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Abstract
Providing high quality solutions is crucial when solving NP-hard time-extended

multi-robot task allocation (MRTA) problems. Reoptimization, that is, the concept of

making use of a known solution to an optimization problem instance when the solu-

tion to a similar problem instance is sought, is a promising and rather new research

field in this application domain. However, so far no approximative time-extended

MRTA solution approaches exist for which guarantees on the resulting solution’s

quality can be given. We investigate the reoptimization problems of inserting as well

as deleting a task to/from a time-extended MRTA problem instance. For both prob-

lems, we can give performance guarantees in the form of an upper bound of 2 on

the resulting approximation ratio for all heuristics fulfilling a mild assumption. We

furthermore introduce specific solution heuristics and prove that smaller and tight

upper bounds on the approximation ratio can be given for these heuristics if only

temporal unconstrained tasks and homogeneous groups of robots are considered. A

conclusory evaluation of the reoptimization heuristic demonstrates a near-to-optimal

performance in application.
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1 INTRODUCTION

Multi-robot systems have gained increasing attention in recent years within various application domains including agricul-

ture [30], cleaning work [14] and planetary exploration [28, 29]. For the success of these systems, a purposeful coordination of

the robotic team is essential. To address the coordination problem, multi-robot task allocation (MRTA) solves the combinato-

rial optimization problem of defining which task to allocate to which robot, given a set of tasks and a set of robots to perform

these tasks [16, 20]. If the scheduling of the tasks is also sought, so called time-extended MRTA problems arise. Time-extended

MRTA problems are NP-hard [16], which makes the determination of exact solutions untraceable for larger problem instances.

Therefore, literature reports a plethora of heuristic and meta-heuristic solution approaches for solving these kinds of problems

in a centralized manner including for example, genetic algorithms [21], memetic algorithms [24] or local search [6].

Besides solving time-extended MRTA optimization problems from scratch, the concept of reoptimization, that is, reusing

a solution to an optimization problem instance to solve a slightly modified problem instance, has recently gained attention

for application to MRTA problems [7, 17]. The usage of reoptimization techniques seems especially promising in application
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2 BISCHOFF ET AL.

domains where changes in the problem instance may occur. This may for example be the case in automated warehouses, when

an order is canceled or additional orders arrive. Also in application domains in which the tasks to be performed by the robotic

team are defined by a human operator, as this is for example the case in planetary exploration [28, 29], it can occur that

the operator adds or deletes tasks after a solution to the initial coordination problem had already been computed. In such

cases, the initially determined solution might still contain information relevant for the modified problem instance such that

using reoptimization instead of optimization techniques can be beneficial w.r.t. calculation time or recognizability of the initial

solution.

No matter whether optimization or reoptimization techniques are used, they are only relevant for practical application,

if they consider all constraints of the MRTA problem instance and meet application specific quality requirements. Solutions

not considering all constraints might not be executable in practice and highly sub-optimal solutions can be associated with

significantly increased mission duration, energy consumption and/or other costs. Therefore, efficient solution approaches for

which guarantees on the resulting solution quality can be given, are desirable. To the best of our knowledge, no approximative

time-extended MRTA solution approach with proven guarantees on the solution quality exists.

In this article, we investigate reoptimization both for inserting a new task into an initial solution as well as deleting a task

out of an initial solution to time-extended MRTA problems. For both modifications, we derive guarantees on the resulting

solution quality in the form of upper bounds on the resulting approximation ratios, that is, the ratio between the costs of the

solution generated by the heuristic reoptimization and the costs of a globally optimal solution of the same problem instance.

In order to account for a variety of application areas, we conduct this analysis both for homogeneous groups of robots as well

as for heterogeneous groups w.r.t. driving velocity and task capabilities. Furthermore, we also consider MRTA problems with

precedence and synchronization constraints between tasks.

1.1 Related work
Reoptimization in the context of MRTA is a rather new field of research and to the best of our knowledge so far only few

solution approaches exist. For unmanned underwater vehicles Giger [17] introduced a replanning framework based on a genetic

algorithm for reassigning tasks. However, only homogeneous groups of agents were considered. In [7] Bischoff et al. proposed a

reoptimization framework for time-extended MRTA problems considering heterogeneous groups of robots and timely ordering

constraints. The framework is based on a genetic algorithm and studies various problem instance modifications like adding and

deleting a task, robot, or timely constraint. For both approaches however, no guarantees on the resulting solution quality are

given.

More research in reoptimization has been conducted in the area of the vehicle routing problem (VRP), a coordination

problem related to time-extended MRTA problems. It is defined on weighted graphs in which for each vehicle a circuit (route)

through the graph must be found such that all customer nodes are visited exactly once. The reoptimization problem in this area,

the so-called dynamic vehicle routing problem (DVRP), strives to incorporate dynamically arising problem modifications online

into the existing routing plan. DVRPs with various characteristics have been studied, including the consideration of differing

transportation modes, varying logistical contexts like pickup and/or delivery problems, the consideration of application specific

constraints, different modifications like the insertion of new customer requests or changes in travel time, and others [27]. A

great variety of solution methods for these NP-hard problems [27] has been proposed including tabu search [15, 22], genetic

algorithms [1], local search approaches [23], particle swarm optimization [19] and insertion heuristics [13]. Nevertheless, for

all of the above approaches guarantees on the resulting solution quality are either impossible to give due to the nature of the

applied metaheuristics or have not been investigated by the research.

In contrast to this, reoptimization heuristics with guarantees on the resulting solution quality have already been studied for

the traveling salesman problem (TSP), that is, the problem of optimally routing one mobile entity to visit all nodes within a

graph exactly once at minimal costs. The TSP correlates to the special case of a time-extended MRTA with only one robot

which has to perform all given tasks. The guarantees on the solution quality are given in the form of upper bounds on the

resulting approximation ratios. Archetti et al. [2] proved the TSP reoptimization problems of adding a task to remain NP-hard.

They studied the so-called cheapest insertion procedure to insert an additional task to the prior solution and proved the resulting

approximation ratio to be bounded above by 3∕2 in the case of metric distances. The same reoptimization problem was studied

by Aussiello et al. [3, 4]. In [4], they proposed a new heuristic which chooses the best solution between the one generated by

the Christofides algorithm and the cheapest insertion procedure and proved it to lead to a guaranteed approximation ratio of

4∕3. Another composed reoptimization heuristic with lower complexity leading to the same guaranteed approximation ratio

was later presented by Monnot [26]. The deletion of a node has also already been studied for the TSP. Archetti et al. [2]

prove the corresponding reoptimization problem to be NP-hard. They introduce a deletion heuristic and guarantee the resulting

approximation ratio to be bounded above by 3/2 for metric and symmetric edge costs. In the case of asymmetric edge costs,

Ausiello et al. [3] prove the approximation ratio to be bounded above by 2. Besides the reoptimization problem of inserting or
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BISCHOFF ET AL. 3

deleting a task of a TSP problem instance, also reoptimization heuristics with guarantees on the solution quality for changing

single or multiple edge weights have been investigated [5, 8–10]. Furthermore, reoptimization approaches for the TSP with

deadlines have also been studied [8, 10–12].

Despite these promising theoretical insights into heuristic reoptimization allowing for guaranteed worst-case approximation

ratios when applied to the TSP, so far no performance guarantees can be given when reoptimization is applied to routing

and scheduling problems considering more than one mobile entity, including a group of mobile entities with heterogeneous

capabilities and heterogeneous tasks.

1.2 Our contribution
In this article, we investigate heuristic reoptimization solutions to the time-extended MRTA reoptimization problems of inserting

and deleting a task and focus on theoretical insights on worst-case performance ratios. We consider an optimal solution to a

time-extended MRTA problem instance to be known. A problem instance and its solution are modeled graph-based where tasks

and initial robot positions are represented by nodes. For modeling the reoptimization problems, we add a node representing the

new task to the respective initial problem instance or delete a node out of the initial problem instance respectively and search

for a solution to the associated modified problem instances.

For the task insertion problem, we derive a condition under which we can guarantee an upper bound of 2 on the approxi-

mation ratio. This guarantee holds independently of the applied reoptimization heuristic, as long as the respective condition is

fulfilled. We then introduce and investigate the cheapest maximum cost insertion heuristic, a modification of the cheapest inser-

tion heuristic to become expressive and applicable for the MRTA problems under consideration, and prove it to always fulfill

the condition an thus to guarantee the respective approximation ratio. Three MRTA problem configurations are introduced, dif-

fering in whether heterogeneous groups of robots and temporal task constraints are considered. For temporally unconstrained

problem instances smaller upper bounds on the approximation ratios are derived, the smallest one being 3/2 for homogeneous

groups of robots. We furthermore prove the given bounds to be tight, meaning that no smaller upper bounds for the respective

heuristics exist.

For the task deletion reoptimization problem, we prove the approximation ratio to be bounded above by 2 under weak

assumptions. To solve the reoptimization problem, we apply a simple task deletion heuristic, for which we prove the bound to

be tight. For the special case of homogeneous robots and a common depot, we guarantee the approximation ratio to be bounded

above by 3∕2. The proposed reoptimization heuristics are examined in simulation which reveals on the one hand that the worst

case guarantees are satisfied and on the other hand that the approximation ratios in the evaluated scenarios are even much lower

than the worst case guarantees.

The article is structured as follows: In Section 2, we give a formal definition of the underlying MRTA optimization problem

and of the considered reoptimization problems. In Sections 3 and 4, we present our main contributions: In Section 3, we

derive a generally valid upper bound of 2 on the approximation ratio for the MRTA task insertion problem under a weak

assumption. Thereafter, we introduce and analyze a specific reoptimization heuristic for which we subsequently derive even

smaller upper bounds on the approximation ratio if temporally unconstrained MRTA reoptimization problems are considered.

In Section 4 the respective analysis is conducted for the MRTA task deletion problem. This includes generally valid results

on the approximation ratio as well as an analysis of a proposed heuristic. The results of the practical investigation are given

in Section 5.

2 PROBLEM DEFINITION

In this section, the general heterogeneous MRTA optimization problem and the notation used throughout the article is presented,

followed by the definition of the reoptimization problem and its different configurations under consideration.

2.1 Heterogeneous MRTA optimization problem
In an instance  = {T ,, S,V ,  ,A,P,G} of the the heterogeneous MRTA problem, a set of tasks T = {t1, … , tN}, N ∈ N,

is to be conducted by a heterogeneous set of mobile robots  = {r1
, … , rK}, K ∈ N. Each robot rk ∈  starts and ends

its route at its individual depot sk ∈ S = {s1
, … , sK} and moves with a constant individual velocity vk ∈ R>0

, that is,

V = {v1
, … , vK} defines the set of robot’s velocities. The problem is defined on a complete graph  = ( , ) where the set

of nodes  = T ∪ S contains all task nodes and robot depots. The edges  are associated with metric edge costs described by

distances 𝑑 ∶  ×  → R≥0
. The set of task durations  = {𝜏1, … , 𝜏N}, 𝜏i ∈ R≥0 ∀𝜏i ∈  , defines for each task a base

task duration. Taking into account a capability ak
i ∈ [0, 1] ⊂ R for every robot rk ∈ , that is, A =

{
ak

i
||ti ∈ T , rk ∈ 

}
, a
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4 BISCHOFF ET AL.

robot-dependent task duration 𝑑
k
i follows. It is given by 𝑑

k
i = 𝜏i∕ak

i if ak
i > 0 and is set to 𝑑

k
i = ∞ elsewise. Analogously, a

robot dependent edge cost 𝑑
k
i,j = 𝑑(i, j)∕vk

resembling the driving time needed by robot rk ∈  to cover the distance 𝑑(i, j) can

be defined. The heterogeneity of the robotic team is thereby described by the set of velocities V and the set of robot-dependent

task capabilities A.

Furthermore, the order of task execution can be timely constrained. The set of precedence constraints P contains all con-

straints pi,j ∈ {0, 1}, i, j ∈ T , i ≠ j, where pi,j = 1 determines that task tj must not start before task ti has been finished. The

elements gi,j ∈ {0, 1}, i, j ∈ T , i ≠ j, of the synchronization set G constrain the execution of tasks ti and tj, for which gi,j = 1

holds, to start simultaneously. The optimization objective is to determine a robot-task allocation and task sequence respect-

ing all constraints and minimizing the weighted sum of task execution, driving and waiting times. A solution to an MRTA

problem is defined by the routing and timing information contained in the set X =
{

xk
i,j
|||i, j ∈  , k ∈ {1, … ,K}

}
∪{ zi|i ∈ },

xk
i,j ∈ {0, 1}, zi ∈ R≥0

. The binary decision variables xk
i,j are equal to one if the edge (i, j) lies on route of robot rk

and are zero

elsewise. For the task nodes  , the real valued decision variables zi denote the starting time of task i ∈ T , and for the depots,

zsk , denotes the time the robot rk
leaves its depot sk ∈ S.

Using these definitions, the sum of driving times c𝑑

(X) is given by c𝑑


(X) =

∑
rk∈

∑
i∈

∑
j∈ 𝑑

k
i,jxk

i,j, the sum of task

execution times ce

(X) is determined by ce


(X) =

∑
rk∈

∑
i∈T

(
𝑑

k
i
∑

j∈ xk
i,j

)
and the sum of waiting times cw


(X) can be calculated

by cw

(X) =

∑
rk∈

∑
i∈

∑
j∈T xk

i,j
(
zj − zi − 𝑑k

i − 𝑑k
i,j
)
. However, this determination of the waiting times cw


(X) is nonlinear. In

order to obtain a linear model, additional decision variables wi,j ∈ R≥0
, ∀ i, j ∈  , representing the waiting time between two

nodes i and j, are introduced. Thus, cw

(X) can be linearly expressed as cw


(X) =

∑
i∈

∑
j∈ wi,j.

With these definitions in place, a linear mixed-integer optimization problem results, representing the heterogeneous MRTA

problem with synchronization and precedence constraints. A 3-index flow formulation is used to formulate the respective

optimization problem.

Problem 1 (heterogeneous MRTA optimization problem). For a given problem instance , the optimization

problem to be solved is given by

min
X

J = min
X

{∑

rk∈

∑

i∈

∑

j∈
𝑑

k
i,jxk

i,j

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

∶=c𝑑

(X)

+ 𝛾
∑

rk∈

∑

i∈T

(

𝑑

k
i
∑

j∈
xk

i,j

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=ce

(X)

+ 𝜖
∑

i∈

∑

j∈
wi,j

⏟⏞⏞⏟⏞⏞⏟

∶=cw

(X)

}
, (1)

subject to

∑

k∈{1,… ,K}

∑

i∈
xk

i,j = 1, ∀ j ∈  , (2a)

∑

i∈
xk

i,sk = 1, ∀ k ∈ {1, … ,K}, (2b)

∑

k∈{1,… ,K}
xk

i,i = 0, ∀ i ∈ T , (2c)

∑

i∈
xk

i,j =
∑

i∈
xk

j,i, ∀ j ∈  , k ∈ {1, … ,K}, (2d)

wij ≥ zj − zi −
∑

k∈
xk

ij
(
𝑑

k
i + 𝑑k

ij
)
−

(

1 −
∑

k∈
xk

ij

)

Tmax, ∀i ∈  , j ∈  , (2e)

zj − zi −
∑

k∈
xk

i,j
(
𝑑

k
i + 𝑑k

i,j
)
≥

(
∑

k∈
xk

i,j − 1

)

Tmax, ∀ i ∈  , j ∈  , (2f)

pi,j

(

zi +
∑

k∈{1,… ,K}

∑

l∈

(
xk

i,l𝑑
k
i
)
− zj

)

≤ 0, ∀ i, j ∈ T , (2g)

gi,j
(
zi − zj

)
= 0, ∀ i, j ∈ T , (2h)

xk
i,j ∈ {0, 1} ∀ i, j ∈  , k ∈ {1, … ,K}, (2i)

zi ∈ R
≥0 ∀ i ∈  , (2j)

wi,j ∈ R
≥0
, ∀ i, j ∈  , (2k)
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BISCHOFF ET AL. 5

The objective function J to be minimized (1) comprises three parts, which are the sum of all driving times c𝑑

(X), the

sum of all robot-dependent task execution times ce

(X) and the sum of all waiting times cw


(X) associated with a solution X.

The parameters 𝛾 ∈ R≥0
and 𝜖 ∈ R≥0

can be used to weight the execution and waiting times on the objective function value

relatively to the driving times. This can for example be desirable in applications where waiting times are associated with less

energy consumption. Constraint (2a) ensures that the robot’s routes visit all nodes exactly once, constraint (2b) forces the routes

of all robots to drive into their depot, constraint (2c) inhibits loops in task nodes and constraint (2d) ensures that robots’ routes

leave all nodes they visit.

If an edge (i, j) lies on the route of any robot, that is,
∑

k∈ xk
i,j = 1, constraint (2e) ensures that the waiting time between

the two nodes cannot become smaller than the starting time of task tj minus the sum of the starting time of node i, it’s

robot-dependent duration of execution and the driving time to task tj. In case edge (i, j) is not taken by any robot, that is,∑
k∈ xk

i,j = 0, a sufficiently large choice of the constant Tmax ensures wi,j to be bounded below by a negative value which

becomes negligible due to constraint (2k). In the same way, equations (2f) and (2j) ensure the consistency of starting times.

Constraints (2g) and (2h) ensure the fulfillment of the precedence and synchronization constrains, respectively. Constraint (2i)

ensures the routing variables to be binary and non-negative starting and waiting times are assured by constraints (2j) and (2k),

respectively.

We denote an optimal solution of a problem instance  by X∗

∶= arg min J(X) and the associated optimal value of the

objective function by J∗

∶= J

(
X∗


)
.

2.2 MRTA task insertion reoptimization problem
The MRTA task insertion problem we are investigating in this article is, given an optimal solution X∗


to an initial problem

instance , how to use this solution to solve a related problem instance 
+

in which an additional task tN+1 has to be

considered.

Problem 2 (MRTA task insertion reoptimization problem). We are given an initial MRTA problem instance 

according to Problem 1 and an optimal solution X∗

. The modified problem instance 

+
is given by 

+ ={
T+,, S,  +,V ,A+,P+,G+}

, where T+ = T ∪ {tN+1},  + =  ∪ {𝜏N+1}, A+ = A ∪
{

a1

N+1
, … , aK

N+1

}
,

P+ = P ∪
{

pi,N+1 = pN+1,i = 0||∀ ti ∈ T
}

and G+ = G ∪
{

gi,N+1 = gN+1,i = 0||∀ ti ∈ T
}

, that is, the modified

problem instance 
+

contains an additional temporarily unconstrained task tN+1 compared to the initial problem

instance . The task insertion reoptimization problem aims at finding a solution XR
+ to the modified problem

instance 
+

by inserting the task tN+1 to the optimal solution of the initial problem instance X∗


such that the result-

ing modified solution XR
+ fulfills all constraints according to equations (2) of the modified problem instance 

+

and optimizes objective function (1).

2.3 MRTA task deletion reoptimization problem
Besides the consideration of an additional task, we furthermore consider the MRTA reoptimization problem of deleting

an task out of the initial problem instance, that is, given an optimal solution X∗


to an initial problem instance , how to

use this solution to solve a related problem instance 
−

which differs from the initial instance by containing exactly one

task less.

Problem 3 (MRTA task deletion reoptimization problem). We are given an initial MRTA problem instance 

according to Problem 1 and an optimal solution X∗

. The modified problem instance 

−
is given by 

− =
{T−,, S,  −,V ,A−,P−,G−}, where the modified problem instance 

−
differs from the initial problem instance 

by one missing task tq, that is, T− = T ⧵ {tq} with tq ∈ T , 
− =  ⧵ {𝜏q}, A− = A ⧵

{
a1

q, … , aK
q
}

,

P− = P ⧵
{

pi,q, pq,i||∀ i ∈ T
}

and G− = G ⧵
{

gi,q, gq,i||∀ i ∈ T
}

. The aim of the task deletion reoptimization

problem is finding a solution XR
− to the modified problem instance 

−
by modifying the optimal solution of the

initial problem instance such that the resulting modified solution XR
− does not contain the deleted task tq and

fulfills all constraints according to equations (2) of the modified problem instance 
−

and optimizes objective

function (1).

3 REOPTIMIZATION OF THE MRTA TASK INSERTION PROBLEM

In this section, we study the MRTA task insertion reoptimization problem and investigate bounds on the worst-case perfor-

mance of reoptimization heuristics. These bounds are given by a guaranteed maximum approximation ratio, that is, the ratio
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6 BISCHOFF ET AL.

between the objective function values of the approximate reoptimized solution and the optimal solution to the modified problem

instance 
+

. We prove that any task insertion solution approach that fulfills a certain assumption, leads to an approximation

ratio bounded above by 2. We introduce the cheapest maximum cost insertion heuristic (CMI) which we prove to fulfill the

respective assumption. Subsequently, we analyze the application of the CMI to temporally unconstrained MRTA reoptimization

problems and prove reduced worst case approximation ratios.

3.1 Analysis of an solution heuristic independent performance guarantee for the MRTA task
insertion reoptimization problem
Given an optimal solution X∗


to the initial problem instance , any MRTA task insertion reoptimization approach that uses the

initial solution X∗


to solve the modified problem instance 
+

, will yield a reoptimized solution XR
+ that adds a heuristic- and

problem instance dependent, non-negative cost increase Δ+ ≥ 0 to the optimal costs J∗


of the initial problem instance, that is,

JR
+ = J∗


+ Δ+. (3)

Depending on the specific reoptimization method used to solve the task insertion reoptimization problem, the cost increment

Δ+ resulting from the application of the respective method to a reoptimization problem instance may differ. For the following

analysis we assume the cost incrementΔ+ to have a value at most as high as the costs J∗
+ of the optimal solution to the modified

problem instance.

Assumption 1. Let the cost inclement Δ+ resulting from solving the MRTA task insertion reoptimization problem
according to Problem 2 be bounded above by the costs J∗

+ of an optimal solution to the modified problem instance,
that is,

Δ+ ≤ J∗
+ . (4)

We now prove that for any reoptimization solution approach solving an instance of the MRTA task insertion problem such

that Assumption 1 holds, performance guarantees can be given according to the following Theorem.

Theorem 1. For any MRTA task insertion reoptimization heuristic solving an instance of Problem 2 such that
Assumption 1 holds, the resulting approximation ratio 𝛼 = JR

+∕J∗
+ cannot become greater than 2, that is,

𝛼 =
JR
+

J∗
+
≤ 2. (5)

Proof. It holds that, since the modified problem instance 
+

only differs from the initial problem instance  by

having one additional task tN+1, the unknown costs J∗
+ of an optimal solution to the modified problem instance

cannot be smaller than the costs J∗


of the optimal solution of the initial problem instance,

J∗
+ ≥ J∗


. (6)

Thus, it holds for the approximation ratio

𝛼 =
JR
+

J∗
+
=

J∗

+ Δ+

J∗
+

≤ 2.

▪

Remark. We note that the performance guarantee given by Theorem 1 is independent of the specific reoptimization

approach used to solve an MRTA task insertion reoptimization problem instance. Any reoptimization method ful-

filling Assumption 1 for an specific reoptimization problem instance cannot yield an reoptimization solution XR
+

having costs JR
+ of more than twice the costs J∗

+ of an optimal solution to the modified problem instance 
+

.

In the next sections we will introduce and analyze a specific heuristic to solve the MRTA task insertion reoptimization

problem.

3.2 Cheapest maximum cost insertion heuristic
We introduce a heuristic solution called the cheapest maximum cost insertion heuristic (CMI) to solve the MRTA task insertion

reoptimization problem (Problem 2). It is inspired by the cheapest insertion heuristic which was proposed by Archetti et al. [2]

for the TSP and chooses to insert the new task to the initial solution such that the resulting cost increment, that is, objective

function value increment, is minimized. While the cheapest insertion heuristic is based on the determination of the exact cost

increment, the CMI uses an overapproximation of the cost increase associated with inserting the new task tN+1 on an edge of

an robot’s route of the initial solution.
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BISCHOFF ET AL. 7

This is due to the fact that precedence and synchronization constraints can be present within a MRTA problem instance,

which may cause waiting times cw

≠ 0 that influence the objective function (1). These waiting times must therefore be incor-

porated when determining the cost increment. Even though the task added tN+1 is not associated with any ordering constraint,

the tasks following within the same route might have to consider precedence or synchronization constraints and their temporal

shifts can therefore cause an increase in waiting times in the routes of other robots. In the same manner, the temporal task shifts

caused by these additional waiting times might cause further additional waiting times and associated task starting time shifts

within the routes of even more robots. This effect makes the exact determination of exact insertion costs much more challenging

which is why we propose a less complex overestimation of the insertion costs called the maximum insertion costs Δi,j,k
max. Using

these, the CMI is defined as follows:

Definition 1 (cheapest maximum cost insertion heuristic (CMI)). The cheapest maximum cost insertion heuristic
applied to MRTA reoptimization problems of adding a task tN+1 to the optimal solution X∗


of an initial problem

instance is given by:

1. For each edge (i, j) that is part of the route of any robot k in the optimal solution of the initial problem instance X∗

,

that is, ∀
{
(i, j, k)|||x

k
i,j ∈ X∗


∧ xk

i,j = 1

}
calculate the maximum insertion costs Δi,j,k

max, that is, the maximum cost
increment resulting from the insertion of the new task tN+1 on the respective edge of the respective robot’s route.

2. Insert the task tN+1 on the route of robot ̂k between the nodes 𝚤 and 𝚥 which correspond to the minimum of the
above determined maximum insertion costsΔi,j,k

max. The resulting optimal maximum insertion costsΔ∗max are given
by

Δ∗max = Δ𝚤,𝚥,
̂k

max ∶= min{
(i,j,k)|||x

k
i,j∈X∗


∧xk

i,j=1

}Δ
i,j,k
max. (7)

The maximum insertion costs Δi,j,k
max of inserting the new task tN+1 on an edge of a robot’s route in the initial solution X∗



take into account the resulting additional driving and task execution times as well as the maximum additional waiting times that

might result. To determine the overestimation of the waiting times, we consider the initial solution X∗


and let 𝛽j ∈ {1, … ,K}
be the number of routes that might be affected by a temporal shift of task j, j ∈ T . This implies that the temporal shift of task j
might in the worst case cause additional waiting times of the same amount as the initial temporal shift of task j in the routes of

𝛽j−1 robots other than the one task j is assigned to. Consequently, the maximal insertion cost resulting from inserting task tN+1

on edge (i, j) in the route of robot k is given by the additional driving and task execution times for robot k which are associated

with this insertion plus the same amount of waiting time in at most 𝛽j − 1 routes, that is,

Δi,j,k
max =

{
𝑑

k
i,N+1

+ 𝑑k
N+1,j − 𝑑k

i,j + 𝛾𝑑k
N+1

+ 𝜖
(
𝛽j − 1

)(
𝑑

k
i,N+1

+ 𝑑k
N+1,j − 𝑑k

i,j + 𝑑k
N+1

)
if ak

i ≠ 0

∞ if ak
i = 0

=
⎧
⎪
⎨
⎪
⎩

𝑑(i,tN+1
)

vk + 𝑑(tN+1
,j)

vk − 𝑑(i,j)
vk + 𝛾 𝜏N+1

ak
N+1

+ 𝜖
(
𝛽j − 1

)(
𝑑(i,tN+1

)
vk + 𝑑(tN+1

,j)
vk − 𝑑(i,j)

vk + 𝜏N+1

ak
N+1

)
if ak

N+1
≠ 0

∞ if ak
N+1

= 0

∀
{
(i, j, k)|||x

k
i,j ∈ X∗


∧ xk

i,j = 1

}
.

(8)

Remark. Since the cheapest maximum insertion cost heuristic chooses the edge on which to insert the new task

based on a potential overestimation of the actual cost increment, that is,Δ∗max ≥ Δ+, the cost of the solution resulting

from the application of the maximum insertion cost heuristic JCMI

+ is bounded above by

JCMI

+ ≤ J∗

+ Δ∗max. (9)

Remark–Determination of 𝛽: Consider the directed graph ̃X∗


=
(
 , ̃EX∗



)
which can be obtained easily from the initial

solution X∗


and the initial problem instance . The node set  = T ∪ S contains the set of tasks T and the set of depots S.

The arcs ̃EX∗


are determined by the initial solution X∗


and the synchronization and precedence constraints within the problem

instance , that is,

̃EX∗


=
{
(i, j)|||

{
∃k ∈ K ∶ xk

i,j ∈ X∗

∧ xk

i,j = 1
}
∨
{

pi,j ∈ P ∧ pi,j = 1
}
∨
{

gi,j ∈ G ∧ gi,j = 1
}}

.

Then 𝛽i, ∀i ∈ T , is is given by the number of robots k ∈  for which there exists a path from task i to the robot’s depot sk within

the digraph ̃X∗


, that is,

𝛽i =
|||
{

k ∈  ∶ ∃ path(i, … , sk)in ̃X∗


}|||,

and can for example be determined using a backwards breadth first search within the graph ̃X∗


.
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8 BISCHOFF ET AL.

In the next section, we start the analysis of the worst-case approximation ratios resulting from the application of the CMI to

MRTA task insertion reoptimization problems with an assumption and a relevant assertion.

In order to analyze the performance of the above defined CMI reoptimization heuristic, we make the following assumption:

Assumption 2. A feasible solution to the MRTA reoptimization problem given according to Problem 2 can be found
by the application of the cheapest maximum insertion cost heuristic.

Assumption 2 ensures that the application of the CMI heuristic leads to a solution XCMI

+ that fulfills all constraints of the

heterogeneous MRTA optimization problem instance 
+

as given by equations (2). Assumption 2 is fulfilled if at least one of

the robots k ∈  is capable to perform task tN+1, that is, ∃ k ∈ : ak
N+1

> 0.

3.3 Performance guarantee for the Cheapest Maximum Insertion Cost Heuristic
For the analysis of the approximation ratios resulting from the application of the previously introduced CMI heuristic, the

following Lemma will be relevant.

Lemma 1. When a node tN+1 is inserted on edge (i, j) ∈  , it holds for the distances that

𝑑(i, tN+1) + 𝑑(tN+1, j) − 𝑑(i, j) ≤ 2𝑑(i, tN+1). (10)

Proof. Since metric distances are considered, the triangle inequality 𝑑(tN+1, j) ≤ 𝑑(tN+1, i) + 𝑑(i, j) holds. Together

with the symmetry of the distances, that is, 𝑑(tN+1, i) = 𝑑(i, tN+1), the assertion follows, that is:

𝑑(tN+1, j) ≤ 𝑑(tN+1, i) + 𝑑(i, j) ⇔ 𝑑(tN+1, j) + 𝑑(tN+1, i) − 𝑑(i, j) ≤ 2𝑑(tN+1, i)
⇔ 𝑑(tN+1, j) + 𝑑(tN+1, i) − 𝑑(i, j) ≤ 2𝑑(i, tN+1) ▪

We now prove the CMI to always fulfill Assumption 1 and thus to guarantee the resulting approximation ratio to be bounded

above by 2.

Theorem 2. Let Assumption 2 hold. Solving the MRTA task adding reoptimization problem, Problem 2, by the
application of the cheapest maximum insertion cost heuristic with the maximum insertion costs as defined in (8)
leads to an approximation ratio

𝛼 =
JCMI

+

J∗
+
≤ 2. (11)

Proof. Consider the optimal solution X∗
+ of 

+
. Within X∗

+ , the task tN+1 is assumed to be allocated to robot k∗ ∈
. Then the objective function value J∗

+ of the unknown optimal solution X∗
+ can be written as

J∗
+ = 𝜙⧵rk∗ + 𝜙rk∗ (12)

where 𝜙rk∗ denotes the costs of the route of robot k∗ and 𝜙⧵rk∗ denotes the sum of the costs of the routes of all

other robots. Since robot k∗ is at least assigned to task tN+1, its route starts and ends at its depot sk∗
and the triangle

inequality holds for the distances 𝑑, we know that

𝜙rk∗ ≥ 2
𝑑(sk∗ , tN+1)

vk∗ + 𝛾 𝜏N+1

ak∗
N+1

. (13)

Using the definition of the maximum insertion costs (8) and (7) as well as (10) from Lemma 1, it holds for the

optimum maximum insertion costs

Δ∗max

(10)
≤ 2

𝑑(tN+1, j)
vk + 𝛾 𝜏N+1

ak
N+1

+ 𝜖
(
𝛽j − 1

)(
2
𝑑(tN+1, j)

vk + 𝜏N+1

ak
N+1

)
∀
{
(j, k)|||∃xk

i,j ∈ X∗

∶ xk

i,j = 1

}
. (14)

Equation (14) holds for inserting task tN+1 on any edge (i, j) of the route of an robot k ∈  that was chosen in

the initial solution X∗

. Thus, it also holds for inserting task tN+1 as the last task before the depot into the route of

robot k∗, that is, for j = sk∗
and k = k∗. We know that inserting task tN+1 at this position cannot introduce additional

waiting times to the schedule of any other robot other than k∗ since there is no subsequent task in robot k∗’s route

with potential ordering constraints and therefore 𝛽sk∗ = 1. Inserting these values in (14) yields

Δ∗max ≤ 2
𝑑(tN+1, sk∗ )

vk∗ + 𝛾 𝜏N+1

ak∗
N+1

. (15)
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BISCHOFF ET AL. 9

Using (13) and (15), Δ∗max ≤ 𝜙rk∗ follows. Since Δ∗max potentially overestimates the actual insertion costs, that

is, Δ+ ≤ Δ∗max and according to (12) it furthermore holds that J∗
+ ≤ 𝜙rk∗ , we know that Assumption 1 (Δ+ ≤

J∗
+ ) is always fulfilled when an MRTA task insertion reoptimization problem instance is solved using the CMI.

Consequently, applying Theorem 1, the assertion follows. ▪

Proposition 1. For the the application of the CMI heuristic with the maximum insertion costs as defined in (8) to
the MRTA task adding reoptimization problem, Problem 2, the approximation ratio of 𝛼 ≤ 2 is a tight bound, that
is, no lower upper bound on the resulting approximation ratio exists.

Proof. To prove that 2 is the smallest possible upper bound on the approximation ratio resulting from the application

of the CMI heuristic to MRTA task insertion reoptimization problems, we give a MRTA reoptimization problem

instance for which the approximation ratio resulting from the CMI heuristic, 𝛼 = JCMI

+ ∕J∗
+ , is exactly 2. The

respective instance is depicted in Figure 1. It depicts an initial instance  with two robots with their depots s1
and

s2
and task 1 to execute. Robot 1 has a velocity of v1 = 1 while robot 2 has a velocity of v2 = 1∕2 and has half

the distance to cover to reach task 1 compared to robot 1. Both robots are fully capable to execute task 1, that is,

a1

1
= a2

1
= 1. Since both possible solutions to this instance, that is, either allocating task 1 to robot 1 or to robot 2,

have the same objective function value, one of them will be chosen by chance and it is assumed that robot 2 is

chosen to execute task 1 in the initial solution X∗

. In the modified instance 

+
, task 2 is added at the same position

as task 1. Since only robot 1 is capable of executing task 2, that is, a1

2
= 1 and a2

2
= 0, task 2 will be assigned to

robot 1 in the reoptimized solution. The optimal solution however would be to assign both tasks to robot 1 which

would lead to an optimal objective function value half as big as the one of the reoptimized solution, that is, the

resulting approximation ratio equals 𝛼 = 2. ▪

3.4 Consideration of temporal unconstrained MRTA task adding reoptimization problems
We now consider MRTA reoptimization problems without any precedence or synchronization constraints such that no waiting

times can arise in the solutions.

3.4.1 Considered problem configurations

To reveal the difference in performance guarantees for the reoptimization problem of adding a task to an MRTA problem

instance (Problem 2) depending on the properties of the MRTA instance, we introduce three problem configurations. They

differ with respect to the features of the corresponding MRTA problems as given in Table 1. The full problem configuration

considered so far is denoted by Pt,het and allows for the consideration of fully heterogeneous teams of robots as well as both

types of task ordering constraints, that is, precedence and synchronization constraints, and therefore imposes no restrictions on

the MRTA reoptimization problem (Problem 2). In contrast to this, the other configurations Phom and Phet assume tasks to be

unconstrained w.r.t. their order of task execution, that is, no precedence and synchronization constraints are considered. The

reoptimization problem with a heterogeneous group of robots Phet allows for robots that differ in both driving velocities as well

as task capabilities. The homogeneous MRTA reoptimization problem Phom however, considers a homogeneous group of robots

FIGURE 1 Example of an MRTA task insertion reoptimization instance with an approximation ratio of 2 for the application of the CMI heuristic.
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10 BISCHOFF ET AL.

TABLE 1 Problem configurations considered for reoptimization.

Assumptions on

Problem configuration Velocities V Task capabilities A Precedence constraints P Synchronization constraints G

Pt,het — — — —

Phet — — pi,j = 0, ∀pi,j ∈ P, pi,j ∈ P+ gi,j = 0, ∀gi,j ∈ G, gi,j ∈ G+

Phom vk = 1, ∀vk ∈ V ak
i = 1, ∀ak

i ∈ A, ak
i ∈ A+ pi,j = 0, ∀pi,j ∈ P, pi,j ∈ P+ gi,j = 0, ∀gi,j ∈ G, gi,j ∈ G+

w.r.t. driving velocities and task capabilities. We note that setting the homogeneous velocities and capabilities each to the value

one can be done without loss of generality, since any reasonable problem instance with homogeneous velocities and capabilities

can be transferred to this form by normalization.

The CMI used for the general task adding reoptimization problem Pt,het uses a potential overestimation of the waiting times

resulting from a task insertion for the determination of the smallest maximum insertion costs. However, when neither precedence

nor synchronization constraints have to be considered, as this is the case for problem configurations Phom and Phet, no waiting

times arise and for these configurations the maximum insertion costs Δi,j,k
max therefore resemble the actual insertion costs Δi,j,k

of

inserting the new task tN+1 on an edge (i, j) of the route of a robot k ∈ . In other words, the maximum number of routes that

can be affected by a temporal shift of any task i ∈ T is equal to one, that is, 𝛽i = 1 ∀i ∈ T . Using this equivalence in (8) yields

the actual insertion costs Δi,j,k
, which are given by

Phom,Phet ∶ Δi,j,k
max = Δi,j,k =

⎧
⎪
⎨
⎪
⎩

𝑑

k
i,N+1

+ 𝑑k
N+1,j − 𝑑k

i,j + 𝛾𝑑k
N+1

= 𝑑(i,tN+1
)

vk + 𝑑(tN+1
,j)

vk − 𝑑(i,j)
vk + 𝛾 𝜏N+1

ak
N+1

if ak
i ≠ 0

∞ if ak
i = 0

∀
{
(i, j, k)|||x

k
i,j ∈ X∗


∧ xk

i,j = 1

}
.

(16)

Remark. Since no overestimation of the insertion costs takes place if the CMI is applied to task insertion reoptimiza-

tion problems of configuration Phom or Phet, the optimal maximum insertion costs Δ∗max are equivalent to the actual

cost increase for problems of these configurations, that is, Phom,Phet ∶ Δ∗max = min{Δi,j,k|||x
k
i,j ∈ X∗


∧ xk

i,j = 1} =
Δ+.

3.5 Performance guarantees for temporal unconstrained MRTA task adding reoptimization
problems
We start the investigation of the performance of the CMI for MRTA task insertion reoptimization problems without syn-

chronization and precedence constraints by considering the configuration Phet with heterogeneous robotic teams. For that

purpose, the maximum and minimum velocity of the robots in the problem instance  are of interest. We denote them by

vmax ∶= max
{

vk ∈ V
}

and vmin ∶= min
{

vk ∈ V
}

, respectively. Furthermore, the maximum and minimum of the real valued

capabilities of the robots to perform the new task tN+1, denoted by amax

N+1
∶= max

{
ak

N+1
∈ A

}
and amin

N+1
∶= min

{
ak

N+1
∈ A

}

will be relevant. With these definitions in place, the following performance guarantee for the application of the CMI heuristic

to MRTA task insertion reoptimization problems of configuration Phet can be given.

Theorem 3. Let Assumption 2 hold. For the MRTA reoptimization problem with heterogeneous teams of robots
Phet, the application of the CMI with the insertion costs as defined in (16), leads to an approximation ratio

Phet ∶ 𝛼 =
JCMI

+

J∗
+
≤ min

{
3

2

vmaxamax

N+1

vminamin

N+1

, 2

}
. (17)

Proof. All problems of configuration Phet are a subset of problems of configuration Pt,het. Theorem 2 therefore also

holds for problems of configuration Phet, that is, the approximation ratio for configuration Phet is bounded above

by 2. We furthermore show that 𝛼 ≤
(
3vmaxamax

N+1

)
∕
(
2vminamin

N+1

)
holds.

Without loss of generality, we normalize the robots’ velocities and their capabilities to perform the new task

tN+1, as well as the distances and base task durations, that is,

vk ∶= vk

vmax
⇒ vmax = 1, vmin = vmin

vmax
and 𝑑(i, j) ∶= 𝑑(i, j)

vmax
(18)
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BISCHOFF ET AL. 11

ak
N+1

∶=
ak

N+1

amax

N+1

⇒ amax

N+1
= 1, amin

N+1
=

amin

N+1

amax

N+1

and 𝜏N+1 ∶=
𝜏N+1

amax

N+1

. (19)

Using the definition of the insertion costs (16) and Lemma 1, it follows

Δ∗ ≤ 1

vk

(
𝑑(i, tN+1) + 𝑑(tN+1, j) − 𝑑(i, j)

)
+ 𝛾 𝜏N+1

ak
N+1

∀
{
(i, j, k)|||x

k
i,j ∈ X∗


∧ xk

i,j = 1

}

(10)
≤

2𝑑(i, tN+1)
vk + 𝛾 𝜏N+1

ak
N+1

∀
{
(i, k)|||∃j ∈  ∶ xk

i,j ∈ X∗

∧ xk

i,j = 1

} (20)

≤
2𝑑(i, tN+1)

vmin
+ 𝛾 𝜏N+1

amin

N+1

∀ i ∈  . (21)

Let i∗ and j∗ be the predecessor and follower nodes of task tN+1 within the unknown optimal solution X∗
+ of 

+
,

where task tN+1 is, as previously, assumed to be allocated to robot k∗. Evaluating (21) for the nodes i∗ and j∗ yields

Δ∗ ≤ 𝑑(i∗, tN+1)
vmin

+ 𝑑(tN+1, j∗)
vmin

+ 𝛾 𝜏N+1

amin

N+1

. (22)

Within the optimal solution J∗
+ of 

+
, let 𝜑rk∗ (i∗, j∗) denote the costs of the route of robot k∗ without the part

between the nodes i∗ and j∗. Then J∗
+ can be written as

J∗
+ = 𝜙⧵rk∗ + 𝜑rk∗ (i∗, j∗) + 𝑑(i∗, tN+1)

vk∗ + 𝑑(tN+1, j∗)
vk∗ + 𝛾 𝜏N+1

ak∗
N+1

. (23)

We know that robot k∗ is assigned to task tN+1 in the optimal solution X∗
+ with task tN+1 being located between the

nodes i∗ and j∗. Since robot k∗ starts and ends its route at its depot and since the triangle inequality holds, we know

that 𝑑
k∗
i∗,j∗ ≤ 𝜑rk∗ (i∗, j∗) holds. Using this relation it follows that

J∗

≤ 𝜙⧵rk∗ + 𝜑rk∗ (i∗, j∗) + 𝑑k∗

i∗,j∗ ≤ 2
(
𝜙⧵rk∗ + 𝜑rk∗ (i∗, j∗)

)
. (24)

Equation (23) together with (24) yields

J∗
+ ≥

J∗


2
+ 𝑑(i∗, tN+1)

vk∗ + 𝑑(tN+1, j∗)
vk∗ + 𝛾 𝜏N+1

ak∗
N+1

. (25)

Let us now consider two cases to finish the proof:

CASE 1: 𝑑(i∗, tN+1) + 𝑑(tN+1, j∗) + 𝛾𝜏N+1 ≥
J∗


2

𝛼 =
J∗

+ Δ∗

J∗
+

(22),(25)
≤

J∗

+ 1

vmin

(
𝑑(i∗, tN+1) + 𝑑(tN+1, j∗)

)
+ 𝛾 1

amin

N+1

𝜏N+1

J∗


2
+ 1

vk∗

(
𝑑(i∗, tN+1) + 𝑑(tN+1, j∗)

)
+ 𝛾 1

ak∗
N+1

𝜏N+1

(26)

vmax=amax

N+1
=1

≤

J∗

+ 1

vmin

(
𝑑(i∗, tN+1) + 𝑑(tN+1, j∗)

)
+ 𝛾 1

amin

N+1

𝜏N+1

J∗


2
+
(
𝑑(i∗, tN+1) + 𝑑(tN+1, j∗)

)
+ 𝛾𝜏N+1

(27)

≤
1

vmin amin

N+1

J∗

+
(
𝑑(i∗, tN+1) + 𝑑(tN+1, j∗)

)
+ 𝛾𝜏N+1

J∗


2
+
(
𝑑(i∗, tN+1) + 𝑑(tN+1, j∗)

)
+ 𝛾𝜏N+1

(28)

(Case1)
≤

3

2

1

vmin amin

N+1

= 3

2

vmaxamax

N+1

vminamin

N+1

. (29)

CASE 2: 𝑑(i∗, tN+1) + 𝑑(tN+1, j∗) + 𝛾𝜏N+1 <

J∗


2

𝛼 =
J∗

+ Δ∗

J∗
+

(6),(22)
≤

J∗

+ 1

vmin

(
𝑑(i∗, tN+1) + 𝑑(tN+1, j∗)

)
+ 𝛾 1

amin

N+1

𝜏N+1

J∗


≤
1

vmin amin

N+1

J∗

+ 𝑑(i∗, tN+1) + 𝑑(tN+1, j∗) + 𝛾𝜏N+1

J∗


(Case2)
<

3

2

1

vmin amin

N+1

= 3

2

vmaxamax

N+1

vminamin

N+1

.

(30)

Since both, 𝛼 ≤
3

2

vmaxamax

N+1

vminamin

N+1

as well as 𝛼 ≤ 2 (Theorem 2) must hold, (17) follows. ▪
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12 BISCHOFF ET AL.

Remark. The problem instance shown in Figure 1, which has an approximation ratio of 𝛼 = 2 is of configuration

level Phet, with Phet being a subset of the general problem instances Pt,het. Therefore, 𝛼 ≤ 2 is also a tight bound on

the approximation ratio for adding a task to temporal unconstrained MRTA problems of configuration Phet.

Corollary 1. Let Assumption 2 hold. For the homogeneous MRTA reoptimization Problem Phom, the application
of the CMI with the insertion costs as defined in (16), leads to an approximation ratio

Phom ∶ 𝛼 =
JCMI

+

J∗
+
≤

3

2
. (31)

Proof. Since all problems of configuration Phom also fulfill the requirements of configuration Phet, Theorem (3)

holds for these problems. By definition of configuration Phom, the driving velocities and task execution capabilities

of all robots are equal, that is, vmax = vmin
and amax

N+1
= amin

N+1
. By inserting this into (17) of Theorem (3) the assertion

follows. ▪

Proposition 2. For the the application of the CMI with the insertion costs as defined in (16) to the homogeneous
MRTA reoptimization Problem Phom, the approximation ratio of 𝛼 ≤ 3∕2 is a tight bound.

Proof. A problem instance of configuration Phom for which the approximation ratio 𝛼 = JCMI

+ ∕J∗
+ converges to 3∕2

is depicted in Figure 2. It is assumed that the task durations are equal to zero for both tasks, that is, 𝜏1 = 𝜏2 = 0.

In the initial instance , two robots with their respective depots s1
and s2

are available to execute task 1. In the

modified instance 
+

, task 2 is added. For 𝛿 → 0, the approximation ratio approaches 𝛼 → 3∕2. ▪

Table 2 summarizes the results on the approximation ratios for the application of the CMI for all problem configurations

considered in this article. For the general problem configuration Pt,het a tight upper bound of 𝛼 ≤ 2 was proven in Theorem 2

and Proposition 1. The upper bound on the approximation ratio for problem instances of configuration Phet without temporal

constraints and heterogeneous robotic teams depends on the features of the robotic team (Theorem 3) and is bounded above by

𝛼 ≤ 2, which is furthermore a tight bound (see preceding Remark). A constant and tight upper bound of 3∕2 can be guaranteed

for problem instances of configuration Phom without temporal constraints and homogeneous robots, as given by Corollary 1 and

Proposition 2.

FIGURE 2 Example of an MRTA task insertion reoptimization instance of the configuration Phom with an approximation ratio of 𝛼 → 3

2
for 𝛿 → 0 for the

application of the CMI heuristic.

TABLE 2 Guaranteed upper bounds on the approximation ratios for the application of the CMI to MRTA task insertion reoptimization problems.

Problem configuration Approximation ratio 𝜶 Tight bound

Phom ≤
3

2
Yes

Phet ≤ min

{
3vmaxamax

N+1

2vminamin

N+1

, 2

}
Tight for 𝛼 ≤ 2

Pt,het ≤ 2 Yes
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BISCHOFF ET AL. 13

4 REOPTIMIZATION OF THE MRTA TASK DELETION PROBLEM

In this section, the MRTA task deletion reoptimization problem, that is, Problem 3, is investigated. We prove an upper bound on

the approximation ratio for the MRTA task deletion reoptimization problem under an assumption that is fulfilled for the majority

of problem instances and propose a heuristic to solve these reoptimization problems. Subsequently, we derive a reduced bound

for the approximation ratio for the proposed heuristic when a team of homogeneous robots originating from the same start and

end position is considered.

4.1 Analysis of a solution heuristic independent performance guarantee for the MRTA task
deletion reoptimization problem
To analyze the approximation ratios resulting for the task deletion reoptimization problem, that is, Problem 3, the following

considerations are relevant: When solving a task deletion reoptimization problem, an optimal solution X∗


of the initial problem

instance  is used to derive a heuristic solution to the modified problem instance 
−

which differs from the initial instance

by not containing task tq as defined in Problem 3. The cost of the generated reoptimization solution of the modified problem

instance 
−

and the costs of the initial solution differ by a cost difference Δ−, that is,

JR
− = J∗


− Δ−. (32)

Depending on the specific reoptimization method used to solve the task deletion reoptimization problem, the cost differenceΔ−

resulting from the application of the respective method to a reoptimization problem instance may differ. Since any task deletion

reoptimization approach removes a task from the initial solution, the following assumption will hold for most reasonable task

deletion reoptimization approaches:

Assumption 3. Let the task deletion reoptimization approach, the initial problem instance  and the modified
problem instance − be defined such that the cost reduction Δ− of the reoptimized solution compared to the initial
solution is non-negative, that is,

Δ− ≥ 0. (33)

Consider the task insertion problem, Problem 2, for the exact same problem instances, that is, an optimal solution X∗
− of

the problem instance 
−

is known and any feasible reoptimization approach is applied to insert task tq to derive a reoptimized

solution XR


. Then the costs of the optimal solution of the problem instance J∗
− and of the reoptimized solution to the problem

instance containing task tq, that is, JR


, differ by a non-negative cost increment Δ+, that is,

JR

= J∗

− + Δ+ with Δ+ ≥ 0. (34)

To guarantee the performance quality of a task deletion reoptimization approach, we make the following assumption:

Assumption 4. Let the initial problem instance , the modified problem instance − and the task deletion approach
be defined such that there exists a task insertion approach in such a way that the difference between the cost
increment Δ+ of the task insertion approach and the cost reduction Δ− of the task deletion approach does not
exceed the optimal costs of the modified problem instance −, that is,

Δ+ − Δ− ≤ J∗
− . (35)

Remark. Numerous examples and problem instances investigated have shown that Assumption 4 does not impose

strong limitations on the problem instances. In most problem instances with several tasks the cost increment Δ+

itself will be smaller than the optimal costs J∗
− of the problem instance without tq, that is, Δ+ < J∗

− will hold.

But even in cases for which Δ+ ≥ J∗
− holds, we can show that Assumption 4 must still be fulfilled if the problem

instances are such that the worst task insertion approximation ratio of 𝛼 = 2 is reached. In these cases

𝛼 =
J∗
− + Δ

+

J∗


≤
J∗
− + Δ

+

Δ+
Δ+≥J∗

−

≤ 2

holds according to Assumption 1.
1

Consequently, the approximation ratio of 2 can only be reached if Δ+ = J∗
−

holds and thus also in these cases Assumption 4 must be fulfilled.

1
Please note that for the consideration of inserting task tq to problem instance 

−
, instance  corresponds to 

+
in the notation used for the task insertion

reoptimization problem. Thus, using the notation of the task deletion reoptimization problem, Assumption 1 is given by Δ+ ≤ J∗

.
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14 BISCHOFF ET AL.

For any task deletion approach fulfilling Assumptions 3 and 4, the resulting approximation ratio is bounded above as given

by the following theorem.

Theorem 4. For any MRTA task deletion reoptimization approach solving an instance of Problem 3 such that
Assumption 3 and Assumption 4 hold, the resulting approximation ratio 𝛼 = JR

−∕J∗
− cannot exceed 2, that is,

𝛼 =
JR
−

J∗
−
≤ 2. (36)

Proof. We know that J∗
− ≤ J∗


as well as (32), (33) and (34) hold. It thereby follows that

J∗
− ≤ JR

− ≤ J∗

≤ JR


. (37)

Using (34), (37) and (35) from Assumption 4 it follows for the approximation ratio:

𝛼 =
JR
−

J∗
−
=

J∗

− Δ−

J∗
−

(37)
≤

JR

− Δ−

J∗
−

(34)
=

J∗
− + Δ

+ − Δ−

J∗
−

= 1 + Δ
+ − Δ−
J∗
−

(36)
≤ 2.

(38)

▪

Consequently, any task deletion reoptimization approach that, when applied to an instance of Problem 3, does not augment

the initial costs (Assumption 3) and furthermore fulfills Assumption 4, is guaranteed to generate a solution of costs at most

twice as high as the costs of an optimal solution to the modified problem instance 
−

.

4.2 Task deletion heuristic
To solve the MRTA task deletion reoptimization problem 3, we propose the task deletion heuristic (TD). The heuristic is derived

from the deletion procedure of Archetti et al. [2] for the TSP. The heuristic erases a task from the tour of the executing robot by

deleting the edges connecting the deleted task to the route and inserting a new edge pairing the predecessor and successor task.

Hence, the heuristic for task deletion is defined as follows:

Definition 2 (task deletion heuristic (TD)). The task deletion heuristic to remove a task tq from an optimal solution
X∗


of an initial problem instance is given by:

1. Within the tour of robot k∗, that is, the robot task tq is assigned to by the initial solution X∗

, remove

the edges
(
np, tq

)
and

(
tq, ns

)
connecting the task tq to its predecessor node np and successor node ns

within X∗

.

2. Insert the edge
(
np, ns

)
to the route of robot k∗.

Remark. The TD heuristic is applicable to MRTA problems of full complexity, that is, of configuration Pt,het. If the

deleted task tq is associated to any precedence or synchronization constraints, the respective constraints cannot be

fulfilled by any solution to the modified problem instance 
−

. Hence, the respective temporal constraints should

be deleted as well. If this is done, the application of the TD heuristic ensures the resulting solution to be feasible,

that is, all constraints as given by equations (2) will still be fulfilled.

The cost deviation ΔTD−
caused by the application of the TD heuristic includes the reduction of driving times Δc𝑑 and task

execution times Δce for robot k∗, the robot the deleted task tq was assigned to in the initial solution, as well as a waiting time

deviation Δcw , that is,

JTD

− = J∗

− ΔTD−

with (39)

ΔTD− = 𝑑k∗
np,tq + 𝑑

k∗
tq,ns − 𝑑

k∗
np,ns

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Δc𝑑

+ 𝛾 𝑑

k∗
tq

⏟⏟⏟

Δce

+ 𝜖Δcw .

(40)

4.3 Analysis of performance guarantees for the task deletion heuristic
According to Theorem 4, the approximation ratio resulting from the application of the TD heuristic is bounded above by 2 for

every task deletion reoptimization instance in which the TD heuristic fulfills Assumptions 3 and 4. As analyzed previously,
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BISCHOFF ET AL. 15

Assumption 4 is fulfilled for a vast majority of problem instances and can be guaranteed to be fulfilled even for problem instances

in which a reoptimized solution to the respective task insertion problem would yield the worst possible approximation ratio of

𝛼 = 2.

To analyze the fulfillment of Assumption 3 for the TD heuristic, we investigate the summands of the total cost deviation

ΔTD−
. The driving time deviationΔc𝑑 cannot become negative due to the metric distances between nodes and the positive driving

velocities. Also the task execution time deviationΔce must by definition of the base task durations and the capabilities always be

greater or equal to zero. The only summand to the total cost deviation that might become negative is the waiting time deviation

Δcw . Therefore, the following cases can be differentiated concerning the fulfillment of Assumption 3 for the TD heuristic:

1. When the reoptimization problem is of configuration Phom or Phet, that is, no precedence or synchronization constraints

have to be considered, no waiting times arise in these instances. Therefore, also the waiting time deviation Δcw must

be equal to zero, that is, Δcw = 0. The overall cost deviation ΔTD−
therefore only contains non-negative summands and

consequently always fulfills Assumption 3.

2. When the reoptimization problem is of configuration Pt,het and precedence and/or synchronization constraints are present

in the initial problem instance, waiting time deviations Δcw ≠ 0 may arise. These waiting time deviations can both be

positive or negative.

a. A positive waiting time deviation Δcw > 0 occurs, if the total amount of waiting time within the reoptimized solution

XTD

− to the modified problem instance 
−

is smaller than the sum of waiting times within the initial solution J∗

. In

these cases, the reduction of waiting time is caused by robots having to wait shorter due to robot k∗ reaching node ns
(and potentially following nodes) earlier than in the initial solution. In these cases, however, the waiting time deviation

is another positive summand to the overall cost deviation ΔTD−
and thus Assumption 3 is always fulfilled.

b. A negative waiting time deviation Δcw < 0 may occur, if robot k∗ spends part of the time that was reserved within the

initial solution for driving to and executing the deleted task tq, with waiting within the reoptimized solution. Thus, if

the total task execution time deviation Δce as well as the total reduction of driving times Δc𝑑 is time spend waiting by

robot k∗ within the modified solution XTD

− , the total cost deviation becomes the smallest, that is,

ΔTD−
≥ Δc𝑑 + 𝛾Δce − 𝜖(Δc𝑑 + Δce ).

For some choices of the weighting parameters, especially if 𝜖 ≤ 1 and 𝜖 ≤ 𝛾 , the fulfillment of Assumption 3 can

thus also be guaranteed for negative waiting time deviations for the TD heuristic. Only if the waiting time weighting

parameter 𝜖 is chosen to be comparatively high, instances in which negative waiting time deviations occur by the

application of the TD heuristic, might not fulfill Assumption 3.

In summary it can be said that an approximation ratio of 𝛼 = JTD

− ∕J∗
− ≤ 2 can be guaranteed for the vast majority of task

deletion reoptimization instances since Assumptions 3 and 4 are fulfilled by the TD heuristic in the majority of cases. With the

following proposition we furthermore prove 𝛼 ≤ 2 to be a tight bound for these instances.

Proposition 3. For the the application of the TD heuristic to an instance of the MRTA task deletion reoptimization
problem in which Assumption 3 and Assumption 4 are fulfilled, the approximation ratio of 𝛼 ≤ 2 is a tight bound.

Proof. In Figure 3 a MRTA task deletion problem instance with an approximation ratio converging toward 𝛼 = 2

for 𝛿 → 0 with 𝛿 > 0, is depicted. In the initial problem instance two robots starting at different positions are

available to perform two tasks. Both robots are fully capable for both task executions and differ in their driving

velocity, that is, v1 = 1∕2 and v2 = 1. The optimal solution of this instance assigns both tasks to robot r2. In the

modified problem instance, task t2 is deleted. The resulting TD solution has an objective function value of JTD

− =
4− 2𝛿. The total cost deviation is therefore given by ΔTD− = JTD

− − J∗

= 0 and thus Assumption 3 is fulfilled. The

optimal solution to the modified instance would be to assign task t1 to the other robot which would yield an objective

function value of J∗
− = 2. Consequently, for 𝛿 → 0, the approximation ratio converges toward 𝛼 → 2. Using the

CMI with J∗
− as initial solution would result in assigning task t2 to robot r2 and thusΔ+−ΔTD− = 2−2𝛿 ≤ 2 = J∗

− ,

that is, also Assumption 4 is fulfilled. ▪

4.4 Performance guarantee for the TD heuristic in MRTA task deletion problems
with homogeneous groups of robots and a single depot
For the special case MRTA problems with a homogeneous team of robots which moreover all start and end their tour at the

same position, that is, problems of configuration Phom for which additionally s1 = s2 = · · · = sK
holds, a smaller upper bound

on the approximation ratio can be proven for the TD heuristic.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22217 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [25/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 BISCHOFF ET AL.

FIGURE 3 Example of a MRTA task deletion reoptimization instance with an approximation ratio 𝛼 → 2 for 𝛿 → 0.

Theorem 5. The application of the TD heuristic to MRTA task deletion reoptimization problems of configuration
Phom, for which additionally s1 = s2 = · · · = sK holds, leads to an approximation ratio

𝛼 =
JTD

−

J∗
−
≤

3

2
. (41)

Proof. The proof for this MRTA configuration is inspired by the proof made by Archetti et al. [2] for the TSP.

Due to the problem configuration all velocities and capabilities are equal to one and no temporal constraints are

considered. The costs of the reoptimized solution are therefore given by

JTD

− = J∗

− 𝑑(np, tq) − 𝑑(tq, ns) + 𝑑(np, ns) − 𝛾𝜏q. (42)

We furthermore know that the optimal solution to the initial problem instance  has costs at least as high as the

costs of the optimal solution to the modified problem instance to which the task tq was added to the tour of any robot

by connecting it via two edges to any node, that is, J∗

≤ J∗

− + 2𝑑(n, tq) + 𝛾𝜏q, ∀ n ∈  . Evaluating for nodes np
and ns and adding it up yields J∗


≤ J∗

− + 𝑑(np, tq) + 𝑑(tq, ns) + 𝛾𝜏q. Inserting this inequality into (42) we get

JTD

− ≤ J∗
− + 𝑑(np, ns). (43)

Since at least nodes np and ns are part of the modified problem instance, the homogeneous robots start and end in the

same position and the triangle inequality holds, it holds for the optimal solution to the modified problem instance

J∗
− ≥ 2𝑑(np, ns). (44)

Using (43) and (44), it follows for the approximation ratio

𝛼 =
JTD

−

J∗
−

(43)
≤

J∗
− + 𝑑(np, ns)

J∗
−

= 1 +
𝑑(np, ns)

J∗
−

(44)
≤ 1 +

𝑑(np, ns)
2𝑑(np, ns)

= 3

2
. (45)

▪

Proposition 4. For the application of the TD heuristic to the MRTA task deletion reoptimization problem of con-
figuration Phom with a common start and end position s1 = s2 = · · · = sK

, the approximation ratio of 𝛼 ≤ 3

2
is a

tight bound.

Proof. The deletion heuristic applied by Archetti et al. [2] to the TSP task deletion reoptimization problem cor-

responds to the TD if only one robot is considered. Archetti et al. prove the corresponding upper bound on the

approximation ratio to be bounded above by
3

2
and prove the bound to be tight (Archetti et al. [2, Remark 2]). Since

the TSP node deletion problem corresponds to the special case of the MRTA task deletion reoptimization problem

of configuration Phom with a common start and end position, 𝛼 ≤ 3∕2 is a tight bound for the respective MRTA

reoptimization problem. ▪

5 SIMULATIVE EVALUATION

In the previous sections, we proved the approximation ratios resulting from the application of the CMI heuristic to the MRTA

task insertion reoptimization problem as well as from the application of the TD heuristic to the MRTA task deletion reopti-

mization problem to be bounded above. In order to get an impression of the performance of the proposed MRTA reoptimization
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BISCHOFF ET AL. 17

heuristics in the application to MRTA reoptimization problems other than the special examples in which the upper bounds of

the approximation ratios are reached (cf. Figures 1–3), simulative evaluations were conducted. The experimental setup and the

results of these investigations are presented in the following.

5.1 Experimental setup
The evaluation of the proposed reoptimization heuristics was conducted both for the task insertion as well as for the task deletion

reoptimization problem on problem instances of the previously introduced problem configurations Phom, Phet and Pt,het. For each

configuration, a dataset with 100 MRTA reoptimization problem instances was generated, each considering three robots. Each

instance of the task insertion problem contained eight tasks in the initial problem instance, that is, the ninth task was to be

added by reoptimization. Each instance of the task deletion reoptimization problem contained nine tasks in the initial problem

instance of which one was chosen randomly to be deleted.

The metric distances between tasks and robot’s depots are calculated with the Euklidean metric from locations in the plane

with the base area for the nodes to be located being a square with 100 units of length. The depots of the three robots are fixed

to points with a distance of 15 units to the center of the base area and equal distances to each other, that is, s1 = [50, 65], s2 =
[37.01, 42.5], s3 = [62.99, 42.5]. For each reoptimization problem instance, the locations of all tasks are drawn uniformly

distributed within the base area. For the configurations Phom and Phet, the parameter values given in Table 1 apply as before.

The remaining parameters are chosen as follows: We consider three task types A-C which are mapped to the task locations

by drawing from a discrete uniform distribution. Each task type corresponds to a base task duration 𝜏i and is associated with

task- and robot-dependent capabilities. Their values and the three robots’ velocities are stated in Table 3. For problem instances

of the configuration Pt,het precedence and synchronization constraints are described by uniformly drawn pairs of task indices

which, viewed as undirected graph edges, do not contain self loops or repeated edges. Their number is limited to at most two

constraints of each type and at least one constraint in total and is uniformly drawn as well. To also allow for the modeling

of direct cooperation of several robots on the same task location, we generated an additional dataset, denoted as P
∗
t,het. In this

dataset tasks which are linked by a synchronization constraint share the same location and are of the additional task type D

(also listed in Table 3). The common location is randomly chosen out of the initially assigned task locations. Since all robots

are assigned the same capability to perform tasks of type D, the synchronous completion of the tasks is ensured. This allows

for the modeling of the direct cooperation of any group of robots. For the evaluation of the application of the TD heuristic to

MRTA problems with homogeneous robots and a single depot (see Section 4.4), we investigated an additional dataset for the

MRTA task deletion reoptimization problem, which is denoted as P
∗
hom. It differs from Phom only in the location of the depots,

which is located in the center of the base area for all robots.

The reoptimization problem instances were solved using the reoptimization heuristics according to the respective configu-

ration as described in Sections 3 and 4. Total enumeration was used both to obtain the initial optimal solutions, as well as to

obtain the optimal solutions to the modified problem instances necessary to determine the respective approximation ratios. The

methods were implemented in Python 3 and the calculations were performed on an Intel® Core i7-9800K processor.

5.2 Results
The results of the simulative evaluation for the task insertion as well as for the task deletion reoptimization problem are given in

Table 4 and Table 5, respectively. For each problem configuration, the average and the worst, that is, maximum, approximation

ratio of the reoptimization instances of the respective dataset are given as well as the number of reoptimization instances per

dataset for which the application of the proposed reoptimization heuristic yielded an optimal solution, that is, an approximation

ratio of 𝛼 = 1.

TABLE 3 Parametrization of the base task durations and of the robots’ velocities and capabilities for the configurations Phet, Pt,het and P
∗
t,het

. For the

configuration Phom, the velocities and capabilities given in Table 1 apply as defined.

Task type A Task type B Task type C Task type D
(used in Phet, Pt,het and P∗t,het) (used in P∗t,het)

Base task duration 𝜏i ∈  1 10 40 25

Velocity vk ∈ V Capabilities ak
i ∈ A

Robot r1
0.7 (1 in Phom) 1 1 1 1

Robot r2
1 1 0.5 0 1

Robot r3
1 1 0 0.5 1
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TABLE 4 Results of the simulative evaluation of the proposed reoptimization insertion heuristics.

Phom Phet Pt,het P∗t,het

Approximation ratio ∅ 1.009 1.012 1.016 1.015

max 1.070 1.189 1.120 1.205

Guaranteed upper bound 1.5 ∈ [1.5, 2.0] 2.0 2.0

Number of optimally solved instances (JCMI

+
= J∗

+
) 69 77 51 52

TABLE 5 Results of the simulative evaluation of the proposed reoptimization deletion heuristics.

Phom P∗hom Phet Pt,het P∗t,het

Approximation ratio ∅ 1.011 1.009 1.007 1.023 1.045

max 1.103 1.218 1.079 1.303 1.333

Upper bound 2.0 1.5 2.0 2.0 2.0

Number of optimally solved instances (JTD

−
= J∗

−
) 67 71 74 58 53

All reoptimization problem instances generated observe the guarantees on the approximation ratios derived previously. For

the datasets of both reoptimization problems of all problem configurations, the average approximation ratio is just slightly above

one and more than half of the problem instances were solved optimally by the application of the respective reoptimization

heuristic. Also the worst approximation ratios, which lie between 1.07 for configuration Phom and 1.205 for configuration P
∗
t,het

with cooperative tasks for the task insertion problem and between 1.103 and 1.333 for the task deletion problem, are lower

than the previously derived tight upper bounds on the approximation ratios for the respective configurations. Consequently, the

simulative results validate that the proposed reoptimization heuristics observe the previously derived tight upper bounds on the

approximation ratio, and also indicate that in many problem instances they yield even optimal or close-to-optimal solutions.

Remark. Producing solutions to the modified problem instance such that the modified solution resembles the initial

one is a favorable trait in application domains where humans are involved in evaluating the solutions generated [25].

The stability of reoptimization approaches which describes the property of producing a solution to the modified

problem instance as similar as possible to the initial solution [18] can be measured by means of the sum over the

Levenshtein distances of all robot’s schedules [7]. For comparison we evaluated the Levenshtein distances of the

optimal solutions to the initial one for the task deletion problem, which lay in a range of 1 to 17. By definition of the

proposed reoptimization heuristics, the reoptimized solutions all have the minimal possible Levenshtein distance

of 1 to the initial solution and thus resemble the initial solution as much as possible.

Besides the positive results w.r.t. solution quality, the application of the proposed reoptimization heuristics furthermore are

promising w.r.t. calculation time, with the average calculation times being 2.3 ms for the CMI and 1.6 ms for the TD heuristic.

6 CONCLUSION

In this article, we have studied the reoptimization problems of both inserting and deleting a task from an optimal solution to a

time-extended MRTA problem. We are the first to derive guarantees on the resulting solution for the application of reoptimiza-

tion in coordination problems with more than one mobile entity. For the MRTA task insertion reoptimization problem we derive

an upper bound of 2 for the approximation ratio for all reoptimization approaches that fulfill a weak assumption. Moreover, we

introduce the cheapest maximum cost insertion heuristic (CMI) for which we prove the assumption to always be fulfilled and

furthermore verify the resulting upper bound on the approximation ratio of 𝛼 ≤ 2 to be tight. Further investigations of temporal

unconstrained MRTA task insertion problems reveal the CMI to guarantee lower approximation ratios for these kinds of prob-

lems with the smallest upper bound on the approximation ration being 3∕2 for homogeneous groups of robots. Also for the task

deletion reoptimization problem we prove an upper bound of 2 for the approximation ratio for all reoptimization approaches

that fulfill weak assumptions. For the task deletion heuristic (TD) applied to solve the task deletion reoptimization problem, we

prove the upper bound on the approximation ratio of 𝛼 ≤ 2 to be tight. In the special case of temporal unconstrained tasks and

an homogeneous group of robots all having the same start and end position, we prove a tight upper bound on the approximation

ratio of 𝛼 ≤ 3∕2 for the TD. The theoretically derived upper bounds on the approximation ratios are validated by a practi-

cal evaluation which reveals the proposed heuristics to yield close-to-optimal approximation ratios for the majority of problem

instances evaluated.
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