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Abstract
We show that a length-minimizing disk inherits the upper curvature bound of the target. As a
consequence we prove that harmonic discs and ruled discs inherit the upper curvature bound
from the ambient space.
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1 Introduction

We extend the results of [24, 27] to the case of curvature bounds different from 0 and provide
full proofs of some consequences of the main theorems, which are mentioned in [27] in the
case of CAT(0) spaces.

We need some notation, in order to state the main result. Let f : D → Y be a continuous
map from the closed unit disc D into a CAT(κ) space Y . For x, z ∈ D we define the length
pseudodistance 〈x − z〉 f ∈ [0,∞] induced by f as

〈x − z〉 f := inf
γ

�Y ( f ◦ γ ) ∈ [0,∞] , (1)

where �Y (η) denotes the length of a curve η in the metric space Y , and the infimum in (1) is
taken over all curves γ in D connecting x and z.

We say that f is length-connected if the value 〈x − z〉 f is finite, for all x, z ∈ D. In
this case, the length pseudodistance defines a metric space by identifying points with length
pseudodistance 0. This space is denoted by 〈D〉 f and is called the lengthmetric space induced
by f .
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We say that f is length-continuous if the canonical projection π̂ f : D → 〈D〉 f is continu-
ous. Length-continuity always holds if f is a composition of a homeomorphism � : D → D

and a Lipschitz map g : D → Y .
A continuous map f : D → Y is length-minimizing if for all continuous g : D → Y with

g|S1 = f |S1 and
�Y (g ◦ γ ) ≤ �Y ( f ◦ γ ) , (2)

for all curves γ in D, equality must hold in (2), for all curves γ .
Now we can state our main result:

Theorem 1.1 Let f : D → Y be a length-continuous and length-minimizing map from the
discD to a CAT(κ) space Y . ThenD with the length metric induced by f is a CAT(κ) space.

Weuse this result in order to find upper curvature bounds on discs satisfyingmore common
minimality assumptions. For the first consequence, we assume some familiarity with the
notion of harmonic maps due to Korevaar–Schoen [11].

Corollary 1.2 Let Y be aCAT(κ) space and let the continuous map f : D → Y be harmonic.
If the boundary curve f : S1 → X has finite length then D with the length metric induced
by f is a CAT(κ) space.

If f is conformal, the conclusion of Corollary 1.2 appears in [17] and a closely related
statement appears in [19]. For non-conformal harmonic discs it seems barely possible to
prove Corollary 1.2 by purely analytic means.

Another application concerns ruled discs:

Corollary 1.3 Let η0, η1 : [0, 1] → Y be rectifiable curves in a CAT(κ) space Y . If κ > 0,
we assume that the distance between η0(a) and η1(a) is less than π√

κ
, for all a ∈ [0, 1]. For

any a > 0, consider the geodesic γa : [0, 1] → Y between η0(a) and η1(a) parametrized
proportionally to arclength. Then [0, 1] × [0, 1] with the length metric induced by the map
f (a, t) := γa(t) is CAT(κ).

The statement about the inheritance of upper curvature bounds by ruled discs appeared
in somewhat different generality with a sketchy proof in [2], the paper that gave birth to the
theory of CAT(κ) spaces. Missing details in Alexandrovs proof were recently provided by
Nagano–Shioya–Yamaguchi in [23].

It seems possible to extend our proof to the case of non-rectifiably boundary curves and
to dispense of the assumption on the parametrization of the geodesics. However, it would
require rather technical considerations. The generality we have chosen is sufficient for most
applications and follows directly from Theorem 1.1.

We finish the introduction with several comments.

• Our notion of length-minimality corresponds to the notion called metric-minimality in
[24]. In [27] a new, stronger and less natural notion of metric-minimality was introduced.
With this new stronger notion, a version of our main theorem for CAT(0) spaces was
proved only under the assumption of length-connectedness of f , instead of the stronger
length-continuity. We have only been able to verify the validity of this stronger metric-
minimality assumption in cases covered by our Theorem 1.1. In order to find a clearer
and better comprehensible way to Corollaries 1.2, 1.3, we have decided to work with the
original, more natural notion of metric-minimality used in [24]. In order to distinguish it
from metric-minimality used in [27], we have given it a different name.

• In the last section we formulate several questions concerning generalizations of our main
results.
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• The length metrics arising in Theorem 1.1 and, therefore, in Corollaries 1.2, 1.3 are
homeomorphic to deformation retracts of D.

• A general existence result in Sect. 5 shows that length-minimizing discs are abundant,
beyond harmonic and ruled discs.

• The main argument closely follows [27]. A central technical step in the proof is the
reduction of the theorem to the case, where the map f has totally disconnected fibers. In
order to achieve this reduction, another metric induced by f on the disc is investigated,
the so-called connecting pseudometric. It has better topological and metric properties
than the more natural induced length metric. Roughly speaking, while the induced length
metric collapses curves sent by f to a point, the connecting pseudometric also collapses
pseudocurves sent by f to a point. In general, the precise relation between the twometrics
seems to be rather complicated. However, as verified in [27], the length-minimality
together with the length-connectedness, imply that the induced length metric is just the
intrinsic metric induced by the connecting pseudometric.

• The heart of the proof is an approximation of the induced length metric by polyhedral
metrics, whose restriction to the 1-skeleton is length-minimizing. This idea presented in
[24] works in our setting with minor modifications. The case of κ > 0 requires some
additional considerations, due to the absence of the theorem of Cartan–Hadamard.

2 Preliminaries

2.1 Topology

A curve in a topological space X is a continuous map γ : I → X , where I ⊂ R is an interval.
A Jordan curve in X is a subset homeomorphic to S

1.
A topological space X is a Peano continuum if X is metrizable, compact, connected and

locally connected. In this case X is arcwise connected.
A disc retract is a compact space homeomorphic to a subset X ′ of the closed unit disc D

such that X ′ is a homotopy retract of D. A Peano continuum is a disc retract if and only if it
is homeomorphic to a non-separating subset of the plane, [21, p. 27]. We will only need the
following statement about disc retracts, a variant of a classical theorem of Moore, [20], [27,
Proposition 3.3]:

If f : D → X is a surjective, continuous map, such that all fibers are connected and
non-separating subsets of R2, then X is a disc retract.

Remark 2.1 The following properties will not be used below. The reader might find them
helpful, since disc retracts are central objects of this paper.

A space X is a disc retract if and only if there exists a closed curve γ : S1 → X , such that
the mapping cylinder ([0, 1] × S

1) ∪γ X is homeomorphic to D, [8, 27]. The image of γ is
the boundary of X , defined as the set of points at which X is not a 2-manifold.

Any maximal subset of a disc retract X which is not a point and does not contain cut
points is a closed disc [21, p.27], [27]. The number of these cyclic components of X is at
most countable.

By approximation, it follows that any disc retract admits a CAT(−1) metric. The space of
(isometry classes of) disc retracts with a geodesic metric, uniformly bounded H2-measure
and H1-measure of the boundary and a quadratic isoperimetric inequality is compact in the
Gromov–Hausdorff topology, [8]. In particular, the space of isometry classes of CAT(κ) disc
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retracts with boundary ofH1-measure at most r < 2π√
κ
is compact in the Gromov–Hausdorff

topology.

2.2 Metric geometry

We stick to the notations and conventions used in [27], and refer to [4] and [26] for introduc-
tions to metric geometry.

We denote the distance in a metric space Y by | ∗ − ∗ |Y = 〈∗ − ∗〉 = 〈∗ − ∗〉Y .
The length of a curve γ in Y will be denoted by �Y (γ ) = �(γ ). A geodesic is a curve γ

connecting points y1, y2 in Y , such that the length of γ equals 〈y1 − y2〉Y . We make no a
priori assumption on the parametrization of a geodesic.

The space Y is a length space if the distance between any pair of its points equals the
infimum of lengths of curves connecting these points. The space is a geodesic space if any
pair of points is connected by a geodesic.

A pseudometric space is a metric space in which the distance can also assume values 0
and ∞. If the value ∞ is not assumed by a pseudometric on Y , we identify subsets of points
of Y with pseudo-distance equal to 0 and obtain the induced metric space [26, Sect. 1.C].

We assume some familiarity with the Gromov–Hausdorff convergence and, for readers
interested in the non-locally compact targets Y in our main results, with ultralimits. We refer
to [26, Sects. 5,6] and [5, Sect. I.5].

2.3 CAT(�) spaces

We assume familiarity with properties of CAT(κ) spaces, the reader is refered to [1, 4, 5] and
[3]. We will stick to the convention that CAT(κ) spaces are complete and geodesic.

By Mκ we denote the model surface of constant curvature κ and by Rκ its diameter. Thus,
Rκ = π√

κ
if κ > 0 and Rκ = ∞ if κ ≤ 0.

3 Metrics induced bymaps

We recall some notions and notations introduced explicitly or implicitly in [27, Sect. 2]. All
statements in this section are proved there.

3.1 Lengthmetric induced by amap

Let X be a topological space and Y a metric space. A continuous map f : X → Y induces
a pseudometric on X by

〈x − z〉 f = inf{�Y ( f ◦ γ ) : γ is a curve in X joining x to z}.
This pseudometric is called the length pseudometric on X induced by f .

As in the introduction, we call a continuous map f : X → Y length-connected if the
length pseudometric induced by f is finite for all pairs of points. Thus, f is length-connected
if any x, z ∈ X are connected in X by a curve γ , whose image f ◦ γ has finite length in Y .

If f : X → Y is length-connected then the metric space arising from the pseudometric
〈x−z〉 f by identifying points at pseudistance 0 will be called the length metric space induced
by f . We denote it by 〈X〉 f .
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The canonical surjective projection from X onto 〈X〉 f will be denoted by
π̂ f : X → 〈X〉 f .

We will say that a continuous map f : X → Y is length-continuous if f is length-
connected and the induced projection π̂ f : X → 〈X〉 f is continuous.

For a compact metric space X , a map f : X → Y is length-continuous if and only if for
any ε > 0 there exists δ > 0, such that any pair of points x, z ∈ X with 〈x − z〉X < δ is
connected by some curve γ in X with �Y ( f ◦ γ ) < ε.

If X is a length metric space and f : X → Y is locally Lipschitz continuous then f is
length-continuous.

For any length-connected f : X → Y , there exists a unique 1-Lipschitz map

f̂ : 〈X〉 f → Y ,

such that f̂ ◦ π̂ f = f . The following is stated between the lines in [27].

Lemma 3.1 Let f : X → Y be length-connected. Let γ be a curve in X. The curve f ◦ γ

has finite length in Y if and only if π̂ f ◦ γ is a curve of finite length in 〈X〉 f . In this case
�Y ( f ◦ γ ) = �〈X〉 f (π̂ f ◦ γ ).

Proof If π̂ f ◦ γ is a curve of finite length, then �Y ( f ◦ γ ) ≤ �〈X〉 f (π̂ f ◦ γ ), since f̂ is
1-Lipschitz.

Assume now that f ◦ γ is of finite length. Then, for any t, s in the interval I of definition
of γ , we have

〈γ (t) − γ (s)〉 f = 〈(π̂ f ◦ γ )(t) − (π̂ f ◦ γ (s)〉〈X〉 f ≤ �Y ( f ◦ γ |[t,s]).
Since the length of f ◦γ on small intervals around a fixed point t goes to 0 with the length

of the interval, π̂ f ◦ γ is continuous. Applying the above inequality to arbitrary partitions of
I , we deduce �〈X〉 f (π̂ f ◦ γ ) ≤ �Y ( f ◦ γ ). ��

3.2 Connecting pseudometric

Another pseudometric on X associated with a continuous map f : X → Y is the connecting
pseudometric | ∗ − ∗ | f defined as

|x − z| f = inf{diam f (C) : C ⊂ X connected and x, z ∈ C}.
Whenever the connecting pseudometric assumes onlyfinite values,we consider the associated
metric spaces and denote it by

∣
∣X

∣
∣
f .

In this case we have the canonical projection map, denoted by

π̄ f : X → ∣
∣X

∣
∣
f .

Moreover, there exist a uniquely defined 1-Lipschitz map

f̄ : ∣
∣X

∣
∣
f → Y ,

such that f̄ ◦ π̄ f = f .
If f : X → Y is length-connected then the connecting pseudometric assumes only finite

values and there exists a uniquely defined, surjective 1-Lipschitz map

τ f : 〈X〉 f → ∣
∣X

∣
∣
f ,
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such that

π̄ f = τ f ◦ π̂ f .

3.3 Basic properties

Recall that a map f : X → Y between topological spaces is called monotone (respectively,
light) if any fiber of f is connected (respectively, totally disconnected). We recall from [27,
Sect. 2]:

Lemma 3.2 Let X be aPeano continuumandY ametric space. Let f : X → Y be continuous.
Then

(a) The map π̄ f : X → ∣
∣X

∣
∣
f is continuous. Hence,

∣
∣X

∣
∣
f is a Peano continuum.

(b) �|X | f (γ ) = �Y ( f̄ ◦ γ ), for every curve γ in
∣
∣X

∣
∣
f .

(c) The map π̄ f : X → ∣
∣X

∣
∣
f is monotone.

(d) The map f̄ : ∣
∣X

∣
∣
f → Y is light.

Lemma 3.2(b) implies that
∣
∣X

∣
∣
f with the induced length metric is isometric to

∣
∣X

∣
∣
f with

the length metric induced by f̄ .
From Lemmas 3.1 and 3.2 we obtain:

Lemma 3.3 Let X be a Peano continuum, Y a metric space and f : X → Y be length-
connected. Then, for all curves γ in X,

�Y ( f ◦ γ ) = �|X | f (π̄ f ◦ γ ) = �|X | f (τ f ◦ π̂ f ◦ γ ).

If, in addition, �Y ( f ◦ γ ) is finite or if f is length-continuous then π̂ f ◦ γ is continuous
and

�Y ( f ◦ γ ) = �〈X〉 f (π̂ f ◦ γ ).

For a Peano continuum X and a length-continuous map f : X → Y , the natural 1-
Lipschitz map τ f : 〈X〉 f → ∣

∣X
∣
∣
f may be non-injective [25, Example 4.2]. Since every

connected subset of a finite graph is arcwise connected, this pathology cannot occur if X is
a finite, connected graph. The following result proven in [27, Lemma 3.3, Proposition 9.3]
is much less trivial:

Lemma 3.4 Let f : D → Y be length-connected and let any fiber f −1(y) be a non-
separating subset in R

2. Then |D| f is a disc retract. If, in addition, f is length-continuous
then the map τ f : 〈D〉 f → |D| f is a homeomorphism, which preserves the length of all
curves in 〈D〉 f .

4 Length-minimizingmaps

4.1 Definition and first properties

Let X be a topological space, Z a closed subset of X . Let f : X → Y be a continuous map
into a metric space. For another map g : X → Y we will write f � g (rel Z ) if f and g
coincide on Z and

�Y ( f ◦ γ ) ≥ �Y (g ◦ γ ) , for every curve γ in X . (3)
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We will call f length-minimizing relative to Z if for every map f � g (rel Z ) equality holds
in (3), for every curve γ .

If X is arcwise connected and Z is empty then length-minimizing maps relative to Z are
constant. From now on, we will always assume that Z is not empty.

Lemma 4.1 Let X be a topological space, Y be a metric space and Z ⊂ X be closed. Let
f : X → Y be length-connected. A continuous map g : X → Y satisfies f � g (rel. Z) if
and only if g is length-connected, coincides with f on Z and

〈x1 − x2〉 f ≥ 〈x1 − x2〉g,
for all x1, x2 ∈ X.

Proof Assume f � g (rel. Z ). By definition, f and g coincide on Z . For any x1, x2 ∈ X , we
find a curve γ in X connecting x1 and x2, such that f ◦ γ has finite length arbitrarily close to
〈x1 − x2〉 f . Since �Y ( f ◦ γ ) ≥ �Y (g ◦ γ ) we deduce that 〈x1 − x2〉g is finite and not larger
than 〈x1 − x2〉 f .

Assume on the other hand, that g satisfies the conditions in the statement of the Lemma.
In order to prove f � g (rel. Z ), consider an arbitrary curve γ in X . If f ◦ γ has infinite
length, then �Y ( f ◦ γ ) ≥ �Y (g ◦ γ ).

If f ◦γ has finite length, then �Y ( f ◦γ ) = �〈X〉 f (π̂ f ◦γ ) by Lemma 3.1. By assumption,
the canonical map μ : 〈X〉 f → 〈X〉g is 1-Lipschitz and commutes with the projections π̂ f

and π̂g . Thus, π̂g◦γ is continuous and has length at most �〈X〉 f (π̂ f ◦γ ). Applying Lemma 3.1
twice, we deduce �Y ( f ◦ γ ) ≥ �Y (g ◦ γ ). ��

The property of being length-minimizing is inherited by restrictions:

Lemma 4.2 Let X be a topological space, let Z , S ⊂ X be closed. Let Y be a metric space
and f : X → Y be length-minimizing relative to Z. Then the restriction f : S → Y of f is
length-minimizing relative to ZS := ∂S ∪ (Z ∩ S).

Proof Assume the contrary. Then there exists a map h : S → Y such that f
∣
∣
S � h (rel ZS)

together with a curve γ0 : I0 → S such that �Y ( f ◦ γ0) > �Y (h ◦ γ0).
Define g : X → Y by setting g = h on S and g = f on X \ S. The maps h and f agree

on ∂S, hence g is continuous. By construction, g = f on Z . Moreover,

�Y (h ◦ γ0) = �Y (g ◦ γ0) < �Y ( f ◦ γ0).

Let now γ : I → X an arbitrary curve. Then f ◦ γ and g ◦ γ agree on the closed set
C = γ −1(X\S). The complement I\C is a countable union of open intervals I j . For any j ,
the length of the restriction of g◦γ to I j does not exceed the length of f ◦γ

∣
∣
I j
, since f

∣
∣
S�h.

Computing the length via the 1-dimensional Hausdorff measureH1, see [4, Exercise 2.6.4],
we deduce

�(g ◦ γ ) ≤ �( f ◦ γ ).

This contradicts the length-minimality of f . ��
As a consequence we obtain the following non-bubbling property:

Corollary 4.3 Let X be a Peano space and let f : X → Y be length-minimizing relative to a
closed subset Z ⊂ X. Then, for any y ∈ Y and any connected component U of X \ f −1(y)
the intersection U ∩ Z is not empty.
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Proof Assume U ∩ Z = ∅ and let S be the closure of U in X . Since connected components
are always closed in the ambient space, the boundary ∂S of S in X , satisfies ∂S ⊂ f −1(y).
Moreover, S ∩ Z = ∂S ∩ Z .

By Lemma 4.2, f : S → Y is length-minimizing relative to ∂S. The constant map
g : S → Y , which sends every point to y satisfies f � g. The length-minimality of f implies
that the image of every curve in U has length 0. Therefore, f is constant on U , hence on S.
Thus, U is contained in f −1(y), which is impossible. ��

Lemma 4.4 Let X be a topological space, Z ⊂ X be closed. Let Y be a CAT(κ) space. Let
K ⊂ Y be closed, convex and contained in a ball of radius < Rκ

2 in Y .
Let f : X → Y be a length-connected, length-minimizing map relative to Z. If f (Z) is

contained in K then f (X) is contained in K .

Proof Assume that there exists a point x ∈ X with f (x) /∈ K . We find a curve γ0 in X
between a point z ∈ Z and x such that f ◦ γ0 has finite length.

Due to [12, Theorem 1.1], there exists a 1-Lipschitz retraction � : Y → K , which
decreases the length of any rectifiable curve of positive length not completely contained in
K . Hence, the composition g := � ◦ f satisfies f � g (rel. Z ) and �Y (g ◦ γ0) < �Y ( f ◦ γ0).
This contradicts the length-minimality of f . ��

Lemma 4.5 Under the assumptions of Lemma 4.4, let g : X → Y satisfy f � g (rel. Z). Then
f = g.

Proof By definition, g is length-minimizing relative to Z as well. By Lemma 4.4, the images
of f and of g are contained in K .

Denote by
 ⊂ K×K the diagonal.We apply [12, Corollary 1.2] and obtain a 1-Lipschitz
retraction � : K × K → 
, such that � decreases the length of any curve of finite positive
length not completely contained in 
.

We identify 
 with K , rescaled by
√
2 and consider the map h : X → Y

h(x) := �( f (x), g(x)).

Then h coincides with f and with g on Z . For any curve γ in X , we have

�Y (h ◦ γ ) ≤ �Y ( f ◦ γ ) = �Y (g ◦ γ ).

Whenever �Y ( f ◦ γ ) is finite and positive, and f ◦ γ does not coincide with g ◦ γ , the above
inequality is strict.

If f does not coincide with g on X , we find a curve γ0 in X , such that f ◦ γ0 and g ◦ γ0
are different curves of finite length, since f is length-connected. We infer f � h (rel. Z ) and
that f is not metric minimizing. Contradiction. ��

We will apply Lemmas 4.5, 4.4 only for balls K = Br (y) ⊂ Y with r < Rκ

2 . However,
these lemmas might be useful in other cases as well, cf. [28].

4.2 Length-minimizing graphs

The results in this subsection are contained explicitly or between the lines [27, Sect. 5].
By a finite graphwemean a connected, finite 1-dimensional CW-complex. Thus, we allow

multiple edges and edges connecting a vertex with itself.
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Proposition 4.6 Let Y be a geodesic metric space, � a finite graph and A a set of its vertices.
If f : � → Y is length-minimizing relative to A then the restriction of f to any edge is a
geodesic.

Proof By Lemma 4.2, the restriction f0 : E → Y of f to any edge E ⊂ � is length-
minimizing relative to its endpoints. We can identify E with the interval [0, a], such that a is
the distance a = 〈 f (0)− f (a)〉Y between the endpoints. Consider a geodesic γ : [0, a] → Y
with the same endpoints as f , parametrized by arclength. ThenC := γ ([0, a]) is an isometric
embedding of the interval [0, a]. Since intervals are injective metric spaces, cf. [26, Lecture
3], there exists a 1-Lipschitz retraction � : Y → C . Hence, for g := � ◦ f0 we have f � g
(rel. {0, a}).

Hence, also the map g : [0, a] → C is length-minimizing relative to {0, a}. Due to
the non-bubbling result, Corollary 4.3, the map g provides a monotone parametrization of
the simple arc C . Hence, the length of the curve g is exactly the length of the geodesic γ .
Since f0 is length-minimizing, the length of f0 cannot be larger than the length of g. Hence,
f0 : E → C is a geodesic. Since the edge E was arbitrary, this finishes the proof. ��
It follows that any length-minimizing graph f : � → Y as in Proposition 4.6 is length-

continuous. Any connected subset of � is arcwise connected. Therefore, the canonical map
τ f : 〈�〉 f → |�| f is a homeomorphism. Moreover, the space 〈�〉 f is a finite union of
geodesics intersecting only at their endpoints. Thus, 〈�〉 f is finite topological graph with
a geodesic metric. A vertex in 〈�〉 f corresponds to connected subgraphs of � sent by f
to a single point. Any edge Ê of 〈�〉 f is the image of an edge E in � and the restricton
π̂ f : E → Ê is monotone. The induced map f̂ : 〈�〉 f → Y sends any edge isometric onto a
geodesic in Y . Finally, any curve in 〈�〉 f lifts to a curve in �. By definition, the last statement
implies:

Corollary 4.7 Let f : � → Y be length-minimizing relative to A, as in Proposition 4.6. Then
f̂ : 〈�〉 f → Y is length-minimizing relative to π̂ f (A).

The following result is proved in detail in [27, Proposition 5.2] for κ = 0. Since the proof
only requires the first variational inequality for distances [1, Inequality 6.7] and Reshetnyak’s
majorization theorem [1, Theorem 9.56] in spaces of directions, the proof applies literally in
CAT(κ) spaces:

Lemma 4.8 Let Y be CAT(κ). Let � be a finite geodesic graph and A be a subset of its
vertices. Let f : � → Y be length-minimizing relative to A and assume that the restriction
of f to any edge is an isometry.

Let p ∈ � \ A be a vertex. Let γ1, ..., γn be the images in Y of the edges in � starting in
p and enumerated in an arbitrary order. Then the sum of the n consecutive angles satisfies

�p(γ1, γ2) + . . . + �p(γn−1, γn) + �p(γn, γ1) ≥ 2π.

In particular, any vertex p ∈ � \ A is contained in at least 2 edges of �.

4.3 Length-minimizing discs

A length-minimizing disc will denote a map f : D → Y length-minimizing relative to S1.
Due to Corollary 4.3 and Lemma 3.4, for any length-connected and length-minimizing

disc f : D → Y , the spaces |D| f is a disc retract. If, in addition, f is length-continuous,
then the map τ f : 〈D〉 f → |D| f is a homeomorphism preserving the length of all curves.

123



49 Page 10 of 21 Geometriae Dedicata (2024) 218 :49

Lemma 4.9 Let f : D → Y be length-connected and length-minimizing disc in a CAT(κ)

space Y . Let G be a Jordan curve of length l < 2 · Rκ in the disc retract |D| f . Denote by J
the closed disc bounded by G in |D| f . Then
(1) The restriction f̄ : J → Y is a length-connected and length-minimizing disc.
(2) The image f̄ (J ) is contained in a ball of radius r < Rκ

2 in Y .
(3) If f is length-continuous then so is f̄ : J → Y .

Proof The map f̄ is 1-Lipschitz, hence length of the closed curve f̄ (G) is less than 2 · Rκ .
Reshetnyak’s majorization theorem [1, Theorem 9.56] implies that f̄ (G) is contained in a
ball B of radius r < Rκ

2 in Y .
Denote by G̃ and J̃ the preimages of G and J in D, respectively.
For any point p ∈ J consider any preimage p̃ ∈ J̃ of p. We find a curve γ in D, which

connects p̃ with a point in G̃ and such that f ◦ γ has finite length. By cutting the curve, if
needed, we may assume that γ is contained in J̃ . Then the projection γ̄ = π̄ f ◦ γ is a curve
connecting p to a point on G, such that f̄ ◦ γ̄ has finite length.

Since G has finite length and f̄ preserves all lengths, 〈p − q〉 f̄ is finite, for any p ∈ J

and any q ∈ G. By the triangle inequality, f̄ is length-connected.
Assume now that g : J → Y satisfies f̄ � g (rel. G). Set

g̃ := g ◦ π̄ f : J̃ → Y .

Then g̃ coincideswith f on G̃ and J̃\G̃ does not intersect the boundaryS1.Due toLemma4.2,
the restriction f : J̃ → Y is length-minimizing relative to G̃.

The assumption f̄ � g (rel. G) implies f | J̃ � g̃. Due to Lemma 4.4, f ( J̃ ) = f̄ (J ) is
contained in the ball B, proving (2).

Due to Lemma 4.5, f equals g̃ on J̃ . Hence, f̄ = g. This proves (1).
Let, finally, f be length-continuous. By Lemma 3.4, 〈X〉 f is a geodesic metric space

and τ f : 〈X〉 f → |X | f is a homeomorphism. Consider the disc Ĵ = τ−1
f (J ) ⊂ 〈X〉 f .

Its boundary Ĝ = τ−1
f (G) has finite length, therefore, the length metric of the subset Ĵ of

〈X〉 f induces the subset topology of Ĵ , cf. [18, Lemma 2.1]. The restriction f̂ : Ĵ → Y is
1-Lipschitz, if Ĵ is equipped with its length metric. Hence, f̂ : Ĵ → Y , and therefore also
f̄ : J → Y , is length-continuous. ��

5 An existence result

The following result is essentially [27, Proposition 5.1].

Lemma 5.1 Let X be a Peano continuum, Z a closed subset of X and Y a CAT(κ) space.
Let the map f : X → Y be length-continuous. If f (Z) is a contained in a closed ball B ⊂ Y
of radius ≤ Rκ

2 then there exists a map g : X → Y , length-minimizing relative to Z, with
f � g (rel. Z).

Proof We consider the set F of all maps h : X → Y which coincide with f on Z and satisfy
f � h (rel. Z ). We are looking for a minimal element in the set F with the partial ordering
given by � (rel. Z ).

By [12, Theorem 1.1] there exists a 1-Lipschitz retraction � : Y → B. Hence, for any
h ∈ F , we have � ◦ h ∈ F and h � � ◦ h.
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We replace F by its subset F0 of all maps h ∈ F whose image is contained in the ball
B. The existence of the retraction � implies that an element g in F0 minimal with respect to
the partial ordering � (rel. Z ) will be length-minimizing.

In order to find such a minimal element in F0 we apply Zorn’s lemma. It thus suffices to
show that for any totally ordered subset T of F0 there exists an element g ∈ F0 with h � g
(rel. Z ) for all h ∈ T .

For any h ∈ T , the identity id : Y → Y induces a 1-Lipschitz map μ : 〈Y 〉 f → 〈Y 〉h .
The map h then factorizes as h = ĥ ◦ μ ◦ π̂ f . Since the maps ĥ and μ are 1-Lipschitz and
π̂ f is continuous by assumption, the family T is equicontinuous.

Fix a dense sequence (xn) in the compact space X . For any pair (n,m), set

dm,n := inf{〈xn − xm〉h | h ∈ T }.
For any triple of natural numbers (n,m, k) we find some h = hk,n,m in T such that

dm,n + 1

k
> 〈xn − xm〉h .

We enumerate the set of all triples and use a diagonal sequence argument in order to find a
sequence h1 � h2 � h3 � ... of elements in T such that for any xn, xm

lim
i→∞〈xn − xm〉hi = dm,n .

If Y is proper, hence B compact, we take a convergent subsequence of the equi-continuous
sequence hi and obtain a uniform limit g := limi hi : X → B.

If Y is non-proper, we take the ultralimit

hω = lim
ω

hi : X → Bω

from Y to the ultracompletion Bω of B. Then we apply [12, Theorem 1.1] again and find a
1-Lipschitz retraction � : Bω → B. Set now

g := � ◦ hω.

Since all hi agree with f on Z , so does g. Since length of curves is semi-continuous under
Gromov–Hausdorff convergence and under ultraconvergence, we have

lim �Y (hi ◦ γ ) ≥ �Bω (hω ◦ γ ) ≥ �B(g ◦ γ ),

for any curve γ in X . In particular, g is contained in F0. Moreover, for any n,m, i

dm,n ≤ 〈xn − xm〉g ≤ 〈xn − xm〉hi .
Thus, equality holds on the left. By the assumption on hi , for any h ∈ T ,

〈xn − xm〉h ≥ 〈xn − xm〉g
Since the sequence xm is dense in X and, for all h ∈ T , the distance 〈∗ − ∗〉h is continuous
on X , we deduce

〈x − z〉h ≥ 〈x − z〉g,
for any pair of points x, z ∈ X and any h ∈ T .

Thus, h � g (rel. Z ), for all h ∈ T . This finishes the proof. ��
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The CAT(κ)-assumption and the assumption that the image is contained in a small ball
is only used for the existence of a 1-Lipschitz retraction � : Yω → Y . Thus, in the proper
setting the proof provides the following result, which we state for the sake of completeness:

Proposition 5.2 Let X be a Peano space, Z ⊂ X closed. Let f : X → Y be a length-
continuous map into a proper metric space Y . Then there exists a length-continuous map
g : X → Y , which is length-minimizing relative to Z and satisfies f � g (rel Z).

The first part of the proof of Proposition 4.6, shows that for any finite graph � and any
continuous map f : � → Y into a geodesic space Y there exists a map g : � → Y such that
f � g and such that the restriction of g to any edge is a geodesic in Y . Since any such g is
length-continuous, we deduce from Proposition 5.1

Corollary 5.3 Let � be a finite graph and A ⊂ � a set of vertices. Let B be a ball of radius
≤ Rκ

2 in a CAT(κ) space Y . For any continuous map f : � → B, there exists a length-
minimizing map h : � → B relative to A such that f � h.

6 Main result

The following proposition is the technical heart of all results in this paper. This is a slight
generalization of [27, Key-Lemma 6.2]. The proof follows [27] filling some details and some
additional arguments in positive curvature.

Proposition 6.1 Let � be a finite graph, which is the 1-skeleton of a triangulation of the
disc D. Let V be the set of vertices of � and A := V ∩ S

1. Let B be a ball of radius < Rκ

2
in some CAT(κ) space Y . Let f : � → B be continuous. Let 0 < ε < Rκ

2 be such that,
for the vertices x1, x2, x3 of any triangle T in the triangulation of D, the distances satisfy
〈 f (xi ) − f (x j )〉Y ≤ ε.

Then there exists some CAT(κ) disc retract W , a 1-Lipschitz map q : W → Y and a map
p : D → W with the following properties

(1) All fibers of p are contractible and p(V) is ε-dense in W.
(2) q ◦ p|A = f |A.
(3) For every curve γ in �, we have �Y ( f ◦ γ ) ≥ �W (p ◦ γ ) = �Y (q ◦ p ◦ γ ).

Proof We may replace Y by B and assume Y = B. Due to Corollary 5.3, we find a map
h : � → Y length-minimizing relative to A such that f � h (rel. A).

Consider the induced length-metric space 〈�〉h , which is a geodesic graph. Due to Corol-
lary 4.7, the map ĥ : 〈�〉h → B is length-minimizing relative to π̂h(A). By Proposition 4.6,
the restriction of ĥ to any edge of 〈�〉h is an isometry and the projection π̂h : � → 〈�〉h is
monotone. Thus, the conclusions of Lemma 4.8 are valid for the map ĥ : 〈�〉h → Y .

For any triangle T ⊂ D bounded by 3 edges of � with vertices x1, x2, x3 we consider the
unique, possibly degenerated triangle T κ in the surface M2

κ of constant curvature κ , such that
the sides of T κ have distances equal to

〈xi − x j 〉〈�〉h = 〈h(xi ) − h(x j )〉Y ≤ ε.

We glue all these triangles T κ (possibly degenerated to a vertex or to an edge) together in the
same way as the corresponding triangles T are glued in D. We denote the obtained metric
space by W .
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The metric space W is glued from triangles of curvature κ and, possibly, some edges, cf.
[1, definition 12.1]. The gluing maps are simplicial. A priori, edges or vertices of a single
triangle T may be identified in W .

We have a tautological length-preserving map ι : 〈�〉h → W . Some caution is in order:
two non-degenerate edges in a triangle whose third side degenerates to a point are sent by ι to
the same curve inW , hence ι may be non-injective. However, all maps defined below respect
the identifications on 〈�〉h given by ι. Thus, we will identify 〈�〉h with ι(〈�〉h) below.

For any triangle T ⊂ D, the restriction of π̂h : � → 〈�〉h to ∂T defines a map fT : ∂T →
∂T κ . We claim that fT admits an extension to a map f̃T : T → T κ , such that any fiber of
f̃T is topologically a point, an interval or a disc.
If T κ degenerates to a point w ∈ W we choose the constant map f̃T → {w}.
If T κ degenerates to an edge E , the map fT sends one side of ∂T to a point and the two

other edges monotonically to E . Identifying T with a Euclidean triangle, we then obtain
a unique extension f̃T : T → E of fT with all fibers convex subsets. This finishes the
construction in the degenerated case.

If none of the three sides of T κ degenerates to a point, T κ is a topological disc with
boundary ∂T κ . Identifying the two triangles T and T κ with the disc and coning the map fT ,
we obtain an extension map f̃T : T → T κ of fT . The preimages of points under the map f̃T
are (possibly degenerated) compact intervals.

All the maps f̃T constructed above coincide on common edges and points of different
intersecting triangles T . Thus, all f̃T glue together to a continuous map p : D → W . By
construction, the preimage P := p−1(w) of any point w ∈ W is a Peano continuum and the
intersection of P with any triangle T is contractible.

We claim that any such preimage P = p−1(w) is contractible. Otherwise, we would find
a non-contractible circle S in P . Denote by O the open Jordan domain of S in D. Since the
intersection of P with each triangle T is empty or contractible, S is not contained in any
triangle. Hence, O has a non-empty intersection with �. The open disc O does not contain
points in A. By Corollary 4.3, applied to the length-minimizing map h, the subset O ∩ �

must be contained in h−1(w), hence in P . Since any triangle intersects P in an empty or in
a contractible set, we deduce T ∩ O ⊂ P , for all triangles T , with T ∩ O �= ∅. Therefore,
O ⊂ P . This contradicts the non-contractibility of S.

Hence, p has contractible fibers. Therefore, W is a disc-retract [27, Lemma 3.3]. In
particular, W is contractible.

The diameter of any triangle T κ equals to the maximum of the distances between its
vertices. Hence, this diameter is at most ε, by assumption. Therefore, the vertices of T κ are
ε-dense in T κ and p(V) is ε-dense in W .

For any edge E in 〈�〉h , the map ĥ : E → Y is an isometric embedding. For any
degenerated triangle T κ ⊂ W , this gives an isometric embedding h̃T := ĥ : T κ → Y .

If T κ is non-degenerated, then the boundary ∂T κ is the comparison triangle of the trian-
gle ĥ(∂T κ ) in Y . Reshetnyak’s majorization theorem, [1, Theorem 9.56, Proposition 9.54]
implies that ĥ extends to a 1-Lipschitz map h̃T : T κ → Y .

The maps h̃T coincide on common edges and vertices, where they are given by ĥ. Hence,
these maps glue together to a 1-Lipschitz map q : W → Y , whose restriction to 〈�〉h ⊂ W
is ĥ.

By construction, q ◦ p|A = h|A = f |A. For every curve γ in �, we have

�Y ( f ◦ γ ) ≥ �Y (h ◦ γ ) = �W (p ◦ γ ).

It remains to show that the space W is CAT(κ). By construction, W is obtained by gluing
together (simplically) some number of triangles of constant curvature κ . Since the space W
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is a disc retract, the space of directions �wW at any point w ∈ W topologically embeds
into a circle. Hence, �wW is topologically either a circle or a disjoint union of (possibly
degenerated) intervals.

If W is not locally CAT(κ), we find a point w ∈ W and a closed local geodesic of length
less than 2π in �wW [1, Theorem 12.2]. Then the whole space �wW must be a circle of
length less than 2π . Hence, w must be a vertex of 〈�〉h and the cyclic sum of angles α j (in
triangles T κ

j ) adjacent to w is less than 2π .

By construction and angle comparison, the angles in T j
κ are not smaller than the corre-

sponding angles in ĥ(∂T κ
i ) ⊂ Y .

Thus, the cyclic sum of all angles ∠ĥ(w)
(ĥ(ei ), ĥ(ei+1)) in Y is less than 2π , where ei run

over all edges in 〈�〉h adjacent to w in 〈�〉h . This contradicts the length-minimality of ĥ and
Lemma 4.8.

Therefore, the space W is locally CAT(κ). Since W is simply connected, we may apply
the Cartan–Hadamard theorem, [1, Theorem 9.6], and deduce that W is CAT(κ), if κ < 0.
The case κ > 0 requires an additional argument.

Thus, we assume now κ > 0.
The fact that the total angle at any interior point is at least 2π implies that no two sides

of a non-degenerate triangle T κ are identified in W . Therefore, the triangles T κ define a
triangulation of W with 1-skeleton ι(〈�〉h).

IfW is not CAT(κ), we find an isometrically embedded circle S of length < 2Rκ inW [6,
Theorem 2.2.11]. Moreover, we find and fix such a circle with the smallest possible length.
Upon rescaling we may assume that S has length 2π . Then κ < 1. Since there are no closed
geodesics of length < 2π , the space W is CAT(1) and locally CAT(κ).

Consider the subdisc W0 of W bounded by S, which is a convex subset of W . We are
going to construct a 1-Lipschitz map q̃ : W0 → Y , which equals q on S and such that q̃
shortens the length of some curve γ ⊂ 〈�〉h ∩ W0. Once q̃ is constructed, the map

j : 〈�〉h → Y

given by q on 〈�〉h \ W0 and by q̃ on W0 would satisfy ĥ � j (rel. A) and contradict the
length-minimality of ĥ.

It remains to construct the 1-Lipschitz q̃ : W0 → Y , which shortens the length of some
curve in 〈�〉h ∩ W0.

Denote by H the hemisphere of curvature 1 with pole o. Glue H toW0 identifying S with
the boundary of the hemisphere H . The arising space

W1 := W0 ∪S H

is CAT(1) by Reshetnyak’s gluing theorem. There is a canonical 1-Lipschtitz retraction
� : W1 → H , defined as follows (compare [10, Lemma 1.3] [12]):

• �(x) = x if |o − x |W1 ≤ π
2 .• �(x) = o is |o − x |W1 ≥ π .

• �(x) = ηx (π − |o − x |W1) if π > |o − x |W1 > π
2 , where ηx is the geodesic from o to

x in W1 parametrized by arclength.

The hemisphere H has constant curvature 1 > κ . We apply the Kirzsbraun–Lang–
Schroeder extension theorem, [13], [1, Theorem 10.14], and find a 1-Lipschitz map g :
H → Y which extends the 1-Lipschitz map q : S → Y .
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We define the 1-Lipschitz map q̃ : W0 → Y as the composition q̃ = g ◦ �. Then q̃
coincides with q on S. It remains to find a curve in G := 〈�〉h ⊂ W0, whose length is strictly
contracted by q̃ .

Assume on the contrary, that q̃ preserves the length of all curves inG. The closed geodesic
S cannot be contained in a single triangle T κ nor can it intersect twice the same side of the
same triangle T κ . It follows thatG together with S constitute the 1-skeleton of a triangulation
of W0.

By assumption, q̃ is 1-Lipschitz on G. On the other hand ĥ is length-preserving and
length-minimizing onG relative to G∩ S. Therefore, q̃ is length-minimizing on G relative to
G ∩ S as well. Hence, q̃ is an isometry on every edge of the graph G. Since g is 1-Lipschitz,
we deduce that the 1-Lipschitz map � : W0 → H restricts to an isometry to every edge of
G.

We find a triangle T0 = xpz in the triangulation of W0 defined by G ∪ S, such that one
side xz of T0 lies on S. The definition of the map � and the equality

|p − x |W0 = |p − x |W1 = |�(p) − �(x)|H
imply that |p − x |W0 ≤ π

2 and that the triangle opx is of constant curvature 1. Since W0

is locally CAT(κ), it implies that the triangle opx is degenerated. Hence px meets S at x
orthogonally. The same is true for the geodesic pz.

Since W0 is CAT(1), we deduce that p has distance π
2 to x and to z and that the triangle

pxz has constant curvature 1. Since W0 is locally CAT(κ), this implies that the triangle T0 is
degenerated, which is impossible.

This contradiction shows that W is CAT(κ) and finishes the proof. ��
We are now in position to provide

Proof of Theorem 1.1 Thus, let Y be CAT(κ) and f : D → Y be length-continuous and
length-minimizing relative to S1. We need to prove that 〈D〉 f is CAT(κ).

Due to Lemma 3.4, 〈D〉 f is a disc retract. It is sufficient to prove that any Jordan triangle
G (thus a Jordan curve, built by 3 geodesics) of length < 2Rκ in 〈D〉 f is not thicker than its
comparison triangle in M2

κ . We fix G and denote by J the closed disc bounded by G in the
disc retract 〈D〉 f .

It is sufficient to prove that J with its intrinsic metric is CAT(κ). Since the boundary G
of J has finite length, J is a geodesic metric space in its intrinsic metric.

The restriction f̂ : J → Y is length-minimizing relative to G and its image is contained
in a ball B ⊂ Y of radius r < Rκ

2 , by Lemma 4.9. Moreover, f̂ : J → Y is a light map,
which preserves the length of all curves in J , by Lemma 3.4 and Lemma 3.2.

We thus have a geodesic metric space J homeomorphic to a closed disc, whose boundary
G is a geodesic triangle of perimeter less than 2Rκ . Upon renaming B into Y , we have a
light map f̂ : J → Y into a CAT(κ) space Y which is contained in a ball of radius less than
Rκ

2 around some of its points. The map f̂ preserves the length of all curves in J and f̂ is
length-minimizing relative to G. We need to verify that J is CAT(κ).

For any natural n we find a finite, connected, piecewise geodesic graph �̃n in J , which
contains G and satisfies the following conditons, see [7, Theorem 1.2] and [22, Proposition
5.2]:

The boundary of any connected component T0 of J\�̃n is a Jordan triangle and the closure
T of T0 has diameter less than 1

n . The embedding of �̃n with its intrinsic metric into J is a
1
n -isometry, thus,

|x − z|�̃n
≤ |x − z|J + 1

n
,
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for all x, z ∈ �̃n .
Note that the graph �̃n provided by [22, Proposition 5.2] does not need to be the 1-skeleton

of a triangulation of J : A vertex of one triangle may lie on the side of another triangle.
We refine �̃n by adding one vertex oT inside of each triangle T defined by �̃n and by

connecting oT by pairwise disjoint curves inside T to all vertices of �̃n on the sides of T .
Denote the arising graph by �n .

By construction, �n defines a triangulation of J and each triangle of the triangulation has
diameter at most 1

n .
We now apply Proposition 6.1 and obtain a CAT(κ) disc retract Wn , maps pn : J → Wn

and qn : Wn → Y with the properties (1), (2), (3) stated there, for ε = 1
n and f = f̂ .

Hence, pn is surjective and has contractible fibers, and qn is 1-Lipschitz.
Denote by Vn the vertices of the subgraph �̃n of �n . Any vertex of �n lies at distance at

most 1
n to some vertex of �̃n . Since f̂ is length-preserving and therefore 1-Lipschitz, this

distance estimate holds for the images of the vertices in Y and, therefore for vertices of the
triangulation of Wn . Together with the property (2), this implies that pn(Vn) is 2

n -dense in
Wn .

For every pair of points x, z ∈ Vn , we choose a curve γ ⊂ �n realizing the distance
between x and z in �n . Then

|x − z|J + 1

n
≥ �J (γ ) ≥ �Y ( f̂ ◦ γ ) ≥ �Wn (pn ◦ γ ) ≥ |pn(x) − pn(z)|Wn .

After choosing a subsequence we obtain a Gromov–Hausdorff converging sequence of
images pn(�n) to a compact metric spaceW . Moreover, the spacesWn converge to the space
W as well and the maps pn converge to a surjective 1-Lipschitz map p : J → W . Since the
spaces Wn are CAT(κ), the limit space W is a CAT(κ) space as well.

Set An := Vn ∩ G. Then An is 1
n -dense in G and, by Proposition 6.1, the restriction of

qn ◦ pn to An coincides with f̂ |An . In the limit we obtain

f̂ |G = q ◦ p|G .

By assumption, f̂ preserves the length of all curves. Since q ◦ p is 1-Lipschitz, we deduce
f̂ � q ◦ p (rel. G). By assumption, f̂ is length-minimizing relative to G, hence f̂ = q ◦ p,
by Lemma 4.5. Since p and q are 1-Lipschitz, the map p must preserve the length of any
curve.

Since f̂ is a light map, also p must be a light map. The fibers of pn converge to subsets
of the corresponding fibers of p. The fibers of pn are connected, hence any limit set is
connected as well. Since all fibers of p are totally disconnected, we deduce that any limit of
fibers p−1

n (wn) must be a singleton. Denoting by εn the maximal diameter of fibers of pn ,
we deduce lim εn = 0.

We claim that p is injective. Otherwise, we find some x �= z ∈ p−1(w). Then |pn(x) −
pn(z)|Wn converge to 0. Consider the geodesic en between pn(x) and pn(z) in Wn and set
En := p−1

n (en). Since pn has connected fibers, En is a connected subset of J .
Taking a subsequence, we obtain in the limit a connected subset E of J , which contains

x and z and is sent by p to the point w. Since p is a light map, this is a contradiction.
Therefore, p : J → W is injective, hence bijective. Since J is compact, p is a home-

omorphism. Since p preserves the length of any curve, p is an isometry and J = W is a
CAT(κ) space. ��
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7 Ruled discs

Weare going to prove Corollary 1.3 in this section. Thus, let η0, η1 : [0, 1] → Y be rectifiable
curves in a CAT(κ) space Y . For a ∈ [0, 1], let γa(t) : [0, 1] → Y be geodesics of length
< Rκ parametrized proportionally to arclength and connecting η0(a) with η1(a).

We consider the square Q := [0, 1] × [0, 1] as a topological disc. We define f : Q → Y
by f (a, t) := γa(t). We need to verify that 〈Q〉 f is CAT(κ).

Since geodesics of length < Rκ depend continuously on the endpoints, we deduce that
f is continuous. By continuity, we find some δ > 0, such that all geodesics γa have length
at most Rκ − δ. By the quadrangle comparison, we find some L, ρ > 0 with the following
property:

Whenever |ηi (a) − ηi (b)|Y ≤ ρ, for i = 0, 1, then, for all t ∈ [0, 1]:
|γa(t) − γb(t)|Y ≤ L · (|η0(a) − η0(b)|Y + |η1(a) − η1(b)|Y

)

.

Therefore, for any s ∈ [0, 1], the curve ηs(t) := f (t, s) is of finite length, bounded from
above by L · (�Y (η0) + �Y (η1)). Moreover, once η0, η1 have length at most r on an interval
[a, b] ⊂ [0, 1], then any of the horizontal curves ηt , t ∈ [0, 1] has length less than 2 · L · r .

Hence, any point (a, t) ∈ Q sufficiently close to a given point (a0, t0) can be connected
to (a0, t0) by a concatenation of a vertical and horizontal segments in Q, which is mapped
to a curve of a small length. Therefore, f is length-continuous.

Therefore, Corollary 1.3 is a direct consequence of Theorem 1.1 and the following:

Lemma 7.1 The map f : Q → Y is length-minimizing relative to ∂Q.

Proof Let a continuous map g : Q → Y satisfy f � g (rel. ∂Q). For the vertical segment
t → (a, t) ∈ Q, the image curve t → g(a, t) has length not larger than the geodesic γa and
connects the same boundary points.

Hence t → g(a, t) coincides with γa up to parametrization. Since also

�Y ( f ◦ γ ) ≥ �Y (g ◦ γ )

for all subsegments γ of the segment t → (a, t), parametrizations must coincide, hence
f (a, t) = g(a, t), for all a and t .
Thus, f � g (rel. ∂Q) implies f = g. Hence f is length-minimizing. ��

8 Harmonic disks

8.1 Basics on Sobolev discs

In this section, we assume some knowledge on Sobolev and harmonic maps with values in
metric spaces. We refer the reader to [9, 11, 15, 29], for introductions to this subject.

Throughout the section let Y be a CAT(κ) space and � be a bounded, open subset of R2.
Any Sobolev map f ∈ W 1,2(�, Y ) has a (Korevaar–Schoen) energy E( f ) ∈ [0,∞) [11],
[15, Proposition 4.6].

If � is a Lipschitz domain, hence the boundary ∂� is a union of Lipschitz curves, then
for any Sobolev map f ∈ W 1,2(�, Y ) there is a trace of f , tr( f ) ∈ W 1,2(∂�, Y ), [11,
Theorem 1.12.2]. If f : �̄ → Y is continuous, then the trace is just the restriction of f to
the boundary ∂�.

If ∂� is not Lipschitz we say that f , g ∈ W 1,2(�, Y ) have equal traces, if 〈 f − g〉Y is
contained in W 1,2

0 (�,R), see [29, Sect. 1.4], [16, Sect. 4.1].
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A map f ∈ W 1,2(�, Y ) is called harmonic if f has the smallest energy among all maps
g ∈ W 1,2(�, Y ) with the same trace as f .

For any f ∈ W 1,2(�, B), where B is a ball in Y of radius < Rκ

2 , there exists a unique
harmonic map g ∈ W 1,2(�, Y ) with the same trace as f , [29, Theorem 1.16]. Moreover, the
image of this harmonic g is contained in B as well and g has a (unique) locally Lipschitz
representative [29, Theorem 3.1]. We will always use this representative below. Finally, the
restriction of a harmonic map to any subdomain �̃ ⊂ � is harmonic as well, [16, Lemma
4.2].

Assume that f , g : �̄ → Y are continuous and that f ∈ W 1,2(�, Y ). Assume further
that f � g. Then �Y ( f ◦ γ ) ≥ �Y (g ◦ γ ), for any curve γ in �. Using the upper-gradient
definition of Sobolev maps [9] this implies that g ∈ W 1,2(�, Y ) as well. Moreover, at almost
all points of � the approximate metric differential of f is not less than the corresponding
approximate metric differential of g, [15, Proposition 4.10]. Then also the energies satisfy
E( f ) ≥ E(g), [15, Proposition 4.6]. In particular, if f is harmonic then g is harmonic as
well.

If f ∈ W 1,2(D, Y ) is harmonic and tr( f ) : S1 → Y is continuous, then f is continuous
on the closed disc D, [14, Proposition 4.4]. The following Lemma is essentially contained in
the proof of [14, Proposition 4.4].

Lemma 8.1 Let f : D → Y be a harmonic map such the trace f : S1 → Y is a curve of
finite length. Then f is length-continuous.

Proof Themap f is locally Lipschitz onD0 := D\S1. Hence, π̂ f : D → 〈D〉 f is continuous
on D0.

Let z ∈ S
1 and ε > 0 be arbitrary. We find an arbitrary small ball Br (z) such that the

lengths of the two curves f (∂Br (z) ∩D) and f (S1 ∩ Br (z)) are smaller than ε. Moreover, if
r is small enough, the energy of the restriction of f to B0 := Br (z) ∩ D is also smaller than
ε.

Hence f : B0 → Y is a continuous, harmonic and of energy smaller than ε. We claim
that there exists some δ(ε) > 0 which goes to 0 with ε, such that the following holds true:
Any point p ∈ B0 can be connected by a curve γ with a point on ∂B0 such that �Y ( f ◦ γ ) is
at most δ.

Once the claim is verified, we can use the fact that the restriction of f to ∂B0 has length
< ε to deduce, for every p ∈ B0,

〈z − p〉 f ≤ δ + ε.

The right hand side goes to 0 as r converges to 0. Hence the map π̂ f would be continuous at
z. Thus, π̂ f would continuous on all of D.

It remains to verify the claimabove. Since precomposingwith a conformal diffeomorphism
between domains in C does not change the energy (and the induced intrinsic distances), we
use the Riemann mapping theorem and may replace B0 by D and p by the origin 0 ∈ D.

We denote by ηθ (t) = t · θ the radial segment in the direction θ ∈ S
1, which connects 0

with the point θ ∈ S
1 = ∂D. Denote by η+

θ the first half of the segment connecting 0 with
1
2θ and by η−

θ the second half of ηθ .
The restriction of f to the smaller ball B 1

2
(0) is L · ε-Lipschitz, where L is some uniform

constant, see [29, Theorem 2.2]. Hence, for any segment η+
θ , the length of f ◦ η+

θ is at most
1
2 · L · ·ε.

On the other hand, integrating the energy in polar coordinates, we find that the length of
f ◦ η−

θ is at most
√

ε, for at least one θ ∈ S
1. Indeed, denoting the absolute gradient of u by
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ρ ∈ L2(D), we obtain:

ε = E(u) ≥ 1

2

∫

D

ρ2 ≥ 1

4

∫

θ∈S1

(
∫

η−
θ

ρ2

)

dθ ≥ 1

4

∫

S1
�2Y ( f ◦ η−

θ ) dθ.

Thus, for this θ , the length of f ◦ ηθ is at most 1
2 · L · ε + √

ε. This finishes the proof of
the claim and of the lemma. ��

It is possible to prove (but requires some rather technical considerations in the case of
positive κ) that any harmonic disc f : D → Y is length-minimizing. We arrive at the proof
of Corollary 1.2 faster restricting the domain of definition:

Proof of Corollary 1.2 Thus, let f : D → Y be continuous and harmonic and such that f (S1)
has finite length. If, for some y ∈ Y , the set D \ f −1(y) has a connected component O not
intersecting S1, then the restriction of f to this component O could not be harmonic. Hence,
this is impossible. Therefore, the geodesic space 〈D〉 f is a disc retract by Lemma 8.1 and
Lemma 3.4.

Let G be a Jordan triangle in 〈D〉 f of length less than 2Rκ and let J be the closed disc
bounded by G in the disc retract 〈D〉 f . As in the proof of Theorem 1.1, it suffices to show
that 〈J 〉 f̂ with the induced length metric is CAT(κ). Due to Theorem 1.1 it suffices to prove

that f̂ : J → Y is length-minimizing relative to G.
Let G̃ be the preimage of G in D and let O ⊂ D be the preimage of J \ G. Then

f (G̃) = f̂ (G) is a curve of length less than 2Rκ , hence it is contained in a ball B of radius
less than Rκ

2 in Y . Applying a strictly 1-Lipschitz retraction to B, [12], we deduce that the
image of the harmonic map f : O → Y is contained in B.

Assume now that f̂ is not length-minimizing relative to G and let g : J → Y with f̂ � g
(rel. G) be given. Then the map g̃ := g ◦ π̂ f : Ō → Y satisfies f � g̃ (rel. G̃). As seen
above, g̃ is harmonic on O . By the uniqueness of harmonic maps with values in B, we deduce
g̃ = f . Hence f̂ = g. This finishes the proof of the fact that f̂ is length-minimizing and of
the Corollary. ��

9 Questions

Here is the promised list of (mostly technical) questions.

Question 9.1 What does it mean in differential-geometric terms for a smooth map f : D →
M into a Riemannian manifold M to be length-minimizing?

See [27, Sect. 10] for partial answers to this question.

Question 9.2 Does our main theorem hold true for length-minimizing discs which are length-
connected but not length-continuous?

This question was the essential motivation for the definition of metric-minimality created
in [27].

Question 9.3 Does the conclusion of Lemma 3.4 hold true without the non-bubbling assump-
tion? For which topological spaces X does the conclusion of Lemma 3.4 hold true, for all
length-continuous maps f : X → Y? In particular, does Lemma 3.4 hold true for Euclidean
balls X of dimension larger than 2.
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The last part of this question appears in the arXiv-version of [25].

Question 9.4 Let f : D → Y be length-connected. Can f be not length-continuous if 〈D〉 f
is compact? What about more general Peano spaces X instead of D?
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