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The M,-edge high energy resolution X-ray absorption near-edge UO,%* M ,-Edge
structure (HR-XANES) spectra of actinyls offer valuable insights into the electronic
structure and bonding properties of heavy-element complexes. To conduct a
comprehensive spectral analysis, it is essential to employ computational methods that
accurately account for relativistic effects and electron correlation. In this work, we
utilize variational relativistic multireference configurational interaction methods to
compute and analyze the X-ray M,-edge absorption spectrum of uranyl. By employing
these advanced computational techniques, we achieve excellent agreement between the
calculated spectral features and experimental observations. Moreover, the calculations
unveil significant shake-up features, which arise from the intricate interplay between
strongly correlated 3d core-electron and ligand excitations. This research provides : :
important theoretical insights into the spectral characteristics of heavy-element w2 e e s oy e
complexes. Furthermore, it establishes the foundation for utilizing M, s-edge
spectroscopy as a means to investigate the chemical activities of such complexes. By leveraging this technique, we can gain a
deeper understanding of the bonding behavior and reactivity of heavy-element compounds.
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The chemistry of actinide complexes is foundational to a the framework of a variational relativistic multireference
variety of applications, including not only nuclear waste configuration interaction (MRCI) approach,””*" relativistic
separations”” but also catalysis”* and nanomaterials.’~’ corrections are included in the orbital optimization, and the
However, the electronic structure and bonding of heavy static correlation is described by the complete active space self-
elements remain less well-understood than metal—ligand consistent-field (CASSCF), followed by an additional config-
bonding with light elements, with the covalency of the Sf uration interaction (CI) treatment to add dynamic correlation.
electrons playing a central role.*” X-ray spectroscopy has In this work, we investigate the spectroscopic features of the
become an experimental tool of choice as the characteristics of uranyl ion (UO3") M-edge spectrum using the variational
the X-ray spectrum are not only element-specific but also relativistic exact-two-component (X2C) MRCI approach (see
sensitive to the chemical environment. Analyses of the spectral the Methods section), aiming to provide a very accurate probe

into the spectral characteristics of early actinide complexes.
Fundamental knowledge gleaned from this study will aid in our
understanding of the electronic structures of uranium
complexes. These complexes can exhibit unique reactivities
and photophysical properties, underpinning their vital role in
various areas of chemical science.™

Figure 1 illustrates the molecular orbital (MO) diagram for
uranyl, providing a foundation for analyzing its electronic

shifts and intensities at the M-edge (excitations from the n = 3
orbital level) have been shown to provide important
information about the covalency of 5f electrons in the bonding
interactions of heavy elements.'’~"” M-edge absorption spectra
calculations, similar to that of L-edge spectra,lg’19 necessitate
the use of a relativistic treatment, including scalar relativistic
and spin—orbit coupling terms. The complexity of the
electronic structures of heavy elements poses a challenging

8,27,28 .
frontier in the theoretical prediction of their M-edge spectra structure. In M,s-edge XAS (X-ray absorption spectros-
due to the need to treat relativistic effects (scalar relativities
and spin—orbit couplings) as well as static and dynamic December 28, 2023
correlations on an equal footing. February 14, 2024
Recent advances in variational relativistic many-body February 15, 2024

theory””~** have opened a new avenue to provide accurate March 6, 2024

calculations that can complement and interpret new multi-
faceted experimental probes of heavy-element complexes. In
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Figure 1. Uranyl qualitative molecular orbital diagram.

copy), the excitations from the uranium 3d orbitals to
unoccupied frontier orbitals, including the 5f manifold, are
probed following the A] = 0, +1 and Al = +1 selection rules.
The lower-lying unoccupied orbitals consist of the nonbonding
0, and ¢, type formed from the U[Sf,(2_ )], Ulsf,.], U

[Sfy(3xz_y2)], and U[Sfx(xz_3yz)] manifold. Through the mixing of

U[5f] with the O[2p] orbitals, hybridized or covalent bonding
is formed, leading to the occupied two x, orbitals (hybrid-
ization of U[Sf,2] and U[5f,2] with O[2p]) and a o, orbital
(hybridization of U[Sf?] with O[2p]), all with the ungerade
(u) symmetry. The hybridization of the U[6d] orbitals with
O[2p] yield the bonding orbitals of gerade (g) symmetry, two
7, hybridizing uranium 6d,. and 6d,, and one o, hybridizing
uranium 6d2 The antibonding counterparts reside in the
unoccupied space, two 7}, two ﬂ;‘, one o, and one O'g*.

Previous works have shown that modeling X-ray spectra
using time-dependent density functional theory (TDDFT)
with relativistic corrections is capable of capturing some of the
spectral features in uranyl core-excitations and yields
qualitatively correct spectra.””~>' However, the correlation
captured by TDDEFT is incomplete, shown by the importance
of double excitations in the accurate modeling of M-edge
spectra in multireference methods with perturbative spin—orbit
coupling.'”'** On the other hand, the manifestation of
double excitation and its physical characteristics in the uranyl
M-edge spectrum remain largely unexplored.

To investigate the intricate interplay between the 5f and 6d
manifolds and to assess the impact of electron correlations
observed in the uranyl M,-edge HR-XANES, a comprehensive
approach is employed. In this method, fully optimized core-
hole orbitals including spin—orbit coupling are assigned to
X2C-MRCI spaces, considering the RAS (restricted active
space) partitioning scheme depicted in Figure 2 (for detailed
computational information, please refer to the Methods
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Figure 2. Uranyl X2C-MRCI partitioning schemes. Schemes A, B, C,
and D progressively include a greater number of correlating orbitals
and electrons, as detailed in the text regarding partitioning.

section). Four distinct correlated X2C-MRCI schemes were
carefully selected and designed to analyze the correlation
effects arising from the bonding and antibonding 5f and 6d
manifolds. These schemes systematically increase the size of
the active space, allowing for a thorough investigation of the
correlation effects in the system.

e Scheme A is considered the minimal X2C-MRCI
scheme where RAS1 includes the four U[3d;,,] core
electrons and spinor orbitals (4 electrons and 4 orbitals)
corresponding to the M,-edge, and RAS3 includes four
¥ and two oF antibonding U[Sf]-O[2p] spinor
orbitals (0 electron and 6 orbitals).

Scheme B adds to Scheme A four 7z, and two o,
correlating electrons and spinor orbitals in RAS1 (10
electrons and 10 orbitals). RAS3 is the same as in
Scheme A.

Scheme C adds to Scheme B the four 7, and two o,
correlating electrons and spinor orbitals, arising from
U[6d]—O[2p] interactions, in RAS1 (16 electrons and
16 orbitals). RAS3 is the same as in Scheme A.
Scheme D expands upon Scheme C by adding the four
oy, four z¥, and two o spinor orbitals in RAS3 (o
electron and 16 orbitals).

All schemes include the eight §/¢ orbitals in RAS2. These
four X2C-MRCI schemes provide a valuable framework for
assessing the significance of bonding orbitals in the 5f and 6d
manifolds as well as the electron correlation contributions from
antibonding orbitals, with respect to the spectral character-
istics. It is worth noting that all schemes include the 3d core
electrons of uranium, ensuring that excitations from the RAS1
space are responsible for the observed M,-edge spectral
features.

In these schemes, the RASI space allows for the inclusion of
two core holes, while the RAS3 space permits the inclusion of
two electrons. This restriction facilitates both single and
double excitations from the RAS1 space. Consequently, this
X2C-MRCI approach not only enables the calculation of single
excitations but also facilitates the exploration of shake-up/
shake-down or satellite states, offering a comprehensive
understanding of the system’s electronic structure.

https://doi.org/10.1021/jacsau.3c00838
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Figure 3 illustrates the computed uranyl M,-edge spectra
obtained using four distinct X2C-MRCI schemes, each
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Figure 3. Uranyl M,-edge calculated with X2C-MRCI using the four
different active space schemes and an X2C-RASSCF core-hole
reference, compared to experiment. Normalized intensities and
excitation energies are shifted to be equal at the major peak.
Lorentzian broadening parameter is set to an fwhm of 1.0 eV based on
the observed experimental broadening profile. The calculated spectra
under Schemes A, B, C, and D are shifted by 161.46, 158.32, 158.08,
and 156.72 eV, respectively, to best align with the experimental a
feature.

characterized by an increasing size of the correlation space,
as previously described. Within the experimental spectral
region, all calculations exhibit three prominent peaks denoted
as a, ff, and 7.

If no correlation of the inner valence bonding electrons is
included—X2C-MRCI employing Scheme A—a qualitative
agreement with the experiment is obtained, with spectral shifts
of 3.1 and 9.7 eV for the ff and y peaks, respectively. However,
a substantial improvement is achieved by incorporating
correlating occupied 7, and o, orbitals through Scheme B,
resulting in shifts of 2.4 and 7.7 eV for the # and y peaks,
respectively. The enhancement in predictive accuracy can be
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attributed to the consideration of electron correlations from
covalent pairs of orbitals, 7,/0, and 7/c¥. This observation
aligns with the expectation that these orbitals, involved in
covalent bonding, play a crucial role in accurately describing
the spectral behavior.

The accuracy of the spectral prediction improved with the
inclusion of the 6d orbitals in the active space. In X2C-MRCI
Scheme C, correlation with the 6d bonding orbitals (7, and )
is introduced, while Scheme D incorporates additional
correlation involving the antibonding ﬂg‘ and Gg‘ orbitals, as
well as nonbonding J, orbitals. By expanding the correlation
spaces with these additional orbitals, the convergence of the
peak in the uranyl M -edge spectrum toward the experimental
result is achieved. Moreover, the inclusion of these orbitals
through Scheme D results in a substantial improvement in the
prediction of the y peak, bringing it very close to the
experimental observation.

Overall, we found that Scheme B successfully reached a
converged result for the # peak and significantly improved the
position of the y peak, confirming previous theoretical
investigations.' "' ®** This observation suggests that including
the correlating Sf bonding orbitals is crucial for the accurate
prediction of the M-edge spectra of UO3".

The excellent agreement observed between the computed
spectrum using X2C-MRCI and the experimental data instills a
high level of confidence in the theoretical analysis of the
spectral characteristics. To further deepen our understanding
of the M,-edge spectra, Figure 4 presents a partial intensity
analysis that elucidates the contributions from specific MOs.
This insightful analysis facilitates an enhanced comprehension
of the underlying nature and distinctive features exhibited by
the M-edge spectra.

In order of increasing energy, the three peaks were initially
assigned to 3d — 8,/¢,, 3d — 7%, and 3d — & transitions.”
Such an assignment suggests that these transitions are
nonoverlapping one-electron excitations. Given that the 3d
— 0,/¢, transition is pinned in the spectrum, the splitting
observed between the M,-edge spectral peaks provides
valuable insights into the level of covalency present, reflecting
a similar concept to that of MO interaction."’

The spectral analysis conducted using Scheme A in Figure 4
confirms the initial experimental assignment, indicating simple
single-electron excitations from 3d;,, to 6,/¢,, #¥, and o¥
orbitals, respectively. While this agreement with the exper-
imental peak positions and transition assignments seems
reasonable, it is important to note that Scheme A lacks
correlations arising from the 5f and 6d bonding orbitals.
Without considering the correlations stemming from the Sf
and 6d manifolds, the computed spectra may fail to capture the
intricate electronic interactions and multielectron effects that
can significantly influence the observed spectral features.
Therefore, although Scheme A yields satisfactory agreement
in terms of peak positions and transition assignments, it is
crucial to recognize the potential limitations and the possibility
of misinterpretation due to the absence of relevant
correlations.

Indeed, the analysis of the partial intensity using the larger
correlation spaces shows a very different picture and would
suggest an alternative assignment of the transitions. The a peak
predominantly involves transitions from the 3d;;, manifold to
the 6,/¢, nonbonding orbitals, aligning with our expectations.
However, intriguingly, the presence of significant contributions
from the nonbonding J,/¢, orbitals is also detected in the

https://doi.org/10.1021/jacsau.3c00838
JACS Au 2024, 4, 1134-1141
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Figure 4. Partial intensity analysis of the uranyl M,-edge spectrum.
The normalized intensity of each excitation is projected onto the
molecular orbital space (see the Methods section).

peak in addition to features originating from 3d;/, to z¥
transitions. This observation raises questions as the spectral
characteristics would typically produce a single peak if the 6,/
¢, orbitals were truly nonbonding and exhibited degenerate Sf
character.

There are two possible mechanisms that can give rise to &,/
@, orbital splitting in the M,-edge HR-XANES spectrum. If 5,/
¢, are mixed with o, and 7,,, it will lead to a frontier orbital and
spectral splitting. However, the orbital analysis does not show
any mixing between these orbitals. The second possible
mechanism will be that these peaks arise from the shake-up
transitions, which involved two electron processes in the
absorption spectrum.

To gain deeper insights into the nature of the observed
transitions, we conducted an analysis of electron transitions
between orbital pairs and corresponding intensities (see the
Methods section), as shown in Figure 5. These figures provide
a population analysis for each M,-edge excitation, offering
valuable information about the contributing orbitals. Detailed
analyses of the CI vectors for M,-edge states were carried out
using Scheme D. The results, including percentages of single
and double electron excitations in each state and their leading
contributions, are presented in the Supporting Information.

For the a peak shown in Figure Sa, the excitations involve
one-electron transitions from the 3d;, orbital to the
nonbonding 6,/¢, orbitals, aligning with our initial expect-
ations. Notably, a substantial proportion of excitations also
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stems from two electron excitations involving coupled
transitions from the o, and 3d;,, orbitals, manifesting clear
shake-up characteristics. However, shake-up transitions in this
specific region exhibit a small transition dipole moment. As a
result, a total of 91% of the intensity in the region of the o peak
can be attributed to the one-electron 3d;/, = 6,/¢, transition,
as shown in Figure 5d. This means that, despite a considerable
presence of shake-up phenomena originating from the valence
transitions between &,/¢, orbitals, these remain spectroscopi-
cally dark within the & peak spectral range.

In contrast, the f peak displayed in Figure Sb exhibits more
complex behavior with contributions from multiple two-
electron excitations. This peak involves many simultaneous
transitions from both the 3d;,, and o, orbitals to the J,/¢,
nonbonding orbitals, as well as the z{ antibonding orbitals.
Such observations again indicate the presence of shake-up
transitions, representing concerted processes involving core-
electron and valence-electron excitations. However, as shown
in Figure Se, the majority of the transitions have a small
contribution to the dipole oscillator strength, which is limited
by symmetry considerations. Approximately 60% of the
intensity in the region of the f peak can be ascribed to
transitions between the 3d;, and J,/¢, orbitals. The
remaining roughly 40% of the intensity comes from
contributions from the o, to #}¥ transitions, signifying a
pronounced shake-up feature.

Analyzing the y peak depicted in Figure Sc reveals an even
more pronounced shake-up feature. This peak involves
excitations not only from the 3d;,, core orbital but also from
the 7, bonding orbitals to the ,/¢, nonbonding orbitals and
the ¥ antibonding orbitals. Additionally, a transition into the
experimentally assigned o antibonding orbital is observed,
although this spectral feature may be obscured by the presence
of the shake-up peaks. Figure 5f shows that, similar to the f
peak, only a small fraction of the shake-up transitions
contributes to the dipole oscillator strength. In the region of
the y peak, 62% of the total intensity can be attributed to the
3d;/, and 8,/¢, orbitals, with an additional 32% arising from
7, and m¥. The remaining 6% of the intensity involves the o,
and o orbitals.

In summary, we utilized variational relativistic MRCI methods
to compute and analyze the X-ray M-edge absorption spectrum
of uranyl. The obtained results demonstrate an excellent
agreement between the computed and experimentally observed
peak positions and intensities, emphasizing the significance of
incorporating correlations from 5f and 6d bonding and
antibonding orbitals. Including Sf and 6d orbital correlations
reduces the percent errors in peak separations by an average of
~40%. This highlights the critical role these orbitals play in
accurately describing the spectral characteristics.

Upon closer examination, it is clear that the experimentally
determined spectral characteristics do not adequately account
for key shake-up features. An estimated 33% of all electrons
excited in the M,-edge spectrum come from the valence 5f
bonding orbitals, making a significant contribution to these
shake-up phenomena. The presence of strong shake-up peaks
within the uranyl M,-edge spectral range has the potential to
obscure the analysis of covalency in actinide complexes. These
shake-up peaks represent concerted excitations involving core
and valence electrons, contributing to a more comprehensive

https://doi.org/10.1021/jacsau.3c00838
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Figure S. Transition population analysis for each M,-edge excitation based on the calculation using Scheme D. Electron excitations from/to 6d
orbitals are negligible and thus are not shown. The negative/positive values indicate the molecular orbitals from/to which the electrons are excited,
respectively. (a—c) The electron populations in each calculated transition are for peaks @, f3, and ¥, respectively. (d—f) The partial normalized
intensity for each calculated transition is shown in peaks a, f, and y, respectively. Different colors represent various orbitals involved in the

transitions, as illustrated in panel (f).

understanding of the electronic interactions and bonding
nature.

In this work, we use the relativistic Hamiltonian in the form of the
X2C method,*>*>**~% which is similar to the normalized elimination
of the small component (NESC) technique,®' ~** both allowing for
variational treatment of relativistic corrections in electronic structure
theory. The X2C and NESC approaches transform four-component
Dirac—Hartree—Fock into an electron-only two-component method,
where scalar relativistic and spin—orbit effects can be variationally
included at the orbital level. We use an X2C state-averaged restricted
active space self-consistent field (X2C-SA-RASSCF) method in the
Kramers’ unrestricted framework to generate the reference
orbitals,””****** followed by an X2C-MRCI treatment of the
dynamical correlation. The X2C-MRCI step is mapped onto the
restricted active space (RAS) partitioning scheme,>*”*" which allows
a natural extension to study X-ray spectra.'”®'~® For details on the
X2C-MRCI theory and implementation, we refer readers to ref 22.

The relativistic X2C-MRCI framework for the uranyl M, -edge
calculation starts with the 3d core-hole orbital optimization using
X2C-RASSCEF. A state-averaged X2C-RASSCF calculation is run with
the four 3ds, orbitals in RAS1, the eight §/¢ orbitals in RAS2, and an
empty RAS3. One electron is allowed to excite out of RAS1 and into
RAS2, producing 32 core-electron excited states. All orbitals are
optimized with respect to all 32 core-electron excited states to
account for the core-hole relaxation. These orbitals are better suited
for modeling the core-hole excited states necessary for subsequent
spectrum generation.

In the following correlated X2C-MRCI treatment, three RASs are
structured:

1138

e RASI: Correlated core space consists of spinor orbitals that are
occupied in all reference determinants but can be excited in
MRCL

RAS2/CASSCF: Complete active space consists of active spinor
orbitals in the X2C-CASSCF reference.

RAS3: Correlated virtual space consists of orbitals that are
unoccupied in all reference determinants but can be occupied
in MRCL

After assigning orbitals in the three spaces, the X2C-MRCI
excitation list can be generated given the correlation level of choice
(e.g, single, double, or triple excitation). In this work, single-and
double-electron excitations out of the RAS1 space are allowed.
Introducing the RAS framework into the X2C-MRCI partitioning
scheme gives rise to flexibility in both the choice of correlation space
and excitation level and allows for an efficient generation and tracking
of unique excited configurations, such as those in M-edge XAS. Since
inner valence bonding orbitals are included in RASI, the X2C-MRCI
calculations will produce additional low-lying excited states. The
energy-specific Davidson algorithm’®~"* is used to solve for only
spectral features in the M-edge range.

For excitation from state I to state J, we evaluate Jp, = y;,p - }/;p.
Here, 7, is the diagonal element of the one-particle reduced density
matrix, corresponding to the p-th orbital occupation. Jp, represents
the change in orbital occupation upon the excitation. The negative
and positive values of 5p, indicate the MOs from and to which the
electrons are excited, respectively. The partial oscillator strength can
be computed as g =0p,, fY, where fY is the total oscillator strength for
the excitation.

The molecular geometry for uranyl is linear with the U-O bond
length set to be 1.760 A taken from literature values.”” The ANO-
RCC-VTZP basis set’*”® was applied to the uranium atom, and the
aug-cc-pVTZ basis set’” was utilized for the oxygen atoms. All
calculations were performed in a development version of the Gaussian
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quantum chemistry package.”® Neither point group symmetry nor
Kramers symmetry was enforced in any of the calculations.

The experimental spectrum was measured for UO3* in aqueous
1 M perchloric acid (HCIO,). Different chemical environments can
result in a small variation of +0.2 eV in the measured spectrum,
manifested as a shift in the overall spectrum while leaving the peak
splittings unchanged.'® Since perchloride anion is a noncoordinating
ligand and the environment-induced difference in spectral shift is not
significant for the peak splittings, the computed results represent a
generalized average of M, X-ray spectrum of UO3".

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacsau.3c00838.
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