KIT | KIT-Bibliothek | Impressum | Datenschutz

Sparse grid approximation of stochastic parabolic PDEs: The Landau–Lifshitz–Gilbert equation

An, Xin; Dick, Josef; Feischl, Michael; Scaglioni, Andrea; Tran, Thanh

Abstract:

We show convergence rates for a sparse grid approximation of the distribution of solutions of the stochastic Landau-Lifshitz-Gilbert equation. Beyond being a frequently studied equation in engineering and physics, the stochastic Landau-Lifshitz-Gilbert equation poses many interesting challenges that do not appear si- multaneously in previous works on uncertainty quantification: The equation is strongly non-linear, time- dependent, and has a non-convex side constraint. Moreover, the parametrization of the stochastic noise features countably many unbounded parameters and low regularity compared to other elliptic and parabolic problems studied in uncertainty quantification. We use a novel technique to establish uniform holomorphic regularity of the parameter-to-solution map based on a Gronwall-type estimate and the implicit function theorem. This method is very general and based on a set of abstract assumptions. Thus, it can be ap- plied beyond the Landau-Lifshitz-Gilbert equation as well. We demonstrate numerically the feasibility of approximating with sparse grid and show a clear advantage of a multi-level sparse grid scheme.


Volltext §
DOI: 10.5445/IR/1000169481
Veröffentlicht am 22.03.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 03.2024
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000169481
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 36 S.
Serie CRC 1173 Preprint ; 2024/8
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter stochastic and parametric PDEs, stochastic Landau-Lifshitz-Gilbert problem, Doss-Sussmann transform, Lévy-Ciesielski expansion, regularity of sample paths solution, curse of dimensionality, implicit function theorem, holomorphy and sparsity of parameter-to-solution map, piecewise polynomials, sparse high- dimensional approximation, sparse grid, stochastic collocation, dimension independent convergence, multilevel sparse grid
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page