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We report a theoretical study of multiterminal Josephson junctions under the influence of a magnetic field
B. We consider a ballistic rectangular two-dimensional metal N0 connected by the edges to the left, right,
top, and bottom superconductors SL , SR, ST , and SB, respectively. We numerically calculate in the large-gap
approximation the critical current Ic versus B between the left and right SL and SR for various aspect ratios,
with the top and bottom ST and SB playing the role of superconducting mirrors. We find the critical current Ic

to be enhanced by orders of magnitude, especially at long distance, due to the phase rigidity provided by the
mirrors. We obtain magnetic oscillations resembling those of a superconducting quantum interference device.
With symmetric couplings, the self-consistent superconducting phase variables of the top and bottom mirrors
take the values 0 or π , as for emerging Ising degrees of freedom. We propose a simple effective Josephson
junction circuit model that is compatible with these microscopic numerical calculations. From the Ic(B) patterns
we infer where the supercurrent flows in various device geometries. In particular in the elongated geometry, we
show that the supercurrent flows between all pairs of contacts, which allows exploring the full phase space of the
relevant phase differences.
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I. INTRODUCTION

Superconducting multiterminal systems have recently at-
tracted considerable attention. While early theoretical works
already predicted unusual behavior of these more complex
Josephson junctions [1–4], later ones demonstrated that these
systems may host several exotic phenomena such as corre-
lations among Cooper pairs known as the quartets [5–17]
as well as Weyl point singularities and nontrivial topol-
ogy in the Andreev bound state spectrum [18–32], and the
energy level repulsion in Andreev molecules [33–36]. Fol-
lowing these theoretical efforts, recent experiments have
reported the detection of Cooper quartets [37–40], the obser-
vation of Floquet-Andreev states [41], the studies of Andreev
molecules [42–45], the multiterminal superconducting diode
effect [46,47], in addition to other results using numerous
different types of superconducting weak links [48–55].

The common ground of these models and experiments is
related to the fact that the weak links are connected by, at
least, three superconducting contacts. Indeed, in comparison
to its two-lead counterparts, the supercurrent flow in multi-
terminal Josephson junctions may appear nontrivial. Seminal
works showed that the supercurrent distribution could be
probed by analyzing the interference pattern induced by the
application of a magnetic flux across two-terminal Joseph-
son junctions [56–60]. Therefore, this interferometric pattern
strongly depends on the device geometry and where the super-
current flows [61–73]. As shown by Dynes and Fulton [57], in
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two-terminal Josephson junctions, the magnetic field depen-
dence of the critical current is related to the supercurrent
density distribution across the device by an inverse Fourier
transform as long as the supercurrent density is constant along
the current flow. However, alternative models are needed in
the case of nonhomogeneous supercurrent density [70] or
nonregular shapes [71,73].

To our knowledge, no theories exploring the current flow
and the corresponding magnetointerferometric pattern in mul-
titerminal Josephson junctions are available so far. Here, we
present a microscopic model allowing us to calculate the
magnetic field dependence of the critical current in various
configurations (see Fig. 1). Our calculations are based on a
large-gap Hamiltonian in which the supercurrent is triggered
by the tracer of the phase of the vector potential, i.e., we cal-
culate the critical current pattern as a function of the magnetic
field. While we recover the standard two-terminal interfero-
metric patterns, we show that the additional lead drastically
modifies the magnetic field dependence of the critical current.
With four terminals, our calculations reveal that the super-
current visits all of the superconducting leads, which could
result from a kind of ergodicity. This notion of ergodicity
was lately pointed out via the studies of the critical current
contours (CCCs) in four-terminal Josephson junctions, as a
function of two different biasing currents [11,49]. Consistency
was demonstrated [49] between the experiments on the CCCs
and random matrix theory, where the scattering matrix bridges
all of the superconducting leads. Considering disorder in the
short-junction limit, quantum chaos leads to ergodicity in the
sense of Andreev bound states (ABS) coupling all of the
superconducting leads. The supercurrent significantly visits
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FIG. 1. Schematics of the considered two- and multiterminal
Josephson geometries. The superconductors ST and SB on top and
bottom are in open circuit, that is, they are superconducting mirrors,
and we calculate the current flowing horizontally from SL to SR. A
four-terminal device with N = 3 and M = 6 is shown in panel (a),
i.e., a device with M/N � 1 elongated in the vertical y-axis direction.
A two-terminal device elongated in the horizontal x-axis direction is
shown on panel (b) with N = 6 and M = 3, i.e., with M/N � 1. Pan-
els (c), (d), and (e) feature three- or four-terminal devices containing
a single or two superconducting mirrors, and elongated along the x-
or y-axis direction.

all of those n superconducting terminals, thus being sensi-
tive to n − 1 independent phase differences, a number that
is, however, reduced by the additional constraints of current
conservation imposed by the external sources. In the other
limit of large-scale devices, another recent work [74] pointed
out the relevance of long-range effects in multiterminal con-
figurations, as the result of the phase rigidity.

Here, we also find long-range propagation of the super-
current in three- or four-terminal geometry having one or
two superconducting mirrors respectively, due to the phase
rigidity in the leads under zero-current bias condition. In the
four-terminal geometries, the leads SL, SR, ST , and SB are
connected to the left, right, top, and bottom sides of the rectan-
gular normal-metallic conductor N0, and ST , SB are laterally
connected on top and bottom, being superconducting mirrors
in open circuit, as shown Figs. 1(c) and 1(d). For the elongated
geometry along the horizontal x-axis direction [see Fig. 1(c)],
the four-terminal magnetic oscillations of the critical current
resemble the pattern of a superconducting quantum interfer-
ence device (SQUID) because of the interfering supercurrent
paths propagating in ST and SB over long distance. The critical

current in the horizontal direction is controlled by the phases
ϕT and ϕB of the top and bottom superconductors ST and SB.
Symmetry in the hopping amplitudes connecting N0 to the
four superconductors leads to the discrete values ϕT , ϕB = 0
or π , as for emerging Ising degrees of freedom.

Finally, a simple phenomenological Josephson junction
circuit model is proposed for devices elongated in the hori-
zontal direction. In this model, both of the superconducting
phase variables ϕT and ϕB enter the critical current via their
difference ϕT − ϕB, which originates from the large Joseph-
son energy coming from the extended interfaces parallel to
the horizontal direction.

The paper is organized as follows. The model and Hamil-
tonians are presented in Sec. II. The numerical results are
presented and discussed in Sec. III. Section IV presents a phe-
nomenological Josephson junction circuit model. Concluding
remarks are provided in Sec. V.

II. MODEL AND HAMILTONIANS

In this section, we define the Hamiltonian of the devices
shown in Fig. 1. The Hamiltonians of each part of the circuit
are provided in Sec. II A. The large-gap Hamiltonian of the
entire structure is presented in Sec. II B, and the boundary
conditions in the presence of a magnetic field are next dis-
cussed in Sec. II C. The algorithm is presented in Sec. II D.

A. General Hamiltonians

In this subsection, we introduce the Hamiltonians of the
superconductor, the central normal-metal conductor, and the
coupling between them.

The superconductors are described by the BCS Hamilto-
nian

ĤBCS = −W
∑
〈i, j〉

∑
σz=↑,↓

(c+
i,σz

c j,σz + c+
j,σz

ci,σz ) (1)

− �
∑

k

(exp (iϕk )c+
k,↑c+

k,↓ + exp (−iϕk )ck,↓ck,↑), (2)

where the summation in the first term is over all pairs of
neighboring tight-binding sites 〈i, j〉 and over the projection
σz on the spin quantization axis, that is the z axis. The first
term given by Eq. (1) corresponds to the kinetic energy, i.e., to
spin-σz electrons hopping between neighboring tight-binding
sites on a square lattice. The second term given by Eq. (2) is
the mean field BCS pairing term, with superconducting phase
variable ϕk at the tight-binding site k. The superconducting
phase variables ϕk take different values between different
superconducting leads and the ϕk’s are assumed to be uni-
form within each of those since we handle weak currents
throughout the paper. In order to reduce the computational
expanses, we carry out the calculations in a regime where the
superconducting gap is the largest energy scale, leading to a
large-gap Hamiltonian for the entire device connected to the
superconducting leads. This approach will be justified from
qualitative agreement with the known Fraunhofer pattern as
in a two-terminal configuration [i.e., with vanishingly small
coupling to the top and bottom ST and SB respectively; see
Figs. 1(a) and 1(b)].
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The central ballistic normal-metallic conductor N0 is de-
scribed by the square-lattice tight-binding Hamiltonian on a
rectangle of dimensions Na0×Ma0 in the horizontal x- and
vertical y-axis directions respectively, where a0 is the lattice
spacing:

Ĥ�(0) = −�(0)
∑
〈i, j〉

∑
σz=↑,↓

(c+
i,σz

c j,σz + c+
j,σz

ci,σz ), (3)

with hopping amplitude �(0). Equation (3) is intended to qual-
itatively capture a two-dimensional conductor at high charge
carrier density, and thus presenting a well-defined extended
Fermi surface. We assume that a finite gate voltage is applied
to the square-lattice tight-binding Hamiltonian of Eq. (3) in
such a way as to avoid the square-lattice midband singulari-
ties:

Ĥg = −Wg

∑
k,σz

c+
k,σz

ck,σz . (4)

The contacts between the normal and superconducting
leads are captured by the following tight-binding Hamiltonian
with hopping amplitude �(1):

Ĥ�(1) = −�(1)
∑
〈i′, j′〉

∑
σz=↑,↓

(c+
i′,σz

c j′,σz + c+
j′,σz

ci′,σz ), (5)

where
∑

〈i′, j′〉 runs over all tight-binding sites on both sides of
the contact.

The magnetic field is included by adding a phase to the
hopping amplitudes between the tight-binding sites a and b:

�a→b → �a→b exp

(
ie

h̄

∫ b

a
A · ds

)
, (6)

where A is the vector potential. In addition, the absence of
screening currents on the superconducting sides of the normal
metal-superconductor boundaries will be taken into account
according to the forthcoming Sec. II C.

B. Large-gap Hamiltonian at zero magnetic field

In this subsection, we consider that the superconducting
gaps are the largest energy scales. This yields a large-gap
Hamiltonian for the entire device, which will afterwards be
treated via exact diagonalizations. The DC-Josephson currents
are obtained from numerically differentiating the ground state
energy with respect to the superconducting phase variable
of the corresponding terminal. Making the approximation of
a large superconducting gap was developed in recent years;
see for instance Refs. [15,25,75,76]. Reaching numerical effi-
ciency for large-scale devices is the main motivation for this
large-gap limit.

Large-gap Hamiltonian from wave-functions. Now, we
present a wave-function calculation which yields the large-gap
Hamiltonian. Using generic compact matrix notations, the
starting-point Nambu Hamiltonian is expressed as the sum of
three terms:

(i) The infinite Nambu matrix of the superconducting
tight-binding Hamiltonian ĤS,S is deduced from the BCS
Hamiltonian ĤBCS in Eqs. (1) and (2). Those superconducting
leads are generically denoted as S1, . . . , Sn and ĤS,S is a
matrix gathering all of the ĤSp,Sp , with p = 1, . . . , n.

In order to illustrate the discussion, we consider for sim-
plicity that the lead Sp contains two tight-binding sites labeled
by “1” and “2”, which yields the following 4×4 Nambu
Hamiltonian ĤSp,Sp :

ĤSp,Sp =

⎛
⎜⎜⎜⎜⎝

0 �peiϕp −W1,2 0

�pe−iϕp 0 0 W1,2

−W2,1 0 0 �peiϕp

0 W2,1 �pe−iϕp 0

⎞
⎟⎟⎟⎟⎠. (7)

With a three-site tight-binding cluster, we obtain the following
6×6 Nambu Hamiltonian:

ĤSp,Sp

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 �peiϕp −W1,2 0 −W1,3 0

�pe−iϕp 0 0 W1,2 0 W1,3

−W2,1 0 0 �peiϕp −W2,3 0

0 W2,1 �pe−iϕp 0 0 W2,3

−W3,1 0 −W3,2 0 0 �peiϕp

0 W3,1 0 W3,2 �pe−iϕp 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(8)

where the three tight-binding sites are labeled by 1, 2, and 3.
The matrices in Eqs. (7) and (8) can be extrapolated to an infi-
nite number of tight-binding sites, also taking the connectivity
of the underlying lattice into account. Finally, all of the ĤSp,Sp

are concatenated into the global ĤS,S matrix.
(ii) The finite Nambu matrix rectangular normal-metal

tight-binding lattice Hamiltonian ĤN0,N0 is deduced from
Ĥ�(0) in Eq. (3) and Ĥg in Eq. (4). The Nambu Hamiltonian
ĤN0,N0 takes the following form for the two tight-binding sites
labeled by 1 and 2:

Ĥ 2×2
N0,N0

=

⎛
⎜⎜⎜⎜⎜⎝

Wg 0 −�
(0)
1,2 0

0 −Wg 0 �
(0)
1,2

−�
(0)
2,1 0 Wg 0

0 �
(0)
2,1 0 −Wg

⎞
⎟⎟⎟⎟⎟⎠. (9)

We obtain the following with the three tight-binding sites
labeled by 1, 2, and 3:

Ĥ 3×3
N0,N0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Wg 0 −�
(0)
1,2 0 −�

(0)
1,3 0

0 −Wg 0 �
(0)
1,2 0 �

(0)
1,3

−�
(0)
2,1 0 Wg 0 −�

(0)
2,3 0

0 �
(0)
2,1 0 −Wg 0 �

(0)
2,3

−�
(0)
3,1 0 −�

(0)
3,2 0 Wg 0

0 �
(0)
3,1 0 �

(0)
3,2 0 −Wg

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(10)

and Eqs. (9) and (10) are easily generalized to an arbitrary
number of entries.

(iii) The finite Nambu matrix of the couplings ĤN0,S and
ĤS,N0 between the superconductors Sp and the normal region
N0 is deduced from Ĥ�(1) in Eq. (5). The Nambu Hamiltonian
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ĤN0,Sp takes the following form with interfaces made with the
two tight-binding sites labeled by 1 and 2:

Ĥ 2×2
N0,Sp

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 −�
(1)
1,2 0

0 0 0 �
(1)
1,2

−�
(1)
2,1 0 0 0

0 �
(1)
2,1 0 0

⎞
⎟⎟⎟⎟⎟⎠, (11)

and we obtain the following for interfaces made with the three
tight-binding sites labeled by 1, 2, and 3:

Ĥ 3×3
N0,Sp

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −�
(1)
1,2 0 −�

(1)
1,3 0

0 0 0 �
(1)
1,2 0 �

(1)
1,3

−�
(1)
2,1 0 0 0 −�

(1)
2,3 0

0 �
(1)
2,1 0 0 0 �

(1)
2,3

−�
(1)
3,1 0 −�

(1)
3,2 0 0 0

0 �
(1)
3,1 0 �

(1)
3,2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(12)

and the matrices appearing in Eqs. (11) and (12) can be ex-
tended to an arbitrary number of entries.

The components of the Bogoliubov–de Gennes wave-
functions are denoted as ψN0 and ψS for the normal conductor
N0 and the n superconducting leads Sp respectively, with p =
1, . . . , n. Each of the ψN0 and ψS is defined on the normal-
metallic tight-binding graph N0 and in all tight-binding sites
of each superconductor Sp.

The overall infinite Nambu Hamiltonian Ĥ takes the fol-
lowing matrix form:

Ĥ =
(

ĤN0,N0 ĤN0,S

ĤS,N0 ĤS,S

)
. (13)

The Bogoliubov–de Gennes eigenvalue equation is defined as

Ĥ

(
ψN0

ψS

)
= ω

(
ψN0

ψS

)
, (14)

where ω is the energy, and Eq. (14) leads to the following set
of equations:

ĤN0,N0ψN0 + ĤN0,SψS = ωψN0 , (15)

ĤS,N0ψN0 + ĤS,SψS = ωψS, (16)

where Eqs. (15) and (16) contain a finite and an infinite
number of equations respectively. Equation (16) is written as
follows:

ψS = (ω − ĤS,S )−1ĤS,N0ψN0 . (17)

Equation (17) is now specialized to the Nambu components of
the superconducting Green’s functions defined on the super-
conducting side of the coupling Nambu Hamiltonians ĤN0,S

and ĤS,N0 . Then, inserting Eq. (17) into Eq. (15) leads to an
eigenvalue problem for a finite number of linear equations:

ĤN0,N0ψN0 + ĤN0,S (ω − ĤS,S )−1ĤS,N0ψN0 = ωψN0 . (18)

This defines the effective self-energy �̂eff (ω) as

�̂eff (ω)ψN0 = ωψN0 , (19)

with

�̂eff (ω) = ĤN0,N0 + ĤN0,S (ω − ĤS,S )−1ĤS,N0 (20)

= ĤN0,N0 + �̂
(1)
N0,S

ĝS,S (ω)�̂(1)
S,N0

, (21)

where

ĝS,S (ω) = (ω − ĤS,S )−1 (22)

is the resolvent (i.e., the Green’s function) of the infinite
superconducting leads and �̂

(1)
N0,S

and �̂
(1)
S,N0

are the Nambu

hopping amplitudes in ĤN0,S and ĤS,N0 respectively; see also
Eq. (5).

Up to this point the superconducting gap was finite, but
now we take the limit of a large gap where ĝS,S (ω) becomes
independent of the energy ω, i.e., ĝS,S (ω) ≡ ĝS,S [see the
forthcoming Eqs. (27) and (28) for the expression of the
superconducting Green’s functions.] The effective self-energy
�̂eff (ω) in Eqs. (20) and (21) takes the form of the following
energy-independent effective Hamiltonian:

�̂eff (ω) ≡ Ĥeff = ĤN0,N0 + �̂
(1)
N0,S

ĝS,S�̂
(1)
S,N0

. (23)

Large-gap Hamiltonian from Green’s functions. The large-
gap Hamiltonian given by Eq. (23) can also be obtained from
the Dyson equations; see Ref. [15]. Namely, the fully dressed
Green’s function ĜN0,N0 (ω) at the energy ω is calculated as
follows:

ĜN0,N0 (ω) = ĝN0,N0 (ω) + ĝN0,N0 (ω)�̂(1)
N0,S

ĜS,N0 (ω) (24)

= ĝN0,N0 (ω) + ĝN0,N0 (ω)�̂(1)
N0,S

ĝS,S (ω)

× �̂
(1)
S,N0

ĜN0,N0 (ω). (25)

Equation (25) is written as

ĜN0,N0 (ω) = [ω − �̂eff (ω)]−1, (26)

where, in the large-gap approximation, the effective self-
energy �̂eff (ω) given by Eqs. (20) and (21) takes the form
of the energy-ω independent Hamiltonian Ĥeff given by
Eq. (23), as it was obtained from this compact Green’s func-
tion calculation.

Superconducting Green’s functions. Now, we provide the
expression of the superconducting Green’s function ĝSp,Sp

appearing in Eq. (23), and we specifically demonstrate that
ĝSp,Sp (ω) ≡ ĝSp,Sp is independent of the energy ω. The ad-
vanced local superconducting Green’s function of lead Sp

takes the following form in the presence of a finite gap:

ĝSp,Sp (ω) = 1

W
√

|�|2 − (ω − iη)2

( −ω |�|eiϕp

|�|e−iϕp −ω

)
,

(27)

where η is a small linewidth broadening, i.e., the so-called
Dynes parameter [77–80]. Equation (27) can be found in
many papers. For instance, this Eq. (27) is the starting point
of the current-voltage characteristics calculations in voltage-
biased superconducting weak links [81].
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The following is obtained in the large-gap approximation:

ĝSp,Sp = 1

W

(
0 eiϕp

e−iϕp 0

)
, (28)

where Eq. (28) is energy independent, as anticipated in the
above discussion. Equation (28) is next inserted into the ex-
pression (23) of the large-gap Hamiltonian, which is next
numerically treated with exact diagonalizations.

C. Boundary conditions

In this subsection, we discuss how the large-gap Hamil-
tonian given by Eq. (23) is modified in the presence of a
finite value for the magnetic field applied perpendicularly
to the two-dimensional structure. In the presence of a vec-
tor potential A, we make the substitution p → p + eA for
the momentum, and j → (eh̄/m)[∇ϕ + (2e/h̄)A] for the su-
percurrent j, where ϕ denotes the superconducting phase
variable. The vector potential is expressed in the gauge Ax =
−By/2 and Ay = Bx/2, where B is the magnetic field.

Now, we calculate how a Cooper pair crosses the left
contact from the superconductor SL at coordinates (x = xL −
a0, y) to the corresponding tight-binding site at (x = xL, y)
in the normal metal. Considering first the left superconductor,
we implement ∇yϕ + (2e/h̄)Ay = 0 along the SL-N0 interface,
leading to

ϕy = −B(xL − a0)y


′
0

+ ϕ
(0)
L , (29)

where 
′
0 = h̄/e = 
0/2π , with 
0 = h/e the superconduct-

ing flux quantum. In the second step, we integrate the phase
gradient ∇ϕ + (2e/h̄)A in the horizontal direction across the
SL-N0 interface:∫ xL−a0

xL

(
∇ϕ + 2e

h̄
A

)
· ds = Bya0


′
0

+ ϕy. (30)

Overall, we deduce the phase

ϕ
(0)
L − ByxL


′
0

+ 2Bya0


′
0

, (31)

where ϕ
(0)
L is the superconducting phase variable of the left

superconductor. The following self-energy is then included
in the normal-metal Hamiltonian on the left-hand side of
the rectangular tight-binding lattice, i.e., at coordinate (x =
xL, y):

�
(Left)
loc (y) = − (�(1) )2

W
eiϕ(0)

L e−iByxL/
′
0 e2iBya0/


′
0 , (32)

where �
(Left)
loc (y) denotes the electron-hole Nambu component.

Similarly, we deduce the following for the right, top, and bot-
tom self-energies along the edges x = xR, y = yT , and y = yB

of the rectangle, respectively:

�
(Right)
loc (y) = − (�(1) )2

W
eiϕ(0)

R e−iByxR/
′
0 e−2iBya0/


′
0 , (33)

�
(Top)
loc (x) = − (�(1) )2

W
eiϕ(0)

T eiBxyT /
′
0 e2iBxa0/


′
0 , (34)

�
(Bottom)
loc (x) = − (�(1) )2

W
eiϕ(0)

B eiBxyB/
′
0 e−2iBxa0/


′
0 . (35)

D. Algorithm

The numerical calculations proceed with exact diagonal-
izations of the large-gap Hamiltonian defined in the above
Secs. II A, II B, and II C. The supercurrents are obtained
from the derivative of the ground state energy with re-
spect to the superconducting phase variables. We denote by
E0(B, ϕ1, . . . , ϕn) the ground state energy:

E0(B, ϕ1, . . . , ϕn)

=
∑

α

εα (B, ϕ1, . . . , ϕn)θ [−εα (B, ϕ1, . . . , ϕn)], (36)

where the ABS have the energies εα (B, ϕ1, . . . , ϕn) and the
Heaviside θ function selects negative energies in the zero-
temperature limit. The current through lead Sp is then given
by

ISp (B, ϕ1, . . . , ϕn) = −2e

h̄

∂E0

∂ϕp
(B, ϕ1, . . . , ϕn). (37)

We next impose the constraint of vanishingly small super-
current transmitted into the superconducting mirrors, and
evaluate the critical current as the maximum over the remain-
ing superconducting phase variables.

E. Further physical remarks on the large-gap approximation

We note that the large-gap approximation becomes exact
only at low energy and/or long distance in highly transpar-
ent superconductor–normal-metal–superconductor junctions
[82–84]. As is often the case in physics, we extend the large-
gap calculations to all energy scales, not only considering the
low energies at which the approximation is exact.

The coherence length ξ0 in the large gap approximation is
comparable to the Fermi wavelength λF , i.e., a few lattice
spacings. The summation in Eq. (36) runs over the entire
spectrum of ABS, thus addressing all the length scales in
comparison with ξ0 ≈ λF .

The large-gap approximation fulfills the requirements of
qualitatively capturing the supercurrent transmitted at long
distance in the two-, three-, or four-terminal configurations,
as well as supercurrent lines between the lateral and the top
or bottom superconductors transmitted over the short range
ξ0 ≈ λF at the four corners of the normal-metallic rectangle.
To summarize, we consider the large-gap approximation as an
operational tool for capturing the qualitative behavior of those
multiterminal Josephson junctions.

III. RESULTS

In this section, we present and physically discuss the
numerical results obtained from the superconducting tight-
binding model presented in the above Sec. II. Our main
numerical results are presented in Figs. 2(a), 2(b), 3(c),
3(d), 4(e), and 4(f), corresponding to the full range of
the aspect ratios. The corresponding device dimensions are
N×M = 2×100, 5×40, 10×20, 20×10, 40×5, and 100×2
respectively, with the fixed overall tight-binding lattice area
S = 200 a2

0. The devices geometry ranges from being elon-
gated in the vertical direction to being elongated horizontal
direction. The presentation of the results may look unusual
in the sense that the discussion in the text proceeds with two
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FIG. 2. The numerical results. The critical currents are shown as a function of the reduced magnetic flux, for the self-consistent solution
(bold orange lines), and for the non-self-consistent ϕT = ϕB = 0 (thin black lines) and ϕT = π , ϕB = 0 (light blue lines). The thick magenta
lines correspond to absence of coupling to the superconducting leads ST and SB on top and bottom, i.e., to a two-terminal Josephson junction
with �

(1)
B = �

(1)
T = 0. The thick blue lines show a three-terminal Josephson junction having an additional superconducting mirror, with �

(1)
B =

0. Panels (a2), (a3), and (a4) show the self-consistent (ϕT − ϕB )/π , ϕT /π , and ϕB/π respectively with two superconducting mirrors. We use
�0 = 10 for the bulk hopping amplitude in N0, �L = �R = �T = �B ≡ � with � = 1 for the contact transparencies, and Wg = 0.4 for the
value of the gate voltage. The supercurrents are in units of 2e�/h̄. We also use N×M = 2×100 [panel (a)] and N×M = 5×40 [panel (b)].
Panel (a) shows oscillating critical current with N � M, i.e., with N = 2 and M = 100. Then, the magnetic oscillations resemble a Fraunhofer
pattern. Panel (b) shows the evolution of the oscillating patterns for the smaller aspect ratio N = 5 and M = 40.

terminals, then two terminals plus a single superconducting
mirror, and finally two terminals plus two superconducting
mirrors, thus not consisting of a discussion of the figures one
after the other.

Regarding the size of the numerically implemented rect-
angular lattices, we obtained a crossover to the semiclassical
spectra [82–84] for larger dimensions, typically 100×200 or
100×400 lattices (those data are not shown as figures in the
present paper). However, the multiterminal effects that we
consider do not rely on whether the semiclassical limit is fully
realized. This is why we address here intermediate device
dimensions at reduced computational expanses. The area is

sufficient to produce viable numerical data for the critical
current as a function of the magnetic field.

Concerning the devices containing a single or two super-
conducting mirrors, considerable gains in the computation
times are obtained if all of the superconducting leads SL, SR,
ST , and SB are coupled to the normal-metallic conductor N0

by symmetric hopping amplitudes; see the Appendix. This
symmetry condition is fulfilled by the identical hopping am-
plitudes implemented in our calculations.

After recovering known behavior with two terminals, the
numerical results with superconducting mirrors will next be
presented and discussed. The supercurrent flowing between
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FIG. 3. The same as Fig. 2 but now with N×M = 10×20 [panel (c)] and N×M = 20×10 [panel (d)]. Panels (c) and (d) show the crossover
from elongated along the y-axis direction [panel (c)] to elongated along the x-axis direction [panel (d)]. With two terminals, panel (c) shows
an oscillation pattern while panel (d) features quasimonotonic decay of the critical current as a function of the magnetic field. In addition, the
four-terminal critical current oscillation patterns resemble those a SQUID in panels (c) and (d).

the left and right superconductors SL and SR in the horizontal
direction will be enhanced by orders of magnitudes in the
presence of the single superconducting mirror ST . With the
two superconducting mirrors ST and SB, we will obtain an
oscillatory critical current magnetic pattern that resembles the
oscillations of a SQUID, due to the interfering supercurrent
paths through the top and bottom superconductors ST and SB.

Two terminals. Now, we proceed with discussing the nu-
merical results themselves, starting with two terminals as a
point of comparison for testing the large-gap calculations.
We first consider a device where the two superconducting
leads SL and SR are connected to the left and right, with the
superconducting mirrors ST and SB neither on top nor on
bottom [see Figs. 1(a) and 1(b)]. The numerical data with two
terminals are shown with the bold magenta lines labeled by
�T = �B = 0 in panels (a1)–(f1) of Figs. 2–4.

Figures 2(a), 2(b), and 3(c) correspond to N×M = 2×100,
N×M = 5×40, and N×M = 10×20 respectively. We then
obtain the expected Fraunhofer-like oscillation pattern for
those devices elongated along the y-axis direction.

Next, the two-terminal critical current is negligibly small if
the device is elongated along the x-axis direction; see the bold
magenta lines labeled by �T = �B = 0 in Figs. 4(e) and 4(f)
with N×M = 40×5 and N×M = 100×2 respectively.

We also find quasimonotonic decay of the critical current
as a function of the magnetic field if the device dimension
in the horizontal direction is reduced according to N×M =
20×10; see the bold magenta line in Fig. 3(d). We carried out
complementary calculations of the ABS spectrum, revealing
that the small “jumps” appearing in the data points represented
by the bold magenta lines in Fig. 3(d) signal that some ABS
cross the zero of energy as a function of the magnetic field.
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FIG. 4. The same as Fig. 2 but, in addition, the thin red lines correspond to ϕT = ϕB = π . We use N×M = 40×5 [panel (e)] and N×M =
100×2 [panel (f)]. The figure shows aspect ratios strongly elongated along the x-axis direction, i.e., with N � M. Then, the two-terminal
oscillation patterns reveal negligibly small signal, and the four-terminal ones show the SQUID-like oscillations coexisting with the long-range
effect of the superconducting mirrors.

The overall evolution from Fraunhofer pattern to quasi-
monotonic decay of the critical current flowing from SL

to SR is in qualitative agreement with a preceding work
on disordered superconductor–normal-metal–superconductor
junctions in a field; see Ref. [85]. Now that we demon-
strated consistency with known results, we further proceed
with three- and four-terminal devices containing a single or
two superconducting mirrors respectively.

A single superconducting mirror. Now we consider that
a third superconducting lead ST is connected on top to
the rectangular normal-metallic conductor N0; see Fig. 1(c).
We calculate the maximal value of the supercurrent flowing
between SL and SR connected to the left and right edges
respectively. As discussed above, ST on top is an open-circuit
superconducting mirror and the overall supercurrent transmit-
ted into ST is vanishingly small. However, ST can propagate
supercurrent in the direction parallel to its interface with N0.

The corresponding data for the critical current in the
presence of this third superconducting mirror ST laterally
connected on top are shown by the dark blue lines labeled
by �B = 0 in Figs. 2(a1) to 4(f1). Those datapoints are ver-
tically shifted according to the reference represented by the
horizontal blue dashed lines.

Devices elongated in the vertical direction produce oscil-
lations in the critical current as a function of the applied
magnetic field; see the dark blue lines in Figs. 2(a1) to 3(d1)
corresponding to N×M = 2×100, 5×40, 10×20, 20×10 re-
spectively. We note that, for those device dimensions, the ratio
between the critical currents at the central peak and at the
first lobe is anomalously large in comparison with the stan-
dard Fraunhofer pattern [60]. Given the intermediate contact
transparencies in our calculations, we possibly relate this zero-
field anomaly to the constructive interference of reflectionless
tunneling at low magnetic field; see Ref. [86].
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The corresponding critical currents flowing between the
left and right superconductors SL and SR in the horizontal
direction are shown by the dark blue lines labeled by �B = 0
in panels (e1)–(f1) of Fig. 4, for N×M = 40×5 and N×M =
100×2. Those values are enhanced by orders or magnitude in
comparison with a two-terminal device (i.e., with �T = �B =
0 in the absence of the coupling to ST ). This enhancement
is interpreted as phase rigidity in the superconductor mir-
ror ST connected on top. Namely, propagating supercurrent
from SL to SR in the horizontal direction involves supercur-
rent lines connecting SL to ST , followed by propagation over
arbitrary long distances inside the rigid condensate of ST ,
and finally the supercurrent lines are transmitted from ST to
SR.

Two superconducting mirrors. We now consider the four-
terminal Josephson device with two superconducting mirrors,
where the supercurrent in the horizontal direction flows be-
tween the two superconductors SL and SR connected to the
left and right edges of the rectangular normal-metallic N0,
in the presence of the two superconducting mirrors ST and
SB laterally connected on top and bottom; see Figs. 1(d)
and 1(e).

Panels (a1)–(f1) of Figs. 2–4 show the critical currents as
a function of the magnetic field, with self-consistent super-
conducting phase variables (see the bold orange lines labeled
by “Self-consistent ϕT and ϕB”). The self-consistent solution
minimizes the ground state energy E0 with respect to the
superconducting phase variables ϕT , ϕB = 0 or π according
to the Appendix; see also Eq. (36) for the expression of the
ground state energy E0.

As for a single superconducting mirror ST , we observe
that connecting the two superconducting mirrors ST and SB

on top and bottom produces an enhancement of the critical
current flowing between the left and right superconductors SL

and SR in the horizontal direction; see Figs. 4(a) and 4(b) for
N×M = 40×5 and N×M = 100×2 respectively. The super-
current from SL and SR or from SR to SL in the horizontal
direction can be viewed as being guided by the superconduct-
ing mirrors ST and SB on top and bottom.

The critical current magnetic oscillations resemble those
of a SQUID, due to the interference between the Cooper pairs
traveling in the superconducting leads ST and SB on top and
bottom respectively.

The thinner black lines labeled by “ϕT = ϕB = 0” in
Figs. 2(a), 2(b), 3(c), 3(d), 4(e), and 4(f) show the critical cur-
rent with the non-self-consistent ϕT = ϕB = 0, and the thinner
light-blue lines labeled by “ϕT = π, ϕB = 0” correspond to
the non-self-consistent ϕT = π and ϕB = 0. The light-red
lines labeled by “ϕT = ϕB = π” in Figs. 2(a) and 2(b) corre-
spond to ϕT = ϕB = π . We conclude that the critical current
calculated with the self-consistent ϕT and ϕB (see the bold
orange lines labeled by “Self-consistent ϕT and ϕB”) switches
between those non-self-consistent solutions as the magnetic
field is increased.

Figures 2(a2) to 4(f2) show the normalized difference
(ϕT − ϕB)/π between the self-consistent phase variables ϕT

and ϕB of the superconducting mirrors. Figures 2(a3) to 4(f3)
and Figs. 2(a4) to 4(f4) show the normalized self-consistent
ϕT /π and ϕB/π respectively. Remarkably, all minima in the

S T

EJ

S L S R

S B

S T

S L R

S B

EJ S

eJ eJ

eJeJ

(a)

(b)

FIG. 5. The four superconducting leads SL , SR, ST , and SB

on the left, right, top, and bottom (a) are transformed into the
phenomenological Josephson junction circuit model (b). The neigh-
boring superconducting leads are connected by small Josephson
coupling eJ and the top and bottom ones ST and SB are connected by
two Josephson junctions with large Josephson coupling EJ , reflecting
the corresponding large-area contacts between ST and SB through the
normal metal N0.

critical current pattern in panels (a1)–(f1) correlate with the
magnetic field values at which (ϕT − ϕB)/π switches between
zero and unity or vice versa. The thin vertical yellow lines
across each of Figs. 2–4 match all of those switching points in
(ϕT − ϕB)/π .

We conclude that, in the limit of a device elongated in the
horizontal direction (i.e., with N � M), the magnetic field de-
pendence of the critical current is controlled by (ϕT − ϕB)/π ,
instead of each ϕT /π or ϕB/π taken individually. In the
opposite limit of a device elongated in the vertical direc-
tion (i.e., if M � N), the superconducting phase variables
ϕT and ϕB of ST and SB are spectators. Their values are
driven by the supercurrent flowing between SL and SR in the
horizontal direction. In addition, Figs. 2(a) and 2(b) feature
the magnetic flux dependence of the non-self-consistent ϕT =
ϕB = π , which strongly deviates from the non-self-consistent
ϕT = ϕB = 0.

IV. PHENOMENOLOGICAL JOSEPHSON
JUNCTION CIRCUIT MODEL

In this section, we propose a phenomenological Josephson
junction circuit model suitable to geometries elongated in
the horizontal direction, i.e., with N � M. The Josephson
coupling energy EJ between the top and bottom superconduc-
tors ST and SB is large, due to the corresponding large area
interfaces. The Josephson coupling energies eJ between the
pairs (SB, SL ), (SL, ST ), (ST , SR), and (SR, SB) is smaller; see
Fig. 5. This simple model relies on a few weak links and it is
thus not intended to capture the zero-field anomaly appearing
in the above numerical calculations.
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FIG. 6. The figure illustrates the phenomenological Josephson junction circuit model calculation. The figure shows the energies E1 and E2

as a function of 
/2π [see Eq. (40)] (a), the ground state energy Einf = inf (E1, E2) between the lowest between E1 and E2 (b), the normalized
self-consistent (ϕT − ϕB )/2π (c), the non-self-consistent critical currents Ic for ϕT − ϕB = 0 and ϕT − ϕB = π (d), and the critical current Ic

with the self-consistent ϕT − ϕB (e).

The total energy takes the form

E = −EJ cos

(
ϕT − ϕB + 


2
0

)

− EJ cos

(
ϕT − ϕB − 


2
0

)

− eJ cos

(
ϕT − ϕL + 


4
0

)

− eJ cos

(
ϕL − ϕB + 


4
0

)

− eJ cos

(
ϕB − ϕR + 


4
0

)

− eJ cos

(
ϕR − ϕT + 


4
0

)
. (38)

Assuming EJ � eJ , the supercurrent entering ST is approxi-
mated as

−2e

h̄

∂E

∂ϕT

 2e

h̄
EJ sin

(
ϕT − ϕB + 


2
0

)

+ 2e

h̄
EJ sin

(
ϕT − ϕB − 


2
0

)
. (39)

Injecting ϕT − ϕB = 0 or π into Eq. (39) leads to the
zero-current condition −(2e/h̄)∂E/∂ϕT = 0, with the corre-
sponding energies E1 and E2,

E1 = −2EJ cos

(



2
0

)
≡ −E2, (40)

associated with ϕT − ϕB = 0 and ϕT − ϕB = π respectively.
As the normalized magnetic flux 
/
0 increases, the ground
state energy alternates between E1 and E2 in Eq. (40), corre-
sponding to locking the phases ϕT and ϕB according to ϕT −
ϕB = 0 or ϕT − ϕB = π respectively. For instance, ϕT − ϕB =
0 and ϕT − ϕB = π are obtained in the intervals |
/2
0| <

π/2 and π/2 < |
/2
0| < 3π/2 respectively.
Figures 6(a) to 6(c) illustrate the flux-sensitivity of E1, E2

in Eq. (40) [panel (a)], the ground state energy Einf =
inf (E1, E2) [panel (b)], and the self-consistent ϕT − ϕB [panel
(c)]. Comments on panels (d) and (e) are provided below.

Now, we successively evaluate the supercurrents for ϕT −
ϕB = 0 and ϕT − ϕB = π . First considering ϕT = ϕB = 0
leads to the following expression of the ϕL- and ϕR-sensitive
energy terms EL and ER:

EL(ϕL,
) = −eJ cos

(
−ϕL + 


4
0

)

− eJ cos

(
ϕL + 


4
0

)
(41)

= −2eJ cos ϕL cos

(



4
0

)
, (42)

ER(ϕR,
) = −eJ cos

(
−ϕR + 


4
0

)

− eJ cos

(
ϕR + 


4
0

)
(43)

= −2eJ cos ϕR cos

(



4
0

)
. (44)
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We obtain

IL(ϕL,
) = −2e

h̄

∂EL

∂ϕL
(ϕL,
) (45)

= −4e

h̄
eJ sin ϕL cos

(



4
0

)
, (46)

IR(ϕR,
) = −2e

h̄

∂ER

∂ϕR
(ϕR,
) (47)

= −4e

h̄
eJ sin ϕR cos

(



4
0

)
. (48)

The condition IR + IL = 0 leads to sin ϕL = − sin ϕR, and to
ϕR = −ϕL or ϕR = ϕL + π . We observe that EL(ϕL,
) +
ER(ϕL + π,
) = 0, and we can always find values of ϕL hav-
ing the lower energy EL(ϕL,
) + ER(−ϕL,
) < 0, which is
why we restrict to ϕR = −ϕL ≡ ψ . It turns out that the ground
state energy is negative for all values of the reduced magnetic
flux 
/
0; see Fig. 6(b).

Assuming now ϕT = 0 and ϕB = π , we obtain

E ′
L(ϕL,
) = −eJ cos

(
−ϕL + 


4
0

)

+ eJ cos

(
ϕL + 


4
0

)
(49)

= −2eJ sin ϕL sin

(



4
0

)
, (50)

E ′
R(ϕR,
) = eJ cos

(
−ϕR + 


4
0

)

− eJ cos

(
ϕR + 


4
0

)
(51)

= 2eJ sin ϕR sin

(



4
0

)
, (52)

and

I ′
L(ϕL,
) = −2e

h̄

∂E ′
L

∂ϕL
(ϕL,
) (53)

= 4e

h̄
eJ cos ϕL sin

(



4
0

)
, (54)

I ′
R(ϕR,
) = −2e

h̄

∂E ′
R

∂ϕR
(ϕR,
) (55)

= −4e

h̄
eJ cos ϕR sin

(



4
0

)
, (56)

where, again, we used ϕR = −ϕL ≡ ψ .
Figure 6(d) shows the critical current as a function of the

normalized magnetic flux for the non-self-consistent solutions
with ϕT − ϕB = 0 and ϕT − ϕB = π . Figure 6(e) shows the
value of the supercurrent calculated with the self-consistent
ϕT − ϕB, which amounts to taking the maximum between
the two values on Fig. 6(d). We note consistency with the
preceding numerical calculations presented in Figs. 2–4; see
the above Sec. III.

Finally, we have four phase variables ϕL, ϕR, ϕT , and ϕB.
The constraint ϕR = −ϕL ≡ ψ originates from the external
current source which imposes opposite supercurrents trans-
mitted into SL and SR, therefore defining a net current flowing

from SL to SR or from SR to SL in the horizontal direction.
Those opposite supercurrents IR = −IL couple to the remain-
ing phase combinations ϕT − ϕB = 0 or π and ϕR = −ϕL ≡ ψ ,
where ϕB is left undetermined. This is compatible with gauge
invariance where one of those superconducting phase vari-
ables cannot be fixed. We conclude that, if N � M, the
supercurrent flowing from SL to SR or from SR to SL in the
horizontal direction couples to all possibly allowed phase
combinations, as is already the case in the short-junction limit.

V. CONCLUSIONS

To conclude, we considered a multiterminal Josephson
junction circuit model with the four superconducting leads SL,
SR, ST , and SB connected to the left, right, top, and bottom
edges of a normal-metallic rectangle N0.

Concerning three terminals, we demonstrated that, for
devices elongated in the horizontal direction, attaching the
superconducting mirror ST on top of the normal conductor N0

enhances the horizontal supercurrent by orders of magnitude,
as a result of phase rigidity in the open-circuit superconductor
ST .

Concerning four terminals, we calculated the supercur-
rent flowing from SL to SR in the horizontal direction in
the presence of the two superconducting mirrors ST and SB,
and we obtained oscillatory magnetic oscillations reminiscent
of a SQUID. Those oscillations are controlled by the self-
consistent phase variables ϕT and ϕB of the superconductors
ST and SB connected on top and bottom respectively.

If the hopping amplitudes connecting the ballistic rectan-
gular normal-metallic conductor N0 to the superconductors are
symmetric, then ϕT and ϕB take the values 0 or π , as for an
emerging Ising degree of freedom.

We also interpreted our numerical results with a simple
Josephson junction circuit model, and demonstrated that the
supercurrent flows through all parts of the circuit if the device
is elongated in the horizontal direction.

In the numerical calculations and in the phenomenological
circuit model, the horizontal supercurrent was controlled by
the difference ϕT − ϕB = 0 or π instead of each individual ϕT

or ϕB, thus providing sensitivity to a single effective Ising de-
gree of freedom of the supercurrent flowing in the horizontal
direction.

Finally, a long-range effect was reported in the experimen-
tal results of Ref. [55] and is compatible with our theory of the
superconducting mirrors. In addition, a recent experimental
work [49] measured the critical current contours (CCCs) in the
plane of the two biasing currents I1 and I2. The zero-current
conditions I1 = 0 or I2 = 0 are fulfilled at the points where
the CCCs intersect the x- or y-current axis respectively. Thus,
our theory of the phase rigidity is expected to produce specific
signatures on the CCCs, which will be the subject of a future
work. Perspectives also include generalization to Josephson
junction arrays [48,51,87–89].
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APPENDIX: SYMMETRIES

In this Appendix, we show how the symmetries consider-
ably reduce the computation times if the current flowing from
SL to SR in the horizontal direction is specifically evaluated.
Namely, we demonstrate that the symmetries

ϕT , ϕB = 0 or π and ϕL = −ϕR ≡ ψ (A1)

are equivalent to vanishingly small supercurrent transmitted
into the top and bottom superconductors ST and SB; i.e.,
(A1) implies that ST and SB are superconducting mirrors.
The condition (A1) also implies that opposite supercurrents
are transmitted into SL and SR connected on the left and
right edges of the rectangular normal-metallic conductor N0.
Conservation of the supercurrent between SL and SR in the
horizontal direction is thus automatically fulfilled. Now, we
demonstrate those statements.

Equations (32) and (33) become

�
(Left)
loc (y) = − (�(1) )2

W
eiϕ(0)

L eiBLy/2
′
0 e2iBya0/


′
0 , (A2)

�
(Right)
loc (y) = − (�(1) )2

W
eiϕ(0)

R e−iBLy/2
′
0 e−2iBya0/


′
0 , (A3)

where we use the notation xR/L = ±L/2. We obtain

�
(Left)
loc (y) = (

�
(Right)
loc

)∗
(y) (A4)

if eiϕ(0)
L = e−iϕ(0)

R , i.e., if ϕL = −ϕR ≡ ψ ; see the condition
(A1).

Conversely, the substitution x → ∼
x = −x leads to

�
(Top)
loc → ∼

�
(Top)

loc and �
(Bottom)
loc → ∼

�
(Bottom)

loc in Eqs. (34) and
(35), with

∼
�

(Top)

loc (x) = − (�(1) )2

W
eiϕ(0)

T e−iBW x/2
′
0 e−2iBxa0/


′
0 , (A5)

∼
�

(Bottom)

loc (x) = − (�(1) )2

W
eiϕ(0)

B eiBW x/2
′
0 e2iBxa0/


′
0 , (A6)

where we used the notation yT,B = ±W/2.

We deduce the following:
∼
�

(Top)

loc = (
�

(Top)
loc

)∗
, (A7)

∼
�

(Bottom)

loc = (
�

(Bottom)
loc

)∗
(A8)

if both eiϕ(0)
B and eiϕ(0)

T are real valued, i.e., if ϕ
(0)
B , ϕ

(0)
T = 0 or

π ; see the condition (A1).
Now, we discuss the consequences for the supercurrents

flowing across the normal-metallic conductor N0. At the low-
est order in tunneling, the typical combinations

�
(Left)
loc (y)

(
�

(Bottom)
loc (x)

)∗
(A9)

and

�
(Right)
loc (y)

(
�

(Bottom)
loc (x)

)∗
(A10)

control the DC-Josephson effect between the left/bottom and
the right/bottom superconducting leads. The identity

�
(Left)
loc (y)

(
�

(Bottom)
loc (x)

)∗ = [
�

(Right)
loc (y)

(
�

(Bottom)
loc (−x)

)∗]∗

(A11)

leads to opposite values for the supercurrents transmitted from
left to bottom and from right to bottom if the condition (A1)
is fulfilled, since the corresponding superconducting phase
differences are opposite.

We conclude that the mirror-axis symmetry x → ∼
x = −x

leads to vanishingly small value for the sum IL→B + IR→B of
the supercurrents IL→B (from left to bottom) and IR→B (from
right to bottom), i.e., IL→B + IR→B = 0. Similarly, we find
IL→T + IR→T = 0 for the sum of the supercurrents from left
to top and from right to top.

Using the form of the Bethe-Salpeter equations suitable to
Andreev tubes (see for instance Refs. [69,70] for the Andreev
tubes), this perturbative argument can be extended to all or-
ders in the tunneling amplitudes �(1) connecting the normal
region N0 to each of the superconducting leads; see Eq. (5) for
the notation �(1).

In Sec. III of the main text, the three- and four-terminal
calculations with a single or two superconducting mirrors
respectively are realized with identical value for all of the
tunneling amplitudes between the normal region N0 and the
superconductors. The symmetry condition (A1) is then au-
tomatically fulfilled and the energy minimum is within the
discrete set ϕT , ϕB = 0 or π . Scanning those restricted val-
ues of ϕT and ϕB (as it was the case in the above Sec. III)
allows for considerable gain in the computation time with
respect to looking for the energy minimum in the entire
[0, 2π ]×[0, 2π ] intervals.
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