF δ
ab = Tr

[
T aT b

]
cF δij = (T aT a)ij

cAδ
ab = facdf bcd ,

(2.3)

with

[T a, T b] = ifabcT c . (2.4)
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The specifications of gauge group and field content already define our theory and the classical
SM Lagrangian is obtained writing down the all renormalisable terms obeying the gauge
symmetry condition up to canonical dimension-42

LSM = −1

4
GaµνG

aµν − 1

4
W i
µνW

iµν − 1

4
BµνB

µν

+ q̄Li /DqL + ūRi /DuR + d̄Ri /DdR + l̄Li /DlL + ēRi /DeR

+ (Dµϕ)
† (Dµϕ)− V (|ϕ|2)

+
(
q̄LŶuuRϕ̃+ q̄LŶddRϕ+ l̄LŶeeRϕ+H.c.

)
.

(2.5)

ϕ̃ = εϕ∗ is the charge conjugate of the Higgs doublet. The first two lines of Eq. (2.5) contain
ingredients of a massless gauge theory, with the gauge kinetic terms of pure Yang-Mills theory
in the first line and fermion kinetic terms with gauge interaction in the second. The third
line contains the Higgs sector with kinetic term and Higgs potential V (|ϕ|2). The last line
describes Yukawa interactions with the fermions of the theory except neutrinos. The Yukawa
couplings Ŷi are given by matrices, as the Yukawa interactions a priori cannot be expected
to be diagonal in the interaction eigenstates of the fermions. The Higgs sector and Yukawa
interactions lead to mass terms of the particles at low energies which is described in the
following subsection.

2.1. Symmetry breaking and Higgs physics in the Standard Model

Spontaneous symmetry breaking is an important cornerstone of the SM. It provides the
mechanism that is responsible for the generation of mass terms of the SM fields, whilst
preserving gauge invariance of the chiral gauge group in the Lagrangian. The crux of the
Higgs mechanism [8–11] in the SM is that the scalar doublet ϕ acquires a non-vanishing
vacuum expectation value (vev) v below the symmetry breaking scale. The new ground state
is obtained by a minimisation condition of the Higgs potential

V
(
|ϕ|2

)
= −µ̂2|ϕ|2 + λ|ϕ|4 , (2.6)

which leads to
v2

2
:= |ϕ0|2 =

µ̂2

2λ
at leading order.

Below the symmetry breaking scale the Higgs doublet is typically expanded around the vev
and the components are arranged such that the vev appears in the real scalar component of
the Higgs doublet, i.e.

ϕ =

 G+

h+ v + iG0

√
2

 . (2.7)

While the theory itself is invariant under the full gauge group SU(2)L × U(1)Y , the ground
state defined by v is only invariant under a U(1)Q subgroup which is identified with the gauge

2For the quantisation of non-abelian gauge theories, a gauge fixing condition is necessary. Standard Rξ-gauge
approach follows the trick introduced by Fadeev and Popov [17] which has been extended for broken gauge
theories. It is based on the insertion of a unit into the path integral quantisation of a gauge theory in the form
of

1 =

∫
Dα det

(
δG(V α)

δα

)
δ (G(V α)− ω(x)) ,

with alpha being a gauge configuration, which is then pulled to the quantum action through an integration

over ω(x) with Gaussian weight

∫
Dω e−i

∫
ddxω2

2 . The determinant part which is independent of the gauge

configuration α for a linear gauge fixing condition is interpreted as a generalized differential operator that
is expanded by integration over Grassmann fields (ghosts). As this is a standard procedure a more detailed
description can be found in many modern textbooks, e.g. Ref. [18].
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group of electromagnetism. According to the Goldstone theorem a breaking of continuous
global symmetries leads to Goldstone bosons G+, G− and G0 for each broken symmetry
degree of freedom, i.e. the number of Goldstone fields is given by the dimensionality of the
coset G/H with H = SU(3)QCD ×U(1)Q and G given in Eq. (2.1). In the presence of a local
gauge symmetry, however, the resulting Goldstone fields are not physical and their degrees
of freedom are absorbed in the mass generation of the gauge bosons related to the broken
symmetry.

For the purpose of deriving the mass terms and couplings to the physical Higgs field, it is suf-
ficient to work in unitary gauge which effectively removes the unphysical would-be Goldstone
degrees of freedom. The covariant derivative on the Higgs doublet thus leads to

(Dµϕ)
† (Dµϕ)→ 1

2
(∂µh)

2 +
1

2

∣∣∣∣∣∣
(
−ig1

2
τ iW i

µ − i
g2
2
Bµ

)  0

h+ v

∣∣∣∣∣∣
2

=
1

2
(∂µh)

2 +

(
m2
WW

+
µ W

−µ +
m2
Z

2
ZµZ

µ

)(
1 +

h

v

)2

,

(2.8)

where the second line is obtained after diagonalisation of the mass matrix with the definition
for the fields

W± =
1√
2

(
W 1 ∓ iW 2

)
Zµ =

1√
g21 + g22

(
−g2B + g1W

3
)
, (2.9)

and their mass parameters

m2
W = v2

g21
4

m2
Z = v2

g21 + g22
4

. (2.10)

For the case of fermion mass generation, we consider the example of the up-type quarks.
Thus, we have for the Yukawa interaction

q̄LŶuuRϕ̃+H.c.→ v√
2

(
ūLŶuuR + ūRŶ

†
uuL

)(
1 +

h

v

)
= (muūu+mcc̄c+mtt̄t)

(
1 +

h

v

)
,

(2.11)

where in the second line the fermion fields have been redefined in order to diagonalise the
mass term. Since we usually quantise the theory in the mass eigenstates, the diagonalisation
in Eq. (2.11) leads to weak interactions with W± bosons that also couple between states
of different fermion family in the mass basis. These family off-diagonal interactions are
parameterised by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix [19,20]

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (2.12)

which translates between mass eigenstates and interaction eigenstates.

The Higgs potential reduces in unitary gauge to

V
(
|ϕ|2

)
→ m2

h

2
h2 +

m2
h

2v
h3 +

m2
h

8v2
h4 , (2.13)
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Figure 2.1.: Diagrams demonstrating the measurements of Higgs couplings in comparison with
the predicted mass relation of EW symmetry breaking in the κ-framework. Left: interaction
with fermions and massive gauge bosons [3], right: trilinear Higgs self interaction [24].

where m2
h = 2λv2 defines the mass of the physical Higgs.

Through the structure of EW symmetry breaking, all fields couple to the physical Higgs
directly related to their mass parameter, i.e. after measurement of the masses and one

additional parameter, for instance the Fermi constant GF =
1√
2v2

, all couplings of the Higgs

boson are completely defined.3 The leading order relations between masses and couplings are
demonstrated in Eqs. (2.8), (2.11) and (2.13).

After the Higgs boson discovery, a huge effort has been put into the precise measurement of the
Higgs couplings in order to test if the structure predicted by EW symmetry breaking in the SM
is sufficient. The common framework for these measurements is given by coupling modifiers in
the so-called κ-framework which is described in Refs. [22,23]. Recent experimental results are
shown in Fig. 2.1. The diagram on the left in Fig. 2.1 demonstrates that the couplings of gauge
bosons and the fermions to the Higgs are very well compatible to the mass proportionality
predicted by the SM. Measurements of the trilinear Higgs coupling, as presented on the right
in Fig. 2.1, show that the structure of the Higgs potential is among the least explored parts
of the SM, such that there is still the possibility for sizable deviations from the SM. The
main process to gain more insight into the Higgs potential is given by Higgs pair production
which is therefore the focus of the studies presented in Part II. However, as variations of
single couplings are theoretically not well motivated and the κ-framework does not describe
a consistent parameterisation of BSM effects, we consider the framework of bottom-up EFTs
for which a basic introduction is given in Chapter 4.

2.2. Incompleteness of the SM

Before continuing with the other chapters, it may be instructive to remind ourselves why we
need to take into account BSM extensions at all, since the SM has been proven to describe

3Depending on the EW input scheme, also other parameter measurements can be the starting point determining
the other couplings. A detailed discussion about different input schemes can be found in the literature, e.g. in
Ref. [21].
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physics at collider experiments with great success. Yet, there are quite a few observations
that are incompatible with our current understanding of the fundamental theory of nature.

� One example is the astronomical observation of strong hints for the existence of Dark
Matter which provides an unknown gravitational source that does not interact with
electromagnetism and therefore differs from visible matter made of Hadrons. These
gravitational effects manifest in atypical distributions of velocity in the rotations of
spiral arms of spiral galaxies, which cannot be described by visible matter alone. Also
there are clusters of high mass density that lead to gravitational lensing effects, while
the matter comprising the mass density is invisible.

� The visible universe, so far, appears to have a significant excess of matter over anti-
matter. The necessary requirements on a mechanism to provide this asymmetry have
been formalised by the Sakharov conditions [25]. However, if only the SM is taken into
account as the sole microscopic theory of the universe, the condition of CP violation
would not be provided in sufficient magnitude.

� Another observation closely related to particle physics are mass effects in neutrino
physics. While neutrino masses are not part of the SM, oscillations of interaction
eigenstates have been observed [26–28] which can only be explained if at least two of
the neutrino flavours are massive.

Moreover, there are purely theoretical motivations to search for a BSM theory. These follow
from the consideration of patterns among the parameters of the SM that appear not to be
‘natural’ if there is no mechanism in the background adjusting them. It is commonly argued,
for instance, that the mass parameter of the Higgs doublet is not protected by a symmetry,
such that higher order corrections from yet undiscovered, potentially very heavy fields could
in principle lead to large higher order contributions. In addition, the arrangement of the
flavour structure in the quark sector is quite peculiar, since the CKM matrix responsible for
the translation of the mass eigenstates to the flavor eigenstates appears to be almost diagonal.

These indications motivated the theory community to construct a plethora of concrete models
on the basis of intuition, symmetry and generalisations of the Higgs sector, with many of them
increasing the spectrum of the field content. At the same time experiments are probing the
microscopic theory of particles for potential signs of BSM physics. However, up to the current
date, no direct observations in form of bumps in distributions have been found which would
clearly signal the discovery of new particles. This leads to the current popularity of a more
pragmatic approach in the search for deviations of the SM by means of bottom-up EFTs. An
introduction into the framework of EFTs is presented in Chapter 4.



CHAPTER 3

Higher order calculations and QCD cross sections

In the aim for precise predictions in the framework of QFT, there are many technical diffi-
culties that need a clever treatment. In this chapter we are going to touch some of these.

First we exemplify the issue of infinities that appear in the naive application of perturbation
theory. Therefore, we have a look at a generic one-loop Feynman integral defined as follows4

pn−1 pn

p1

p2

p3

p4

=: N0,D=4 =

∫ ∞

−∞

d4l

(2π)4
1

D0 . . . Dn−1
. (3.1)

The integration domain of the loop momentum includes the complete Minkowski space, thus
a potential source of problem is given by the boundary at infinity. In order to demonstrate
this we switch to polar coordinates and just do a rough power counting of loop momentum
in the integration.5 Restricting only to the limit of large loop momentum, i.e. |l| → ∞ in the
integrand, the integration leads to

N0,D=4

∣∣∣∣∣
UV

∼
∫ ∞

d|l| |l|
3

(|l|2)n , (3.2)

which becomes divergent on the upper limit of the integration for n ≤ 2. This is an example
of an UV divergence at one-loop. Divergences that appear in the modes of low loop momen-
tum of Feynman integrals are called IR divergences. A necessary requirement for these are
massless interacting particles in the loop. We refrain from an explicit demonstration of their
appearance in one-loop integrals and refer the interested reader to Ref. [30], which provides
a comprehensive classification and evaluation of all divergent (UV and IR) one-loop master
integrals.

4All Feynman diagrams throughout this thesis were generated using tikz-feynman [29].
5The switch to polar coordinates requires a Wick rotation.
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Now we have established the appearance of divergences in the naive evaluation of Feynman
integrals. This is, however, not the end of QFT (apparently). The main idea to deal with this
kind of singularities is to employ a consistent deformation of the integrals, that parameterises
the divergence as a certain limit of the introduced so-called regulator. A straight forward
choice for UV divergences would be given by an upper cutoff of the loop integral in Eq. (3.1).
Such a cutoff does not preserve Poincaré invariance in intermediate steps of the calculations,
and, therefore, turns out to be quite cumbersome in calculations within the SM. Hence, a
more convenient choice is given by dimensional regularisation (DimReg) that became the
standard nowadays. The basic principles of DimReg is presented in Sec. 3.1.

Once a particular regulator has been chosen, it then has to be carried through the calculation
until all necessary contributions to physical observables are taken into account, such that the
parameterised divergences cancel out and the limit to remove the deformation can be taken.
In Sec. 3.2 we introduce the main principle of renormalisation, that turns out to be sufficient to
remove all UV divergences on the level of scattering amplitudes, but also introduces insight in
the scaling behaviour of parameters and Green’s functions. The treatment of IR divergences
is described in Sec. 3.3. We briefly describe the necessary factorisation formula of QCD in
Sec. 3.4, that allows us to still apply the techniques of perturbation theory for proton collisions
at the LHC. Subsequently, we mention the steps to calculate general scattering amplitudes
and the particular toolchain relevant for the presented work. Finally, the issue of chirality in
DimReg and the continuation of γ5 in D dimensions is reviewed in Sec. 3.6.

3.1. Dimensional regularisation

In the introduction of the chapter we got to know regularisation as a tool to deform inte-
grals and parameterise the infinities appearing at intermediate steps of the calculation. The
basic idea of DimReg is the deformation of the spacetime dimension, which can be under-
stood as an analytic continuation from 4 to (quasi) D dimensions. Formally, the Lorentz
representations of vectors and tensors become infinite dimensional, as D can be an arbitrary
complex number. The covariant metric tensor, however, is defined such that the index con-
traction leads to ηµνηµν = D. The spacetime defined by these metric tensors is therefore
called quasi D-dimensional spacetime which has the original 4-dimensional spacetime as sub-
space [31]. The formal definition of Feynman integrals in D dimensions using axioms [32],
constructive prescription and proofs of their properties can be found in the literature, e.g. in
Refs. [31, 33]. The UV and IR divergences are now represented by pole singularities in D.
For a 4-dimensional theory they are obtained for D = 4− 2ϵ such that negative powers of ϵ
represent poles, whereas positive powers can be safely set to 0 after all UV and IR divergences
are removed.

Consistency of the regularisation requires that not only the Feynman diagrams are performed
to D dimensions, but also the full theory has to be promoted to a regularised version. There-
fore, the action of the theory is expressed as a D-dimensional integration over the Lagrangian,

i.e. S =

∫
ddxL, such that the dimension of the fields and the couplings of the theory diverge

from their value at 4 dimensions. In order to restore the usual dimensionality of the couplings,
a dimensionful scale µ is extracted in the renormalisation procedure, as is described in the
subsequent section.

There are different schemes for DimReg which differ by their treatment of polarisations of vec-
tor fields. For non-supersymmetric theories, the most common choices are ’t Hooft-Veltman
scheme and conventional DimReg. In the ’t Hooft-Veltman scheme, external polarisations
are treated in 4-dimensions and polarisations of loop particles are extended to D dimensions,
whereas in conventional DimReg all polarisations are considered in D dimensions. A more
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detailed overview of different schemes of DimReg, but also of non-dimensional regulators, can
be found in Refs. [34].

3.2. UV divergences, renormalisation and renormalisation group equa-
tion

We have observed in the introduction of this chapter an explicit example of an UV diver-
gence at one-loop. These divergences, once expressed parametrically using an adequate reg-
ularisation prescription, can be actually absorbed if a reparameterisation of the Lagrangian
parameters and fields is performed. This procedure is called renormalisation.

One main requirement for a consistent renormalisation procedure is that the regularised UV
divergences are local, such that they consist of polynomials of external momenta and mass
parameters. This has indeed been proven to be the case, when divergences of subdiagrams
are already taken care of [33,35–40]. Therefore, it is possible to absorb the infinities in local
counter terms of the Lagrangian.

If the the Lagrangian already includes all non-redundant terms allowed by the underlying
symmetry, the local counter terms can be constructed from an expansion of the original
(bare) parameters and fields of the theory. In order to clarify this point, it is important to
understand that the Lagrangian of the theory itself is nothing measurable. Thus, there is a
freedom to redefine its bare parameters in renormalised, UV finite parts and counter terms
that are constructed order by order in perturbation theory. The renormalised parameters
then resemble quantities that can be experimentally determined, i.e. masses of the fields and
couplings. In the following, we denote bare parameters and fields with a superscript b. The
renormalisation can then be represented by a multiplicative constant which is expanded order
by order. Working in DimReg we may write for a bare coupling gb, bare mass mb and bare
field ϕb

gb = µϵZgg = µϵ
(
1 + δ

(1)
Zg

+ . . .
)
g

mb = Zmm = m+ δ(1)m + . . .

ϕb =
√
Zϕϕ =

(
1 +

1

2
δ
(1)
Zϕ

+ . . .

)
ϕ ,

(3.3)

where a factor including the renormalisation scale µ is extracted from g in order to remove
the dimensionality of the coupling introduced by the regulator. After the expansion of the
form Eq. (3.3) we are left to define the counter terms δi with an adequate renormalisation
prescription. The basic condition is that the δi absorb all the UV poles, however, there is
also a freedom to include additional finite pieces.

In modern perturbative calculations, there are two common prescriptions which we also apply
in the subsequent work:

MS scheme: The modified minimal subtraction (MS) scheme [41] is based on the minimal
subtraction (MS) scheme [38]. The counter terms are defined such that they remove
only the UV divergences together with the constant combination log(4π)−γE , with γE
being the Euler-Mascheroni constant, that appears in DimReg. Therefore, a typical
counter term has the polynomial form

δ
(l)
i =

l∑
j=1

cj
(4πe−γE )l

ϵnj
, (3.4)

where l denotes the perturbative order, i.e. l = 1 for NLO.
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OS scheme: In the on-shell (OS) scheme the renormalisation constants for fields and masses
are chosen such that the renormalised mass parameter has precisely the value of the
pole of the resummed propagator and its residue is set to i. This is formalised in two
conditions on the full self energy Σ̂(/p) (including counter terms)

Re
(
Σ̂(/p)

)
u(p)

∣∣∣
p2→m2

= 0 ,
i

/p−m
Re
(
Σ̂(/p)

)
u(p)

∣∣∣
p2→m

= 0 , (3.5)

where Eq. (3.5) only describes the fermionic case, as we apply it to the top-quark.

If we were able to calculate in arbitrary precision, the different choices of shifting finite
pieces should not affect the calculation of observables as the full theory does not know about
the regularisation and renormalisation schemes. Yet working at finite order we encounter
differences between the schemes. This is however not only a downside, since it can give
some qualitative idea on the convergence of the perturbative expansion, when different well-
motivated renormalisation prescriptions are compared at the same order. For MS this is
usually done in a variation of the renormalisation scale µ and the resulting differences are
called scale uncertainty. The size of the scale uncertainty in practical calculations has been
demonstrated to shrink when higher order effects are taken into account. However, the
perturbative expansion of predictions may not be at a convergent order such that the scale
uncertainty without knowledge of higher order effects cannot really be interpreted as an
‘uncertainty’.

It is also possible to change the perspective and try to get some insight on the scaling be-
haviour of the theory considering that bare quantities should be independent on the choice
of regulator and renormalisation. The renormalisation procedure introduces a dependence of
the renormalised quantities on a scale, in MS the scale µ, which the original bare quantities
do not have. Applying a derivative w.r.t. the regulator, µ∂/∂µ for MS, on observables, bare
n-point functions or parameters leads to differential equations, the so-called renormalisation
group equation (RGE), which resemble the energy scaling behaviour. This is an important
relation since all parameters are always determined at a specific energy scale. Thus the pre-
dictions of observables is much improved if we know how to transport (run) the parameters
to the scale relevant for the process. We exemplify this for the strong coupling αs = g2s/(4π)
in the following.

The renormalised strong coupling is defined as

αbs = µ2ϵZαsαs . (3.6)

Considering µ
∂

∂µ
αbs = 0, we find

µ
∂

∂µ
αs = −2ϵαs − Z−1

αs
µ
∂

∂µ
Zαsαs → −β0

α2
s

2π
+O

(
α3
s

)
, (3.7)

where β0 =
11

3
cA −

4

3
TFnl, with nl being the number of active quark flavours contributing

to the running. We take the limit ϵ→ 0 in the expanded expression on the right hand side of
Eq. (3.7). The solution of the one-loop RGE for the running from the input scale µ0 to the
renormalisation scale µ can be written as

αs(µ) =
αs(µ0)

1 + β0
2π log

µ
µ0

. (3.8)

Since β0 > 0 for QCD in the SM, Eq. (3.8) describes a decrease of QCD coupling strength if
the scale µ is increased (which remains valid at higher perturbative orders). This asymptotic
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(a) (b)

Figure 3.1.: Visualisation of virtual correction (a) and real radiation (b) which need to be
taken into account in order to reach an IR finite result at NLO QCD for the case of e+e− → q̄q
at parton level. The diagrams resemble the cut diagram version ofM1M∗

2.

freedom is an important property of QCD, as it implies that QCD in the high energy regime
can be treated in perturbation theory. On the other hand, the denominator of Eq. (3.8)
vanishes for some energy scale ΛQCD < µ0, the so-called Landau pole of QCD. If the energy
scale approaches ΛQCD the coupling strength increases until perturbation theory breaks down.

We can try to get a qualitative picture what happens in the low energy regime of QCD.
Starting in the high energy regime in which QCD behaves perturbatively, interacting particles
of QCD, the quarks and gluons, are subject to an increasing interaction strength for decreasing
energy scale or, likewise, increasing distance between partices. If the distance between the
particles is sufficiently increased, the associated QCD potential grows large enough to produce
particles and antiparticles out of the interacting vacuum, which after complete separation of
the particles leads to very complicated, non-perturbative multi-parton bound states, so-called
hadrons. Even if their existence can be understood by the principles of perturbative QCD,
these bound states cannot be described in a perturbative way. That we are still able to
apply the methods of perturbative QCD for the calculation of proton collisions at the LHC
is subject of Sec. 3.4.

3.3. Infrared structure and subtraction

We encountered the notion of IR divergences already in the introduction of this chapter in
the integration region of vanishing loop momentum of loop integrals. The IR divergent loop
diagrams have a counter part in diagrams with additional radiation of massless particles
that also lead to IR divergences in some regions of the phase space integration, and their
combination to observables can indeed lead to IR finite results. This will be clarified with
the example of e+e− → q̄q with me = mq = 0.

In Fig. 3.1 (a) we show an example diagram for the virtual contribution to the process at
NLO which leads to an IR divergence (and UV divergence, which we assume to be treated by
appropriate renormalisation). The diagram is represented in the form of a cut diagram that
resembles already the interference between LO matrix elementMB and NLO matrix element
MV, i.e. MVM∗

B, which has the overall order in the strong coupling O (αs). However, the

virtual corrections are just one part of the expansion of the cross sections σ ∼
∣∣M∣∣2 at

O (αs), as the squared tree level amplitude including the radiation of an additional gluon,
e+e− → q̄qg, contributes at the same order. The diagram in Fig. 3.1 (b) depicts such a real
radiation contribution, which in the cut diagram representation makes the counting apparent.
The real radiation contributions exhibit IR divergences in the phase-space integration. If both,
virtual and real corrections, are evaluated with the same regulator and all contributions to
the cross section at the same order after integration over the phase space are considered, the
final result turns out to be finite.
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Qualitatively, this can be understood as follows. The final states of an interacting theory
are not well separated from multi-particle states including soft (infinitesimal energy) and
collinear (same direction) radiation of massless particles. As the additional radiation in these
regions cannot be resolved by experiment, they have to be included order by order in a
consistent definition of an observable. Since the collinear and soft regions are precisely the
ones responsible for the IR divergence of the real radiation, such an inclusive observable will
always be finite. A formal proof of this behaviour is given by the KLN-theorem, named after
Kinoshita, Lee and Nauenberg [42, 43]. (Although for interactions with initial state QCD
partons the KLN-theorem requires also to be inclusive for multi-initial states, this is not
necessary when initial state partons are massless.)

In mathematical language, we may write the expansion of the partonic cross section in the
perturbative regime in the form

σ = σLO + σNLO + . . . (3.9)

where the NLO cross section is split into virtual and real radiation contribution as

σLO =

∫
n
dσB

σNLO =

∫
n
dσV +

∫
n+1

dσR .

(3.10)

We introduced the short-hand notation

∫
n
for an integration over n-particle phase space

volume, dσB for the Born integrand, dσV for the integrand of the virtual contribution and
dσR for the integrand of the real radiation. Even though the definition for σNLO in Eq. (3.10)
leads to an analytically finite result, it is fairly impractical if we want to compute cross
sections numerically since the divergences have to cancel over different dimensional phase-
space integrals. Working in DimReg that means only after integration the limit ϵ → 0
can be used. A remedy for this issue has been developed in the form of IR subtraction
procedures which introduces additional terms into Eq. (3.10) that cancel the IR divergences
of virtual and real contributions individually on integrand level. For NLO calculations several
versions have been developed. We follow the notation of the dipole subtraction by Catani
and Seymour [44–46] and briefly summarize the main principle.

A subtraction term dσA is chosen such that it approximates the real radiation in the divergent
regions. If its structure is appropriately organised, the combination to the NLO cross section

σNLO =

∫
n

[
dσV +

∫
1
dσA

]
+

∫
n+1

[dσR − dσA ] , (3.11)

leads to a separately IR finite expression for the subtracted real radiation and in the integrand
of the subtracted virtual contribution. Therefore, already before performing the integral the
limit ϵ → 0 can be taken which makes the numerical evaluation feasible. In the Catani-
Seymour formalism, the subtraction term is constructed with the definition of universal dipole
operators that are applied to the Born integrand. Integrating the dipole operator over the
one-particle phase space associated with the radiation, the IR subtracted virtual contribution
leads to [

dσV +

∫
1
dσA

]
= dΦn (2Re (⟨MLO|MNLO⟩) + ⟨MLO|I|MLO⟩) , (3.12)

where Φn is the n-particle phase space, I is the Catani Seymour I operator and |M(N)LO⟩
denotes the matrix element expressed as a vector in colour space according to the formalism
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in Refs. [44–46]. |M(N)LO⟩ is therefore constructed as a linear combination of its independent
colour structures and [46]

I = −αs
2π

(4π)ϵ

Γ(1− ϵ)
∑
j

1

T2
j

∑
k ̸=j

Tj ·Tk

×
[
T2
j

(
µ2

2pj · pk

)ϵ(
Vj −

π2

3

)
+ Γj + γj log

µ2

2pj · pk
+ γj +Kj +O (ϵ)

]
,

(3.13)

where we suppressed the arguments of Vj and Γj . The sum in j, k denotes all external coloured
partons and Tj/k are the generators of the respective SU(3)QCD representation which can
be evaluated as a matrix in the colour space defined by the independent colour structures of
|M(N)LO⟩. The expressions for Vj , Γj , γj and Kj can be found in Ref. [46].

There has been much progress in the generalisation of IR schemes to the higher order case,
but there is no general and efficient procedure available yet [47]. The pole structure of IR
divergences at NNLO QCD, however, has been derived a while ago [48–54]. The complete
factor that generalises the IR pole structure of the I operator of Eq. (3.13) to NNLO QCD can
be found in Ref. [53]. This procedure at NNLO QCD did not enter the work of the present
thesis, but has been applied in Ref. [55] in order to derive the IR poles for a cross check of
the two-loop virtual contribution.

3.4. Factorisation and evaluation of hadronic cross sections

Up to this point, we were only discussing how to work with QCD in the regime where pertur-
bation theory is possible. However, proton-proton colliders, like the LHC, are based on the
collision of non-perturbative QCD bound states, hence their cross sections cannot directly be
calculated with the tools established so far in this work. Yet, considering that there are very
different energy scales at play we expect the hard physics of the highest energy collision and
the soft physics of the non-perturbative proton dynamics to effectively decouple. The time
scale of the hard scattering between the partonic states is expected to be much shorter than
the typical reaction time of the non-perturbative dynamics such that there is basically no
interference.

This principle has been formalised in the QCD factorisation theorems [56] which allow to
split the non-perturbative soft physics from the hard scattering process. Within the hard
process the partons are approximated as free states that enter the perturbative calculation.
The relevant QCD factorisation for cross sections of proton-proton collisions σ(P1, P2) can
be expressed as a convolution of parton distribution functions (PDF) with the hard partonic
cross section of the form6

σ(P1, P2) =
∑
a,b

∫
dx1

∫
dx2fa|p

(
x1, µ

2
F

)
fb|p

(
x2, µ

2
F

)
σ̂(a,b)

(
x1P1, x2P2;µ

2
F

)
. (3.14)

where the sum in a and b runs over all parton types of the proton and σ̂(a,b) is the respective
partonic cross section of the hard process. x1 (x2) can be understood as the fraction of the
proton momentum P1 (P2) that is transferred to parton a (b), however, the parton momentum
has to be mapped to a massless on-shell state. The PDF fa|p (fb|p) describes the probability
to find a free parton a (b) within the parent proton that carries the momentum fraction x1
(x2) of the proton. The PDF themselves inherit the non-perturbative dynamics of the proton

6In principle, there are corrections of O (ΛQCD/Q) on the right hand side of Eq. (3.14) with Q being characteris-
tic energy scale of the process. These corrections are called higher twist contributions. In collider experiments
at high energies they become negligible and Eq. (3.14) represents a sufficient description.
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and are therefore not calculable, but they represent a universal property. Hence, they can be
measured by a limited number of experiments and then reused for predictions of arbitrarily
many observables.

Eq. (3.14) also introduces the factorisation scale µF , which can be seen as the energy scale
at which the partons are resolved. Note that the hard and soft physics are decorrelated, such
that Eq. (3.14) describes a multiplication of probabilities.

More information about perturbative QCD and factorisation can be found in Ref. [57] which
provides a broad introduction to the topic.

3.5. General procedure for the evaluation of fixed order amplitudes
and computational tools

In this section, we briefly describe the general structure of evaluating higher order matrix
elements. We also specify the tools used throughout this work.

At one-loop level, all Feynman integrals can be expressed in terms of a finite set of master in-
tegrals for which the structure is well understood. A common procedure of this reduction and
representation of master integrals (Passarino-Veltman integrals) was developed by t’Hooft,
Passarino and Veltman [58, 59]. Tensor integrals are expressed in terms of form factors of
combinations of the metric and external momenta, which are related to the master integrals
through a system of linear equations obtained by contraction with metric and momenta.
In the notation of Passarino-Veltman integrals, the master integrals are given by tadpoles
(A0), bubbles (B0), triangles (C0) and boxes (D0). Note that Feynman integrals of n-point
functions with n > 4 can in principle be reduced to maximally box-type integrals, with the
caveat that for some momentum configuration the denominators of the prefactors involving
inverse Gram-determinants could vanish. The analytic expressions of loop amplitudes later
in this thesis are expressed in terms of these Passarino-Veltman integrals in the convention
of FeynCalc [60–62] (which is equivalent to the LoopTools [63] convention), thus keeping
the loop factors explicit.

For the analytic calculations, we use QGraf [64] in order to generate the relevant diagrams
and FeynCalc for algebraic manipulations. In addition, the one-loop numerical evaluation of
the real radiation in Chapter 6 is done with the one-loop matrix element provider GoSam [65,
66]. In the employed setup, GoSam relies on QGraf, FORM [67] and Spinney [68] for the
amplitude construction and golem95C [69–71] orNinja [72,73] for the reduction and integral
evaluation.

Starting at the two-loop level, the evaluation procedure gets more involved. One reason being
the possible combinations of scalar products of momenta in the numerator of Feynman inte-
grals which outnumber the denominator structures such that the reduction is more involved.
In addition, exact evaluation of master integrals can be quite tedious and is in cases with
many scales or loops even impossible with current day techniques.

The genuine two-loop calculations relevant for this work have been performed based on two
toolchains which follow a similar pattern. The first one uses the framework of GoSam-
Xloop, which is a private extension building on GoSam, the second one is organised by
Alibrary [74]. In both cases, the structure can be crudely summarized in three steps:

Projection onto form factors The relevant diagrams are generated with QGraf, the am-
plitude is projected onto form factors using FORM and the Feynman integrals are
identified.
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Reduction to master integrals The reduction of the Feynman integrals is based on Laporta’s
algorithm [75]. GoSam-Xloop invokes Reduze [76] for the reduction, Alibrary uses
an interface to Kira [77,78].

Numerical evaluation In both cases the master integrals are evaluated numerically using
pySecDec [79–82].

3.6. Chirality in dimensional regularisation and γ5 schemes

The concept of chirality is intimately connected to the 4-dimensional nature of space time,
since it is a direct consequence of two irreducible spinor representations of SO(3, 1) which we
denote as LH and RH (Weyl-) spinors. This poses, however, some trouble with DimReg, as
this relies on the definition of the theory in D dimensions to parameterise divergences at in-
termediate steps of the calculation. The technical consequences of this formal incompatibility
and possible attempts for a proper treatment is the topic of this section.

As a first step we show how chirality is mathematically represented in practical calculations
in terms of γ̄5.

7 Then the main features of the Dirac algebra and the properties of γ̄5 in
4-dimensions are briefly recapitulated. Afterwards, the extension to D dimensions of the
Dirac algebra is discussed and the difficulty for a continuation of γ̄5 is pointed out. Then
possible attempts to consistently treat γ̄5 in D dimensions are discussed and two common
prescriptions are introduced in Secs. 3.6.1 and 3.6.2.

In the SM massive fermionic fields acquire their mass after symmetry breaking in form of a
Dirac mass term. Hence, it is convenient to represent fermion fields in their mass eigenstate
in terms of Dirac spinors (which are a reducible combination of LH and RH representations)
in practical calculations. However, since the SM is a chiral gauge theory, the interaction acts
on the chiral substructure which can be represented using projection operators

ψL/R = PL/Rψ , (3.15)

where

PL/R =
1

2
(1∓ γ̄5) . (3.16)

In the Dirac representation of fermions, the 4-dimensional nature of chirality is therefore
expressed in terms of the 4-dimensional object γ̄5. Thus, a proper treatment of chirality in
dimensional regularisation is shifted towards a consistent prescription of the extension of γ̄5
to D spacetime dimensions.

Let us briefly introduce the Dirac algebra (which given by the Clifford algebra Cl1,3 (R)) in
4-dimensions. For 4-dimensional gamma matrices γ̄µ and metric η̄µν the main property of
the Dirac algebra is the anticommutation relation

{γ̄µ, γ̄ν} = 2η̄µν , (3.17)

where the indices can have values µ, ν ∈ {0, 1, 2, 3}. In addition to those four γ̄-matrices
comprising the algebra in Eq. (3.17), we define an additional matrix, that has to fulfill

{γ̄µ, γ̄5} = 0 , γ̄25 = 1 . (3.18)

It is easy to proof that this object exists in 4-dimension, as the explicit constructive definition

γ̄5 := iγ̄0γ̄1γ̄2γ̄3 = − i

4!
ϵ̄µ1µ2µ3µ4 γ̄µ1 γ̄µ2 γ̄µ3 γ̄µ4 , (3.19)

7In this section, we clearly discriminate between the 4-dimensional (constructively defined) γ̄5 and the D-
dimensional (algebraic) extension γ5.
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satisfies Eq. (3.18). The definition on the right side of Eq. (3.19) uses the 4-dimensional, fully
antisymmetric Levi-Civita symbol ϵ̄µ1µ2µ3µ4 with convention ϵ̄0123 = 1. Another feature of γ̄5
is the trace identity

Tr [γ̄µ1 γ̄µ2 γ̄µ3 γ̄µ4 γ̄5] = −4iϵ̄µ1µ2µ3µ4 , (3.20)

which is obvious when the definition in Eq. (3.19) in terms of ϵ̄µ1µ2µ3µ4 is considered.

It is important to note that both properties of γ̄5, the anticommutation relation of Eq. (3.17)
and the trace identity Eq. (3.20), have important physical consequences. The anticommuta-
tion relation is necessary for the preservation of symmetry relations between Green’s functions
that are dictated by the gauge symmetry of the theory, i.e. Ward-Takahashi identities [83,84]
and Slavnov-Taylor identities [85,86]. The γ̄5 trace relation is responsible for the Adler-Bell-
Jackiv anomaly [87,88]. Thus, if we are aiming for higher order calculations involving chiral
vertices, a continuation scheme of γ̄5 to D-dimension has to consistently respect both in the
limit D → 4.

The usual property of the Dirac algebra Eq. (3.17) can be unambiguously extended D-
dimensions which then takes the form

{γµ, γν} = 2ηµν , (3.21)

where unbarred γµ and ηµν are now Dirac matrix and metric of quasi D-dimensional space-
time. It is impossible, however, to find a D-dimensional representation γ5 that consistently
fulfills the following three identities (that are simultaneously valid in strictly 4-dimensions):

(1) {γµ, γ5} = 0

(2) Tr [Γ1Γ2γ5] = Tr [Γ2γ5Γ1] for arbitrary strings of γ matrices Γ1 and Γ2

(3) Tr [γµ1γµ2γµ3γµ4γ5] = −4iϵ̄µ1µ2µ3µ4
(3.22)

This can be easily demonstrated [89]: Assume we have a representation of γ5 following (1)
and (2). Then

0 = Tr [γαγ
αγµ1γµ2γµ3γµ4γ5]− Tr [γαγµ1γµ2γµ3γµ4γ5γα]

= 2 (D − 4)Tr [γµ1γµ2γµ3γµ4γ5] ,
(3.23)

leads to a contradiction of (3): If D ̸= 4 then Eq. (3.23) requires the trace to vanish. In-
terpreting dimensional regularisation as analytic continuation, complex analysis now requires
the trace to vanish for all values of D, including D = 4, which is in clear contradiction of
requirement (3).

We have to conclude that in D-dimensions, one of the properties has to be violated in a way
that it is restored in the limit D → 4 for physical observables. Different approaches have been
developed in the attempt to achieve this. We focus in this work only on two versions, the
naive dimensional regularisation (NDR) [90] scheme and the Breitenlohner-Maison-’t Hooft-
Veltman (BMHV) [91,92] scheme. These are introduced in the following subsections and they
are contrasted in the SMEFT calculation of single Higgs production in Chapter 7.

3.6.1. Naive Dimensional Regularisation

In the NDR [90] scheme γ5 is defined by the algebraic property (1) of Eq. (3.22). This scheme
is a convenient choice for single Dirac lines and for Dirac traces with an even number of γ5, as
it automatically preserves the Ward identities, is computationally straight forward and leads
to consistent results [90, 93–95]. The case for an odd number of γ5 in the traces, however,
needs an additional prescription. There are different flavours of NDR for these traces: On
the one hand, Ref. [89] proposes to assume cyclicity of the trace and fix the ambiguous terms
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using relations between tensor form factors derived by explicitly demanding the necessary
symmetry relations, like Bose symmetry and current conservation. On the other hand, the
approach by Refs. [96, 97] dismisses the cyclicity of traces with odd γ5 in favor of the trace
relation (3) of Eq. (3.22), such that these anomalous traces are understood as a functional
instead of a ‘proper trace’. This modification then requires a reading point prescription to
be applied consistently for well defined results. Recent results of the singlet axial-current
operator [98] suggest, however, that a modified version of the scheme in Refs. [96, 97] might
become necessary at higher loop order.

3.6.2. Breitenlohner-Maison-’t Hooft-Veltman Scheme

The BMHV [91, 92] scheme defines γ̄5 constructively with the 4-dimensional definition of
Eq. (3.19). Hence, the 4-dimensional subspace and the quasi (D − 4)-dimensional subspace
are separated in the process.8 We therefore introduce the metric η̂ that projects on the
(D− 4)-dimensional subspace and γ̂ the gamma matrix of the D− 4 indices. We identify the
following relations

{γ̄µ, γ̄5} = 0 , [γ̂µ, γ̄5] = 0 . (3.24)

This necessarily introduces a violation of symmetry relations in a chiral theory [31]: In
principle, DimReg allows the freedom to choose different D-dimensional extensions of the
interaction Lagrangian which may differ by evanescent contributions, as long as the limit
D → 4 restores the original Lagrangian. The regularisation of loop integrals with fermions,
however, necessitates a Dirac representation of the fermion fields and the derivative of the
kinetic term has to be fully promoted to a D-dimensional version. As the chiral symmetry is
constructed with the 4-dimensional version of γ̄5, the evanescent part of the fermion kinetic
term in the regularised Lagrangian violates chiral symmetry transformations. These violations
of Ward identities then have to be restored by symmetry restoring counterterms order by order
in perturbation theory.

The BMHV scheme has been proven to be self consistent [92] and in fact it is up to date the
only scheme for which this is the case. However, the procedure of splitting dimensions and
the need for symmetry restoring counterterms make calculations computationally involved.9

For the chiral vertices appearing in subsequent chapters, we apply the symmetrised D-
dimensional extension

γ̄µ PL/R → PR/L γµ PL/R , (3.25)

which fully resembles the chirality of the interacting fields in the Lagrangian. In addition,
this choice leads to the simplest expressions in intermediate stages of explicit calculations (see
e.g. Refs. [31,100,101]).

8Although it is not strictly required, the BMHV scheme for γ̄5 naturally combines with the ’t Hooft-Veltman
scheme for DimReg, as in both cases the 4-dimensional and (D − 4)-dimensional parts are split.

9The scheme developed by Larin [99] for the purpose of higher order calculations in QCD and QED is a special
case of the BMHV scheme that avoids the explicit splitting of D into 4- and (D − 4)-dimensions with the
introduction of a quasi D-dimensional version of the Levi-Civita symbol in the definition of Eq. (3.19) and
a manual adjustment for the axial current into a Hermitian form. Nevertheless, symmetry restoration at
each higher order is still required and the scheme can lead to inconsistencies when more than two Levi-Civita
symbols appear in the evaluation of amplitudes [31].





CHAPTER 4

Effective field theories

In this work, we rely on Effective field theories (EFT) for the description of deviations from
pure SM behavior in processes observed at colliders. This chapter is devoted to the introduc-
tion of the general concept of EFTs and their application as a bottom-up extension of the
SM. The first part is intended to give a motivation for the EFT approach and an overview.
The following introduction to the topic and Sec. 4.1 greatly profited from the recent reviews
of Refs. [102–104], which provide not only a much more detailed resource about the Standard
Model effective field theory (SMEFT), but also EFTs in QFT in general.

Effective field theories are a tool to formalise the general notion that phenomena which appear
at very separate scales decouple from each other. Thus, their application allows to retain
only the relevant degrees of freedom for the studied scale supplemented with an expansion
procedure to systematically include effects of the decoupling physics up to arbitrary precision.

In order to clarify this approach we briefly discuss a practical example from classical elec-
trodynamics in the following. The Green’s function for the potential of a point charge in
electrodynamics has the well known form G(r⃗, R⃗) ∼ |r⃗ − R⃗|−1. Using the Green’s function
it is in principle possible to write down the formal solution for Poisson’s equation of electro-
statics with a general charge distribution (neglecting surface terms). However, if the charge
distribution is localised in a limited area and the potential V for an observer far away at the
position R⃗ is to be described, it is much more convenient to do a multipole expansion of the
form [105]

V
(
R⃗
)
=

∫
V
d3r

ρ (r⃗)

4π|R⃗− r⃗|
=

1

R

∞∑
l=0

l∑
m=−l

Clm

(
d

R

)l
Y lm (Ω) (4.1)

where the typical length scale of the charge distribution d is extracted from the expansion
coefficients in order to have dimensionless coefficients Clm. The terms in Eq. (4.1) are natu-
rally ordered by importance since subsequent orders in l are suppressed by higher powers of
(d/R)l. Therefore, already a finite number of coefficients Clm for the first moments suffices
for an accurate description of the potential if the scale hierarchy fulfills d≪ R. For a better
prediction higher order terms can be included to systematically improve the precision.

The expansion in Eq. (4.1) can be used in two ways. On the one hand, if a charge distribution
at short distance is known, the leading moments Clm can be calculated to derive an effective
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description of the potential V . On the other hand, if a charge distribution is unknown,
the coefficients10 C̄lm = Clmd

l can be determined at long distance by measurement of the
potential.

The two possibilities for the usage of the multipole expansion reflect the two directions of
applications of EFTs in general, which are called top-down and bottom-up approach. The two
EFT approaches shall be briefly described:

Top-down: Assume a high energy theory is well known, but should be used to predict low
energy observables such that a large hierarchy of scales exist. The full theory could
in principle be directly applied in perturbative calculations of observables. However,
the scale separation could introduce large logarithms with bad numerical stability.
Therefore, matching the UV theory to an EFT representation retaining only the rele-
vant degrees of freedom for the low energy process can be much more predictive with
the possibility to include as many terms in the expansion as necessary for the desired
precision.

Bottom-up: In the bottom-up scenario there is a well established theory valid at low energies
which is to be probed for effects of unknown new physics at higher energies. Since the
systematics of an EFT expansion are universal, it can be used to describe potential
deviations from the low energy theory as would be induced by arbitrary new physics
scenarios under generic assumptions, while being ignorant about a concrete model
realisation. In the optimal scenario, a pattern in the parameter space describing the
deviation would point to new physics scenarios to which the physics community could
point their attention to look for concrete models.

EFTs in QFT have a long history and their usage is widespread nowadays. The first instances
of an EFT operator in a QFT was the invention of Fermi’s theory of weak interaction [106].
It provided a very successful description for the low energy limit of weak interactions even
if the concepts necessary for a consistent definition of an EFT had not yet been developed.
A seminal step in the direction towards formalising EFTs was made by the decoupling theo-
rem [107,108].

The theorem demonstrated, that Green’s functions involving only legs of light degrees of
freedom in the presence of heavy fields lead to corrections that are suppressed by powers of the
heavy mass in addition to contributions to the renormalisation of the low energy parameters.
With this we can conclude that the heavy particles decouple when their mass parameters
are taken to infinity, if the coupling does not diverge as the mass approaches the limit. This
generalises the standard notion that physics at different scales should not affect each other
in decoupling scenarios to the context of QFTs. Hence, for a sufficient separation of scales a
decent approximation is obtained if much lower scales are set to 0 and much higher scales are
set to infinity. As the contributions in the Green’s functions with higher suppression of the
mass are local, they can be treated as perturbations of the low energy theory and expressed
in terms of higher order EFT operators.

After the necessary understanding was achieved in the physics community, several quantum
EFTs have been developed in order to investigate different energy scales relevant for particle
physics and beyond. In the following, we focus on the bottom-up extensions of the SM, that
will be used in Part II. Therefore, in Sec. 4.1 and Sec. 4.2, the relevant systematics for the
linear and non-linear bottom-up EFT of the SM are established. Subsequently, in Sec. 4.3
we specify additional assumptions and our power counting defining the version of SMEFT we
apply.

10Note that the scale of the distribution d cannot be directly measured by this observer. This is in analogy to
the procedure in SMEFT of Sec. 4.1 where the energy scale of new physics Λ is commonly extracted from the
Wilson coefficients to make the order of the expansion manifest.
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4.1. Standard Model effective field theory

The SMEFT relies on the SM field content and is built under the assumption that the SM
symmetries are respected and the fields are coupled to a sufficiently separated and decoupling
new physics sector. Then the low energy effects of the new physics can be expressed in terms
of the exact SMEFT Lagrangian

LSMEFT = LSM +
∞∑
d=5

∑
i

C(d)i

Λd−4
O(d)
i , (4.2)

where the higher order operators O(d)
i are constructed from SM fields and grouped by their

canonical dimension d. The accompanying Wilson coefficients C(d)i /Λd−4 contain the full
information on the new physics structure which can be considered to result from integrating
out the heavy degrees of freedom. As is customary, we explicitly extract powers of the scale

of new physics Λ from the Wilson coefficients in order to have dimensionless coefficients C(d)i

and make the power counting manifest.

Each insertion of a Wilson coefficient in scattering amplitudes then scales as C(d)i Ed−4/Λd−4

where E ∼ v is a typical energy scale of the process. Therefore, for a large separation of
scales, i.e. E ≪ Λ, it is apparent that the first non-trivial orders in d of Eq. (4.2) suffice
for an effective low energy representation of new physics effects. For a consistent application
of this finite order approximation the order of truncation has to be applied at the level of
observables (or at least at the level of matrix elements). In that case, even though a finite
sum in Eq. (4.2) represents a classically non-renormalisable Lagrangian, higher order calcu-
lations with a consistent truncation are well defined and renormalisable without introducing
additional operators.

At dimension-5 level there is only one operator class, the so-called Weinberg operator [109],
which provides a Majorana mass for neutrinos after the Higgs doublet acquires its vev. How-
ever, this operator introduces lepton number (L) violation and the Wilson coefficients has to
very small due to the smallness of neutrino masses.

Hence, the relevant contribution for our investigation is given by the dimension-6 operators.
A first complete list was originally classified in Ref. [110], but it included redundant operators.
Using such an overcomplete operator set in calculations can become ambiguous, hence it is
important to work with a complete set without redundancy, a so-called on-shell operator
basis. The first operator basis at dimension-6, commonly referred to as Warsaw basis, was
constructed by Ref. [111]. Their strategy to remove redundant operators is as follows:

Integration by parts Integration by parts (IBP) relations in the Lagrangian leave the action
of the theory invariant up to topological terms, such that on-shell scattering amplitudes
in perturbation theory are not affected.

Field redefinitions Field redefinitions do not change amplitudes as long as the one-particle
on-shell states are preserved. In the reduction of sets of EFT operators, a perturbative
field redefinition is chosen, such that redundant operators are removed up to differences
at higher order in the canonical dimension. Working only up to dimension-6, field
redefinitions are equivalent to the application of the classical equation of motion of the
dimensional-4 Lagrangian on dimension-6 operators in order to find relations between
them. A detailed account on field redefinitions in EFTs can be found in Ref. [112].

Fierz identities and reduction of Dirac structures The 4-dimensional Dirac algebra is suf-
ficient to determine independent operator structures for on-shell bases, in particular
the 4-dimensional Fierz identity can be applied. However, if an operator should be
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translated to another one using identities of the 4-dimensional Dirac algebra, evanes-
cent structures need to be considered for calculations at loop order [94, 113, 114]. In
addition, relations between generators of the symmetry groups can be applied for the
reduction of operators.

The procedure to count the number of independent operators and construct an operator basis
at arbitrary higher dimension has been developed [115–120] and lead to the construction of
a complete SMEFT basis up to dimension-12 [121–124]. Recently, a tool for an automated
on-shell basis construction for a broad range of quantum EFTs was developed [125].

Even though the Lagrangians at higher canonical dimension are available, the consistent in-
clusion of higher orders in Λ in the calculation of observables is in general quite cumbersome.
For global measurements their inclusion is likely not feasible [126], however their contribu-
tion could be relevant in the determination of an uncertainty related to the truncation of
the EFT series [127]. One approach for inclusion of higher orders in Λ is based on organ-
ising the contributions according to the field geometric structure of the Lagrangian, named
GeoSMEFT [128], which has been successfully applied for processes of low multiplicity of
external particles in Refs. [129–133]. Also the importance of subsets of dimension-8 EFT
operators have been assessed for specific models [134,135]. For the general case it is common
to use a subset of the dimension-8 effects from dimension-6 operators only as a proxy [126]
which for the case of Higgs pair production is going to be discussed in Chapter 6.

4.2. Higgs effective field theory

The Higgs effective field theory (HEFT) [136–141] is another possibility to construct an EFT
extension of the SM. It derives its alternative name, EW chiral Lagrangian (EWχL), from
similarities to the construction of chiral perturbation theory of pions [142, 143]. In the case
of HEFT the physical Higgs field does not originate from a doublet field after symmetry
breaking anymore, but rather is an EW singlet by definition that couples, together with the
Goldstone fields, to the possibly strongly interacting new physics sector which lives above the
dynamical symmetry breaking scale Λ. Since this theory is not fully decoupling in the limit
Λ→∞ anymore, the power counting is not adequately described by a counting of canonical
dimension.

The construction of the HEFT will be described shortly, but first it is instructive to recast
the SM Lagrangian of Eq. (2.5) after symmetry breaking in order to better understand the
following notation. We define the Goldstone matrix

U = exp
(
iσiπi/v

)
, (4.3)

where πi := πi(x) are the Goldstone modes in the exponential representation. The Goldstone
matrix transforms linearly under the SM gauge group according to

DµU = ∂µU − i
g1
2
W i
µσ

iU + i
g2
2
BµUσ

3 , (4.4)

thus, the fields πi themselves transform non-linearly (this property defines the notion of non-
linear Lagrangian). The SM Higgs doublet then takes the form ϕ = (h + v)U (0, 1)T /

√
2.

Since the SM Higgs sector can also be described in terms of a bidoublet Φ = (ϕ̃, ϕ)T /
√
2 as

LHiggs = Tr
[
DµΦ

†DµΦ
]
+
µ̂2

2
Tr
[
Φ†Φ

]
− λ

4
Tr
[
Φ†Φ

]
, (4.5)
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it is possible to rewrite Eq. (2.5) in the form

LSM =− 1

4
GaµνG

aµν − 1

4
W i
µνW

i µν − 1

4
BµνB

µν +
∑
ψ

ψ̄i /Dψ

+
v2

4
Tr
[
DµU

†DµU
](

1 +
h

v

)2

+
1

2
∂µh∂

µh− V (h)

− v
[
q̄LYuUP+qR

(
1 +

h

v

)
+ q̄LYdUP−qR

(
1 +

h

v

)
+l̄LYeUP−lR

(
1 +

h

v

)
+H.c.

]
,

(4.6)

where the short-hand notation P± = (1± σ3)/2 is introduced, and the right-handed fermion
singlet fields are collected in qR = (uR, dR)

T and lR = (0, eR)
T to compactify the expres-

sion. In Eq. (4.6) the origin of the physical Higgs field h as being part of a doublet is now
obscured, but the information is still available in the polynomial structure of the terms in
the Lagrangian, i.e. (1 + h/v), (1 + h/v)2 and V (h). The generalisation of the polynomial
structure will then lead to the leading order HEFT Lagrangian, as will be explained in the
following.

Basically, the HEFT is based upon an expansion in the scale hierarchy f2/Λ2 ∼ (16π2)−1,
where f ≂ v is the typical energy scale at which the Lagrangian is valid (cf. the pion decay
constant in chiral perturbation theory) and Λ is the new physics scale of possibly dynamical
symmetry breaking in a strongly interacting sector. Hence, the power counting in HEFT can
be understood as a loop counting. The operator classification can be equivalently performed
in terms of chiral dimensions dχ [142,144,145] with the definition

[∂µ]dχ = 2[ψ]dχ = [g]dχ = [y]dχ =
1

2
[λ]dχ = 1 ,

[φ]dχ = [Aµ]dχ = 0 ,
(4.7)

where g (y) denotes a general gauge (Yukawa) coupling, ψ, φ and Aµ are general spinor,
scalar and vector fields, respectively. The full expansion of the HEFT Lagrangian therefore
takes the form

LHEFT = Ldχ=2 +
∞∑
L=1

∑
i

(
1

16π2

)L
c
(L)
i O

(L)
i , (4.8)

with the identification dχ = 2L+ 2.

The full LO HEFT Lagrangian is given by

Ldχ=2 =−
1

4
GaµνG

aµν − 1

4
W i
µνW

i µν − 1

4
BµνB

µν +
∑
ψ

ψ̄i /Dψ

+
v2

4
Tr
[
DµU

†DµU
]
(1 + FU (h)) +

1

2
∂µh∂

µh− V (h)

− v
[
q̄L (Yu + FYu(h))UP+qR + q̄L (Yd + FYd(h))UP−qR

+ l̄L (Ye + FYe(h))UP−lR +H.c.
]
,

(4.9)

which has general polynomials FU (h), V (h), FYu(h), FYd(h) and FYe(h) with a priori infinite
number of parameters of O (1), as the Goldstone fields and the singlet Higgs are coupled to
the potentially strong dynamics. This LO Lagrangian is already non-renormalisable in the
classical sense, hence operators of higher loop order naturally have to be included in general
higher order calculations. The full NLO Lagrangian has been obtained in Ref. [141]. For the
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application in the phenomenology of Higgs physics, however, the HEFT Lagrangian Eq. (4.8)
can still be quite predictive, since only a limited number of coupling parameters are necessary
at a given order. The application of the HEFT theory for Higgs pair production in gluon
fusion will be described in Chapter 6.

4.3. SMEFT power counting and operator selection

Up to now the SMEFT in Sec. 4.1 has been introduced as a theory that obeys an expansion
of canonical dimension alone. In this section, we augment this classification and consider
approaches to associate a systematic hierarchy of expected importance of Wilson coefficients
that are based on generic assumptions about the UV theory SMEFT should describe. In
particular, since the canonical expansion of SMEFT is combined with the loop perturba-
tive expansion involving SM couplings in precision predictions, these expansions are getting
intertwined.

In order to structure this combined expansion, there are two viable approaches that can be
considered: The first one attempts to be as agnostic about UV completions as possible, since
being agnostic is the purpose of the bottom-up EFT after all. In this case, a priori only the
pure canonical counting in Λ decides about the importance of Wilson coefficients, that is a
posteriori further refined based on experimental observations leading to parameter constraints
like flavour assumptions. However, the choice of using SMEFT (as opposed to the non-linear
HEFT theory) already makes at least some assumptions for possible UV extensions, and the
complete agnostic approach could lead to misclassification of importance in particular con-
tributions [146,147]. In addition, the number of parameters of a complete basis at canonical
dimension-6 in the SMEFT is already at 2499 (though usually the set that contributes to a
process is more confined), it is an immense task to get enough data to achieve a predictive
theory. Feeding in additional assumptions allows to concentrate more on the parameters with
expected leading impact, thus leading to potential higher precision in their determination.
Therefore, the second approach is based on a pre-classification of the expected impact of
Wilson coefficients which takes into account additional a priori generic assumptions about
the UV theory. The latter approach is the one we follow in this work.

The SMEFT is considered to follow from integrating out some degrees of freedom of an
unknown UV physics that lives at an energy scale beyond the cutoff scale Λ. In case the
UV sector is based on a renormalisable QFT and is weakly coupling to the SM fields, some
operators of the EFT can potentially follow from a tree-level matching whereas other operators
are necessarily generated by loop diagrams due to the limited possibilities of vertex structures.
Under these assumptions we naturally obtain a hierarchy of expected importance, which was
originally described by Ref. [148] based on topological arguments. Similar to the HEFT
theory in Sec. 4.2, this same classification can formally be achieved by the introduction of
chiral dimension also for the SMEFT operators which has been demonstrated in Ref. [147], if
the minimum number of weak couplings necessary to couple the fields composing the operator
is carefully extracted. For UV completions with Λ not too far away from the relevant energy
scales E of collider experiments, the expansion in loop factors can still be relevant compared
to the canonical expansion, i.e. the hierarchy might be (16π2)−1 > E2/Λ2 and not (16π2)−1 ≫
E2/Λ2. This would be a desirable configuration where deviations from the SM are potentially
observable in the not too distant future. An overview of such a discussion of importance has
been done in Refs. [145,149] for the SILH Lagrangian [149–151] following from an expansion
of the HEFT using the parameter ξ = v/f .

We acknowledge that the tree-loop classification is controversial. A discussion about this from
a very critical perspective can be found for instance in Ref. [103] which highlights potential
misconceptions. Nevertheless, we evaluate the derived power counting to be very useful in
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practical applications, but agree that the assumptions have to be described properly and
cannot represent the general case. We mention some of the valid counter arguments at the
end of this section and present our perspective on the matter.

In the following, we fully define the systematics about the SMEFT expansion we apply
throughout this work. Using the SMEFT we already limit ourselves to the SM degrees
of freedom and the SM gauge group, so we are left to specify the underlying symmetries and
the application of the power counting.

Due to strong experimental constraints, Baryon number (B) and L violating operators are
omitted and we want to consider only CP -even coefficients. In addition, we constrain the
flavour structure of the quark sector to exactly fulfill

Gflavour = U(2)q × U(2)u × U(3)d . (4.10)

This flavour choice prohibits chirality flipping fermion bilinears involving light quarks (in-
cluding b-quark) and right-handed charged currents [152–154]. Effectively we set the CKM
matrix diagonal and remove the quark masses and Yukawa interactions except for the top-
quark. Therefore, this choice is compatible with a five-flavour scheme of QCD on which our
NLO QCD calculations rely. In addition, the flavour assumption highlights the importance of
the heavy top-quark in many potential BSM extensions, and it could serve as a baseline sce-
nario for a future spurion expansion in the form of Minimal Flavour Violation (MFV) [155].11

Following the considerations of renormalisable and weakly coupling UV completion of SMEFT,
it is instructive to express the Wilson coefficients by dimensionless parameters of equal (ex-
pected) magnitude that are multiplied by powers of Λ−1 based on their canonical dimension
(this is common practice) and powers of L = (16π2)−1 depending on chiral dimension (which
is the additional tree-loop classification). This leads to the expansion of a generic Wilson
coefficient Ci into

12

Ci × Λ−(dc−4) ∼ Ci × Λ−(dc−4) × Lli , (4.11)

with the canonical dimension dc = 6 fixed for dimension-6 operators and li = 0 for potentially
tree-induced and li = 1 for loop-suppressed operators. For the Warsaw basis, the operators
that are loop-induced are precisely the ones involving field-strength tensors. In the calculation
of matrix elements of physical processes, the counting of coefficient powers is combined with
explicit loop-factors (16π2)−1 of the SM loop perturbative expansion. However, since QCD
and EW corrections typically have different impact on the prediction of observables, we treat
them separately in perturbative calculations and collect loop factors explicitly with associated
strong coupling powers in (g2sL).

In order to classify the order in power counting of a contribution to the amplitude or the
cross section, we use a specification of the form

O
(
gntree
s (g2sL)

lQCDLlweakΛ−2n6

)
, (4.12)

11The spurion expansion for the baseline scenario of Eq. (4.10) can be found in Ref. [152]. The Yukawa matrices
are decomposed into parameters and non-dynamical auxiliary fields, so-called spurions, with formal transfor-
mation properties that allow the SM Yukawa interaction terms to be compatible with the baseline flavour
symmetry. The original Yukawa couplings are recovered by background values of the spurions which lead to
a breaking of the flavour symmetry. Assuming the flavour pattern to be respected in the UV physics as well,
violation of flavour symmetry of higher order operators can be parameterised by the spurion fields which lead
to a reduction of the number of independent Wilson coefficients and a suppression according to the smallness
of the background value compared to the top-Yukawa coupling. The leading order approximation of such a
spurion expansion is therefore given for vanishing spurions, thus only retaining terms compatible with the
exact symmetry Eq. (4.10).

12The so-called SILH Lagrangian [149–151] is a version of the SMEFT that explicitly considers such an expansion.
However, since the Warsaw basis [111] is so widely used, we rely on its conventions for the Wilson coefficients
and only implicitly consider the described expansion for the classification of contributions into leading and
subleading.
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Figure 4.1.: Example diagrams for the application of the power counting in q̄q → t̄th. Small
black dots denote SM vertices, green dots denote insertions of CtH , orange boxes denote
insertions of loop-suppressed CtG and teal dots denote 4-top interactions.

where ntree is the number of strong couplings in the SM tree-level contribution (which is 0 if
the process is loop induced), lQCD is the number of loops associated to a QCD correction and
n6 counts the insertions of dimension-6 operators. lEFT denotes the power of loop suppression
of Wilson coefficients or loops involving weak couplings only (EW or pure SMEFT coupling).
For each gluon field strength tensor in a SMEFT operator, a factor of gs will be associated
to its Wilson coefficient for the power counting formula. A SMEFT contribution will then be
called leading by our power counting, if it is the lowest non-trivial order in Λ and the lowest
order in L, and subleading if it follows from higher order in L. This notion will be used in
parallel with the specification of LO QCD, which is the leading order in (g2sL), and NLO
QCD, which is the next-to-leading order in (g2sL).

We will clarify this nomenclature with a specific example considering the amplitude for the
partonic process q̄q → t̄th, where q (q̄) denotes a light (anti-)quark. We therefore consider
the SM in addition with the following operators of the Warsaw basis

LSMEFT ⊃LSM +
CtH
Λ2

((
ϕ†ϕ

)(
Q̄LtRϕ̃

)
+H.c.

)
+
CtG
Λ2

((
Q̄Lσ

µνT atRϕ̃
)
Gaµν +H.c.

)
+
C(1)Qt

Λ2

(
Q̄Lγ

µQL
)
t̄RγµtR ,

(4.13)

with σµν =
i

2
[γµ, γν ]. CtH modifies Yukawa-like interactions between scalars and the top-

quark, C(1)Qt describes a 4-top interaction and CtG is the coefficient of the chromomagnetic

operator. Applying the expansion of Eq. (4.11) we find CtH ∼ O (1), C(1)Qt ∼ O (1) and CtG ∼
O (gsL),

13 i.e. the chromomagnetic operator is necessarily loop induced whereas the other
operators are potentially tree induced. Example diagrams for the contribution to q̄q → t̄th
are demonstrated in Fig. 4.1. We denote with A(a-f) the corresponding amplitude contribution
in the following. Applying the aforementioned power counting, we find:

� A(a) ∼ O
(
g2s
)
, which is a SM contribution at LO QCD,

� A(b) ∼ O
(
g2sΛ

−2
)
, which is a leading SMEFT contribution at LO QCD,

13Even though there is one factor of gs extracted in the power counting of CtG, the loop factor cannot be
considered to be of QCD origin. Since the chromomagnetic operator replaces a gauge interaction in the t̄tg(h)
vertex it is not of higher order in gs.
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� A(c) ∼ O
(
g2sLΛ

−2
)
, which is a subleading SMEFT contribution at LO QCD,

� A(d) ∼ O
(
g2s(g

2
sL)
)
, which is a SM contribution at NLO QCD,

� A(e) ∼ O
(
g2s(g

2
sL)Λ

−2
)
, which is a leading SMEFT contribution at NLO QCD,

� A(f) ∼ O
(
g2sLΛ

−2
)
, which is a subleading SMEFT contribution at LO QCD.

We note that the chromomagnetic and 4-top operators appear at same order considering the
UV assumptions of this section even though their diagrammatic order is different.

Finally, we want to address some valid counter arguments to the proposed power counting
based on a tree-loop classification:

� This power counting fails to describe a strongly coupling BSM scenario: SMEFT neces-
sarily requires the UV physics to completely decouple in the limit Λ→∞ which could
be violated in a strongly interacting scenario. For instance, if the Higgs sector would
couple strongly to the new physics, a HEFT like scenario as described in Sec. 4.2 would
be the favoured choice [147], thus, SMEFT may not provide a valid description for this
scenario.

� The UV physics present beyond the scale Λ could be a non-renormalisable theory, as
well: In the case of a non-renormalisable UV theory, the couplings of this effective theory
would be further suppressed by a new scale Λ′ ≫ Λ which likely overcompensates the
violation of the tree-loop classification.

� Potentially tree-induced does not mean the operator is necessarily tree induced: This
is true, but we find it still reasonable to pursue such an ordering in hierarchy, as the
method is supposed to determine the potentially most interesting Wilson coefficients for
which the first investigation is most promising. It should, however, not be understood
as a prejudice to completely remove parameters in subsequent studies, but rather serve
as a complementary to the fully agnostic approach.

� The separation between potentially tree generated and loop generated operators does
not persist considering the RGE of dimension-6 operators in full generality: This mixing
only affects a mixing of operators of class (L̄R)(R̄L) into ψ2ϕX operators [156]. Since
this particular contribution, in principle, is a one-loop effect induced by EW couplings
it might not be too relevant for interesting UV configurations with Λ not too far away
from experiments, however, this needs to be tested in future studies. For the selection of
operators based on the flavour assumption in Eq. (4.10), this mixing is not present since
the operator of concern in the class (L̄R)(R̄L) is not allowed. If the flavour assumption
was loosened, the mixing would be still suppressed by mb/mt.

� The separation between potentially tree generated and loop generated operators is vi-
olated by field redefinitions: Indeed, the classification is performed on a specific basis
choice and hence the results will necessarily be basis dependent. In Ref. [157] it is
argued that a preferable choice of basis is selected under the requirement that loop
induced operators are replaced by potentially tree induced operators whenever possible
which is the case for the Warsaw basis [111]. Nevertheless, after results are obtained
through measurement or analytic matching, the chiral dimension would be preserved if
the powers of weak couplings in the equation of motion are considered.

4.4. Renormalisation in the SMEFT and the evolution of Wilson coef-

ficients

In Sec. 3.2 we already had a look at the renormalisation of QCD and the induced RGE of the
strong coupling αs(µ). The structure of the renormalisation procedure and the connection to
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the RGE for the dimension-6 Wilson coefficients is a bit more tedious, since they mix among
each other.

If the counter terms are derived for off-shell one-particle irreducible Green’s functions, ad-
ditional operators of a so-called Green’s basis are needed at intermediate steps. After all
Green’s functions are made finite, these additional operators can be reduced applying the
strategy mentioned in Sec. 4.1 in order to derive counter terms of the physical basis. Alterna-
tively, the counter terms for a process can be derived considering all relevant on-shell matrix
elements. The latter strategy will be used in Sec. 7.3.1.

Hence, divergences on the level of canonical dimension-6 lead in general to a renormalisation
which mixes Wilson coefficients, i.e. the renormalisation of Cbi in MS has the form

Cbi = µκiϵZ
Cj
Ci Cj = µκiϵ

(
Ci + δ

Cj
Ci Cj + . . .

)
, (4.14)

where we restrict ourselves to only consider dimension-6 Wilson coefficients. µκiϵ was in-
troduced in Eq. (4.14) such that the coefficients Cj have the mass dimension of the D = 4
dimensional theory. Note that the mass dimension of the bare coefficients depends on the
field content of the operator. If we were to include dimension-8 contributions as well, there
would be renormalisation terms mixing the square of dimension-6 Wilson coefficients into
dimension-8 Wilson coefficients, in general.

From the condition, that the unrenormalised coefficient Cbi is independent of the renormali-
sation scale µ, we can derive14

µ
∂Ci
∂µ

= −
(
Z−1

)Cj
Ci

(
κjϵZ

Ck
Cj + µ

∂

∂µ
Z

Ck
Cj

)
Ck →

(
−κiϵ δ

Cj
Ci + κjϵ δ

Cj
Ci + µ

∂

∂µ
δ
Cj
Ci

)
︸ ︷︷ ︸

(16π2)−1γC
i
,C

j

Cj , (4.15)

where the summation in j and k is implicit and the arrow denotes the expansion up to
one-loop order. The full structure of the anomalous dimension matrix γCi,Cj of the Wilson

coefficients in the Warsaw basis is presented in Refs. [156,158,159].

For a sufficiently small selection of relevant operators, the RGE can be solved analytically,
see for instance Ref. [160].

14A more explicit formula connecting the counter terms for dimension-6 Wilson coefficients with the elements of
the anomalous dimension matrix can be found in the appendix of Ref. [6].
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CHAPTER 5

Status of theoretical predictions in Higgs boson pair production at the LHC

Higgs boson pair (hh) production is an important class of processes at the LHC. It is the
prime channel to shed light on the structure of the Higgs potential, since it gets contributions
proportional to the trilinear Higgs self interaction already at leading order. As was highlighted
in Sec. 2 the Higgs potential is among the parameters least explored in the SM.

In a collider experiment of protons, like the LHC, there are several partonic channels that
contribute to hh production. Their respective cross section as a function of the center-of-
mass energy of the proton beam is shown in Fig. 5.1. Due to the large abundance of gluons

gg → HH (NNLOFTapprox)

VBF (N3LO)

WHH (NNLO)

ZHH (NNLO)

ttHH (NLO)

tjHH (NLO)

σ(pp → HH + X) [fb]
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Figure 5.1.: hh cross section at a pp collider for different channels as a function of the center
of mass energy

√
s. The diagram is taken from Ref. [161].

within the proton at the studied energies, as described by the PDF, the gluon fusion channel
(gg → hh) is expected to happen by at least one order of magnitude more frequently at
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the LHC than the other channels. Therefore, the discussion of the subsequent research work
focuses on the gluon fusion process.

The Feynman diagrams contributing to gg → hh can be structured into box-type and triangle-
type contribution, the Born diagrams in the context of the SM are shown in Fig. 5.2. It is the

(a)

κλ

(b)

Figure 5.2.: SM Born topologies for gg → hh. The trilinear Higgs coupling is highlighted by
a blue dot together with the coupling modifier κλ.

triangle-type diagram that has the dependency on the trilinear coupling which is highlighted
by a coupling modifier κλ. The full one-loop Born contribution was originally calculated in
Ref. [162]. Since the differential cross section suffers from an intricate cancellation between
box-type diagram and triangle-type diagrams in the low mhh region for the pure SM case, the
process can become very sensitive to modifications of the trilinear coupling [163]. However,
as such a single coupling modification is not satisfactory from the theory perspective, we will
discuss in the subsequent chapters the BSM contributions to gg → hh in two full-fledged EFT
scenarios.

In the following, we briefly address the current theoretical status of gg → hh. There has
been a huge progress in precision calculations for hh production in the gluon fusion channel
over the past few years, however, there are still some sources of theory uncertainties that
remain. NLO QCD calculations accounting for the full mt dependence via numerical evalu-
ation of the two-loop integrals are available in Refs. [164–167] and a combination with the
high energy expansion for improved results in the high energy region has been performed
in Ref. [168]. Equivalent results were obtained in calculations that combine only analytic
expansions in different kinematic regions [169, 170]. Higher orders beyond NLO QCD have
been achieved in the heavy top limit (HTL). The NLO HTL calculation was established a
long time ago [171], NNLO HTL results were presented in Refs. [172–175] and a few years
ago N3LO was reached [176]. Some of the numerical NLO QCD calculations with full mt

dependence have been combined with higher order results in the HTL [177,178]. This signif-
icantly improved the perturbative convergence and the missing top-mass effects of the HTL
are sufficiently under control. The primary uncertainty in the SM is related to the treatment
of the top-quark mass in different renormalisation schemes which has been investigated at full
NLO QCD [170, 179]. There is also major progress in EW corrections. Partial calculations
considering effects of Yukawa type interactions were performed in Refs. [180, 181], and the
full EW corrections in the HTL are presented in Ref. [182]. Since very recently, numerical
results of the full EW correction including complete mass effects are available in Ref. [183].

In the context of EFTs for the process gg → hh, anomalous couplings have been investigated
at NLO QCD in the Born-improved HTL for CP-conserving [184] and CP-violating [185]
operators in the HEFT and SMEFT framework. NLO QCD corrections including full mt-
dependence have been considered for the HEFT in Ref. [186]. In Ref. [187] NNLO corrections
have been calculated in the HTL for HEFT. State-of-the-art results in the HEFT for an ap-
proximate NNLO prediction (NNLO′) have been obtained in Ref. [188] which combines the
calculation including full mt dependence up to NLO QCD of Ref. [186] with the NNLO HTL
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results of Ref. [187]. Results for SMEFT are available at full NLO QCD for the leading oper-
ator contribution in Ref. [5] considering different truncation options. Additional subleading
operator contributions, the chromomagnetic and 4-top operators, have been investigated in
Ref. [7].

The content of the following chapters is as follows: In Chapter 6, the structure of the cal-
culation leading to NLO QCD HEFT results in Ref. [186] and the implementation in the
POWHEG-BOX-V2 code ggHH [163] is reviewed with subsequent description of necessary
adjustments to comply with the SMEFT framework for the leading operator contribution. In
addition, the phenomenological results of Ref. [5] highlighting the practical difference between
HEFT and SMEFT and investigating truncation effects will be presented. In Chapter 7, we
will elaborate on the effect of γ5 scheme choices in DimReg for the calculation of gluon fu-
sion processes in SMEFT on the example of the Higgs-gluon coupling, thereby following the
work in [6]. Finally, Chapter 8 is dedicated to study the effect of the subleading operator
contributions of the chromomagnetic and 4-top operators in gg → hh which was assessed in
Ref. [7].





CHAPTER 6

Higgs pair production in gluon fusion at NLO QCD for the leading
contribution of effective field theories

The previous chapter established the importance of Higgs pair production, especially in the
gluon fusion channel, to scrutinize the trilinear Higgs coupling as the first component of the
structure of the Higgs potential in precision tests. In the absence of new intermediate states in
the production of Higgs pairs, the so-called non-resonant scenario, the effects of BSM physics
are consistently described by EFTs.

In this chapter we use the two canonical bottom-up EFTs in Higgs physics, i.e. SMEFT and
HEFT, for predictions in the process of Higgs pair production in gluon fusion (gg → hh) at
fixed order NLO QCD and describe the relevant calculational steps for the implementation in
ggHH SMEFT [5]. We thereby only consider operators of the leading contribution according
to the power counting formula Eq. (4.12).

In Chapter 4 we made ourselves familiar with some of the different assumptions that make
the two EFTs structurally different. In particular, the SMEFT series is an expansion in
canonical dimension whereas HEFT is an expansion in loop orders. Yet, there are parameter
configurations in which a translation between them is possible. In general, the full SMEFT
expansion can be considered to be always translatable to HEFT, whereas the contrast is not
true, hence the parameter space of HEFT less restricted. Considering the field representations
of the two EFTs, it is obvious that the couplings of the physical Higgs field in the SMEFT
originating from a doublet are correlated in the perturbative treatment of the expansion,
which is not present in HEFT. There are more theoretical approaches to the difference of the
Lagrangian structure in the full theories, which look for non-analyticities in the Higgs sector of
a doublet scalar [189], make use of a field geometric interpretation in order to derive statements
independent of field redefinitions [190,191] or a combination of both [192,193]. Proposals for
future studies of these differences in the Lagrangian structure have been put forward in
Refs. [194–196]. We will follow a more practical approach and make a naive comparison by
an explicit parameter translation at a perturbative level of the two expansions, in order to
highlight potential pitfalls. Even though this just demonstrates the expected behaviour, it
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provides an instructive showcase to emphasize the importance to study both EFTs separately
in practical applications.15

In addition, we want to address the uncertainty related to the truncation of the SMEFT
expansion with our work. Working at finite order, an estimate of the uncertainty is vital for
the interpretation of data. Hence, recently significant attention was brought to the topic [127,
132, 132, 134, 135, 153, 160, 197, 198], nevertheless no general recommendations were decided
on [126]. Our calculation provides several options for truncations of the dimension-6 operator
contributions to the cross section, which can be used as a proxy for the qualitative observation
of the convergence.

In this chapter, we closely follow the outline of Ref. [5], but also refer to preceding calculations
of gg → hh that were essential for our work. This entails, in particular, the evaluation of
pure SM results in Refs. [164, 165, 199], the Higgs trilinear coupling variations of Ref. [163]
and the HEFT implementation of Refs. [186,200]. Furthermore, some results of Ref. [201] are
included.

The outline is as follows: We first discuss the general structure of the gg → hh amplitude in
Sec. 6.1. Subsequently, in Sec. 6.2 we review all relevant steps leading to the implementation
of the HEFT code ggHH [200]. In Sec. 6.3, we relate the SMEFT setup and calculation
to the outlined HEFT case and point out necessary adjustments for a consistent reuse of
the established HEFT implementation. In addition, we define different truncation options
for the dimension-6 contributions in the SMEFT formalism as they are implemented in the
POWHEG-BOX-V2 [202–204] process files ggHH SMEFT. Finally, in Sec. 6.4 benchmark
points for specific shapes in the HEFT framework are investigated and a comparison between
the two EFTs is drawn.

6.1. Setup and general structure of the amplitude

This section is devoted for a brief overview of the general structure of the amplitude. Following
the original calculation of Ref. [162], the amplitude for g(p1)g(p2)→ h(q1)h(q2) in a CP -even
theory can be decomposed into two form factors F1 and F2 as

M = δA1A2ϵµ1(p1)ϵµ2(p2) (T
µ1µ2
1 F1 + Tµ1µ22 F2) , (6.1)

where A1 and A2 are the color indices of the incoming gluons. A practical choice for the
tensor structure is given by

Tµ1µ21 = ηµ1µ2 − pµ21 p
µ1
2

p1 · p2
Tµ1µ22 = ηµ1µ2 +

1

p2T (p1 · p2)
[
m2
hp
µ2
1 p

µ1
2 − 2 (p1 · q1) qµ21 pµ12 − 2 (p2 · q1) qµ11 pµ21 + 2 (p1 · p2) pµ13 pµ23

]
,

(6.2)
with p2T = (û t̂−m4

h)/ŝ, since the two tensors ar orthogonal in 4-dimensions. ŝ, t̂ and û denote
the Mandelstam variables of the partonic system in the hard scattering process. The form
factor F1 can be further decomposed into triangle-type contribution F△ with an off-shell Higgs
that decays into a Higgs pair and box-type contribution F1,□ according to the topologies of

15This is indeed an important point to make, as measurements in hh production are primarily available for
the κ-framework or the HEFT. Our findings suggest that separate parameter determinations in the two EFT
frameworks are in general not translatable at current experimental sensitivity.
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the loop-diagrams. F2 only has a box-type contribution F2,□. At LO in the HTL, the SM
contribution completely cancels between triangle-type and box-type contributions [162]

F1 = F△ + F1,□ = O
(
ŝ

m2
t

)
,

F2 = F2,□ = O
(
ŝ

m2
t

)
,

(6.3)

which leads to a large suppression at production threshold. We apply the splitting into
triangle-type and box-type also on the level of the full SM amplitude

MSM =M△ +M□ , (6.4)

for later reference.

6.2. Structure of the calculation in the HEFT scenario

In this section we describe the operator selection for the HEFT scenario and the structure
of contributions to the cross section as they are used in ggHH [200]. Therefore, we review
the relevant steps and analytic expressions in Refs. [163–165, 199, 200] that lead to the im-
plementation of the ggHH process files in the POWHEG-BOX-V2, in order to clarify the
consistency with the SMEFT calculation presented in the subsequent section.

Even though the LO HEFT Lagrangian in Eq. (4.9) already has an infinite amount of param-
eters only a small selection of terms of the full HEFT Lagrangian enter in gg → hh at NLO
QCD. We therefore only need to take into account the following set of terms [186]16

∆LHEFT = −mt

(
ctth

h

v
+ ctthh

h2

v2

)
t̄ t− chhh

m2
h

2v
h3 +

αs
8π

(
cggh

h

v
+ cgghh

h2

v2

)
GaµνG

a,µν ,

(6.5)
where ctth, ctthh and chhh are parameters of the LO Lagrangian in Eq. (4.9) and the Higgs-
gluon couplings cggh and cgghh are part of the NLO Lagrangian which is made apparent by
extraction of the prefactor αs/(8π). Notice that the prefactors are chosen such that the value
of the HEFT parameters can naturally be of O (1) with chhh = 1, ctth = 1, = 0, cggh = 0
and cgghh = 0 resembling the SM configuration. Hence, the parameters work as a coupling
modifier similar to the κ-framework at LO.

All couplings of Eq. (6.5) appear at the same order in gg → hh and form the diagrams of
the Born contribution depicted in Fig. 6.1. The Born contribution consists of explicit loop
diagrams with couplings of the LO Lagrangian given by Fig. 6.1 (a)–(c), and tree diagrams
involving couplings of the NLO Lagrangian visible in Fig. 6.1 (d)–(e). Applying the power
counting of the form in Eq. (4.12) they all contribute at O

(
(g2sL)

)
.

6.2.1. NLO QCD virtual contribution

The NLO QCD contributions in the HEFT theory is also composed of higher orders in SM
loops and operators of the NLO Lagrangian. Sample diagrams are presented in Fig. 6.2.
Counting only in chiral dimension, also additional contributions of EW couplings or a chiral
dimension 6 Higgs-gluon operator would contribute. However, as radiative corrections from
QCD are known to be dominant in gluon fusion processes, we restrict ourselves to only in-
clude chiral dimension 6 contributions that come with a relative factor of g2s which are of the

16A flavour assumption similar to Eq. (4.10) has been applied in order to remove the mass and Yukawa interaction
of light quarks, which just by chiral dimension counting would be of same order.
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ctth

ctth

(a)

ctth
chhh

(b)

ctthh

(c)

cggh
chhh

(d)

cgghh

(e)

Figure 6.1.: Feynman diagrams of the Born contribution in the HEFT scenario. The dots
denote vertices of the LO HEFT Lagrangian, the squares vertices of the NLO Lagrangian.
The HEFT vertices are labeled with the associated parameter of the HEFT Lagrangian.

same order as the SM NLO QCD calculation. This can be consistently done including only
the anomalous interactions of Eq. (6.5), since the Lagrangian is renormalisable for QCD cor-
rections [186,205]. Thus, all parts of the virtual NLO QCD contribution enter at O

(
(g2sL)

2
)

at amplitude level.

The renormalisation procedure is completely determined by a renormalisation of the SM
parameters analogous to Ref. [164], i.e. the top mass mt is renormalised in the on-shell
scheme and the QCD coupling αs in the MS scheme for nl = 5 active flavours. No additional
renormalisation for the coupling parameters chhh, ctth, ctthh, cggh and cgghh is necessary at
the order we are investigating. The renormalisation constant for the strong coupling αbs =

µ2ϵαs

(
1 +

αs
4π
δαs +O

(
α2
s

))
is given by

δαs =
(4πe−γE )ϵ

ϵ

(
−β0 +

(
m2
t

µ2

)−ϵ
4

3
TF

)
, (6.6)

with β0 =
11

3
cA −

4

3
TFnl. The on-shell mass counter term for mb

t = mt +
αs
4π
δmt + O

(
α2
s

)
has the form

δmt =
(
4πe−γE

)ϵ(m2
t

µ2

)−ϵ
mtcF

(
−3

ϵ
− 4

)
, (6.7)

and the gluon field renormalisation has the form ZA = 1 +
αs
4π
δZA

+O
(
α2
s

)
with

δZA
=

(4πe−γE )ϵ

ϵ

(
m2
t

µ2

)−ϵ(
−4

3
TF

)
. (6.8)

It is important to note that the genuine virtual two-loop diagrams are very similar to the
SM, therefore the NLO QCD virtual contribution in the HEFT can be obtained by means of
a reweighting which can be written as

MNLO
HEFT =MNLO

□ c2tth +MNLO
△

(
ctthchhh +

2

3

ŝ−m2
h

m2
h

ctthh

)
+MNLO

1 +MNLO
0 ,

(6.9)
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Figure 6.2.: Sample diagrams of the virtual contribution in the HEFT scenario. The dots
denote vertices of the LO HEFT Lagrangian, the squares vertices of the NLO Lagrangian.
The diagrams form genuine two-loop (upper and (f)), one-loop (middle and (g)) and tree-level
(h) topologies.

where MNLO
1 are the one-loop contributions involving one insertion of cggh or cgghh (cf.

Fig. 6.2 (d), (e) and (g)) andMNLO
0 are the tree-level contributions involving two insertions

of cggh (cf. Fig. 6.2 (h)). MNLO
△ andMNLO

□ denote the decomposition of the NLO QCD SM
amplitude according to Eq. (6.4). The explicit evaluation of the amplitude was performed
in Refs. [186, 200] using the numerical values for the SM contributions of Refs. [164, 165] in
combination with analytic expressions for the tree-level and one-loop contributions.

The subtraction term to remove the IR divergences of the virtual contribution is constructed
applying the Catani-Seymour I operator on the Born amplitude. Since there is only a single
colour structure in Eq. (6.1), the operator reduces to a scalar factor, i.e. Eq. (3.13) simplifies
to

Igg =
αs
2π

(4π)ϵ

Γ(1− ϵ)

(
µ2

ŝ

)ϵ(
cA

2

ϵ2
+
β0
ϵ
− cA

2π2

3
+ β0 + 2Kg

)
. (6.10)

In order to implement the finite virtual contribution into the framework of the POWHEG-
BOX-V2 [202–204] the finite pieces of the subtraction defined by Eq. (6.10) need to be
removed. This leads to the following conversion [199,204,206]

Vfin (µ) =
2π

αs(µ)
(Vb + Igg · B) (µ)

− B (µ)
(
cA log2

(
µ2

ŝ

)
+ β0 log

µ2

ŝ
− cA

2π2

3
+ β0 + 2Kg

)
,

(6.11)

where B is the Born squared amplitude, Vb the UV renormalised virtual interference term,
and Vfin is the finite virtual contribution that enters the code in the POWHEG-BOX-V2.
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In the HEFT, Vfin can be parameterised in terms of a polynomial of all possible coupling
combinations in the form [186]

VHEFT
fin (µ0) = a1 · c4tth + a2 · c2tthh + a3 · c2tthc2hhh + a4 · c2gghc2hhh + a5 · c2gghh + a6 · ctthhc2tth

+ a7 · c3tthchhh + a8 · ctthhctthchhh + a9 · ctthhcgghchhh + a10 · ctthhcgghh
+ a11 · c2tthcgghchhh + a12 · c2tthcgghh + a13 · ctthc2hhhcggh + a14 · ctthchhhcgghh
+ a15 · cgghchhhcgghh + a16 · c3tthcggh + a17 · ctthctthhcggh + a18 · ctthc2gghchhh
+ a19 · ctthcgghcgghh + a20 · c2tthc2ggh + a21 · ctthhc2ggh
+ a22 · c3gghchhh + a23 · c2gghcgghh ,

(6.12)
where the ai are defined as the coefficients for each possible coupling combination. Within
the implementation of ggHH, these coefficients are obtained by the combination of numerical
grids with 23 linearly independent choices of coupling values which have been calculated for
the scale µ0 = mhh/2, with mhh being the invariant mass of the hh system. The evaluation
of VHEFT

fin for an arbitrary scale choice µ is obtained by [199]

VHEFT
fin (µ) = VHEFT

fin (µ0)

(
αs(µ)

αs(µ0)

)2

+ cAB(µ)
(
log2

(
µ20
ŝ

)
− log2

(
µ2

ŝ

))
. (6.13)

6.2.2. Real radiation

The real radiation involves an IR divergent ggg channel and an IR finite qqg channel that
appear at the same order. Diagrams for the ggg channel are obtained radiating a gluon off
the Born diagrams in Fig. 6.1. The topologies of the qqg channel diagrams are obtained when
one of the initial gluons in Fig. 6.1 originates from a quark line that leads to a jet, the full
qqg channel then consists of all permutations of the external coloured particles. The matrix
elements for the real radiation have been generated by GoSam [65, 66] in conjunction with
a UFO [207, 208] model file. The evaluation of the the squared matrix element for the real
radiation proceeds through an interface [209] to the POWHEG-BOX-V2.

6.3. Structure of the calculation in the SMEFT scenario

In this section we describe the calculation for a SMEFT scenario and relate all steps to their
HEFT analogue of the previous section. This allows us to reuse the well established framework
for the evaluation in the SMEFT after some additional modifications. Since SMEFT is based
on different assumptions compared to HEFT, as was introduced in Chapter 4, the reader will
be reminded when a relation has to be considered with care.

We begin with the relevant Lagrangian terms that follow from the flavour assumption of
Eq. (4.10). In addition, we only consider the Wilson coefficients that comprise the leading
SMEFT contribution to gg → hh applying the power counting explained in Sec. 4.3.17 Thus,
we retain the following set

∆LleadSMEFT =
CH□

Λ2

(
ϕ†ϕ

)
□
(
ϕ†ϕ

)
+
CHD
Λ2

(
ϕ†Dµϕ

)∗ (
ϕ†Dµϕ

)
+
CH
Λ2

(
ϕ†ϕ

)3
+
CtH
Λ2

((
ϕ†ϕ

)(
Q̄LtRϕ̃

)
+H.c.

)
+
CHG
Λ2

ϕ†ϕGaµνG
µν,a ,

(6.14)

where we are using the operator definition of the Warsaw basis [111]. The Wilson coefficients
CH□, CHD, CH and CtH are potentially tree induced, whereas CHG is loop induced and therefore
carries an implicit suppression of CHG ∼ O

(
(g2sL)

)
.

17The discussion of the subleading SMEFT contribution is postponed to Chapter 8.



6.3. Structure of the calculation in the SMEFT scenario 45

Since we are probing the theory in the EW broken phase, the Higgs doublet is expanded
around its vev v, which in the presence of Eq. (6.14) also involves a higher order contribution in
Λ. Moreover, other parameters of the dimension-4 Lagrangian get a higher order contribution,
in particular we have for the full top-mass18

mt =
v√
2

(
yt −

v2

2

CtH
Λ2

)
. (6.15)

CH□ and CHD lead to non-canonical normalisation of the kinetic term for the physical Higgs
field h which can be adjusted by a field redefinition. Working in unitary gauge, a particular
convenient choice is given by the gauge dependent field redefinition

h→ h+ v2
CH; kin

Λ2

(
h+

h2

v
+

h3

3v2

)
, (6.16)

with the definition CH; kin := CH□ −
1

4
CHD. This ensures that there are no vertices with

derivatives on the Higgs field up to the order in canonical dimension we are interested in.

After the application of the field redefinition the relevant interaction parts of the Lagrangian
now have precisely the form of Eq. (6.5) and we identify the relations listed in Table 6.1.
Note that Table 6.1 is not to be considered as an exact translation between the theories,

HEFT Warsaw

chhh 1 + 3v2
CH; kin

Λ2
− 2

v4

m2
h

CH
Λ2

ctth 1 + v2
CH; kin

Λ2
− v3√

2mt

CtH
Λ2

ctthh v2
CH; kin

Λ2
− 3v3

2
√
2mt

CtH
Λ2

cggh
8πv2

αs

CHG
Λ2

cgghh
4πv2

αs

CHG
Λ2

Table 6.1.: Translation at Lagrangian level between HEFT and SMEFT valid up to O
(
Λ−2

)
.

since HEFT and SMEFT are technically different. The HEFT expansion is based on a loop
counting, such that the coefficients ci in Eq. (6.5) are a priori allowed to take arbitrary values
of O (1). The SMEFT, however, is constructed around an expansion in Λ, such that for

a typical energy scale E the combination
E2

Λ2
Ci needs to be a small quantity. Therefore,

the theoretically allowed HEFT parameter space allows for much larger deviations from the
SM and a naive translation from a valid HEFT configuration to the truncated SMEFT can
become inconsistent. This will be exemplified in Sec. 6.4.

Since the Lagrangian is now in a convenient form which resembles the HEFT structure we
describe in the following the Born contribution to the amplitude. All diagrams that appear
in the HEFT case of Fig. 6.1 contribute in the SMEFT case, as well. The SMEFT truncation,

18For the precise definition of physical quantities in SMEFT, we refer to Chapter 5 of Ref. [159].
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however, requires that the full anomalous coupling cannot enter at each vertex. Therefore,
we split the amplitude according to

MLO
SMEFT =

1+
Ctth
Λ2

1+
Ctth
Λ2

+
1+

Ctth
Λ2

1+
Chhh
Λ2

+ Ctthh
Λ2

+

Cggh
Λ2

1+
Chhh
Λ2

+
Cgghh
Λ2

=MLO
SM +MLO

dim6 +MLO
dim62

,

(6.17)

where the Ci/Λ2 pieces at the vertices denote the dimension-6 part of the anomalous cou-
pling according to Table 6.1. The amplitude is split in SM contribution, single insertion
of a dimension-6 operator Mdim6 and double insertion of a dimension-6 operator Mdim62 .
Retaining Mdim62 but not including dimension-8 operator insertions (and higher dimension
contributions induced by the field redefinition Eq. (6.16)) is not in line with the systematics
of the SMEFT expansion. Nevertheless, we consider these contributions in some of the trun-
cation options in order to gauge the importance of double insertions. Applying the power
counting formula of Eq. (4.12), we have MSM ∼ O

(
(g2sL)

)
, Mdim6 ∼ O

(
(g2sL)Λ

−2
)
and

Mdim62 ∼ O
(
(g2sL)Λ

−4
)
, i.e.Mdim6 forms the leading SMEFT contribution.

6.3.1. NLO QCD virtual contribution and truncation options

In the following we discuss the structure of the NLO QCD virtual corrections in an expansion
of the form of Eq. (6.17). A priori we may consider all diagrams of the HEFT scenario in
Sec. 6.2, but have to account for the SMEFT expansion according to Eq. (6.17). In a general
SMEFT calculation, UV divergences of NLO diagrams with a double insertion of dimension-6
operators require a renormalisation of dimension-8 operators. This is, however, not the case
at NLO QCD for the set of operators in Eq. (6.14), as they only renormalise themselves.
Hence, in addition to the renormalisation of the SM parameters in Sec. 6.2 we also have to

consider a renormalisation of CbHG = µ2ϵ
(
1 + δ

CHG
CHG

)
CHG and CbtH = µ3ϵ

(
1 + δ

CtH
CtH

)
CtH , with

counter terms [159]

δ
CHG
CHG

=
αs
4π
δαs

δ
CtH
CtH

=
αs
4π

(
δmt

mt
+ cF

(
4 + 3 log

(
µ2

m2
t

)))
,

(6.18)

where δαs and δmt are specified in the previous section. Since the renormalisation of the
Wilson coefficients for QCD corrections resemble the structure of an MS renormalisation
of mt and αs (cf. Eqs. (6.6) and (6.7)), we are able to express the SMEFT NLO QCD
amplitude in terms of the HEFT amplitude in Eq. (6.9) with application of Table 6.1. We are
then left to adjust the renormalisation of CtH , since in HEFT all Yukawa-type interactions
are renormalised for on-shell mt. Schematically we obtain

MNLO
SMEFT =MNLO

HEFT +∆renM , (6.19)
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with

∆renM =− v3√
2mt

αs
4π
cF

(
4 + 3 log

(
µ2

m2
t

)) CtH
Λ2

×
(
2ctthMLO

□ +

(
chhh +

ŝ−m2
h

m2
h

)
MLO

△

)
.

(6.20)

The Catani-Seymour subtraction procedure is not affected by SMEFT, since the IR structure
of the theory is not modified by higher order operators describing the UV physics, which is a
defining principle of the bottom-up EFT. Hence, a combination of the form in Eq. (6.11) is
still valid in the SMEFT scenario.

With the amplitude structure being settled, we specify the four considered possibilities of
combinations of |MSMEFT|2 with an amplitude expanded according to Eq. (6.17) that enter
the cross section:

σ ≃


σSM + σSM×dim6 (a)

σ(SM+dim6)×(SM+dim6) (b)

σ(SM+dim6)×(SM+dim6) + σSM×dim62 (c)

σ(SM+dim6+dim62)×(SM+dim6+dim62) (d) .

(6.21)

The options can be described as follows: Option (a) denotes the expansion of σ ∼ |MSMEFT|2
at O

(
Λ−2

)
(linear dimension-6), (b) is the expansion of the amplitudeMSMEFT at O

(
Λ−2

)
(linear+quadratic dimension-6). In case (c) all contributions of dimension-6 operator inser-
tions up to O

(
Λ−4

)
of the cross section are included which, however, lacks contributions

of dimension-8 operators interfered with the SM and O
(
Λ−4

)
terms of the field redefinition

in Eq. (6.16). Option (d) (naive translation) corresponds to the full insertion of anomalous
couplings in all vertices which equals the HEFT after using the translation of parameters
according to Table 6.1 naively, up to differences due to the renormalisation of CtH and scale
dependence of αs in Table 6.1.

As a reminder, neglecting dimension-8 operator contributions, only option (a) and (b) can
be understood to be a consistent choice of the SMEFT expansion which is applicable in
the derivation of bounds and fits. To be very strict, only option (a) would correspond to
a consistent leading order expansion in Λ−2 of the observable [127], as field redefinitions
would introduce Λ−4 ambiguities that are of the same order as the part ∼ |Mdim6|2 that is
retained in option (b). Option (b), however, is more practical in calculations and fits, since
option (a) can lead to negative cross section if the parameter values are not very close to the
SM configuration. Therefore, usually both, (a) and (b), are evaluated and compared which
serves as a proxy to get a qualitative impression of the EFT convergence. Overall, usage and
interpretation of truncation options and related uncertainties are an ongoing debate in the
community [126].

As explained beforehand, options (c) and (d) are UV finite without introducing additional
operators, hence they can be used to study the importance of double insertions in the ampli-
tude.

In order to use the grid framework of the HEFT implementation we have to relate truncation
options (a)–(d) to the selection of coefficients in Eq. (6.12). The final structure of the virtual
contribution has the form

VSMEFT
fin = VHEFT

fin +
2π

αs(µ)
2Re

(
∆renM ·

(
MLO

SMEFT

)∗)
+ δ

(b)
V , (6.22)
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where the translation of Table 6.1 and the truncation options of Eq. (6.21) are understood.

The inclusion of δ
(b)
V indicates, that for truncation option (b) additional care needs to be

taken. This will be described in the following.

As was explained after Eq. (6.21), option (a) and (c) form a truncation on the level of cross
section (or squared amplitude) and therefore the truncation in Eq. (6.22) is unambiguous.
For option (d) no truncation is applied. Truncation (b), however, is defined on the level of
the amplitude. Considering the different diagrams of Fig. 6.2, all topologies do contribute
except for type (h). In case a coefficient ai of Eq. (6.12) has a contribution of diagram type
(h) of Fig. 6.2, but also includes other combinations that would be allowed in truncation (b),
this ai coefficient cannot fully be considered in the evaluation of the virtual contribution. As

it turns out only combinations of maximally one-loop diagrams are affected, therefore δ
(b)
V

includes interference terms which have been implemented analytically in ggHH SMEFT.
More details about the implementation, in particular for the virtual amplitude, are found in
App. B.

6.3.2. Real radiation

The diagrams of the real radiation contribution have not changed w.r.t. the HEFT case.
However, since we consider truncation options defined in Eq. (6.21), a modification of the
amplitude calculation is necessary. Therefore, a modified version of GoSam [65, 66] was
developed that splits the amplitude according to Eq. (6.17) and combines the amplitude
interference according to Eq. (6.21). The interface to the POWHEG-BOX-V2 has been
adjusted to allow for the truncation setting.

6.4. Phenomenological results

In the following, we are going to discuss results which were generated with ggHH SMEFT
that has been implemented in the POWHEG-BOX-V2. More information about the imple-
mentation and usage can be found in App. B.

The results were produced for a proton-proton center-of-mass energy
√
s = 13 TeV. The par-

ton distribution functions and corresponding value for αs of PDF4LHC15_nlo_30_pdfas [210]
were interfaced to our code via LHAPDF [211]. The generation of the virtual amplitude using
the grids in Eq. (6.12) require the masses of the Higgs boson and the top-quark to be fixed to
mh = 125 GeV, mt = 173 GeV. Decay widths of the particles have been set to zero. Jets are
clustered with the anti-kT algorithm [212], as implemented in the FastJet package [213,214],
with jet radius R = 0.4 and a minimum transverse momentum pjetT,min = 20 GeV. We set the
renormalisation and factorisation scales to µ = µF = mhh/2.

For the subsequent discussion on the level of total cross section and mhh distributions, we
consider three benchmark points which are defined in Table 6.2. The benchmarks feature
characteristic shapes in the mhh distribution at NLO QCD in the HEFT and were classi-
fied using unsupervised machine learning [215]. The benchmarks were originally derived in
Ref. [215], and updated in Refs. [5, 201] in accordance with recent experimental bounds. In
particular, measurements of Refs. [216, 217] require 0.83 ≤ ctth ≤ 1.17, and additionally
|ctthh| < 0.05 was chosen for benchmark 1. We consider the three shape types:

� benchmark 1: enhanced low mhh region

� benchmark 3: enhanced low mhh region and second local maximum above mhh ≃ 2mt

� benchmark 6: close by double peaks (shoulder left).
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benchmark chhh ctth ctthh cggh cgghh CH; kin CH CtH CHG

SM 1 1 0 0 0 0 0 0 0

1 5.105 1.1 0 0 0 4.95 −6.81 3.28 0

3 2.21 1.05 −1

3
0.5 0.25∗ 13.5 2.64 12.6 0.0387

6 −0.684 0.9 −1

6
0.5 0.25 0.561 3.80 2.20 0.0387

Table 6.2.: The benchmark points used for the total cross section results in Table 6.3 and the
invariant mass distributions in Figs. 6.4–6.6. The SMEFT Wilson coefficients are determined
for Λ = 1 TeV, αs(mZ) = 0.118 was used for the translation of CHG.

In order to test the behaviour of the SMEFT convergence when the Wilson coefficients of the
benchmarks approach the SM configuration, we will explicitly set Λ = 2 TeV and Λ = 4 TeV
while keeping the parameters Ci fixed. Let the reader be reminded, that the new physics
scale Λ of the Wilson coefficients is not a parameter that can be measured (in contrast to the
full Wilson coefficient Ci/Λ2), but is rather a means of exemplifying the SMEFT expansion.
Changing Wilson coefficients for explicit values of Λ is still convenient as it intuitively allows
the interpretation of a further decoupling of the UV physics.

6.4.1. Total cross section results

In this part we investigate the result on the level of total cross section. We first discuss
total cross section values for the benchmark scenarios of Table 6.2. Subsequently, heat maps
demonstrating the dependence on pairs of Wilson coefficients for different truncation options
are shown.

In Table 6.3, we present the total cross section values for benchmarks 1, 3 and 6 at Λ =
1, 2 TeV. The SM values are also shown for reference. Truncation option (a) leads to
unphysical, negative total cross section for benchmark 1 and the cross section value for Λ =
2 TeV is still very small in that case indicating the appearance of negative differential cross
section in the Monte Carlo integration.

As the squared amplitude in Eq. (6.12) can be expanded in coefficients of different coupling
combinations, so can the total cross section as well. Applying the translation of Table 6.1
and truncations of Eq. (6.21) the parameterisation can be reused for the SMEFT scenario if
CHG = 0. This leads to the heatmaps in Fig. 6.3 which demonstrate the total cross section
as a function of the Wilson coefficient pairs CH , CtH and CH , CH; kin for truncation options
(a), (b) and (c). The options lead to very different dependence of the cross section on the
coefficient combination. As is obvious from the white areas in the upper panels, large areas
of the parameter space lead to negative cross section values for option (a) (linear dimension-
6). This can already occur for values of Ci ∼ O (1). Since option (a) corresponds to the
linear interference with the SM only, there are extended flat directions. Choosing truncation
option (b) (linear+quadratic dimension-6) leads to elliptic shapes which flat side resembles
the flat directions of option (a). Non-trivial shapes are obtained for truncation option (d),
where the elliptic iso-contours of (b) are deformed by higher polynomial orders in the Wilson
coefficients.
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benchmark σNLO [fb] K-factor ratio to SM σNLO [fb] σNLO [fb]

option (b) option (b) option (b) option (a) HEFT

SM 27.94+13.7%
−12.8% 1.67 1 - -

Λ = 1 TeV

1 71.95+20.1%
−15.7% 2.06 2.58 -57.64 91.62

3 68.69+9.4%
−9.5% 1.80 2.46 30.15 70.20

6 70.18+18.8%
−15.5% 1.83 2.51 50.82 87.9

Λ = 2 TeV

1 14.53+12.6%
−12.2% 1.62 0.52 6.44 -

3 30.80+14.4%
−13.6% 1.71 1.10 28.41 -

6 34.80+16.8%
−14.9% 1.73 1.25 33.6 -

Table 6.3.: Total cross section results of gg → hh at NLO QCD for the SM and three bench-
mark points for truncation option (b), including scale uncertainties for a 3-point scale vari-
ation. The values are shown for Λ = 1 TeV and Λ = 2 TeV. Results for truncation option
(a) are given to contrast with option (b). The HEFT cross sections are shown for reference,
if applicable. The cross section for truncation option (a) with Λ = 1 TeV leads to a negative
value for benchmark point 1, thus, it should not be considered a valid SMEFT configuration.
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Figure 6.3.: Heat maps demonstrating the dependence of the total cross section on variations
of CH , CtH (left) and CH , CH; kin (right) over large ranges for Λ = 1 TeV. The cross section is
normalised to the SM value. The results are shown for different truncation options defined
in Eq. (6.21): Upper panels: option (a), middle panels: option (b), lower panels: option (d).
White areas denote negative cross section values.
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6.4.2. Higgs boson pair invariant mass distributions

In the following we observe the differential cross section in invariant mass distributions for the
benchmarks of Table 6.2. In particular, we inspect the effect of different truncation options
on the three scenarios. For truncation option (b) and the SM, we include a scale uncertainty
band for a 3-point scale variation around the central scale of the form µ = µF = c ·mhh/2,
for c ∈ {1/2, 1, 2}. We verified for the SM and benchmark 1 that the 3-point already provides
the envelope of a more general 7-point variation.

The distributions for benchmarks 1, 3 and 6 are presented in Figs. 6.4–6.6. The panels of
each figure are arranged in the following order: The upper panels show distributions for
Λ = 1 TeV, middle panels for Λ = 2 TeV and the lower panels for Λ = 4 TeV; the left panels
demonstrate LO, the right panels NLO results. The original HEFT benchmark distributions
are included in the upper panels in order to exemplify the naive application of Table 6.1 at
Λ = 1 TeV.

In Fig. 6.4, the distributions for benchmark 1 are displayed. We observe negative cross section
for a largemhh range for truncation option (a). This was already expected comparing with the
total cross section values in Table 6.3. This is a clear demonstration, that the perfectly valid
HEFT configuration of benchmark 1 can upon naive translation lead to a SMEFT scenario
for which the expansion in Λ−1 breaks down, i.e. this corresponds to an invalid configuration
for the SMEFT expansion up to dimension-6 operators. The distributions of options (b), (c)
and (d) are positive definite. The curves for (b) and (c) are very close, hence the interference
of the amplitude with dimension-6 operator double insertions with the SM appears to be
subdominant for parameter values of benchmark 1. Truncation (d) behaves almost identical
to the HEFT case, the only difference is due to the correction of the renormalisation of CtH
in Eq. (6.20). For Λ = 1 TeV, all truncation options except for (a) qualitatively reproduce
the shape of enhanced low mhh region.

For Λ = 2 TeV the distributions of options (b)–(d) coincide well with each other. Option (a),
however, does not and still leads to an area of negative differential cross section values. The
shapes of options (b)–(d) for Λ = 2 TeV now exhibit a second local maximum and therefore
resemble the defining shape structure of benchmark 3.

Setting Λ = 4 TeV the distributions approach the SM, but there is still a significant deviation
w.r.t. the SM curve beyond scale uncertainty in the low mhh region. All truncation options
are very close to each other in this configuration, there is only a slight deviation at production
threshold for option (a) with negative values.

Distributions for benchmark point 3 are presented in Fig. 6.5. At Λ = 1 TeV, options (a)
and (c) exhibit negative cross section. Therefore, the interference term of the amplitude with
double insertions entering option (c) leads to significant deviation from truncation (b) for
benchmark 3. The difference between option (d) and the HEFT distribution is now more
pronounced, which is due to the scale dependence of αs(µ) in the translation of Table 6.1.
Overall, again truncation options (b)–(d) reproduce the characteristic shapes defining the
HEFT benchmark scenario.

For Λ = 2 TeV the distributions approach the SM more closely than was the case for bench-
mark 1 in Fig. 6.4. The different truncation options coincide well except option (a) in the
low mhh region.

At Λ = 4 TeV the distributions for all options are very close to the SM, only a slight damping
of the cross section in the low mhh regime is visible.

Finally, in Fig. 6.6 we investigate the mhh distributions for benchmark point 6. In contrast
to the two previous benchmark scenarios, we observe no negative cross section for benchmark
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6. The distributions of truncation options (a) and (b) are relatively close to each other in
the low mhh region with deviations beyond the scale uncertainty for mhh ≳ 520 GeV. The
truncation options in SMEFT fail to reproduce the close-by double peaks that define the
HEFT benchmark except for the naive translation option (d). The distribution of option (c)
lies in between the ones of options (b) and (d).

For Λ = 2 TeV, the curves approach the SM distribution already quite close. For Λ = 4 TeV
the SMEFT scenario becomes indistinguishable compared to the SM, as the distributions
remain within the scale uncertainty.
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Figure 6.4.: Differential cross section distributions for the invariant mass mhh for benchmark
point 1 of Table 6.2. Top row: Λ = 1 TeV, middle row: Λ = 2 TeV, bottom row: Λ = 4 TeV.
Left: LO, right: NLO.
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Figure 6.5.: Differential cross section distributions for the invariant mass mhh for benchmark
point 3 of Table 6.2. Top row: Λ = 1 TeV, middle row: Λ = 2 TeV, bottom row: Λ = 4 TeV.
Left: LO, right: NLO.
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Figure 6.6.: Differential cross section distributions for the invariant mass mhh for benchmark
point 6 of Table 6.2. Top row: Λ = 1 TeV, middle row: Λ = 2 TeV, bottom row: Λ = 4 TeV.
Left: LO, right: NLO.
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6.5. Uncertainty of the EFT predictions

After the formulas for the evaluation have been discussed and results presented, we need to
clarify sources of theoretical uncertainty not yet addressed. There are few aspects that need
to be considered and we follow the discussion in Ref. [201].

SMEFT truncation There is no quantitative prescription to specify uncertainty related to
SMEFT truncation yet [126]. We provide a possibility to get a qualitative picture
of the convergence when comparing different truncation options of the dimension-6
operator contributions. This, however, has to be assessed on a case by case basis.

Scale uncertainty The scale uncertainties are obtained by a variation of renormalisation and
factorisation scale around the central choice, µ0 = mhh/2. A 3-point variation of the
form µ = µF = c ·µ0 with c ∈ {1/2, 1, 2} has been assessed for the SM and benchmarks
1, 3 and 6 for truncation (b). On the level of differential distributions the resulting
bands are presented in Figs. 6.4–6.6, for the total cross section the relative uncertainty
is shown in Table 6.3. The scale uncertainty ranges vary depending on the benchmark
configuration and can be asymmetric around the central scale prediction, with relative
size of 10% for benchmark 3 and 15–20% for benchmarks 1 and 6 at Λ = 1 TeV. For
Λ = 2 and 4 TeV the size is closer to the SM with 13–15% and equally symmetric.
Scale uncertainties for HEFT have been investigated in Refs. [186, 200] and are in
general equal in magnitude. An approximate version of NNLO QCD corrections,
partially using the HTL, demonstrated a decrease of the scale uncertainty by a factor
2 to 3 [188].

PDF+αs uncertainty The PDF+αs uncertainty is estimated to ±3% for
√
s = 13 and

14 TeV [218] which has been obtained with a Born-improved approximation of NNLO
using PDF4LHCNNLO [210]. The uncertainty appears to be quite robust for varia-
tions of chhh [218], but could potentially differ for benchmark scenarios with enhanced
tails.

Top-quark mass renormalisation scheme The choice of the mt renormalisation scheme and
associated scale µm for the MS mass leads to significant differences in the cross section
and distributions. It has been estimated in the SM with MS renormalisation of mt

for the NLO cross section, where the envelope between the scale choices µm = mt,
mhh and mhh/4 defines the range. At

√
s = 13 TeV this leads to +4%

−18% w.r.t. the
on-shell scheme [179]. In the SM this is the dominant source of uncertainty, since
the usual scale uncertainty is reduced by the approximate NNLO results [177]. An
investigation of the mass scheme uncertainty in off-shell single Higgs production at
NNLO with a soft-virtual approximation for the real radiation [219] indicates that
the scheme uncertainty potentially reduces at higher orders in QCD, and that the on-
shell renormalisation could be more stable with regards to higher order contributions in
some regions of phase space. It has been demonstrated that themt scheme uncertainty
is sensitive to the choice of chhh [170, 179]. This indicates that it would be necessary
to assess the uncertainty for each EFT parameter configuration separately.

EW corrections Recently the full EW corrections in the SM have been computed [183]. The
result leads to K = 0.958 relative to the LO total cross section for µ = µF = mhh/2.
For the mhh distributions there are +10% deviations at production threshold and up
to −10% in the tails beyond mhh ∼ 600 GeV. The result, however, is not translatable
to EW corrections in an EFT scenario, since at this order, i.e. O

(
(g2sL)LΛ

−2
)
, more

operators would need to be considered, a part of which are studied in Chapter 8.

Numerical evaluation of the NLO QCD virtual corrections As described in Eq. (6.12), the
NLO virtual corrections Vfin are obtained by means of a combination of grids, that are
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interpolated for an evaluation of each phase space point [199]. The original grids for the
two-loop amplitude have been sampled in order to have an overall statistical accuracy
up to≲ 2% in the binning of the differential cross section for themhh distribution of the
SM. This leads to some regions where the grid points are only sparsely populated, e.g.
the lowmhh region or largemhh tails. The structure of the EFT contribution, however,
can be vastly different leading to enhancements in regions of phase space where the
SM is almost vanishing. Benchmark 1 in Fig. 6.4 serves as an example for such a
behaviour, as it entails an enhanced low mhh region. Here the statistical uncertainty
in the first bin estimated by the Monte Carlo integration in the POWHEG-BOX-V2
cannot be trusted, as an additional statistical uncertainty should be associated for
the sparsely populated grid. In Ref. [201] this statistical uncertainty in the first bin
of benchmark 1 has been estimated to reach 75% (as compared to 12% for the SM).
For a general scenario, it cannot be assessed a priori, therefore a binning choice that
spreads this uncertainty over a larger range might be appropriate.



CHAPTER 7

The structure of dimensional γ5 schemes in SMEFT for the Higgs-gluon
coupling

As has been explained in Sec. 3.6, chirality of fermions is a concept that is intimately connected
to the 4-dimensional spacetime we observe. If calculations are done in terms of Dirac spinors,
chirality enters in the form of projectors involving the γ5 chirality operator. γ̄5 together with
all its properties Eqs. (3.18) and (3.20) and the usual definition of cyclic traces is confined to
4-dimensional spacetime [89], thus its continuation to D dimensions in DimReg poses some
difficulties. Different schemes have been developed to make consistent predictions where two
versions have been briefly discussed in Sec. 3.6.1 and Sec. 3.6.2. In UV complete theories a
lot of experience has been gained in the application of those techniques. This lead to the
expectation that calculations at intermediate steps differ depending on the scheme, but after
taking into account all relevant renormalisation terms, including symmetry restoration for
BMHV, the NDR scheme and BMHV scheme should coincide, see e.g. Ref. [220] for a recent
example. There are also 4-dimensional regularisation schemes that avoid the D-dimensional
continuation of γ5, see e.g. Refs. [34]. These schemes, however, still face similar technical
difficulties in the consistent treatment of γ5 in practical calculations [31,221,222].

In the framework of EFTs, the relation between different dimensional γ5 scheme choices
is more subtle than for UV complete theories. It is well established from observations in
flavor physics calculations [223–225] that the anomalous dimension matrix governing the scale
dependence of Wilson coefficients at two loop order involving 4-fermion operators turns out
to be scheme dependent if only the dependence on individual parameters Wilson coefficients
is considered. In Refs. [223,224] this scheme dependence has been absorbed in a redefinition
of other parameters of the theory in order to demonstrate the scheme-independence of the
anomalous dimension, thus leading to consistent results.

In this chapter, we revisit these investigations on the γ5 scheme structure of 4-fermion opera-
tors and apply a similar logic as Refs. [223,224] in the context of the Higgs-gluon coupling. We
are mainly interested in the contribution of 4-top interactions entering the Higgs-gluon cou-
pling indirectly at two-loop, since their Wilson coefficients are barely constrained by current
global fits of the O

(
Λ−2

)
interference terms [153].19 In the process gg → h, the contribution

19The prime channel to study 4-top Wilson coefficients directly is the production of four top-quarks at the LHC.
Although the cross section of four top-quark production is very limited at current collider energies [226] and the
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of the fixed order amplitude can be of the same order as the RGE evolution effects [229], hence
the structure of the γ5 scheme in the renormalised two-loop amplitude has to be considered.
Even though the 4-top operators enter at two-loop level, the appearing Feynman integrals
factorise in two one-loop parts which makes the calculation well feasible.

The discussion in this chapter is mainly based on the work of Ref. [6]20 and stuctured as
follows: We first recapitulate the operator selection and set up all the ingredients that enter
the calculation in Sec. 7.1. In Sec. 7.2 we discuss the one-loop subdiagrams entering the Higgs-
gluon coupling and derive the γ5 scheme dependent structure at one-loop order. We present
in Sec. 7.3 the full two-loop calculation and summarise the translation table relating the
parameters between NDR and BMHV. Sec. 7.4 is dedicated for a validation in the unbroken
phase of the EW symmetry, first with a recomputation of the one-loop γ5 scheme structure
and subsequently with an explicit matching calculation using simplified UV models. Finally,
in Sec. 7.5, the γ5 scheme structure involving operators of the class ψ2ϕ2D of Ref. [111] on the
one-loop subamplitudes is demonstrated in order to highlight the need for a more exhaustive
study in the future.

7.1. Operator selection

We briefly setup the selection of contributing operators in this section. As mentioned, our
primary focus lies on the effect of 4-top operators in this chapter. The relevant list is given
by

L4t =
C(1)Qt

Λ2

(
Q̄Lγ

µQL
)
t̄RγµtR +

C(8)Qt

Λ2

(
Q̄Lγ

µT aQL
)
t̄RγµT

atR

+
C(1)QQ

Λ2

(
Q̄Lγ

µQL
) (
Q̄LγµQL

)
+
C(8)QQ

Λ2

(
Q̄Lγ

µT aQL
) (
Q̄LγµT

aQL
)

+
Ctt
Λ2
t̄Rγ

µtR t̄RγµtR ,

(7.1)

which enter as a two-loop correction to the Higgs-gluon coupling. The operator O(3) 3333
qq,Warsaw of

the Warsaw basis [111] has been replaced by O(8)
QQ which in terms of the Wilson coefficients

leads to the relation [230]

C(1)QQ = 2C
(1) 3333
qq,Warsaw −

2

3
C

(3) 3333
qq,Warsaw

C(8)QQ = 8C
(3) 3333
qq,Warsaw .

(7.2)

All other 4-top operators are represented in the Warsaw basis.

The 4-top operators cannot be considered in isolation, as their Wilson coefficients are con-
nected to other parameters through renormalisation and the γ5 scheme structure. Hence, we
also need to include the chromomagnetic operator

LtG =
CtG
Λ2

((
Q̄Lσ

µνT atRϕ̃
)
Gaµν +H.c.

)
, (7.3)

and a subset of the leading operators from Eq. (6.14) without the pure scalar operators, i.e.

∆LleadSMEFT ⊃
CtH
Λ2

((
ϕ†ϕ

)(
Q̄LtRϕ̃

)
+H.c.

)
+
CHG
Λ2

ϕ†ϕGaµνG
µν,a . (7.4)

process just recently has been observed [227,228], the potential to scrutinize the 4-top Wilson coefficients only
including the O

(
Λ−2) interference terms may be much better in that channel than for indirect processes [227],

like gg → h(h). Nevertheless, it is relevant to investigate different channels in parallel.
20Notice that we follow the sign convention introduced in Eq. (2.2), such that results involving odd powers of gs
have the opposite sign compared to the equations of Ref. [6].
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Since we relate calculations in the broken phase of the EW symmetry in Secs. 7.2 and 7.3
with calculations in the unbroken phase in Secs. 7.4 and 7.5 we remind ourselves about
the connection between the full mass parameter mt and the Yukawa parameter yt of the
dimension-4 Lagrangian in Eq. (6.15).

For all calculations in this chapter, we employed QGraf [64] for the generation of all relevant
diagrams and FeynCalc [60–62] for analytic manipulations.

7.2. γ5 scheme structure at one-loop

In this section we demonstrate the γ5 scheme dependent structure of pure 4-top operator con-
tributions to the one-loop subamplitudes entering the calculation of the Higgs-gluon coupling
of Sec. 7.3. The origin of the γ5 scheme dependence is related to differences in the evanescent
(D− 4)-dimensional parts of the Dirac algebra between NDR (cf. property (1) of Eq. (3.22))
and BMHV (cf. Eq. (3.24) together with Eq. (3.25)). Therefore, there are already finite
effects observable at one-loop order where the ϵ parts of the Dirac algebra multiply a pole of
the loop integrals. As mentioned in Sec. 3.5, appearing one-loop Feynman integrals will be
expressed in terms of the master integrals of the form of Passarino-Veltman scalar functions
N0 with N ∈ {A,B,C, . . .} in the convention of FeynCalc [60–62], such that loop factors are
kept manifest in the formulas.

We begin considering the contribution to the gauge interaction for an on-shell gluon. An
explicit calculation reveals

g

t

t

=
C(1)Qt +

(
cF − cA

2

)
C(8)Qt

CtG
KtG × g

t

t

, (7.5)

i.e. the contribution is proportional to an insertion of CtG. However, this depends on the
constant, but scheme dependent factor

KtG =

−
√
2mtgs
16π2v

(NDR)

0 (BMHV) .
(7.6)

If the gluon is allowed to be off-shell, the structure of the correction in Eq. (7.5) has more
contributions which are, however, not relevant for our investigation.

At this point it is useful to clarify the possible structures of 4-top operator contributions: In
general the operator insertion leads to two possible contractions of fermion lines which are
demonstrated in Fig. 7.1. The two possible contractions come with opposite relative sign. In
the considered contributions the overall sign is conveniently determined by assigning a −1 per
trace in the Dirac space whereas no additional sign is associated with open Dirac structures.
For the one-loop corrections investigated in this project, however, only the contribution with
an open fermion line, i.e. Fig. 7.1 (b), survives after contracting the gamma matrices. Thus,
the observed scheme dependence in Eq. (7.6) is not related to a trace ambiguity [96].

Subsequently, we consider the contribution to the propagator and the Yukawa interaction. We
start with the propagator correction, as the resulting factor can be identified in the Yukawa
correction. Since the explicit propagator correction does not depend on the propagator mo-
mentum, its contribution is proportional to a mass insertion. Pictorially, we write

t t

t

=
C(1)Qt + cFC(8)Qt

Λ2
(Bmt +Kmt)× t t ,

(7.7)
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t

t
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Figure 7.1.: Visualisation of the possible contractions of closed fermion loop diagrams with
4-top operators (which holds in general for 4-fermion operators of equal fermion species): (a)
closed Dirac structure yielding a trace; (b) open Dirac structure without any traces.

where we split the contribution to make the scheme dependent part

Kmt =

−
m2
t

8π2
(NDR)

0 (BMHV) ,
(7.8)

obvious. The part that does not depend on the scheme, Bmt , is given by

Bmt =
1

4π2
A0(m

2
t ) . (7.9)

Subsequently, we consider the contribution of 4-top operators to the Yukawa interaction. Here
we express the h → t̄t subamplitude in terms of the Yukawa coupling with on-shell external
Higgs boson

h

t

t

=

C(1)Qt + cFC(8)Qt

Λ2

(Bht̄t +Kmt −
v3√
2mt

KtH

)

× h

t

t

.

(7.10)

Again, we split into scheme dependent part

KtH =


√
2mt

(
4m2

t −m2
h

)
16π2v3

(NDR)

0 (BMHV) ,
(7.11)

and scheme independent part

Bht̄t =
1

8π2
(
2A0(m

2
t )−

(
m2
h − 4m2

t

)
B0(m

2
h,m

2
t ,m

2
t )
)
. (7.12)

At this point it is instructive to already try to better understand the meaning of Eqs. (7.5),
(7.7) and (7.10). As has been illustrated by the pictorial representation of the one-loop
corrections on the right-hand side of Eqs. (7.5), (7.7) and (7.10), the 4-top operators effectively
induce a contribution to the parameters mt, CtH and CtG which is scheme-dependent. We
can, however, recast the full EFT contribution in a scheme-independent form by an effective
parameter redefinition, finite renormalisation in the language of Refs. [100,224], of the form

m̃t = mt

1 + C(1)Qt + cFC(8)Qt

Λ2
Kmt


C̃tH = CtH +

(
C(1)Qt + cFC(8)Qt

)
KtH

C̃tG = CtG +
(
C(1)Qt +

(
cF −

cA
2

)
C(8)Qt

)
KtG .

(7.13)
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This procedure was introduced by Refs. [100, 224, 225] in the context of the anomalous di-
mension matrix of Wilson coefficient mixing in flavour physics. In this way, the scheme-
independence of the considered one-loop contributions is made manifest and m̃t, C̃tH and C̃tG
form scheme-independent coefficients. This form of redefinition using finite shifts obtained at
one-loop will be challenged at two-loop level in Sec. 7.3.

It is important to note that the definition of the splitting into scheme-independent Bi and
scheme-dependent Ki structures of Eqs. (7.5), 7.7 and (7.10) can be defined in different ways
(there are, in principle, infinitely many options to do so), leading to an arbitrariness in finding
a scheme-independent redefinition of the form in Eq. (7.13). For our investigation we choose
to define the Ki as the terms in D → 4 dimensions that are not multiplied by the Passarino-
Veltman master integrals, i.e. the rational parts. This choice is especially convenient, since
the Ki vanish for the BMHV scheme in the case of 4-top operators, such that the definitions
in Eq. (7.13) coincide with the original parameters in the BMHV scheme. For other operator
classes, however, this is not the case anymore, as we will see in Sec. 7.5. From a practical
point of view, instead of defining scheme-independent coefficients, we will learn to appreciate
these relations of Eq. (7.13) more in the form of γ5 scheme dependent values of mt, CtH and
CtG, that conspire with the scheme dependent amplitude contributions of the 4-top operators
to remove the scheme dependence from the physical prediction. This allows to consistently
embrace a scheme choice and still being able to translate to the other schemes, after the
necessary translation relations have been derived once.

The relations of Eqs. (7.5), (7.7) and (7.10) deserve also further explanation from the power
counting point of view, since they establish a close connection between parameters of the
theory. In the form Eq. (7.13) is written, the relations seem to have a hierarchy of importance,
such that the contributions induced byKi are suppressed byO

(
Λ−2L

)
in case ofmt andO (L)

for the affected Wilson coefficients. If we apply the the power counting arguments of Sec. 4.3
for the assumption of a weakly coupling and renormalisable UV completion, however, the
Wilson coefficient CtG itself is expected to contain a loop suppression factor as well [147,148].

Following this consideration the contribution of C(1)Qt and C(8)Qt to C̃tG in Eq. (7.13) can be of
the same importance as the contribution of CtG requiring that both contributions should not
be considered in isolation.

Notice that the contributions of C(1)QQ, C
(8)
QQ and Ctt identically vanish in all subamplitudes

needed for the Higgs-gluon coupling.21

7.3. Calculation of the Higgs-gluon coupling

In this section, we investigate the full effect of our operator selection on the Higgs-gluon
coupling, inserting the subdiagrams of the previous section into two-loop diagrams.

The amplitude for Higgs-gluon coupling in the presence of SMEFT operators is expanded in
the form

MTOT =MSM +MEFT . (7.14)

Since the 4-top operators do not enter independently we split the dimension-6 part into
contributions of all operators mentioned in Sec. 7.1, such that

MEFT =

{C4t
Λ2
M4t +

CtG
Λ2
MtG +

CHG
Λ2
MHG +

CtH
Λ2
MtH +MC.T.

}
, (7.15)

21If we had chosen a different D-dimensional extension of the chiral vertex for BMHV than Eq. (3.25), we would

have to deal with additional contributions from C(1)
QQ, C

(8)
QQ and Ctt. These could violate symmetry relations

of the theory at intermediate steps of the calculation that eventually would have to be removed by finite
symmetry restoring counterterms. In addition, different choices of the chiral vertex can also lead to different
parameterisations of new physics effects which are related to each other similar to Eq. (7.33).
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Figure 7.2.: Topologies of contributions from insertions of four-top quark operators (teal dot)
to gg → h at two-loop level.
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h

Figure 7.3.: Contribution to gg → h with a single insertion of the chromomagnetic operator
(orange square dot). There are triangle topologies (left) and bubble topologies (right).

where
C4t
Λ2
M4t is a short-hand notation for all contributions of the 4-top operators of Eq. (7.1)

andMC.T. entails the contribution from counterterms. As the coefficient CtH effectively only
leads to a redefinition of mt and modification of the Yukawa interaction, its contribution will
be combined with theMSM part using the replacement

MSM (yt) +
CtH
Λ2
MtH →

[
1− v3√

2mt

CtH
Λ2

]
MSM (mt) , (7.16)

in the following.

In line with the reasoning in Ref. [229], we split the contribution of 4-top operators according
to the corrections including the subamplitudes of Sec. 7.2. This leads to the following classes,
which are also shown in Fig. 7.2:

(a) correction to the Yukawa interaction,

(b) correction to the top-quark propagator,

(c) correction to the gluon-top interaction.

On the level of the amplitude, we split into linear combinations of C(1)Qt and C(8)Qt originating
from the color algebra obtained by one-loop subdiagrams as follows

C4t
Λ2
M4t =

C(1)Qt + cFC(8)Qt

Λ2
Amt+ht̄t +

C(1)Qt +
(
cF − cA

2

)
C(8)Qt

Λ2
Agt̄t , (7.17)

where Amt+ht̄t includes the contributions of type (a) and (b) of Fig. 7.2 and Agt̄t the contri-
butions of type (c).

As already indicated in Eq. (7.5), the contribution involving a correction to the gluon-top ver-
tex can be expressed in terms of the amplitude involving an insertion of the chromomagnetic
operator which diagrams are demonstrated in Fig. 7.3. Thus we write

Agt̄t =
(
4πe−γE

)ϵ [1
2
KtGMtG|DIV +KtGMtG|FIN

]
, (7.18)

where the factor of
(
4πe−γE

)ϵ
explicitly appears in Eq. (7.18) in order to compensate the

difference of the diagrammatic loop order between CtG and C(1/8)Qt contributions. The explicit
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form of the divergent and finite piece of the amplitude involving the chromomagnetic operator
MtG|DIV andMtG|FIN is given by

MtG|DIV =
(4πe−γE )ϵ

16π2ϵ
4
√
2mtgsm

2
hT

µ1µ2ϵµ1(p1)ϵµ2(p2)δ
A1A2 , (7.19)

and

MtG|FIN =

√
2mtm

2
hgs

8π2
Tµ1µ2ϵµ1(p1)ϵµ2(p2)δ

A1A2

×
(
Afin

0 (m2
t )

m2
t

+Bfin
0 (m2

h,m
2
t ,m

2
t ) + 2m2

tC0(0, 0,m
2
h,m

2
t ,m

2
t ,m

2
t )− 2

)
,

(7.20)

where Afin
0 and Bfin

0 are the finite pieces of the respective Passarino-Veltman scalar functions
and we use the tensor structure

Tµ1µ2 =

(
gµ1µ2 − 2

pµ21 p
µ1
2

m2
h

)
. (7.21)

Since KtG appearing in Eq. (7.18) is defined by Eq. (7.6), we observe that the contribution
from a gauge vertex correction can be factored in the form of Eq. (7.18), such that the scheme
dependence is explicitly contained in KtG. In addition, the form of Eq. (7.18) implies that the

pole structure originating from C(1/8)Qt differs depending on the scheme. This is not unexpected,
since KtG is already obtained from rational parts of a one-loop Feynman integral, thus the
second loop integration can lead to a pole.

7.3.1. Structure of the renormalisation

For the purpose of the discussion in this chapter, we employ MS renormalisation for the pa-
rameters of the theory. In particular, we choose to renormalise mt in the MS scheme as well,
which is in contrast to the usual choice of an on-shell scheme for mt in phenomenological
calculations of gluon-fusion processes. The MS scheme makes the point of γ5 scheme inde-
pendence of the final result considering scheme dependent parameters more general, since
an on-shell scheme for mt completely removes contributions from diagrams of type (b) in
Fig. 7.2. We postpone the structure of the on-shell mt scheme choice to Chapter 8.

Collecting all counter term contributions we identify the structures represented by the fol-
lowing diagrams

MC.T. =

g

g

h +

g

g

h +

g

g

h . (7.22)

The MS renormalised top mass mt is defined by22

mb
t = mt + δmt , (7.23)

with

δmt = −
(4πe−γE )ϵ

ϵ

m3
t

4π2
C(1)Qt + cFC(8)Qt

Λ2
. (7.24)

22Note that mt is understood as the MS mass throughout this chapter, whereas in Chapters 6 and 8 mt refers
to the on-shell mass.
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In order to remove the UV divergence of the diagrams of type (a) in Fig. 7.2, also the Wilson

coefficient CtH needs a renormalisation. Expanding its bare value into CbtH = µ3ϵ
(
CtH + δ

Ci
CtHCi

)
in the MS scheme therefore leads to

δ
C4t
CtHC4t =

(4πe−γE )ϵ

16π2ϵ

2
√
2mt

(
4m2

t −m2
h

)
v3

(
C(1)Qt + cFC(8)Qt

)
, (7.25)

which coincides with δ
Cj
Ci =

(4πe−γE )ϵ

16π2ϵ

γCi,Cj
2

using the respective part of the anomalous dimen-

sion matrix γCi,Cj of Refs. [156,158]. The relation between δ
Cj
Ci and the anomalous dimension

matrix is derived in Sec. 4.4.

With the counter term diagrams corresponding to the one-loop counterterms in Eqs. (7.24)
and (7.25) the diagrams of classes (a) and (b) in Fig. 7.2 are made finite, i.e. Aght̄t+mt is fully
renormalised.

The diagrams of the chromomagnetic operator insertion in Fig. 7.3 are UV divergent even
though they constitute the leading order contribution of CtG to the Higgs-gluon coupling. This

behaviour is well understood and leads to a renormalisation of C0HG = µ2ϵ
(
CHG + δ

Ci
CHG
Ci
)
[156,

231,232]. Since the 4-top contributions of type (c) in Fig. 7.2 lead to a divergence proportional
to the one of the chromomagnetic operator, i.e. Eq. (7.18), we need to choose

δ
CtG
CHG
CtG + δ

C4t
CHG
C4t =

(4πe−γE )ϵ

16π2ϵ

4
√
2mtgs
v

TF

(
CtG +

(
4πe−γE

)ϵ KtG

2

(
C(1)Qt +

(
cF −

cA
2

)
C(8)Qt

))
,

(7.26)

to remove all remaining divergences.

As is apparent by the appearance of KtG in Eq. (7.26), the counter term for CHG is indeed
scheme dependent. This implies that also the anomalous dimension matrix contains scheme

dependent contributions. Using
dCbtG
dµ

= 0 we derive

16π2µ
dCHG
dµ

=
8
√
2mtgs
v

TF

(
CtG +KtG

(
C(1)Qt −

1

6
C(8)Qt

))
. (7.27)

The combination of CtG and C(1/8)Qt in Eq. (7.27) differs by a relative factor of 2 w.r.t. the
combination in Eq. (7.26). The origin is traced back to the different orders of SM couplings

that enter in the one-loop diagrams of CtG compared with the two-loop diagrams of C(1/8)Qt . The
compensation of this relative factor of 2 is crucial in the need to define γ5 scheme independent
observables.

The appearance of scheme differences in the anomalous dimension originating from 4-fermion
operators with chiral structure (L̄L)(R̄R) contributing to the structure of the chromomagnetic
operator has been observed in the context of flavour physics already a while ago [223–225].
Following the strategy proposed in Refs. [100,224,225], the definition of the combined param-
eter C̃tG of Eq. (7.13) precisely ensures a scheme-independent anomalous dimension matrix.

7.3.2. Renormalised amplitude at fixed order

So far we investigated the γ5 scheme dependent structure of 4-top operator contributions at
one-loop level and the two-loop anomalous dimension. We identified a combination of Wil-
son coefficients (see Eq. (7.13)) that simultaneously brings the one-loop corrections and the
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anomalous dimension into a manifestly scheme independent form. In this section, we inves-
tigate the γ5 scheme dependence of the two-loop renormalised amplitude and, in particular,
check if a redefinition of the form in Eq. (7.13) derived at one-loop level is sufficient to find a
scheme independent combination of Wilson coefficients. Thus, we need to reorganise the γ5
scheme dependence of the 4-top operator insertions at two-loop level which is parameterised
in terms of KtG, KtH and Kmt .

The contributions of diagrams (a) and (b) of Fig. 7.2 to the renormalised amplitude can be
expressed as

ARen
mt+ht̄t

=MS.I.
mt+ht̄t

− v3√
2mt

KtHMSM +Kmt

∂MSM

∂mt
×mt , (7.28)

whereMSM andMS.I.
mt+ht̄t

are scheme-independent. Note that the derivative in
∂MSM

∂mt
also

includes the mt part of the Yukawa interaction. Collecting all partial results of Eqs. (7.17),
(7.18) and (7.28) we find for the full renormalised matrix element

MRen
TOT =

C(1)Qt + cFC(8)Qt

Λ2
MS.I.

mt+ht̄t

+

CtG
Λ2

+KtG

C(1)Qt +
(
cF − cA

2

)
C(8)Qt

Λ2

MtG|FIN

+

1− v3√
2mt

CtH
Λ2

+KtH

C(1)Qt + cFC(8)Qt

Λ2

MSM

+
C(1)Qt + cFC(8)Qt

Λ2
Kmtmt ×

∂MSM

∂mt

+
CHG
Λ2
MHG .

(7.29)

It is important to clarify thatMRen
TOT represents a physical on-shell scattering amplitude which

is required to be γ5 scheme independent. This statement is best understood in the top-down
perspective considering the EFT theory as the low energy limit of a UV complete theory.23

Thus, the scheme dependence of theKi-terms has to be compensated by a scheme dependence
of the parameters. In order to make the scheme independence of the amplitude manifest, we
redefine the parameters using the relations of Eq. (7.13). With the form of a perturbative
expansion of the mass parameter in the SM amplitude

MSM (m̃t) =MSM (mt) +
C(1)Qt + cFC(8)Qt

Λ2
Kmtmt ×

∂MSM

∂mt
+O

(
Λ−4

)
, (7.30)

the parameter redefinition allows us to obtain a more compact representation of the full
matrix element

MRen
TOT =

C(1)Qt + cFC(8)Qt

Λ2
MS.I.

mt+ht̄t
+
C̃tG
Λ2
MtG|FIN

+

[
1− v3√

2mt

C̃tH
Λ2

]
MSM(m̃t) +

CHG
Λ2
MHG ,

(7.31)

23SMEFT is built upon the assumption that the degrees of freedom of the UV theory manifest beyond the energy
scale of the EW phase transition. Therefore, the matching calculation we refer to happens in the unbroken
phase. As will be explicitly checked in Sec. 7.4, the structure of scheme dependence persists in the unbroken
phase and the UV matching will be exemplified with simplified models.
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which is valid at O
(
Λ−2

)
. Since the individual amplitude structures MS.I.

mt+ht̄t
, MtG, MSM

and MHG are scheme-independent, it follows that the combinations in Eq. (7.13) must be
scheme-independent also at two-loop for the Higgs-gluon coupling.

We want to emphasize again that the redefined parameters in Eq. (7.13) derived from the
necessity of overall scheme-independence at the level of one-loop are precisely the same com-
bination that make the anomalous dimension in Eq. (7.27) and the renormalised two-loop
amplitude scheme-independent.

7.3.3. Translation of γ5 scheme dependent Wilson coefficients

As was already mentioned in Sec. 7.2, the prescription to split K-terms and B-terms is
quite arbitrary, hence, there are a priory many possibilities to define scheme-independent
combinations of the form Eq. (7.13). In particular, the choice of deriving it from the rational
terms of the loop calculation is convenient, however, depends on the choice of master integrals,
i.e. choosing B0(0,m

2
t ,m

2
t ) instead of A0(m

2
t ) would introduce a finite difference in K, as

A0(m
2
t ) = m2

t

(
B0(0,m

2
t ,m

2
t )− 1

)
+O (ϵ) , (7.32)

in the limit D → 4. On the other hand, the difference of the scheme dependent terms
∆Ki = KBMHV

i −KNDR
i does not depend on the chosen prescription. There is the possibility

to choose a ‘canonical scheme’ which defines parameter combinations for the other schemes as
in Eq. (7.13). In case of the 4-top operators BMHV provides the most convenient option and
was therefore suggested in Ref. [223]. However, as calculations in BMHV are computationally
more involved than in NDR and the γ5 scheme dependent structure differs in other classes of
operators (cf. Sec. 7.5), the choice of defining the ‘canonical scheme’ again relies on subjective
arguments.

Therefore, instead of redefining the parameters to restore the form of the ‘canonical scheme’,

we allow the Wilson coefficients to acquire scheme dependent values in the presence of C(1/8)Qt .

With the condition of a scheme independent scattering amplitude we thus require X̃NDR
i =

X̃BMHV
i for the parameters in Eq. (7.13). This leads to

mBMHV
t = mNDR

t − m3
t

8π2Λ2

(
C(1)Qt + cFC(8)Qt

)
CBMHV
tH = CNDR

tH +

√
2mt

(
4m2

t −m2
h

)
16π2v3

(
C(1)Qt + cFC(8)Qt

)
CBMHV
tG = CNDR

tG −
√
2mtgs
16π2v

(
C(1)Qt +

(
cF −

cA
2

)
C(8)Qt

)
.

(7.33)

With Eq. (7.33) we found a relation between the parameters of the two schemes in terms

of shifts induced by C(1/8)Qt . If the scheme difference of the parameters is considered, the two
schemes lead to the same anomalous dimension and renormalised amplitude. The information
provided by Eq. (7.13) and Eq. (7.33) is in principle the same, yet the interpretation in terms
of scheme dependent parameters is much more flexible, as it does not rely on a reference
scheme. Moreover, the scheme dependence of single Wilson coefficients could question the
meaning of measurements of individual parameters, which implies that in the future combined
parameter fits will be of relevance. A minimal requirement to find relevant sets of parameters
could be that the scheme dependence should be resolvable at the considered order of power
counting. Let the reader be reminded, that if we consider the loop-suppression of CtG in the

scenario of a weakly coupling and renormalisable UV completion, the contribution of C(1/8)Qt

in the translation between the schemes for CtG is expected to be of the same order as the

original Wilson coefficient. Thus, CtG should not be considered in isolation of C(1/8)Qt for such
a scenario, whereas the hierarchy for mt and CtH allows to define a leading contribution for

which C(1/8)Qt provides only a subleading correction.
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7.4. A cross-check in the top-down perspective: Matching with UV-
models

We have already investigated the γ5 scheme differences that can be understood by finite
shifts on parameters of the theory in the EW broken phase. In this section, we want to
validate this approach in the unbroken phase of the EW sector. We first consider one-loop
amplitudes involving the 4-top operators that appear in a one-loop matching for CtG, CtH
and the dimension-4 top-Yukawa parameter yt. This provides already a solid cross check,
since the calculations between the two phases differ significantly. On top of that, we want
to explicitly demonstrate with simplified models that the interpretation to understand the
scheme dependence in amplitudes with 4-top operators as a shift of the parameters CtG, CtH
and yt naturally arises in a top-down matching.

Since the quarks are massless in the unbroken theory, it is reasonable to work with the
interaction eigenstates QL and tR for the diagrammatic representation in order to specify
the relevant contributions. Throughout this section, a thicker fermion line denotes the LH
iso-doublet QL, a thinner fermion line the RH iso-singlet tR. The analytic calculations using
FeynCalc were performed for Dirac fields and the real scalar component of the Higgs doublet
ϕ.

7.4.1. γ5 scheme structure at one-loop in the unbroken phase

In this subsection, we consider one-loop diagrams of 4-top operators of Eq. (7.1) contributing
to the matching of yt, CtG and CtH . These calculations represent the EFT counter part of
the matching calculation in the following subsections. If expansion by regions [233,234] were
used in the matching, this one-loop EFT contribution would correspond to the soft region,
whereas the hard region defines the value of the Wilson coefficients derived in the one-loop
matching. In order not to switch to an off-shell EFT basis (which is also called a Green’s
basis) of operators that has to be translated to the on-shell Warsaw basis, we compute the
matching calculation for quasi on-shell states, allowing the SM Higgs doublet to have a ‘mass’
m2
ϕ = −λv2. We refrain from showing the full analytic structure of the vertex corrections,

since they have no direct correspondence to contributions in the unbroken theory. Hence, we
rather focus on the rational parts of the loop integration to derive the scheme difference.

We start with the contribution to the Yukawa parameter for an on-shell vertex correction and
project out only the rational terms

ϕ†

tR

QL

∣∣∣∣∣
rat. part

=

C(1)Qt + cFC(8)Qt

Λ2

KϕQ̄t × ϕ†

tR

QL

. (7.34)

The finite, scheme-dependent factor has the form

KϕQ̄t =

−
λv2

16π2
(NDR)

0 (BMHV) .
(7.35)

For the evaluation of the CtH shift, it is convenient to define the off-shell Yukawa vertex

ϕ†

tR

QL

:= ϕ†

tR

QL

−

C(1)Qt + cFC(8)Qt

Λ2

KϕQ̄t × ϕ†

tR

QL

, (7.36)
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in order to have a compact form for the one particle reducible contribution. Hence, we obtain
for the on-shell t̄RQLϕ

†ϕϕ† vertex

ϕ†

ϕ†

ϕ

tR

QL

+ ϕ

ϕ†

ϕ†

tR

QL

∣∣∣∣∣
rat. part

=

C(1)Qt + cFC(8)Qt

CtH

KtH × ϕ

ϕ†

ϕ†

tR

QL

,

(7.37)
with

KtH =


yt(y

2
t − λ)
8π2

(NDR)

0 (BMHV) .
(7.38)

In case of on-shell t̄RQLϕ
†g the one particle reducible contribution to the rational terms is

already absorbed in KϕQ̄t such that we only need to consider

g

ϕ†

tR

QL

+

g

ϕ†

tR

QL

=
C(1)Qt +

(
cF + cA

2

)
C(8)Qt

CtG
KtG

g

ϕ†

tR

QL

. (7.39)

Finally, we obtain the scheme dependent factor

KtG =

{
− gsyt
16π2

(NDR)

0 (BMHV) .
(7.40)

which precisely coincides with Eq. (7.6).

In summary, using the difference ∆Ki = KBMHV
i −KNDR

i we obtain the relations to translate
between the parameters of the two γ5 schemes in terms of finite shifts. This has the form

yBMHV
t = yNDR

t

1− λv2

16π2
C(1)Qt + cFC(8)Qt

Λ2


CBMHV
tH = CNDR

tH +
yt(y

2
t − λ)
8π2

(
C(1)Qt + cFC(8)Qt

)
CBMHV
tG = CNDR

tG − gsyt
16π2

(
C(1)Qt +

(
cF −

cA
2

)
C(8)Qt

)
,

(7.41)

which is equivalent to the relations in Eq. (7.33).

In the following, we validate the result by means of a top-down matching calculation with
two simplified scalar models. The notation follows Ref. [235] for the scalar fields as defined
by their representation of the SM gauge group. The scalar models are specified by their
representations (rSU(3)QCD

, rSU(2)L)Y .

7.4.2. New scalar: φ ∼ (1, 2) 1
2

This UV model extends the SM particle content by a new heavy scalar which is defined
by its mass Mφ ≫ v and representation under SM gauge group φ ∼ (1, 2) 1

2
. The relevant

Lagrangian terms can be written as

Lφ = (Dµφ)
†Dµφ−M2

φφ
†φ− Yφ

(
φ†εQ̄TLtR +H.c.

)
, (7.42)
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Figure 7.4.: One-loop diagrams contributing to the matching to the Yukawa coupling (left)
and to Ctϕ (right).

with the Levi-Civita pseudotensor ε and transposition T which both refer to isospin space
only. Via tree-level matching we immediately obtain

L =
Y 2
φ

M2
φ

(Q̄LtR)(t̄RQL) . (7.43)

In the Warsaw basis, this operator is replaced in favor of O(1)
Qt and O(8)

Qt , since it does not
contribute independently from the present operators in D → 4 dimensions. Thus, we label it

as R(1)
Qt in the following. In order to translate to the Warsaw basis we apply the 4-dimensional

Fierz identities and T aijT
a
kl = TF

(
δilδkj −

1

Nc
δijδkl

)
which yields [235]

C(1)Qt

Λ2
= − 1

2Nc

Y 2
φ

M2
φ

,
C(8)Qt

Λ2
= − 1

2TF

Y 2
φ

M2
φ

. (7.44)

It is important to note that the Fierz identities are not valid in D-dimensions anymore, hence,
we need to consider the evanescent operator explicitly in the one-loop matching calculation

E(1) = R(1)
Qt −

(
− 1

2Nc
O(1)
Qt −

1

2TF
O(8)
Qt

)
, (7.45)

which leads to O (ϵ) contributions.

Now we compute the one-loop matching calculation to the Yukawa coupling yt and CtH
Wilson coefficient where we have to consider the contributions sketched in Fig. 7.4. Since the
propagators of the new scalar field carry no loop momentum, they can be directly expanded
for large Mφ, such that only the soft region which precisely coincides with the structure of
Eq. (7.43) contributes. For the derivation of the yt (CtH) matching coefficient, all that is left
is to calculate the contribution of the evanescent operator defined in Eq. (7.45). This yields
for NDR

Y 2
φ

M2
φ

R(1)
Qt =

C(1)
Qt /Λ

2︷ ︸︸ ︷
− 1

2Nc

Y 2
φ

M2
φ

O(1)
Qt

C(8)
Qt /Λ

2︷ ︸︸ ︷
− 1

2TF

Y 2
φ

M2
φ

O(8)
Qt

+
Nc

2

yt
(
y2t − λ

)
8π2

Y 2
φ

M2
φ︸ ︷︷ ︸

CNDR
tH /Λ2

OtH +

(
−Nc

2

λv2

16π2
Y 2
φ

M2
φ︸ ︷︷ ︸

∆yNDR
t

(
Q̄Lϕ̃tR

)
+H.c.

)
,

(7.46)

which coincides with Ref. [114] upon adjustment of notation
λ

2
→ λ and µ2 → λv2. In

specifying the coefficients, we introduced ∆yt which appears as a modification of the already
present four-dimensional Yukawa coupling yt.
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In BMHV we define the chiral vertex in the form Eq. (3.25), such that

PL/RγµPR/L = γ̄µPR/L , (7.47)

i.e. effectively only the 4-dimensional Dirac structure is retained in the vertex. Therefore,

the Fierz identity to translate R(1)
Qt to O(1)

Qt and O(8)
Qt turns out to be exact. The redundant

operator is then translated as

Y 2
φ

M2
φ

R(1)
Qt = −

1

2Nc

Y 2
φ

M2
φ︸ ︷︷ ︸

C(1)
Qt /Λ

2

O(1)
Qt −

1

2TF

Y 2
φ

M2
φ︸ ︷︷ ︸

C(8)
Qt /Λ

2

O(8)
Qt , (7.48)

such that CBMHV
tH = 0 and ∆yBMHV

t = 0.

Due to the colour structure, there are no one-loop diagrams involving the new scalar that
may contribute to the chromomagnetic operator. Also the color structures of the Wilson
coefficients obtained in Eq. (7.44) exactly cancels the linear combination that appears in

one-loop calculations of the 4-top operators, i.e. C(1)Qt +
(
cF −

cA
2

)
C(8)Qt = 0.

Summing up all the results, we find perfect agreement with Eq. (7.41).

7.4.3. New scalar: Φ ∼ (8, 2) 1
2

In this part we want to extend the matching calculation for an additional scalar that trans-
forms non-trivially under SU(3)QCD. The new heavy scalar has quantum numbers Φ ∼ (8, 2) 1

2

and its mass is defined with MΦ ≫ v. The Lagrangian in this case has the form

LΦ = (DµΦ)
†DµΦ−M2

ΦΦ
†Φ− YΦ

(
ΦA,†εQ̄TLT

AtR +H.c.
)
. (7.49)

A tree-level matching leads to

L =
Y 2
Φ

M2
Φ

(Q̄LT
AtR)(t̄RT

AQL) . (7.50)

Again, this is not an operator present in the Warsaw basis and we translate via Fierz identity.
Applying this we have

C(1)Qt

Λ2
= − cF

2Nc

Y 2
Φ

M2
Φ

,
C(8)Qt

Λ2
=

1

2Nc

Y 2
Φ

M2
Φ

. (7.51)

Following the reasoning of the previous section, we define the evanescent operator

E(8) = R(8)
Qt −

(
− cF
2Nc
O(1)
Qt +

1

2Nc
O(8)
Qt

)
, (7.52)

which enters the one-loop matching calculation in the Warsaw basis.

In contrast to the case for the QCD singlet scalar in the previous section, it is impossible
to construct one-loop corrections to Q̄LtR → ϕ† and Q̄LtR → ϕ†ϕϕ† with the current scalar
model due to conservation of hypercharge or the color structure of the diagrams. This is in
agreement with the contribution of the 4-top operators in the Warsaw basis with coefficients
in Eq. (7.51), since the linear combination of Wilson coefficients appearing in the translation

relation Eq. (7.41) for yt and CtH vanishes, i.e. C(1)Qt + cFC(8)Qt = 0.

We find, however, diagrams contributing to the matching of the chromomagnetic operator
which are demonstrated in Fig. 7.5. There are no contributions from t-channel type diagrams
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Figure 7.5.: One-loop diagrams contributing to the matching with the chromomagnetic oper-
ator.

since they would violate the conservation of hypercharge. Evaluating the diagrams in Fig. 7.5
we find identically 0. Therefore, we only have to evaluate the evanescent contribution as a
remnant of the basis translation. In NDR, this leads to

C(8),RQt R
(8)
Qt = −

cF
2Nc

Y 2
Φ

M2
Φ︸ ︷︷ ︸

C(1)
Qt /Λ

2

O(1)
Qt +

1

2Nc

Y 2
Φ

M2
Φ︸ ︷︷ ︸

C(8)
Qt /Λ

2

O(8)
Qt +

1

16π2
Y 2
Φ

M2
Φ

gsyt
4︸ ︷︷ ︸

CNDR
tG /Λ2

OtG .
(7.53)

In BMHV, on the other hand, the Fierz identity is exact and we have

C(8),RQt R
(8)
Qt = −

cF
2Nc

Y 2
Φ

M2
Φ︸ ︷︷ ︸

C(1)
Qt /Λ

2

O(1)
Qt +

1

2Nc

Y 2
Φ

M2
Φ︸ ︷︷ ︸

C(8)
Qt /Λ

2

O(8)
Qt ,

(7.54)

leading to CBMHV
tG = 0. Identifying cA = Nc, the difference of the matching coefficients exactly

resemble the scheme difference obtained by the finite shifts in Eq. (7.41).

We conclude this section with the observation that the exercise of explicitly computing the
one-loop matching calculation of the simplified scalar models naturally lead to the finite shifts
we derived for the scheme independence of the scattering amplitude.

7.5. Outlook: γ5 scheme dependent structure introduced by the ϕ2ψ2D
operator class

The main focus of this project is to investigate the γ5 scheme differences on the example
of four-top operators, since they provide the basic principles of a two-loop calculation while
being structurally simple due to a convenient factorisation into one-loop integrals. However,
since there are more operator classes in the SMEFT with an explicit chiral structure, we try
to point out the necessity of a more exhaustive study in the following.

Therefore, we investigate the scheme dependent parameter shifts at one-loop order induced
by operators in the class of ψ2ϕ2D of Ref. [111]. Since we want to provide only a primary
observation, we limit the investigation to the two representative operators

L2t2ϕ =
C(1)ϕQ

Λ2
Q̄LγµQL

(
ϕ†i
←→
D µϕ

)
+
Cϕt
Λ2

t̄RγµtR

(
ϕ†i
←→
D µϕ

)
, (7.55)

where we introduced the short-hand notation

i
←→
D µ = iDµ − i←−Dµ . (7.56)

The main feature the operators in Eq. (7.55) have in common with the 4-top operators in
Eq. (7.1) is that they are composed of current-current interaction including chiral vector
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currents. Those are possibly generated by integrating out a new heavy vector particle at
tree-level that couples to the SM currents for which a concrete example would be given by
the Third Family Hypercharge Model [236,237].

As has been checked in Sec. 7.4.1 for the 4-top operators, the finite shifts induced by the
scheme choice coincide for the broken and unbroken phase of the EW symmetry. Thus,
it is sufficient to derive the scheme dependence of the parameters in the unbroken phase
considering matrix elements of (quasi) on-shell states for the derivation of the finite shifts. In
addition, since the scheme dependence manifests itself in the difference of rational terms of
the loop integrals, i.e. the residues in D → 4 dimensions that are not multiplied by Passarino-
Veltman master integrals, we only retain those rational terms in the presentation of the
one-loop correction.

We start by the contribution to the yt shift, as it enters the evaluation of the CtG and CtH
scheme dependence as well. The explicit contribution of the one-loop diagrams we need to
take into account is given by

QL

tR

ϕ†

︸ ︷︷ ︸
C(1)
HQ−diagram

+

QL

tR ϕ†︸ ︷︷ ︸
CHt−diagram

∣∣∣∣∣
rat. part

=
C(1)HQ − CHt

Λ2
K2t2ϕ
yt × ϕ†

tR

QL

,
(7.57)

where the scheme dependence is captured by

K2t2ϕ
yt =

0 NDR

λv2

32π2
BMHV .

(7.58)

In accordance with the procedure in Sec. 7.4.1, we define a compact representation for the
one-loop diagrams involving an off-shell Yukawa interaction with the short-hand notation

ϕ†

tR

QL

:=

QL

tR

ϕ†

+

QL

tR ϕ†

−
C(1)HQ − CHt

Λ2
K2t2ϕ
yt × ϕ†

tR

QL

.

(7.59)
Hence, we write for the one-loop contributions responsible for the CtG shifts
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C(1)HQ − CHt
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tG ×

g

ϕ†

tR

QL

,

(7.60)

where we obtain the rational terms

K2t2ϕ
tG =

gsyt
32π2

×

1 NDR
2

3
BMHV .

(7.61)
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The evaluation of one-loop contributions to CtH will be restricted to the gaugeless limit of
the SM24 in the following. This drastically reduces the number of diagrams, but the derived
result still fully entails the scheme dependence proportional to the Yukawa interaction yt and
Higgs self interaction λ.

Applying the gaugeless limit to the scheme dependent one-loop correction of CtH yields
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ϕ†
ϕ†

ϕ
+
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tR ϕ†
ϕ†
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+
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+
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+
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C(1)HQ − CHt
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tH × ϕ

ϕ†

ϕ†

tR

QL

,

(7.62)

and we obtain the scheme dependent part

K2t2ϕ
tH =

0 NDR

yt
(
y2t + 3λ

)
48π2

BMHV .
(7.63)

Since the difference of the rational terms ∆Ki = KBMHV
i −KNDR

i between the schemes leads
to a shift of the parameters, we can summarise the above calculations with the translation
table only retaining the contributions derived in this section as

yBMHV
t = yNDR

t

1− λv2

32π2
C(1)HQ − CHt

Λ2


CBMHV
tH = CNDR

tH − yt(y
2
t + 3λ)

48π2

(
C(1)HQ − CHt

)
CBMHV
tG = CNDR

tG +
gsyt
48π2

(
C(1)HQ − CHt

)
,

(7.64)

We want to clarify again that we assumed the gaugeless limit in order to derive the shift for
CtH , thus there are potential missing contributions proportional to g1 and g2. For the shifts
in the translation of yt and CtG, however, no restrictions on the SM field content were made
and they are valid in full generality of the SM fields and parameters.

In order to exemplify that the induced shifts by the ψ2ϕ2D operators persist in the broken
phase in the same form as derived above, we explicitly validate the form of the contribution
to the chromomagnetic operator in Eq. (7.60) in the broken phase for the gaugeless theory.
A concrete evaluation of the one-loop correction to g → t̄t then leads to

g

t

t

G0 + g

t

t

G0 =
C(1)HQ − CHt
CtG

K2t2ϕ
tG × g

t

t

+ . . . (7.65)

24In the gaugeless limit, the gauge bosons are decoupled from the theory by carefully taking the limit g1 → 0
and g2 → 0. After symmetry breaking in the Higgs sector, this leads to a theory with massless Goldstone
bosons that are physical degrees of freedom.
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where the gluon and top quarks are taken on-shell and the Gordon identity for on-shell
fermions is applied to arrive at this result. This configuration is kinematically not allowed,
however, it simplifies the extraction of the finite shift. The (. . . ) in Eq. (7.65) represent
contributions to vector and axial form factors that are completely removed using on-shell
renormalisation of the external top fields. The scheme dependent factor is found to be

K2t2ϕ
tG =

gsmt

16
√
2vπ2

×

1 (NDR)
2

3
(BMHV) ,

(7.66)

where the same value as in the unbroken theory Eq. (7.61) is obtained. Although the same
value separately for BMHV and NDR is mere coincidence, the important property is the
difference between both schemes, since the mapping of CtG between BMHV and NDR in the
presence of the operators of Eq. (7.55) can be expressed by

∆K2t2ϕ
tG = K2t2ϕ,NDR

tG −K2t2ϕ,BMHV
tG = K2t2ϕ,NDR

tG −K2t2ϕ,BMHV
tG =

gsmt

48
√
2vπ2

, (7.67)

which was done to derive Eq. (7.64).

The result of Eq. (7.64) clearly demonstrates that there is a γ5 scheme dependent amplitude
structure induced by the ψ2ϕ2D operators that, similar to the case of the 4-top operators in
Eq. (7.41), leads to a compensating scheme dependence of other parameters of the theory. We
also have the same hierarchy in the shifts: as the ψ2ϕ2D operators are potentially tree-level
induced, the finite scheme dependent shift of the Wilson coefficient of the chromomagnetic
operator in Eq. (7.64) responsible for the translation between schemes can be of the same order
as the coefficient value in the original scheme considering a weakly coupling and renormalisable
UV completion.

For the effect on the Higgs-gluon coupling, we expect similar compensations between explicit
scheme dependent contributions and scheme dependent parameter shifts that has to hold for
physical observables. Since CtG is affected by the induced scheme dependence, the anomalous
dimension of CHG has to get a scheme dependent contribution of the ψ2ϕ2D operators at two-
loop, accordingly. In addition, the renormalised two-loop amplitude of ψ2ϕ2D insertions is
expected to be scheme dependent. However, in the case of ψ2ϕ2D operators, the contribution
to the amplitude does not factorise in two one-loop structures, but will lead to genuine two-
loop structures. Therefore, it is not guaranteed that the scheme dependence relations obtained
at one-loop level Eq. (7.64) are sufficient for a full compensation. It might well be necessary
to derive scheme dependent shifts at two-loop as well. This, however, is beyond the scope of
the present work.

We may conclude that a full subleading contribution to gg → h(h) consistent with the power
counting of Sec. 4.3 cannot be obtained using the chromomagnetic and 4-top operators alone.
Since operators of class ψ2ϕ2D enter the gluon-fusion processes in the broken phase also as
modifications of EW couplings, it is not possible to define a ‘QCD’- or ‘non-EW’-subleading
SMEFT contribution, thus EW corrections should, in principle, be considered alongside.



CHAPTER 8

Effects of chromomagnetic and 4-top operators in gg → hh

In Chapter 6 the leading EFT contributions in hh production has been thoroughly discussed.
In this chapter, we include the effect of the chromomagnetic and 4-top operators which
comprise a part of the subleading SMEFT contribution considering a renormalisable and
weakly coupling UV completion. Therefore, their contribution enters with a suppression of
an extra loop factor w.r.t. the Born contribution of Sec. 6.3, according to the power counting
formula of Eq. (4.12).

The evaluation of 4-top operators in gg → hh in combination with the study in single Higgs
production [229] may potentially contribute to find better constraints on the O

(
Λ−2

)
in-

terference effects as compared to recent global fits [153]. Even though the four top-quark
production channel is likely more sensitive through direct observation in the long term, as
indicated by upper limits on the absolute values obtained from the interference contribution
in Ref. [227], the derivation will be based on very low statistics [226] and just recently the
observation of four top-quark production was reported [227, 228]. Hence, it is still useful to
study many channels with potential sensitivity in parallel. Since the 4-top operators consist
of chiral currents, the understanding of the γ5 scheme structure derived in Chapter 7 provides
essential insight on the connection between operators which we will make use throughout the
chapter. In particular, the shifts for the translation between the γ5 schemes provides a close
relationship between CtG and the Wilson coefficients of 4-top operators following the power
counting of Sec. 4.3.

The chapter presents the work of Ref. [7] and proceeds as follows. In Sec. 8.1, the full set of
relevant operators is summarised and subsequently the structure of the new contributions of
chromomagnetic and 4-top operators is discussed. Particularly, the dependence of γ5 scheme
choice on the structure of the 4-top amplitude is highlighted with reference to the results in
Chapter 7. Thereafter, in Sec. 8.2 the potential sensitivity of gg → hh on the level of total
cross section and mhh differential distributions is investigated and the naive consideration of
independent single Wilson coefficients is demonstrated. This points out the importance of
being inclusive enough in the selection of Wilson coefficients for scheme independent results.

8.1. Amplitude structure of subleading operators

As specified in the introduction of this chapter we combine the chromomagnetic and 4-top
operator contributions with the calculation of the leading SMEFT contribution of Chapter 6.
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We therefore consider the Lagrangian terms in Eq. (6.14) together with Eq. (7.1) and Eq. (7.3).
For convenience we list all relevant Lagrangian terms in the following

∆LSMEFT = ∆LleadSMEFT + L4t + LtG

=
CH□

Λ2

(
ϕ†ϕ

)
□
(
ϕ†ϕ

)
+
CHD
Λ2

(
ϕ†Dµϕ

)∗ (
ϕ†Dµϕ

)
+
CH
Λ2

(
ϕ†ϕ

)3
+
CtH
Λ2

((
ϕ†ϕ

)(
Q̄LtRϕ̃

)
+H.c.

)
+
CHG
Λ2

ϕ†ϕGaµνG
µν,a

+
CtG
Λ2

((
Q̄Lσ

µνT atRϕ̃
)
Gaµν +H.c.

)
+
C(1)Qt

Λ2

(
Q̄Lγ

µQL
)
t̄RγµtR +

C(8)Qt

Λ2

(
Q̄Lγ

µT aQL
)
t̄RγµT

atR

+
C(1)QQ

Λ2

(
Q̄Lγ

µQL
) (
Q̄LγµQL

)
+
C(8)QQ

Λ2

(
Q̄Lγ

µT aQL
) (
Q̄LγµT

aQL
)

+
Ctt
Λ2
t̄Rγ

µtR t̄RγµtR .

(8.1)

The first two lines after the second equality entail the part of the leading SMEFT contribution
while the third line contains the chromomagnetic operator and lines 4-6 show the relevant
4-top operators.

The leading SMEFT contributions were thoroughly studied in Chapter 6, hence we focus
on the subleading contributions including the chromomagnetic operator and 4-top operators.
For the final combination only truncation options (a) and (b) defined in Eq. (6.21) can be
associated meaningfully in the presence of the subleading operators. As the chromomagnetic
and 4-top operator contribution will be considered at LO QCD, we have for the cross section

σEFT ∼ σBorn
EFT + σNLO

EFT , (8.2)

where the Born part is given by

σBorn
EFT ∼ σSM

[
(g2sL)

2
]
+ σleadSM×dim6

[
(g2sL)

2Λ−2
]
+ σ

CtG,C4t
SM×dim6

[
(g2sL)

2LΛ−2
]

{
+σleaddim6×dim6

[
(g2sL)

2Λ−4
]
+ σ

CtG,C4t
dim6×dim6

[
(g2sL)

2LΛ−4
]}

,

(8.3)

and the NLO QCD contribution has the form

σNLO
EFT ∼ σSM

[
(g2sL)

3
]
+ σleadSM×dim6

[
(g2sL)

3Λ−2
] {

+σleaddim6×dim6

[
(g2sL)

3Λ−4
]}

. (8.4)

Inspired by the notation of Eq. (6.21), σ
(... )
SM×dim6 corresponds to the part of linear interference

of dimension-6 amplitude with the SM (i.e. ∼ 2Re (Mdim6M∗
SM)), σ

(... )
dim6×dim6 corresponds

to the part of anomalous amplitude squared (i.e. ∼ |Mdim6|2). Hence, the parts inside the
curly brackets {. . . } denote the contribution entering only for truncation option (b). σlead(... )

involves the parts where the dimension-6 contributions are given by the leading operators of

Eq. (6.14) only, σ
CtG,C4t
(... ) contains contributions with single insertion of the chromomagnetic

or 4-top operatos. The values inside the square brackets in Eqs. (8.3) and (8.4) denote the
order in power counting using the formula in Eq. (4.12).

The chromomagnetic and 4-top interactions do not provide the full subleading SMEFT con-
tribution following the power counting rule Eq. (4.12), as we neglect contributions involving
EW particles in the loop. Even though they comprise the subleading contributions of the
Warsaw basis involving only coloured particles in the loop, it is in general not possible to
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retain a subset based on this criteria. In particular, Eq. (7.64) demonstrated that the chro-
momagnetic Wilson coefficient CtG would suffer from an unresolved ambiguity due to the γ5
scheme choice if the operators of class ψ2ϕ2D are not considered. We refrain from including
these as we would have to include EW corrections as well which is beyond the scope of this
work. Full EW corrections for gg → hh in the SM have become available very recently [183],
yet the calculation of EW corrections in the SMEFT scenario is much more challenging. Nev-
ertheless, we consider the study of chromomagnetic and 4-top operators to be still useful, as
their potential impact may be relevant. In addition, it provides a starting point to advocate
for the importance of γ5 scheme independence in the consideration of global fits.

In the subsequent parts, we present the structure of the amplitude involving single inser-
tions of the chromomagnetic operator or the 4-top operators of Eq. (8.1). The diagrams
were first generated with QGraf [64] and afterwards calculated analytically with the use
of FeynCalc [60–62]. The mass of the top quark is renormalised on-shell, whereas cou-
pling parameters and Wilson coefficients are renormalised in the MS renormalisation scheme.
The analytic results of the chromomagnetic operator have been checked against a private
version of GoSam [65, 66]; the unrenormalised amplitude of the 4-top operators in D di-
mensions has been checked against Alibrary [74] where the reduction has been performed
with Kira [77,78]. In addition, the analytic version of the renormalised amplitude involving
4-top operator insertions implemented in the POWHEG-BOX-V2 [202–204] has been tested
numerically for several phase space points by a comparison with the amplitude obtained in
Alibrary which has been evaluated with pySecDec [79–82].

8.1.1. The amplitude with an insertion of the chromomagnetic operator

The amplitude contribution of insertions of the chromomagnetic operator leads to classes of
diagrams that are depicted in Fig. 8.1. Even though their diagrams are of one-loop order, the
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Figure 8.1.: Feynman diagrams involving insertions of the chromomagnetic operator. The
orange squares denote insertions of the (loop-suppressed) chromomagnetic operator.

chromomagnetic operator itself can only be generated at loop level assuming a renormalisable
QFT [147,148]. Thus, following the nomenclature of the power counting formula Eq. (4.12),
we find that the amplitude including CtG contributes at the order MtG ∼ O

(
(g2sL)LΛ

−2
)
.

Note that this contribution is therefore suppressed by one loop factor w.r.t. the born contri-
bution of the leading SMEFT operators, which have been investigated in Chapter 6.

As is well known [156, 231, 232] and also has been discussed in Sec. 7.3, one-loop diagrams
with chromomagnetic operator insertions can lead to UV divergences that are removed by
the renormalisation of CHG in Eq. (7.26). This affects the diagram classes (a), (b) and (d) of
Fig. 8.1, whereas diagram class (c) is finite.

Since the evaluation of the one-loop diagrams is straight-forward and can be performed using
standard integral libraries, we refrain from showing the details of the amplitude structure
here.



80 8. Effects of chromomagnetic and 4-top operators in gg → hh

8.1.2. The amplitude with an insertion of 4-top operators

Similar to the case of the Higgs-gluon coupling of Chapter 7 the 4-top operators enter in
gg → hh starting at the two-loop level. The contribution has been split into different diagram
classes presented in Fig. 8.2 that follow and extend the classification in Sec. 7.3 (and Ref. [229])
for the Higgs-gluon coupling. Since 4-top operators fall in the category of operators that are
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Figure 8.2.: Feynman diagrams involving insertions of 4-top operators. The teal dots denote
insertions of 4-top operators.

potentially tree-level generated their contribution to gg → hh enters at the same order in
the power counting of Eq. (4.12) as the chromomagnetic operator contribution, i.e. M4t ∼
O
(
(g2sL)LΛ

−2
)
.

The diagram classes in Fig. 8.2 are grouped in rows resembling the type of one-loop sub-
amplitude (propagator or vertex correction) and columns following the underlying SM born
topology (triangles, boxes or no correspondence). Thus, the diagram classes are understood
as follows: (a) and (b) are loop corrections to top propagators, (c) and (d) are loop corrections
to the Yukawa interaction, (e) is a loop correction to the tthh vertex, (f) and (g) are loop
corrections to the gauge interaction (more precisely, a contraction of a one-loop subdiagram
of (f) leads to the topologies of Fig. 8.1 (a) or (b)), and (h) has no clear correspondence to
a vertex correction of a Born structure (but related to type (d) diagrams of Fig. 8.1 after
contraction of a one-loop subdiagram). Note that the diagrams (a), (c) and (f) are completely
analogous to the case of the Higgs-gluon coupling in Fig. 7.2 with the outgoing Higgs decaying
into a pair of Higgs bosons.

Since many one-loop subamplitudes are very similar to the case of Sec. 7.2, we are going to
refer to the details obtained in this section and point out different calculational choices if
applicable.
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We begin considering the propagator corrections that enter diagram classes (a) and (b) of
Fig. 8.2. In contrast to what was done in Chapter 7 we choose to renormalise mt on-shell.

25

Using the expansion mb
t = mt + δOS

mt
we have

δOS
mt

= −
C(1)Qt + cFC(8)Qt

Λ2
(Bmt +Kmt) , (8.5)

where the precise form of Bmt and Kmt is given in Eqs. (7.8) and (7.9). The combination of
propagator correction with mass counter term leads to

t t

t

+ t t = 0 , (8.6)

such that the contribution of classes (a) and (b) of Fig. 8.2 to the final amplitude is completely
removed.

We continue with the one-loop contribution to the Yukawa interaction. Since we use an on-
shell renormalisation for mt and need the structure for an off-shell external Higgs for the
amplitude class (c) of Fig. 8.2, it is more convenient to represent the vertex correction in the
following way

h

t

t

=

C(1)Qt + cFC(8)Qt

Λ2

(
2
4m2

t − q2
16π2

B0(q
2,m2

t ,m
2
t )

− v3√
2mt

KtH
4m2

t − q2
4m2

t −m2
h

)
− δOS

mt

mt

)
× h

t

t

,

(8.7)

where q is the momentum of the Higgs, KtH is the γ5 scheme dependent part given in

Eq. (7.11) and
δOS
mt

mt
indicates the part that is compensated by on-shell renormalisation of

mt. Using the counter term vertices following from Eq. (7.25), we are able to write down the
amplitude contribution of diagram classes (c)–(e) of Fig. 8.2 as follows

g

g

h

h

+

g

g

h

h

+

g

g

h

h

+

g

g

h

h

=
C(1)Qt + cFC(8)Qt

Λ2
F4t
t̄t→hhM

gg→h
LO SM

g

g

h

h

+

g

g

h

h

= 2
C(1)Qt + cFC(8)Qt

Λ2
F4t
t̄t→hMLO

□ ,

(8.8)

25This is necessary in order to be consistent with the numerical implementation of NLO QCD corrections of the
leading operators, as is explained in Chapter 6.
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with

F4t
t̄t→h = 2

4m2
t −m2

h

16π2
Bfin

0 (m2
h,m

2
t ,m

2
t )−

v3√
2mt

KtH ,

F4t
t̄t→hh =

1

16π2v

(
2
4m2

t s+ 8m2
hm

2
t − 3m2

hs

ŝ−m2
h

Bfin
0 (ŝ,m2

t ,m
2
t ) + 16m2

tB
fin
0 (m2

h,m
2
t ,m

2
t )

+ 4m2
t

(
8m2

t − 2m2
h − ŝ

)
C0(m

2
h,m

2
h, ŝ,m

2
t ,m

2
t ,m

2
t )

)
+

3v2√
2

ŝ

ŝ−m2
h

KtH ,

(8.9)

and Mgg→h
LO SM denotes the LO SM amplitude of gg → h and MLO

□ denotes the SM box-type
contribution to the gg → hh amplitude at LO according to the splitting of Eq. (6.4).

The gauge vertex corrections are the same as for the Higgs-gluon coupling, thus, using
Eq. (7.5), the γ5 scheme dependent part KtG defined in Eq. (7.6) and the renormalisation of
CHG in Eq. (7.26) we immediately find

g

g

h

h

+

g

g

h

h

=
C(1)Qt +

(
cF − cA

2

)
C(8)Qt

CtG
KtG

(
M(a)

tG +M(b)
tG

)

g

g

h

h

=
C(1)Qt +

(
cF − cA

2

)
C(8)Qt

CtG
KtGM(c)

tG .

(8.10)

M(a/b/c/d)
tG refer to the amplitude structures according to the contributions of the chromo-

magnetic operator classes in Fig. 8.1, respectively.

Lastly, we are left to describe the contributions of class (h) in Fig. 8.2. They turn out to
be UV divergent, but the poles are removed by exactly the four particle counter term vertex

defined by the δ
C4t
CHG
C4t part in Eq. (7.26). Hence, we find

g

g

h

h

+

g

g

h

h

=
C(1)Qt +

(
cF − cA

2

)
C(8)Qt

CtG
KtGM(d)

tG

+

C(1)QQ + Ctt +
(
cF − cA

2

)
C(8)QQ

Λ2
+ TF

C(8)QQ + C(8)Qt

Λ2

M4t
∆QQ,tt,(8) ,

(8.11)

whereM4t
∆QQ,tt,(8) is a left-over amplitude structure for which we could not identify one-loop

subamplitudes to decompose into. Note this is the only amplitude part where the 4-top
operators of the type (L̄L)(L̄L) and (R̄R)(R̄R) operators enter in gg → hh. In addition,

the part with coefficient TF
C(8)QQ + C(8)Qt

Λ2
is the only contribution from the contraction of 4-top

operators which leads to two Dirac-traces (cf. Fig. 7.1 which demonstrates the two contraction
possibilities).

The amplitude structure of the 4-top operators is now fully described and the γ5 scheme
dependent parts are explicitly highlighted by the K-terms defined in Sec. 7.2. Let the reader
be reminded that the scheme-dependent amplitude structures in the previous formulas lead
to shifts of other parameters of the theory, as is apparent from a top-down perspective, thus
leading to an overall scheme-independent matrix element. In the case of 4-top operators the
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shifts sufficient for gg → hh can be already fully determined at the level of the one-loop
substructures which is the main result of Chapter 7 and is summarised by the translation
relations in Eq. (7.33) for the case of MS scheme renormalisation of all parameters. For the
on-shell renormalisation of mt these translation relations have the form

δOS;BMHV
mt

= δOS;NDR
mt

− m3
t

8π2Λ2

(
C(1)Qt + cFC(8)Qt

)
CBMHV
tH = CNDR

tH +

√
2mt

(
4m2

t −m2
h

)
16π2v3

(
C(1)Qt + cFC(8)Qt

)
CBMHV
tG = CNDR

tG −
√
2mtgs
16π2v

(
C(1)Qt +

(
cF −

cA
2

)
C(8)Qt

)
,

(8.12)

where the scheme dependence of the MS mass in Eq. (7.33) is now shifted to the on-shell
counter term δOS

mt
.

8.2. Phenomenological results of chromomagnetic and 4-top operators

The contributions to the cross section of the chromomagnetic and the 4-top operators have
been added as an update to the ggHH SMEFT process files in the form of Eq. (8.4). The
details about implementation and usage can be found in App. B.

In this section, we want to investigate the effect of those subleading operators on the cross
section and invariant mass distributions of gg → hh. The setup for the runs is equal to
Sec. 6.4 apart the from the center-of-mass energy which has been changed to

√
s = 13.6 TeV.

In order to estimate the potential effect of the chromomagnetic and 4-top operators in gg → hh
we vary single values or pairs of Wilson coefficients in the following subsections. The ranges
for the variation are based on the limits of Ref. [153] derived from O

(
Λ−2

)
individual bounds

or O
(
Λ−2

)
marginalised fits over the other Wilson coefficients, except for CH which is oriented

at a translation of κλ bounds of Ref. [24]. It is important to note, however, that (besides the
same flavour assumption Eq. (4.10) for the baseline scenario in Ref. [153]) the references do
not apply the generic assumptions on possible UV extensions that define our power counting.
Therefore, ranges based on their limits include values where the truncation at O

(
Λ−2

)
and

our counting of loop factors may not be valid, in particular the value of CtG is not suppressed
by a loop factor and the fairly unconstrained values for the 4-top Wilson coefficients of
O
(
100 TeV−2

)
may be too large. However, for our first demonstration we still use those

values in order to investigate the effect over a conservative parameter range.

Note that CtG and CtH without specification of the scheme denotes single Wilson coefficients
neglecting the scheme dependence of Eq. (8.12) in the following.

8.2.1. Total cross sections and heat maps

In this subsection we study the changes on the total cross section based on the variation of
the subleading operators. In the first part, we investigate the effect of the variation of pairs of
Wilson coefficients on the total cross section in the form of heatmaps, where all contributions
enter at LO QCD. Afterwards, the total cross section values for the SM and benchmark point
6 of Table 6.2 are shown together with the relative change due to a variation of a single
subleading Wilson coefficient of the chromomagnetic and 4-top operators.

We begin in Fig. 8.3 with the simultaneous variation of CtG, CtH (left) and CtG, CH (right),
respectively. Since all contributions are taken at LO QCD, these diagrams serve as a com-
parison of CtG with the leading operators at equal footing. We note that a sizable part of
the shown parameter space leads to negative total cross section values, as observable by the
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Figure 8.3.: Dependence of the LO cross section on the pair of Wilson coefficients CtG, CtH
(left) and CtG, CH (left), respectively, with Λ = 1 TeV for the linear dimension-6 truncation.
The values of the heat maps are normalised to the SM cross section. The value range of
CH is oriented at a translation of recent limits on κλ [24], the ranges for the other Wilson
coefficients are obtained at O

(
Λ−2

)
constraints from Ref. [153] (marginalised over the other

coefficients). The white areas denote regions in parameter space where the corresponding
cross section would be negative.

white areas, which is clearly an unphysical configuration. Within the observed range of val-
ues for the Wilson coefficients the effect of CtG is less dominant than CtH and CH which is
the expected behaviour. However, following the power counting arguments the range of CtG
should be suppressed by a loop factor which would lead to a much weaker effect on the cross
section.

In Fig. 8.4 we demonstrate the effect of pairs of 4-top Wilson coefficients on the total cross

section. As is apparent from the right plot, the (L̄L)(L̄L) operators C(8)QQ and C(1)QQ and
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Figure 8.4.: Dependence of the normalised LO cross section on the couplings C(1)Qt and C(8)Qt

in NDR (left) and C(1)QQ + Ctt and C(8)QQ (right) with Λ = 1 TeV. The ranges are taken from

Ref. [153] based on an O(Λ−2) fit marginalised over the other Wilson coefficients.

the (R̄R)(R̄R) operator Ctt hardly contribute to the cross section. This indicates that the
amplitude part in which they enter, i.e. M4t

∆QQ,tt,(8) of Eq. (8.11), does only marginally

contribute to the amplitude. Contrary to this, the (L̄L)(R̄R) operators C(1)Qt and C(8)Qt have a
sizable impact on the total cross section leading to > 100% differences w.r.t. the SM value.
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The contribution of C(8)Qt is more prominent than for C(1)Qt which is related to a large cancellation
between the low mhh and high mhh contributions due to a sign change of the interference of

C(1)Qt with the underlying scenario. This will further be addressed in the discussion of Fig. 8.8
with the additional observation that this large cancellation does not persist if the calculation
is performed in the BMHV scheme.

Fig. 8.5 compares the effect of C(1)Qt with CtG on the total cross section, which by power counting
arguments should be of equal magnitude. The heatmaps are presented for the calculation in
the NDR scheme (left) and in the BMHV scheme (right), but using the same ranges for

the parameter variation. Note we introduced the short-hand notation C(1/8)Qt; BMHV to specify
that the amplitude is calculated in the BMHV scheme, which does not mean that the value

of the Wilson coefficient C(1/8)Qt itself is changed. Since the selected pair of coefficients is
closely related by the γ5 scheme choice through the relation in Eq. (8.12), this serves as an
interesting showcase that demonstrates the potential difference in predictions if Eq. (8.12) is
not taken into account. We observe that the gradient of the total cross section for a change
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Figure 8.5.: Heat maps demonstrating the effect of γ5 scheme choice on the LO cross section

normalised to the SM for a variation of the couplings CtG and C(1)Qt with Λ = 1 TeV. Left

plot NDR, right plot BMHV. The ranges are taken from Ref. [153] based on an O(Λ−2) fit
marginalised over the other Wilson coefficients. The area surrounded by the black circle
(left) and the area within the ellipsis (right) demonstrate value pairs of Wilson coefficients
that would be mapped into each other by using the relation for CtG in Eq. (8.12).

of the Wilson coefficients points into a very different direction depending on the γ5 scheme

chosen for the calculation of the C(1)Qt amplitude and also the modulus of the gradient is
more pronounced when calculating in BMHV scheme. The effect of the translation of CtG in
Eq. (8.12) is visualised by the areas surrounded by the black circle (left) and black ellipsis
(right), respectively: The relation for the scheme translation would map coefficient value

pairs (C(1)Qt , CNDR
tG ) from within the circle onto value pairs (C(1)Qt , CBMHV

tG ) within the ellipsis and
vice versa. Note that this does not describe the full scheme translation, as the shift in CtH
of Eq. (8.12) is not considered. In addition, the shift of CtG depends on a scale dependent
coupling gs which was set to a constant, thus the areas should be only understood as an
approximation for a qualitative visualisation. This clearly highlights, that the prediction

using just one of the operators C(1)Qt or CtG would suffer from significant ambiguity if they are
not considered in combination, since the scheme differences can only be resolved if shifts of
the form in Eq. (8.12) are considered. In principle, this also holds for other operators entering
at the same order that are connected by similar relations.
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Subsequently, in Table 8.1 we present values for the total cross section for the SM and
benchmark point 6 of Table 6.2 using truncation (a) and (b) at NLO QCD. In addition, the
relative change due to a variation of a single subleading Wilson coefficient is shown. The
relative effect of the variation is larger for the SM than for benchmark 6, since the base value
for the cross section is significantly larger.

The range for CtG is very asymmetric, hence the largest possible contribution leads to a
damping of the cross section of about 36% for the SM. Moreover, the relative effect on
truncation (a) appears to be a bit larger than the effect on truncation (b).

For the 4-top operators, the contribution to truncation (b) is more pronounced than for

truncation (a). The variation of C(1)Qt has a maximal impact of 34% on the total cross section
if its contribution is evaluated in the NDR scheme, whereas in the BMHV scheme it ranges up

to ∼ 100%. The impact of C(8)Qt is also more pronounced if calculated in the BMHV scheme
compared with a calculation in NDR, however, in both cases the the scheme difference is

much smaller than for C(1)Qt , reaching to ≳ 100%. The origin of the difference between C(1)Qt

and C(8)Qt in the NDR scheme will be examined in the context of Fig. 8.10 for their individual

contribution to ∆CtG = CBMHV
tG − CNDR

tG and ∆CtH = CBMHV
tH − CNDR

tH

As has already been seen in Fig. 8.4, the variation of Ctt, C(1)QQ, and C
(8)
QQ has only marginal

effect with ≤ 3.5% which is only a fraction of the size of the 3-point scale uncertainty about
15-20%.
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BM SM 6 (a) 6 (b)

σNLO[fb] 30.9+14%
−13% 56.5+22%

−19% 78.7+18%
−15%

CtG
[0.0085 , 0.14]

[−0.15 , 0.49]

[−0.63% −10%]

[+11% −36%]

[−0.34% −5.6%]

[+6.0% −20%]

[−0.26% −4.3%]

[+4.6% −15%]

C(1)Qt

[−200 , 160]

[−190 , 190]

[−35% +28%]

[−34% +34%]

[−19% +15%]

[−18% +18%]

[+31% −25%]

[+30% −30%]

C(1)Qt;BMHV

[−200 , 160]

[−190 , 190]

[+101% −81%]

[+96% −96%]

[+55% −44%]

[+53% −53%]

[+88% −71%]

[+84% −84%]

C(8)Qt

[−5.6 , 20]

[−190 , 160]

[+3.2% −11%]

[+106% −89%]

[+1.7% −6.1%]

[+58% −49%]

[+3.1% −11%]

[+105% −88%]

C(8)Qt;BMHV

[−5.6 , 20]

[−190 , 160]

[+3.8% −13%]

[+127% −107%]

[+2.1% −7.3%]

[+69% −58%]

[+3.4% −12%]

[+114% −96%]

C(1)QQ + Ctt
[−6.1 , 23]

[−190 , 190]

[−0.11% +0.42%]

[−3.5% +3.5%]

[−0.061% +0.23%]

[−1.9% +1.9%]

[+0.094% −0.36%]

[+2.9% −2.9%]

C(8)QQ

[−26 , 58]

[−190 , 170]

[−0.16% +0.35%]

[−1.2% +1.0%]

[−0.087% +0.19%]

[−0.63% +0.57%]

[+0.13% −0.30%]

[+0.98% −0.87%]

Table 8.1.: Total cross sections at 13.6 TeV for gg → hh at NLO QCD for the SM and
benchmark point 6 with truncation option (a) or (b). Absolute values for the total cross
section are presented in the second row together with scale uncertainties based on 3-point
scale variations. The change due to individual variations of subleading Wilson coefficients is
presented as a relative change to the base value in the second row. The ranges of the variations
are oriented at O

(
Λ−2

)
constraints from Ref. [153] (Upper values: individual bounds, lower

values: marginalised over the other coefficients). The effect of the Wilson coefficients C(1)Qt

and C(8)Qt is also demonstrated for a calculation in the BMHV scheme, which is denoted by

C(1)Qt;BMHV and C(8)Qt;BMHV.
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8.2.2. Higgs boson pair invariant mass distributions

In this section we investigate the effect of a single subleading Wilson coefficient on the dis-
tribution of the invariant mass of the Higgs boson pair. We therefore choose the SM and
benchmark point 6 with truncation (a) and (b) at NLO QCD as the baseline scenario.

In Fig. 8.6 the potential effect of the chromomagnetic operator alone within the range of
CtG ∈ [−0.15, 0.49] is demonstrated. As has already been observed on the level of total
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Figure 8.6.: Demonstration of the effect of CtG-variations onmhh-distributions. Left: variation
w.r.t. the SM scenario, right: variation w.r.t. benchmark point 6 for truncation options (a)
and (b).

cross section, the asymmetric range of the chromomagnetic operator allows only for a small
enhancement of the distribution but for a sizable damping which exceeds the 3-point scale
uncertainty band in the low to intermediate mhh range.

We present in Fig. 8.7 the variation of C(1)QQ+Ctt (left) and C
(8)
QQ (right), respectively. The effect

on the distribution again verifies, that we cannot see a significant effect of these operators.

Only in the case for the singlet operators C(1)QQ and Ctt the high mhh tails show a deviation
beyond the uncertainty associated with the 3-point scale variation. Since the variation is done
for values in [−190, 190] which are beyond realistic scenarios, gg → hh is clearly not sensitive
for these operators.

Subsequently, we present the effect of an individual variation of the Wilson coefficients C(1)Qt

and C(8)Qt for which we expect a sizable impact. Since the structure of the amplitude involving
these 4-top operators depends on the chosen γ5 scheme, we will provide the result in both
schemes.

Fig. 8.8 demonstrates the change in the distribution due to a single variation of C(1)Qt . In
NDR (left) we see a drastic effect in the low to intermediate mhh region which even leads
to negative cross section values up to mhh ∼ 360 GeV. We observe a sign change in the
contribution around mhh ∼ 460 GeV after which there is again a sizable effect in the large
mhh region. In the BMHV scheme (right) there is a visible effect in the low mhh region for the
SM which is, however, much less pronounced than in NDR. For the case of benchmark point 6
with both truncations the deviation barely exceeds the uncertainty band of the 3-point scale
variation. The sign change occurs around mhh ∼ 360 GeV after which a large deviation from
the underlying distribution becomes visible.
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Figure 8.7.: Demonstration of the effect of C(1)QQ + Ctt or C(8)QQ-variations on different baseline

scenarios of mhh-distributions. Left: variation of C(1)QQ + Ctt, right: variation of C(8)QQ; upper:
SM baseline scenario, lower: benchmark point 6 for truncation options (a) and (b).

The dependence of the C(8)Qt contribution on the chosen γ5 scheme is expected to be less
important, as is conceived through observation on the level of total cross section in Table 8.1.
This is confirmed in the distributions of Fig. 8.9. In both schemes, NDR (left) and BMHV
(right), there is a sign change of the contribution around mhh ∼ 360 GeV. The effect in the
low mhh regime is in both cases not very strong, but in the intermediate to high mhh regime
there is a large effect. The impact on the distribution in the high mhh regime is a bit more
pronounced for the BMHV scheme. Overall, the effect on the distribution in both schemes is

qualitatively very similar to the C(1)Qt in the BMHV calculation.

It is worth investigating the origin of the large qualitative difference between C(1)Qt and C(8)Qt

which only appears in the NDR and not in BMHV scheme. Therefore, we study in the

following the impact of the variation of C(1)Qt and C(8)Qt separately in the scheme dependent
rational parts of the amplitude structure only or, equivalently, the effect on the finite shifts
∆CtG := CBMHV

tG −CNDR
tG and ∆CtH := CBMHV

tH −CNDR
tH using the relations in Eq. (8.12) that are

understood to compensate for the scheme dependence of the amplitude structure. In Fig. 8.10
we demonstrate the effect of the finite shifts on the SM distribution using the SM itself as
an offset, such that only the difference of the distribution in absolute values is shown. The

variation of C(1)Qt in the combined contribution of ∆CtG and ∆CtH (upper left) demonstrates a
large effect on the distribution, as the yellow area is a multiple of the scale uncertainty band
of the SM for the full visible range of mhh. For the individual contributions of ∆CtG (middle
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Figure 8.8.: Demonstration of the effect of C(1)Qt -variations on different baseline scenarios of
mhh-distributions comparing γ5 schemes. Left: NDR scheme, right: BMHV scheme; upper:
SM baseline scenario, lower: benchmark point 6 for truncation options (a) and (b).

left) and ∆CtH (bottom left) it is clear that the effect of ∆CtG is more dominant than the
∆CtH effect. In addition, comparing the impact of ∆CtG (middle left) and ∆CtH (bottom
left) separately with their combined contribution (upper left), we observe an enhancement of

the individual constituents. The picture changes when considering only C(8)Qt variations. The
individual contribution of ∆CtH (bottom right) is larger than the one of ∆CtG (middle right).
Moreover, the combined contribution (upper right) now suffers from a cancellation between
the individual parts of ∆CtH (bottom right) and ∆CtG (middle right), which is best visible in
the almost vanishing contribution of the low mhh regime. Though also the sum of absolute
areas in the low to intermediate mhh range of ∆CtH (bottom right) and ∆CtG (middle right)

would be smaller than the envelope of combined contribution in the case of C(1)Qt (upper left).

Overall, the combined effect of the finite shifts in the presence of C(8)Qt (upper right) is hidden
within the 3-point scale uncertainty approximately until mhh ∼ 420 GeV.

This different behaviour for C(1)Qt versus C(8)Qt variations can be understood when the linear
combinations entering the shifts ∆CtG and ∆CtH are considered inserting explicit values for

the cF and cA Casimir invariants of SU(3)QCD. Since ∆CtH ∼
(
C(1)Qt +

4

3
C(8)Qt

)
, the effect

of C(1)Qt and C(8)Qt on ∆CtH in the bottom row of Fig. 8.10 are structurally the same up to a

slight enhancement for C(8)Qt over C(1)Qt . The shift in CtG, on the other hand, is proportional
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Figure 8.9.: Demonstration of the effect of C(8)Qt -variations on different baseline scenarios of
mhh-distributions comparing γ5 schemes. Left: NDR scheme, right: BMHV scheme; upper:
SM baseline scenario, lower: benchmark point 6 for truncation options (a) and (b).

to ∆CtG ∼
(
C(1)Qt −

1

6
C(8)Qt

)
, thus the contribution for the C(8)Qt variation (middle right) is

suppressed and with opposite sign compared to C(1)Qt (middle left). In summary, we observe

an overall large effect of the γ5 scheme choice through accumulation in the case in C(1)Qt (upper

left), and relatively small effect in the low mhh regime through cancellation in the case of C(8)Qt

(upper right).
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Figure 8.10.: Diagrams presenting the difference ∆σ =
dσ

dmhh
− dσSM
dmhh

to the mhh-distribution

of the SM only including contributions of the scheme dependent terms, ∆CtG = CBMHV
tG −CNDR

tG

and ∆CtH = CBMHV
tH − CNDR

tH , for individual variations of C(1)Qt and C(8)Qt , respectively. Left:

contribution from a C(1)Qt variation, right: contribution from a C(8)Qt variation. Upper: sum
of scheme dependent terms (∆CtG and ∆CtH), middle: only ∆CtG, lower: only ∆CtH . SM
3-point scale uncertainty is depicted for reference.



CHAPTER 9

Final Conclusion and Outlook

It is well established that the SM is not the full answer of what nature offers at the highest
energies. This is certainly true when approaching the Planck scale as special relativity will
not be sufficient anymore, but an extension of the SM is also expected to be relevant at
intermediate energy scales. Nevertheless, up to now the SM has been proven to provide a
consistent description of particle physics in the collider environment. As collider experiments
at higher center-of-mass regimes will not be realised in the near future, and no prominent
deviation from SM prediction has been found so far, the imprints of new physics are to be
searched for in the precision domain.

Thus, precision calculations within the SM are necessary for the comparison with experiments,
but also a machinery for the precise description of new physics effects is indispensable for
reliable predictions. The lack of clear signals indicates an energy gap between the EW scale
and new physics scale, which motivates the usage of bottom-up EFTs for a consistent and
fairly universal parameterisation of low energy perturbations caused by BSM physics.

EFT techniques are widely applied nowadays, however there are still some technical difficulties
which lead to potential pitfalls in a naive treatment. This is especially true considering
higher order predictions where no automatised tools are available. Moreover, the selection
of coupling coefficients in combined parameter determinations is usually limited, often even
to single parameter studies. The interpretation of such values can become questionable, not
only as new physics imprints could lead to a multitude of effects with potential cancellations
or enhancements, but also due to the consistency of the EFT prediction itself. Some aspects
concerning these points have been touched over the course of this thesis.

In Part I of this thesis the relevant content of the SM and the basic principles of higher order
calculations have been reviewed. In addition, the two canonical bottom-up EFTs for Higgs
physics, HEFT and SMEFT, were introduced and their differences in underlying assumptions
and power counting determined. For the SMEFT, we also employed an implicit loop power
counting in order to categorise the expected importance of contributions of Wilson coefficients
according to the rather general assumption of a weakly coupling and renormalisable UV
completion. This procedure is considered to be controversial in the literature, however in our
view it can be useful despite not being fully general, as it allows us to focus on subsets that
can be pushed to reach higher precision due to the reduction of parameters and amplitude
structures.
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Subsequently, in Part II recent contributions to precision calculations within EFT frameworks,
mainly in the not yet precisely measured gg → hh process, were discussed.

In Chapter 6, we presented the calculation of the leading contributions of the HEFT and
SMEFT framework to Higgs pair production at full NLO QCD which has been implemented in
ggHH SMEFT as part of the POWHEG-BOX-V2 framework. The effects of the two EFTs
have been investigated starting from benchmark configurations in the HEFT parameter space
which exhibit characteristic shapes in mhh distributions. In principle, HEFT and SMEFT
are in some regions of parameter space mutually translatable, but HEFT generally allows
for larger deviations from the SM due to the different power counting which is consistent
with a potentially non-decoupling UV completion. Hence, it is advisable to study both
theories in practical applications independently. The importance of that statement has been
demonstrated using the benchmark points defined in HEFT, as a naive translation from
perfectly valid HEFT points to SMEFT in some cases clearly lead to SMEFT configurations
that are incompatible with the truncated expansion. This also extends to the interpretation
of gg → hh measurements which are predominantly available in the κ- or HEFT-framework
of which a translation to SMEFT should only be considered with care if at all, thus we stress
the importance to perform genuine SMEFT interpretations of gg → hh as well.

In addition, we compared different truncation options for dimension-6 Wilson coefficients in
the SMEFT scenario. The expansions at O

(
Λ−2

)
of the cross section (option (a)) and of the

amplitude (option (b)) are both common choices for fits to experimental data, whereas the
other options include subsets which, despite being renormalisable in the particular case, do not
comprise a consistent order of the SMEFT expansion. Differences between truncation option
(a) and option (b) could provide a proxy to obtain a qualitative picture of the uncertainty
due to the SMEFT truncation. Considering the Wilson coefficients as functions of the new
physics scale Λ, we illustrated that the shapes of the distributions of the different truncations
approach each other and the SM curve when the parameters are transported to the SM
configuration. The reduction of the shape differences of the truncation options is compatible
with the expected reduction of truncation uncertainty of the SMEFT expansion, however
the SMEFT dimension-6 truncation options are not expected to be robust enough to derive
quantitative uncertainties.

Chapter 7 was dedicated to an investigation of the structure of dimensional γ5 schemes in
gg → h. We calculated the 4-top contributions appearing at the two-loop level in both the
NDR and BMHV scheme which can be conveniently factorised into two one-loop structures.
We demonstrated that the observed structural difference of the 4-top contribution in the
two schemes has to be compensated by different values of the other parameters in order to
derive consistent results. This leads to the identification of the translation of Eq. (7.33) (or
equivalently Eq. (7.41)), relating the parameters of the two schemes, which was validated in
the unbroken phase of EW theory and in explicit matching calculations of simplified models.
Remarkably, in the case of 4-top operators the scheme dependence of the parameters could
be already fully derived considering relevant one-loop subamplitudes.

Subsequently, we performed a primary investigation of the γ5 scheme structure induced by
the operator class ψ2ϕ2D of Ref. [111] using the two operators in Eq. (7.55). Following the
derivation in the unbroken phase of EW theory, the calculation of one-loop subamplitudes in-
volving insertions of the two operators lead to the translation relations in Eq. (7.64). Though,
we cannot expect the relations in Eq. (7.64) to be sufficient for the full two-loop contribution
to gg → h, as differences of the Dirac algebra may also lead to shifts appearing at higher loop
level in general.

The discussion of the two operators in the class ψ2ϕ2D leads to a generalisation of the obser-
vation of the calculation involving 4-top operators: Differences due to choices of γ5 schemes
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in the calculation of loop contributions of chiral current-current operators can be related to
each other by shifts of other Wilson coefficients (and dimension-4 parameters) leading to γ5
scheme independent results. However, we have not yet proven that chiral current-current
operators are a sufficient classification of all operators inducing such a scheme dependence.
This points to the necessity of a more exhaustive study to get a better understanding of the
γ5 scheme structure in SMEFT and also to have instructions to relate results based on dif-
ferent γ5 schemes. We note that the γ5 scheme choice is only one part of many calculational
choices that affect interpretations in the bottom-up SMEFT framework, see for instance the
discussions in Refs. [131,133,238].

The scheme dependent values of Wilson coefficients also bear important consequences on the
selection of operators in EFT calculations and fits. As soon as the calculation is performed
at an order where loop contributions of chiral current-current operators should be included,
the structure of dimensional γ5 schemes connects different Wilson coefficients. Hence, results
derived only for subsets of parameters or single Wilson coefficients are scheme dependent if
the selection is not sufficiently inclusive for a resolution. In particular, if a measurement of
chiral current-current Wilson coefficients is based on a process where it enters at loop level, γ5
scheme independent results require the simultaneous inclusion of Wilson coefficients entering
at lower loop order. The consequences of the scheme dependence of Wilson coefficients are
even more profound when the power counting based on tree-loop classification for the as-
sumption of a weakly coupling and renormalisable UV completion is considered. In case of a
clear hierarchy, e.g. by the loop factor suppression in the shift of CtH in Eqs. (7.33) and (7.64),
the shifts induced by the 4-top Wilson coefficients would only be a higher order effect. For
loop generated Wilson coefficients (like CtG), however, the shifts can be of the same order of
magnitude as the base value of the Wilson coefficients themselves. Therefore, the derivation
of constraints for loop generated Wilson coefficients could be interpreted to suffer from large
uncertainties if γ5 scheme dependent contributions of (potentially) tree-level generated chiral
current-current operators at higher explicit loop order are not considered.

If different observables are calculated in the same scheme (which is currently the case as NDR
is almost exclusively used in high energy SMEFT calculations), the scheme dependent values
of Wilson coefficient can, in principle, be directly compared. Hence, it may still be pragmatic
to investigating single Wilson coefficients or small subsets neglecting the γ5 dependence as
primary investigations, since global fits are an immense task by themselves. Yet, the physical
interpretation of such scheme dependent results would be unclear. As a consequence, we
consider the requirement of γ5 scheme independence, consistent with the systematics of the
employed power counting in the EFT, to be an important component in the selection of
contributions to a physical process for future research and global fits.

The above considerations also imply that once the power counting of Eq. (4.12) based on a
tree-loop classification is adapted, it consequently may require the inclusion of EW corrections
if loop generated Wilson coefficients of a subleading contribution are present. This can be

understood by the shift of CtG induced by C(1)HQ and CHt in Eq. (7.64), as diagrams with the

insertion of operators of the class ψ2ϕ2D necessarily involve EW particles.

In Chapter 8 we investigated the contributions of chromomagnetic and 4-top operators with

Wilson coefficients CtG and C(1)Qt , C
(8)
Qt , C

(1)
QQ, C

(8)
QQ, Ctt, respectively, to gg → hh which enter

at the same subleading order applying Eq. (4.12). Even though they are not a subleading
contribution consistent with the above considerations of γ5 scheme independence, the study
of their potential impact to the process is nevertheless useful. The calculation of the matrix
elements involving 4-top operator insertions were performed in NDR and BMHV, thus provid-
ing a showcase of the importance of differences due to γ5 scheme choices in cross sections and
distributions. The considered contributions of chromomagnetic and 4-top operators enter at
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LO QCD to the cross section of gg → hh and were combined with the NLO QCD calculation
of the leading contribution of SMEFT discussed in Chapter 6. The combination has entered
the updated version of ggHH SMEFT.

The effect of the selected subleading operator contributions have been studied on the total
cross section and inmhh distributions w.r.t. the SM and benchmark point 6. The observations

clearly showed that the coefficients C(1)QQ, C
(8)
QQ, Ctt lead only to a negligible contribution, hence

the channel gg → hh cannot contribute to a derivation of better constraints on these values.
Using current conservative limits provided in the literature, the variation of CtG leads to
noticeable effects on the cross section which is mainly visible as a damping of the distribution

in the low mhh region. Yet, the largest impact is found by the Wilson coefficients C(1)Qt and

C(8)Qt using the marginalised fits including only the O
(
Λ−2

)
interference with the SM in the

cross section which are up to now not well constrained. Therefore, Higgs data of gg → hh and
single Higgs together with ggHH SMEFT and the investigation of Ref. [229], respectively,
can potentially improve future global fits by disentangling redundancies present in the current
selection of channels.

Moreover, we highlighted the effect of the γ5 scheme choice treating C(1)Qt and C(8)Qt indepen-
dently on the total cross section and distributions. It turned out that especially the con-

tribution of C(1)Qt is vastly different comparing the calculation of NDR and BMHV which is
mainly related to the close connection with CtG induced by Eq. (8.12). The effect is not as

prominent for the octet coefficient C(8)Qt , as the colour combination of the shift is suppressed
for that case using the generators of SU(3). These observations demonstrate the relevance
of combined fits in order to derive results that are γ5 scheme independent considering the
translation relations of the form of Eq. (8.12). This has been best visualised by the shape

distortion of the combined variation in CtG, C(1)Qt of Fig. 8.5 which in the extension to a power
counting consistent multi-parameter case could be disentangled by a complete translation
relation.

Finally, we outline several potential directions for future research building on the presented
work.

The inclusion of subsets of dimension-8 operator contributions in the SMEFT calculation of
gg → hh could lead to a better understanding of the uncertainty estimation due to the SMEFT
truncation. This would be also more in line with the SMEFT expansion of observables than
comparing different truncation options as in Chapter 6.

For the γ5 scheme structure in SMEFT there are many interesting directions that could be
pursued. As was mentioned beforehand, an exhaustive list at one-loop order considering
all parameters in the Warsaw basis between NDR and BMHV is yet to be derived. The
investigation of these scheme dependent structures could be also extended to higher orders
in the loops as well as in canonical dimension. Moreover, it would be fascinating to relate
the previous results in NDR and BMHV to similar calculations in different regularisation
schemes that potentially avoid the introduction of D-dimensional spacetime, see e.g. Ref. [34].
This might potentially lead to the observation of a general criterion of chiral EFTs which
hints to parameter sectors that are connected through γ5 scheme dependent parameter shifts
appearing at loop order.

After EW corrections for di-Higgs production in the SM have been obtained recently, their
generalisation to the SMEFT case would be valuable for the reduction of the uncertainty
related to missing EW corrections and for the completion of the subleading SMEFT contribu-
tions consistent with Eq. (4.12). Moreover, it would be interesting to compare the importance
of the missing EW effects and operators with the subleading contribution of Chapter 8. In ad-
dition, a study including NLO QCD corrections in the subleading contributions of Chapter 8
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would also be interesting in order to compare on an equal footing with the leading SMEFT
contributions.

The projects on hh production in this thesis only consider fixed order calculations. Since re-
cent results [160,239] suggest that the RGE evolution of Wilson coefficients lead to important
effects in interpretations of LHC data, the inclusion of the parameter running in gg → hh
would be a relevant future step in order to be compatible with different scale choices applied
to other observables.





APPENDIX A

Feynman rules

In this appendix we summarize all relevant Feynman rules used in the thesis. We begin with
the vertices in the broken phase of EW theory for unitary gauge and then briefly describe
how the calculations in the unbroken phase are performed.

A.1. Propagator and vertex rules in the broken phase

In the broken phase of EW theory, the relevant propagators are given by

t t

p
=

i

/p−mt
,

gaµ gbν

p
=
−i
p2

(
ηµν − (1− ξ) p

µpν

p2

)
δab ,

h h

p
=

i

p2 −m2
h

,

(A.1)

and the relevant vertices of the SM have the form

gaµ

t

t

= igsT
aγµ , h

t

t

= −imt

v
,

h

h

h

= −i3m
2
h

v
.

(A.2)
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The HEFT vertices of the Lagrangian terms in Eq. (6.5) are given by

h

t

t

= −ictth
mt

v
,

h

h

t

t

= −2ictthh
mt

v
,

h

h

h

= −ichhh
3m2

h

v
,

gaµ

gbν

h

p1

p2

= −icggh
αs
2πv

p1 · p2
(
ηµν − pµ2p

ν
1

p1 · p2

)
δab ,

gaµ

gbν

h

h

p1

p2

= −icgghh
αs
π
p1 · p2

(
ηµν − pµ2p

ν
1

p1 · p2

)
δab .

(A.3)

The SMEFT vertices of the leading contribution covered in Chapter 6 are obtained applying
the translation Table 6.1 to the respective HEFT vertices. The SMEFT vertex rules for the
chromomagnetic operator (Eq. (7.3)) are given by

gaµ

t

t

p

= −
√
2vT aCtGσµνpν ,

gaµ t

th

p

= −
√
2T aCtGσµνpν .

(A.4)
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The 4-top vertex rule is provided with additional information for the combined spinor and
colour indices i1, i2, i3, i4 of the interacting top-quarks according to

ti1

ti2

ti3

ti4

=

2i C(1)QQ

[
(PRγµPL)i2i1 (PRγµPL)i3i4 − (PRγµPL)i2i4 (PRγµPL)i3i1

]
+ 2i Ctt

[
(PLγµPR)i2i1 (PLγµPR)i3i4 − (PLγµPR)i2i4 (PLγµPR)i3i1

]
+ i C(1)Qt

[
(PRγµPL)i2i1 (PLγµPR)i3i4 + (PLγµPR)i2i1 (PRγµPL)i3i4

− (PRγµPL)i2i4 (PLγµPR)i3i1 − (PLγµPR)i2i4 (PRγµPL)i3i1
]

+ 2i C(8)QQ

[
(PRγµPL T a)i2i1 (PRγµPL T

a)i3i4

− (PRγµPL T a)i2i4 (PRγµPL T
a)i3i1

]
+ i C(8)Qt

[
(PRγµPL T a)i2i1 (PLγµPR T

a)i3i4

+(PLγµPR T a)i2i1 (PRγµPL T
a)i3i4

− (PRγµPL T a)i2i4 (PLγµPR T
a)i3i1

− (PLγµPR T a)i2i4 (PRγµPL T
a)i3i1

]
.

(A.5)

The calculation of Eq. (7.65) in the gaugeless limit is incompatible with unitary gauge, as it
requires the presence of physical Goldstone bosons. The additional propagator rule is given
by

G0 G0

p
=

i

p2
, (A.6)

the vertex rule for the SM is given by

G0

t

t

= −imt

v
, (A.7)

and the relevant rule for the terms in Eq. (7.55) has the form

G0

t

t

pG0

= −v C(1)HQPR /pG0PL − v CHtPL /pG0PR . (A.8)

A.2. Propagator and vertex rules in the unbroken phase

Despite the depiction of the diagrams in terms of iso-doublet QL, iso-singlet tR and Higgs
doublet ϕ we evaluate the contributions componentwise which leads to equivalent results for
the derivation of the scheme-dependent shifts. We therefore quantise for massless top quarks
in the Dirac representation, expand the Higgs doublet as

ϕ =

 ϕ+

ϕs + iϕ0√
2

 , (A.9)
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and always calculate the diagrams for an external real scalar component ϕs. In the following
we present the Feynman rules which are different to their counter part in the broken phase.

The Feynman rules for the propagators are therefore

t t

p
=
i

/p
,

ϕi ϕi
p

=
i

p2 −m2
ϕ

,

(A.10)

where m2
ϕ = −λv2 is the effective ‘mass’ of the Higgs doublet. The relevant vertex rules

dictated by the SM Lagrangian are

ϕs

t

t

= −i yt√
2
, ϕ0

t

t

= −γ5
yt√
2
,

ϕ0 ϕ0

ϕsϕs

= −2iλ .

(A.11)

Finally, the relevant new SMEFT vertices for CtH in Eq. (6.14) and the terms in Eqs. (7.3)
and (7.55) are

ϕs

t

t

ϕs

ϕs

= i
3√
2
CtH ,

gaµ t

tϕs

p

= −
√
2T aCtGσµνpν ,

ϕ0 t

tϕs

p0
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= −C(1)HQ PR
(
/p0 − /ps

)
PL − CHt PL

(
/p0 − /ps

)
PR .

(A.12)

To exemplify the evaluation of Feynman diagrams in the unbroken phase, we consider the
calculation of K2t2ϕ

yt which enters in Eq. (7.57). Instead of the shown Feynman diagrams we
equivalently calculate

t

t

ϕs

+

t

t ϕs

∣∣∣∣∣
rat. part

=
C(1)HQ − CHt

Λ2
K2t2ϕ
yt × ϕs

t

t

, (A.13)

for massless top quarks in order to derive the value of K2t2ϕ
yt .



APPENDIX B

Implementation of ggHH SMEFT

The code ggHH SMEFT is implemented in the Monte Carlo event generator framework
of the POWHEG-BOX-V2 [202–204]. The process files are mainly build upon the code
ggHH [163, 199, 200] for calculations of gg → hh at NLO QCD in the HEFT which in
turn relies on previous results of calculations in the SM [164, 165] for the two-loop virtual
contributions. The anomalous couplings in ggHH SMEFT are included in a modular way
allowing to choose between the inherited NLO QCD HEFT calculation or NLO QCD of the
leading SMEFT contribution with additional possibility to combine with insertions of the
chromomagnetic and 4-top operators at LO QCD which constitute parts of the subleading
SMEFT contributions according to Sec. 4.3. The SMEFT routines also allow the user to
choose between different truncation options defined in Eq. (6.21).

In the following, we describe some details about the implementation. We first briefly recall the
main principle of the POWHEG-BOX-V2 framework. Afterwards, the process dependent
ingredients of the Born, virtual and real radiation contribution are discussed with particu-
lar focus on details that have been omitted in the main body of the thesis. Subsequently,
instructions for the usage of the code are given collecting the descriptions in Refs. [5, 7].

B.1. Basic principles of the POWHEG-BOX-V2

The POWHEG-BOX-V2 provides a general framework to combine NLO calculations with
shower Monte Carlo programs which is based on thePOWHEGmethod described in Refs. [202,
203,240]. The core principle of POWHEG (which is short-hand for POsitive Weight Hardest
Emission Generator) is to generate events for the hardest emission first (i.e. with largest trans-
verse momentum) which can be described at NLO by the formula [240]

dσ = B̄(Φn)dΦn
[
∆(pmin

T ) + ∆(pT )
RS(Φn+1)

B(Φn)
dΦr

]
+RF (Φn+1)dΦn+1 , (B.1)

with the underlying Born configuration

B̄(Φn) = B(Φn) + Vfin(Φn) +
∫
RSfin(Φn+1)dΦr . (B.2)
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In the above formulas, B denotes the Born squared matrix element with corresponding Born
phase space Φn. The real radiation contributionR can be split into singular partRS and finite
part RF in the framework of the POWHEG-BOX-V2 using an implemented distribution
F (pT ) which can be written as RS = F (pT )R and RF = (1− F (pT ))R with default setting
RS = R. Φn+1 = ΦnΦr is the combination of Born phase space and radiation phase space
Φr. Vfin denotes the UV renormalised and IR subtracted virtual contribution and RSfin the
IR subtracted singular part of the real radiation. The lower cutoff value pmin

T describes the
generation of events without radiation when the threshold value is not reached. Finally, ∆(x)
denotes the POWHEG Sudakov form factor for transverse momentum ordering

∆(x) = exp

[
−
∫

dΦr
RS(Φn+1)

B(Φn)
Θ (pT (Φr)− x)

]
. (B.3)

Events that are generated according to Eq. (B.1) can subsequently be fed to shower Monte
Carlo generators under the requirement that subsequent showering happens for transverse
momenta which are below the pT of the event. This can be achieved setting the starting
scale of momentum ordered showers or by defining vetoing procedures in showers with other
ordering principles. The combination of events generated by the POWHEG-BOX-V2 with
shower Monte Carlo generators is facilitated by the interface of Les Houches event files.

For the application of the POWHEG-BOX-V2 framework to specific processes, some process
dependent files need to be provided. These comprise, in particular, routines for a parameter-
isation of the Born phase space and the squared matrix elements for the Born, virtual and
real radiation contribution.

B.2. Infos about the ggHH SMEFT process files

In this section we discuss the process files of ggHH SMEFT, beginning with a brief descrip-
tion for the Born and real radiation contribution, then followed by a detailed account on the
modification of the virtual contribution necessary to comply with the SMEFT truncations
and subsequently the handling of the subleading chromomagnetic and 4-top contributions at
LO QCD.

The Born matrix elements are implemented analytically building on the original calculation
of Ref. [162] in terms of Passarino-Veltman integrals. The addition of anomalous couplings
and tree level diagrams involving Higgs-gluon couplings together with the splitting of the
amplitude of the form in Eq. (6.17) is straight forward.

The 2 → 3 matrix elements at one-loop and tree level for the real emission part have been
generated using a modified version of GoSam [65,66] that splits the amplitude according to
Eq. (6.17) together with a model file in the UFO [207,208] format which specifies the relevant
anomalous couplings. The GoSam routines are called by the existing interface [209] to the
POWHEG-BOX-V2 which has been adjusted to allow the setting of the truncation options.

The evaluation of the virtual contribution in terms of a grid interpolation and the necessary
modifications for SMEFT deserve a dedicated subsection in the following.

B.2.1. Grids for the virtual contribution in the SMEFT scenario

As was described in Sec. 6.2 and Sec. 6.3, the evaluation of the virtual contribution mainly
relies on the combination of 23 pre-sampled grids generated for different HEFT couplings
with subsequent interpolation. Both steps are performed using the same Python script
creategrids.py. In the current version of ggHH SMEFT the combination of the grids
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depending on the settings for coupling values and truncation option is performed before
calling the compiled program. Details about the interpolation can be found in Ref. [199].

In the following, we assume the 23 grids are already rotated to the form of Eq. (6.12) and
describe the adjustment of Eq. (6.12) for SMEFT in the different truncation options defined
by Eq. (6.21). In particular, we derive the necessary shift for truncation (b) which was

introduced in Eq. (6.22) as δ
(b)
V . For convenience, we recall Eq. (6.12):

VHEFT
fin = a1 · c4tth + a2 · c2tthh + a3 · c2tthc2hhh + a4 · c2gghc2hhh + a5 · c2gghh + a6 · ctthhc2tth

+ a7 · c3tthchhh + a8 · ctthhctthchhh + a9 · ctthhcgghchhh + a10 · ctthhcgghh
+ a11 · c2tthcgghchhh + a12 · c2tthcgghh + a13 · ctthc2hhhcggh + a14 · ctthchhhcgghh
+ a15 · cgghchhhcgghh + a16 · c3tthcggh + a17 · ctthctthhcggh + a18 · ctthc2gghchhh
+ a19 · ctthcgghcgghh + a20 · c2tthc2ggh + a21 · ctthhc2ggh
+ a22 · c3gghchhh + a23 · c2gghcgghh .

(B.4)

The relevant combinations for truncation options (a), (c) and (d) can be easily obtained apply-
ing the coupling translation of Table 6.1 with subsequent truncation at O

(
Λ−2

)
, O

(
Λ−4

)
or

no truncation, respectively. In case of truncation option (b), the need for additional terms can
be best understood considering the combinatorics of a decomposition of the matrix elements
in terms of HEFT couplings, as the truncation is defined on the level of the matrix element.
We therefore split the LO and NLO matrix elements similar to Eq. (6.12) into polynomials
of the HEFT couplings with kinematic dependent coefficients mi and Mi, respectively. This
yields

MLO
HEFT =m1 · c2tth +m2 · ctthchhh +m3 · ctthh +m4 · cgghchhh +m5 · cgghh

MNLO
HEFT =M1 · c2tth +M2 · ctthchhh +M3 · ctthh +M4 · cgghchhh +M5 · cgghh

+M6 · c2ggh +M7 · cgghctth .
(B.5)

Since there are no double insertions on the level of matrix elements for truncation (b), it is
obvious that M6 is multiplied by 0 in that case.

The grids ai of Eq. (6.12) can be thought of as combinations of the kinematic dependent
coefficients of the matrix elements, i.e. we have schematically

ai =
∑

miLO ×MiNLO , (B.6)

with miLO ×MiNLO ∼ 2Re (miLO · (MiNLO)
∗). Thus, those ai of Eq. (6.12) which comprise a

combination with M6 and other combinations cannot be straight forwardly reused for trun-
cation (b). After all non-ambiguous combinations for truncation (b) are associated with the
corresponding ai the only residuals for the squared matrix parts are

(m1 ×M4 +m4 ×M1) · C̄ggh
(
1 + 2C̄tth

)
+m2 ×M7 · C̄ggh

(
1 + C̄hhh + C̄tth

)
+m4 ×M7 · C̄ggh2

= a11 · C̄ggh
(
1 + 2C̄tth

)
+m2 ×M7 · C̄ggh

(
C̄hhh − C̄tth

)
+m4 ×M7 · C̄ggh2 ,

(B.7)
with a11 = m1×M4+m4×M1+m2×M7. In the above equation we introduced the short-hand
notation C̄i to describe the dimension-6 part of the anomalous couplings defined by Table 6.1.
Hence, with Eq. (B.7) we find

δ
(b)
V = m2 ×M7 · C̄ggh

(
C̄hhh − C̄tth

)
+m4 ×M7 · C̄ggh2 , (B.8)

which can be implemented analytically, as the amplitude parts contain only tree-level and
one-loop contributions.

For completeness, we list the coefficients of the ai in the SMEFT truncated version of
Eq. (6.12) in Table B.1.
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B.2.2. Implementation of chromomagnetic and 4-top operators

The analytic structure of the subleading SMEFT contributions involving insertions of chromo-
magnetic and 4-top operators at LO QCD have been described in Sec. 8.1. The combination
with the leading SMEFT contribution can be schematically expressed according to Eqs. (8.2)
– (8.4), however, they enter differently within the framework of the POWHEG-BOX-V2.
The implementation of the subleading contribution has been performed analytically in sepa-
rate subroutines which are found in Subleading.f with calls of the subroutines of the matrix
elements in MEchromo.f90, ME4top.f90 and MEborn.f90. If NLO corrections are included
in the run, the subroutines for the subleading contribution are called in the routines for the
virtual contribution in the POWHEG-BOX-V2, whereas if the code is run in bornonly

mode, they enter in the Born routines.

B.3. Usage of ggHH SMEFT

The code is provided within the POWHEG-BOX-V2 [204] and can be obtained from the web
page https://powhegbox.mib.infn.it/ as part of the User-Processes-V2. The usage has
already been fully described in Refs. [5, 7] together with the parts which are inherited from
ggHH and described in Ref. [200]. For convenience, this section serves as a collection of the
instructions in the aforementioned references to the EFT related settings.

An example input card powheg.input-save and a run script run.sh are provided in the
folder testrun. The EFT parameters are directly defined in the input card. We first describe
the usage for the leading contribution discussed in Chapter 6 and subsequently the subleading
contributions of chromomagnetic and 4-top operators considered in Chapter 8 for the SMEFT
case.

For the HEFT case, the couplings are set by:

chhh : the ratio of the Higgs trilinear coupling to its SM value (chhh in Chap-
ter 6),

ct : the ratio of the Higgs Yukawa coupling to the top quark to its SM value
(ctth in Chapter 6),

ctt : the effective coupling of two Higgs bosons to a top quark pair (ctthh in
Chapter 6),

cggh : the effective coupling of two gluons to the Higgs boson (cggh in Chapter 6),

cgghh : the effective coupling of two gluons to two Higgs bosons (cgghh in Chap-
ter 6).

For the SMEFT case, the mass scale of new physics is set by:

Lambda=1.0 : the input value of the SMEFT heavy mass scale Λ (in TeV),

and the value of the SMEFT coefficients in the Warsaw basis is set by the following keywords:

CHbox : the Higgs kinetic term coefficient CH□,

CHD : the Higgs kinetic term coefficient CHD,

CH : the Higgs trilinear coupling term CH ,

CuH : the Higgs Yukawa coupling to up-type quarks term CtH ,

CHG : the effective coupling of gluons to Higgs bosons CHG.

https://powhegbox.mib.infn.it/
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The input keyword usesmeft defines which EFT is used and takes the values 0 or 1. uses-
meft=1 denotes the SMEFT case in which the parameters for CHbox, CHD, CH, CuH, CHG

are taken from the input card and translated internally by means of Table 6.1 (the values of
chhh, ct, ctt, cggh, cgghh in the input card are ignored). When usesmeft=0 is chosen,
the calculation is performed for the HEFT case for the parameter values set by chhh, ct,

ctt, cggh, cgghh (the values of CHbox, CHD, CH, CuH, CHG, Lambda in the input card
are ignored).

The different SMEFT truncation options defined by Eq. (6.21) are selected via the keyword
multiple-insertion, where the values 0–3 of this flag denote the respective options (a)–(d).

The leading SMEFT calculation has been extended by the subleading contributions of chro-
momagnetic and 4-top operators which have been considered in Chapter 8. The amplitudes
have been implemented analytically and the combination with the fixed order NLO QCD
corrections of the leading SMEFT contribution is accomplished according to the formulas
of Eqs. (8.2) – (8.4), however the internal splitting of contributions follows the description
of Sec. B.2.2. Since the subleading contributions have Born kinematics and are expressed
in terms of one-loop Feynman integrals, the time spent for their evaluation per phase-space
point is of the order of the existing Born contribution, hence the run-time of the code is not
significantly affected.

The Wilson coefficients of the chromomagnetic and 4-top operators in Eq. (8.1) are set by:

CtG : Wilson coefficient of chromomagnetic operator CtG,

CQt : Wilson coefficient of 4-top operator C(1)Qt ,

CQt8 : Wilson coefficient of 4-top operator C(8)Qt ,

CQQtt : sum of Wilson coefficients of 4-top operators C(1)QQ + Ctt,

CQQ8 : Wilson coefficient of 4-top operator C(8)QQ.

If the combination with subleading contributions is used, only truncation options (a) and (b)
are retained, as the other options are not meaningful for this case. Therefore, the available
setting for the selection of cross section contributions from SMEFT operators are visualized
in Table B.2. The keyword includesubleading activates the inclusion of the subleading
contribution and can be set to 0, 1 or 2. For includesubleading=0 the subleading contri-
butions are omitted and the program behaves as the previous ggHH_SMEFT version, i.e. the
values for CtG, CQt, CQt8, CQQtt and CQQ8 are ignored and all truncation options as well as
the HEFT scenario are available. When includesubleading=1 the subleading contributions
follow the power counting of Eq. (4.12) and only enter in the interference with the leading
LO matrix elements according to Eqs. (8.2) – (8.4). In bornonly mode, also the setting in-

cludesubleading=2 is available which does not follow the power counting formula applied in
this thesis. In this case, the user remains completely agnostic about possible UV extensions
meaning that CtG is treated as part of the leading SMEFT contribution which allows squared
CtG-contributions to |Mdim-6|2 in truncation option (b). However, no NLO QCD corrections
to the amplitude with insertions of CtG are available, thus restricting the evaluation to the
LO QCD case.

Finally, the 4-top contributions are available in the two considered γ5 schemes which can
be chosen by GAMMA5BMHV: With GAMMA5BMHV=0 the NDR scheme is chosen, GAMMA5BMHV=1
switches to the BMHV scheme with the definition of chiral vertices according to Eq. (3.25).
This choice only affects the dependence on CQt and CQt8.



B.3. Usage of ggHH SMEFT 109

truncation (a) (b)

σBorn
EFT

includesubleading

0 σleadSM×dim6

[
(g2sL)

2Λ−2
]

σleaddim6×dim6

[
(g2sL)

2Λ−4
]

1 σ
CtG,C4t
SM×dim6

[
(g2sL)

2LΛ−2
]

σ
CtG,C4t
dim6×dim6

[
(g2sL)

2LΛ−4
]

2 σ
C2
tG

dim6×dim6

[
(g2sL)

2L2 Λ−4
]

σNLO
EFT

σleadSM×dim6

[
(g2sL)

3Λ−2
]

σleaddim6×dim6

[
(g2sL)

3Λ−4
]

Table B.2.: Available selection for the SMEFT contributions for the calculation of the cross
section. The rows specify the selection of subleading operator contributions for the Born
cross section in the upper part and the NLO cross section in the lower part which is un-
touched by the setting of includesubleading, the columns show the truncation options for
the 1/Λ–expansion. The higher setting for the selection always include the addition of the
partial cross section contributions of previous contributions and the SM as well. Notice that
includesubleading=2 is only available in bornonly mode.

More details about the usage can be found in the Docs folder of the code, parameters common
to all processes in the POWHEG-BOX-V2 are described in the manual V2-paper.pdf which
is located in the POWHEG-BOX-V2/Docs directory. The generation of full-fledged Monte-Carlo
events is achieved using the interface to Pythia 8 [241,242] and Herwig 7 [243,244] which is
inherited from ggHH [163,199,200]. We like to finish this section with the reminder that the
two-loop grids for the virtual contributions are only available for fixed values of the Higgs and
the top-quark masses which are set to mh = 125 GeV and mt = 173 GeV. Changing these is
only possible in bornonly mode.
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“Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme,” Eur. Phys. J.
C 79 no. 6, (2019) 459, arXiv:1811.05692 [hep-ph].

[167] J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, J. Ronca, M. Spira, and
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