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The flexible method of reduction to finite integrals, briefly described in earlier publications of the author,
is described in detail. The method is suitable for the calculation of all quantum electrodynamical
contributions to the magnetic moments of leptons. It includes mass-dependent contributions. The method
removes all divergences (UV, IR, and mixed) point-by-point in Feynman parametric space without any usage
of limitlike regularizations. It yields a finite integral for each individual Feynman graph. The subtraction
procedure is based on the use of linear operators applied to the Feynman amplitudes of UV-divergent
subgraphs; a placement of all terms in the same Feynman parametric space is implied. The final result is
simply the sum of the individual graph contributions; no residual renormalization is required. The method
also allows us to split the total contribution into the contributions of small gauge-invariant classes. The
procedure offers a great freedom in the choice of the linear operators. This freedom can be used for
improving the computation speed and for a reliability check. The mechanism of divergence elimination is
explained, as well as the equivalence of the method and the on shell renormalization. For illustrative
purposes, all 4-loop contributions to the anomalous magnetic moments of the electron and muon are given
for each small gauge-invariant class, as well as their comparison with previously known results. This also
includes the contributions that depend on the ratios of the tau-lepton mass to the electron and muon mass.
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I. INTRODUCTION

A. Quantum field theory, divergences,
and renormalization

It is well known that the first formulations of quantum
field theory suffered from ultraviolet (UV) divergences. In
1947–1949, the first results appeared showing that the UV
divergences in the physical observables are canceled if we
define the physical parameters properly. This demonstration
was the result of the efforts of R. Feynman, J. Schwinger, H.
Bethe, S. Tomonaga, and others. A procedure for dealing
with UV divergences in quantum electrodynamics (QED) at
any order of the perturbation series was developed by F. J.
Dyson [1] and A. Salam [2]. A further development and a
mathematical understanding of these ideas has led to
N. Bogoliubov’s R-operation. This operation can be rep-
resented as a subtraction procedure that deals with the
Feynman amplitudes of the UV-divergent subgraphs in each
Feynman graph that contributes to the needed probability

amplitude; it removes all UV divergences in each Feynman
graph. The application of the R-operation to Feynman
graphs is equivalent to an introduction of counterterms into
the Lagrangian; it can be treated as a renormalization of the
theory parameters. The corresponding theorem was proved
in 1956 by N. Bogoliubov and O. Parasiuk [3]. This proof
contains some inaccuracies, but nevertheless, the
Bogoliubov-Parasiuk theorem set a standard of quality
and raised the hope that quantum field theory has a meaning
and can be rigorously examined. The shortcomings of the
proof were corrected by K. Hepp in 1964 [4].
Not only the Bogoliubov-Parasiuk-Hepp theorem is of

interest, but also its proof, because a stronger statement was
proved: the UV subtractions lead directly to finite integrals
in Schwinger parametric space.1 In QED, we have Feynman
graphs with the propagators,
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1Usually, these statements are referred to as the BPHZ ap-
proach. The last letter “Z” refers toW. Zimmermann’s paper [5]. In
that work, the convergence theorem was proved directly in
Minkowsky momentum space. Moreover, an explicit solution of
the recurrence relations given by the R-operation was provided,
also known as Zimmermann’s forest formula (more precisely, the
solution had been provided four years earlier by O. I. Zavialov and
B. M. Stepanov [6], but this publication was only in Russian and
was not noticed).
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ið=qþmÞ
q2 −m2 þ iε

;
−gμν

q2 þ iε
; ð1Þ

for the lepton and photon lines correspondingly, where
=q ¼ qνγν stands for the Dirac gamma matrices γν. If we
transfer to the Schwinger parameters by using the formula,

i
x
¼

Z þ∞

0

eixzdz;

we express the Feynman amplitude as an integral,

Z
z1;…;zL>0

Iðz1;…; zL; p1;…; pn; εÞdz1…dzL; ð2Þ

where p ¼ ðp1;…; pnÞ is the vector of external momenta,
z ¼ ðz1;…; zLÞ is the vector of Schwinger parameters, zj
corresponds to the jth internal line of the graph. If we apply
theR-operation, Iðz1;…; zL; p1;…; pn; εÞ is expressed as a
linear combination of terms; each term is a product of some
functions, each of which corresponds to a Feynman
amplitude that uses a subset of the set of internal lines; if
the same mapping is used between zj and the internal lines,
all the counterterms are placed in the same Schwinger
parametric space. A by-product of the Bogoliubov-
Parasiuk-Hepp theorem is that (2) is finite for any ε > 0.
Unfortunately, these subtractions in Schwinger’s para-

metric space are useless for calculations. The reason is the
inability to handle the limit ε → 0. Infrared (IR) diver-
gences and their cancellation have been widely discussed
in literature. However, a rigorous examination for the
general case has not yet been done. At higher orders IR and
UV divergences mix with each other.2 In the case of
magnetic moments of leptons, all IR divergences are
removed by the physical on shell renormalization as well
as the UV and mixed ones.3 A general scattering process
requires consideration of a finite photon detector sensi-
tivity in addition to renormalization. The on shell renorm-
alization can be performed in place in Feynman graphs by
a simple modification of theR-operation. In the case of the
lepton magnetic moments, it removes all divergences in the
final result. However, the individual integrals remain IR
divergent.
The combinatorics of the IR and mixed divergences in

Feynman graphs is very complicated. For this reason, their
subtraction before integration is very rarely used in modern
quantum field theory computations. Nowadays, most
calculations use dimensional regularization, which allows
us to work directly with infinite components without exact
mappings for cancellation. However, the use of dimen-
sional regularization requires an enormous amount of
symbolic manipulation at higher orders. An experience

with calculations of the lepton magnetic moment shows
that the methods that subtract divergences before integra-
tion work much faster and allow us to obtain high-order
corrections that are not achievable with other methods.

B. Anomalous magnetic moments of leptons
and their calculations

The anomalous magnetic moments (AMM) of the
electron and muon are known with a very high precision.
A recent measurement [10] gave the result,

ae ¼ 0.00115965218059ð13Þ: ð3Þ

Standard Model predictions for the electron AMM ae
use the following expression:

ae ¼ aeðQEDÞ þ aeðhadronicÞ þ aeðelectroweakÞ;

aeðQEDÞ ¼
X
n≥1

�
α

π

�
n
a2ne ;

a2ne ¼ Að2nÞ
1 þ Að2nÞ

2 ðme=mμÞ þ Að2nÞ
2 ðme=mτÞ

þ Að2nÞ
3 ðme=mμ; me=mτÞ;

whereme,mμ,mτ are the masses of the electron, muon, and
tau-lepton, respectively, α is the fine-structure constant; a
similar expression is used for the muon AMM aμ.
The universal QED terms Að2nÞ

1 ðα=πÞn form the main
contribution to ae and aμ. The value,

Að2Þ
1 ¼ 0.5;

was obtained in 1948 by J. Schwinger [11,12]. The 2-loop

contribution Að4Þ
1 was calculated mainly by R. Karplus and

N. Kroll [13]. However, this calculation had an error; the
correct value,

Að4Þ
1 ¼ −0.328478965579…;

was independently presented by A. Petermann [14] and C.

Sommerfield [15] in 1957. The value of Að6Þ
1 was being

calculated in 1970-x by various research groups using
numerical integration ([16,17]; [18]; [19]). Each of these
groups used its own method of divergence elimination at

the integrand level. The most accurate value Að6Þ
1 ¼

1.195� 0.026 for those times was obtained in 1974 by
T. Kinoshita and P. Cvitanović; the uncertainty is caused by
the statistical error of the Monte Carlo integration. At the

same time, an analytical calculation of Að6Þ
1 using com-

puters was started. The final value,

Að6Þ
1 ¼ 1.181241456…;

2See, e.g., the explicit formulas in [7].
3See, for example, [8] and Appendix C of [9].
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was obtained by S. Laporta and E. Remiddi in 1996 [20].
This value was the result of the efforts of many researchers
(see, for example, [21–26]). First numerical estimates for

Að8Þ
1 were obtained by T. Kinoshita and W. B. Lindquist

in 1981 [27]. The most accurate value presented by

T. Kinoshita’s team, Að8Þ
1 ¼ −1.91298ð84Þ, was published

in 2015 [28]. This value was obtained by Monte Carlo
integration. The semianalytic result of S. Laporta,

Að8Þ
1 ¼ −1.9122457649…;

was obtained in 2017 [29]. These two calculations of Að8Þ
1

agree well, as do another independent calculations [30,31]
and our calculation of Feynman graphs without lepton

loops [32]. First overall calculation results for Að10Þ
1 were

published in 2012 by Aoyama-Hayakawa-Kinoshita-Nio
(AHKN) in [33].4 The last value obtained by this group in
2019 [34] is

Að10Þ
1 ½AHKN� ¼ 6.737ð159Þ: ð4Þ

This coefficient has not yet been verified, and a significant
computational error could be apparent in experiments.
We recalculated the total contribution of the graphs with-

out lepton loops to Að10Þ
1 and presented [35] in 2019 the

value,

Að10Þ
1 ½no lepton loops;Volkov� ¼ 6.793ð90Þ;

that leads to

Að10Þ
1 ½Volkovþ AHKN� ¼ 5.862ð90Þ; ð5Þ

with a discrepancy of 4.8σ with (4). At the moment the
discrepancy is unresolved, but independent calculations
are coming [36]. The values (4) and (5) in combination
with the experimental value (3) and another known
contribution [34] lead to

α−1½ae;AHKN� ¼ 137.0359991663ð155Þ ð6Þ

and

α−1½ae;Volkovþ AHKN� ¼ 137.0359991593ð155Þ; ð7Þ

correspondingly. The values obtained from the measured
ratios of the atomic masses and the Planck constant,

α−1½Rb − 2011� ¼ 137.035998996ð85Þ;
α−1½Cs − 2018� ¼ 137.035999046ð27Þ;
α−1½Rb − 2020� ¼ 137.035999206ð11Þ;

come from [37,38,39], respectively. Note that α−1½Rb −
2020� is the largest among these three values and has a
discrepancy of 5.4σ relative to α−1½Cs − 2018�. The ten-
sions with (6) are 1.97σ, 3.86σ, 2.09σ; the corresponding
tensions with (7) are 1.89σ, 3.64σ, 2.46σ.
Other results exist for small classes of 5-loop and higher

order graphs [40–42]; they are in good agreement with the
ones mentioned above.
An analytic formula for Að4Þ

2 ðxÞ was first established

by H. H. Elend [43] in 1966. Numerical values for Að6Þ
2

appeared about 1969 [44]. Most attention was paid to

Að6Þ
2 ðmμ=meÞ, because its value Að6Þ

2 ðmμ=meÞ ≈ 20

became unexpectedly large. These values were also
being calculated analytically in the form of an expan-
sion in the mass ratio. These expansions are being
published since 1975 with an increasing number of

terms [45–49]. The values Að6Þ
3 were also evaluated

numerically [50], semianalytically [46], and analytically
[51] as expansions in the mass ratios. First, numerical

values of Að8Þ
2 ðmμ=meÞ appeared in 1990 [50]. The recent

values of Að8Þ
2 and Að8Þ

3 for the electron and muon
obtained by T. Aoyama and co-workers with the help
of Monte Carlo integration are presented in [28,52].
Semianalytic calculations using expansions in mass
ratios confirmed these results [53,54]. Other results for
certain classes of graphs are also in good agreement with

them [55–61]. The only known values of Að10Þ
2 and Að10Þ

3

for the electron and muon were presented in 2012 by
T. Aoyama and co-workers [33,52]. Partial calculations of
small graph classes confirm these results [42,46,57,62].
However, a very important contributing to aμ value,

Að10Þ
2 ðmμ=meÞ ¼ 742.18ð87Þ;

has not been double-checked yet. It is much larger (in
absolute value) than the corresponding electron value.
A significant error in this value could be noticeable in
experiments, and the shift would be comparable to the
hadronic uncertainty. In addition, rapid growth of

Að2nÞ
2 ðmμ=meÞ with n may cause the higher-order terms

to significantly affect the result. However, estimates based
on known lower-order values and renormgroup-inspired
arguments [50,52,63–65], as well as nonrelativistic calcu-
lations [66], show that both possibilities seem unlikely.
See reviews [67] on the muon (2021) and [34] on the

electron (2019) for details.

4And another subtraction procedure that removes all divergen-
ces before integration was developed for these calculations; it is
different from those used for sixth and eighth order calculations.
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C. Methods of numerical calculation
and gauge-invariant classes

Methods based on subtraction of divergences before
integration have been widely used for calculations
of QED contributions to magnetic moments of leptons
[16,18,19,34] and for other quantum field theory calcula-
tions [68].
In 2016, we presented a method [69] suitable for

computing Að2nÞ
1 for arbitrary n. The difference of this

method from the previously known methods is that it
is based on linear operators applied to the Feynman
amplitudes of UV-divergent subgraphs, and the final
result is obtained directly by summing the contributions
of the Feynman graphs (no residual renormalization is
required).
A distribution of the final result over Feynman graphs is a

matter of free choice, but it is very untrivial to realize this
freedom in the context of methods that subtract divergences
before integration and yield the final result without residual
renormalization, because the integrals obtained must be
finite for each individual Feynman graph, but the whole
procedure must conform to the physical on shell renorm-
alization. In a sense, this subtraction procedure must contain
an evidence that the on shell renormalization removes all
divergences, including infrared and mixed divergences. In
2021, we presented a modification [70] of the developed
method; it allows us to choose three linear subtraction
operators independently.5 Moreover, the new method is
suitable for the calculation of mass-dependent contributions

Að2nÞ
2 , Að2nÞ

3 .6

Some classes of Feynman graphs form gauge-invariant
classes. For example, any class of graphs closed under a
motion of the internal photon lines along the lepton paths
and loops, but without jumping over the external photon
line, is invariant in the class of Lorentz-invariant gauges with
the photon propagators of the form −ðgμν þ kμkνfðk2ÞÞ=
ðk2 þ i0Þ, if we properly define the on shell renormalization
for subclasses of graphs,7,8 see Sec. IVA.
Examples of the use of the new method, as well as a

comparison with the old method, were given in [70,71]. In
this work, we show that the method yields the exact value
for each gauge-invariant class mentioned above, including

those contributing to Að2nÞ
2 and Að2nÞ

3 , as well as a finite
integral for each Feynman graph.

II. THE METHOD FORMULATION

Wework in the unit system where ℏ ¼ c ¼ 1, the factors
of 4π appear in the fine-structure constant: α ¼ e2=ð4πÞ,
the tensor gμν corresponds to the signature ðþ;−;−;−Þ, the
Dirac matrices satisfy the condition γμγν þ γνγμ ¼ 2gμν.
We also suppose e ¼ 1 for the lepton electric charge; since
we work with each term of the perturbation series sepa-
rately, it changes nothing, but makes the expressions
shorter.
We extract the lepton AMM from QED Feynman graphs

with Nl ¼ 2, Nγ ¼ 1, where by Nl and Nγ we denote the
number of external lepton and photon lines in the graph;
each graph may contain electron, muon, tau-lepton lines.
We also assume that all graphs are one-particle irreducible
and have no odd lepton loops (Furry’s theorem).
We work in the Feynman gauge with the propagators (1)

for leptons and photons, respectively, where m is the
lepton mass.
There are the following types of UV-divergent sub-

graphs9 in QED Feynman graphs: lepton self-energy sub-
graphs (Nl ¼ 2, Nγ ¼ 0), vertexlike subgraphs (Nl ¼ 2,
Nγ ¼ 1), photon self-energy subgraphs (Nl ¼ 0, Nγ ¼ 2),
photon-photon scattering subgraphs10 (Nl ¼ 0, Nγ ¼ 4).
Two subgraphs are said to overlap if they are not

contained in each other and the intersection of their line
sets is not empty.
A set of subgraphs of a graph is called a forest if any two

elements of this set do not overlap.
For a vertexlike graphG, we denote byF½G� the set of all

forests F consisting of UV-divergent subgraphs of G and
satisfying the condition G∈F. The lepton path of a graph
G connecting its external lepton lines is called the main
path of G. By I ½G�, we denote11 the set of all vertexlike
subgraphs of G (including G), which have the vertex
incident to the external photon of G and at least one vertex
of the main path of G.
To define the subtraction procedure, we use the linear

operators labeled A, U0, U1, U2, U3, L; sometimes the
same names are used for operators applied to the Feynman
amplitudes of subgraphs of different types. The defini-
tions are5The number is not related to the number of leptons; the

number of leptons can be arbitrarily large.
6More precisely, the old method is also suitable for this, but the

argument in [69] does not prove this and is not extensible to prove
this.

7The gauge invariance was proved in [8], but only for graphs
without lepton loops. It looks the whole proof is not published,
but the fact is widely used; we believe that the ideas of [8] can be
extended to the general case.

8The gauge invariance implies not only the possibility of using
different photon propagators, but also the ability to renormalize
photon self-energies differently.

9We consider only those subgraphs, which are one-particle
irreducible and contain all lines connecting the vertexes of the
given subgraph; since odd lepton loops are forbidden, a UV-
divergent subgraph is one-particle irreducible if and only if it is
amputated.

10Photon-photon scattering subgraph divergences cancel in the
final result without subtraction, but they remain in the individual
graphs.

11The definition differs from that in [69].
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(i) A is applied to vertexlike Feynman amplitudes12

Γμðp; qÞ and is defined as

ðAΓÞμðp; qÞ ¼ ½A0Γ�γμ;

where A0 is the projector of the AMM. See the
definition of the projector in [35,69].

(ii) L is the standard on shell renormalization operator
for vertexlike graphs; it is defined as

ðLΓÞμðp; qÞ ¼ ½L0Γ�γμ;
L0Γ ¼ aðm2Þ þmbðm2Þ þm2cðm2Þ;

where

Γμðp; 0Þ ¼ aðp2Þγμ þ bðp2Þpμ þ cðp2Þ=ppμ

þ dðp2Þð=pγμ − γμ=pÞ: ð8Þ

(iii) U0 is applied to photon self-energy and photon-
photon scattering subgraphs and works as in stan-
dard renormalization. For the Feynman amplitude
Πμνðp2Þ of the photon self-energy, we can take, for
example,

ðU0ΠÞμνðp2Þ ¼ ½U0
0Π�½gμν; p2gμν; pμpν�; ð9Þ

where

U0
0Π ¼

�
h1ð0Þ;

∂h1ðp2Þ
∂p2

����
p2¼0

; h2ð0Þ
�
; ð10Þ

a scalar product is implied, and

Πμνðp2Þ ¼ h1ðp2Þgμν þ h2ðp2Þpμpν: ð11Þ

Optimizations as described in [72] can also be used
for photon self-energy graphs; the choice of the
photon self-energy renormalization method does not
play an important role in our subtraction procedure.
For example, a more efficient method was used for
the calculations; see Sec. V. However, the definition
given here is convenient for proofs.
For the Feynman amplitudes of photon-photon

scattering, we can take

ðU0ΠÞμ1μ2μ3μ4ðp1; p2; p3; p4Þ ¼ Πμ1μ2μ3μ4ð0; 0; 0; 0Þ;

where zero 4-momenta are denoted by 0. It also can
be defined with vector-valued operators U0

0 as it was
done for photon self-energy Feynman amplitudes.

(iv) Uj, j ¼ 1, 2 are applied to vertexlike and lepton
self-energy Feynman amplitudes; U3 is applied only
to vertexlike amplitudes. They are defined as

ðUjΓÞμðp; qÞ ¼ ½U0
jΓ�γμ;

ðUjΣÞðpÞ ¼ M0Σþ ðU0
jΣÞ × ð=p −mÞ; ð12Þ

where Γμðp; qÞ and ΣðpÞ are vertexlike and lepton
self-energy Feynman amplitudes, U0

j are number-
valued linear operators,

ΣðpÞ ¼ rðp2Þ þ sðp2Þ=p: ð13Þ

M0Σ ¼ rðm2Þ þ sðm2Þm: ð14Þ

We require that
(1) Uj (j ¼ 1, 2) preserve the Ward identity: if Γμ

and Σ satisfy

Γμðp; 0Þ ¼ −
∂ΣðpÞ
∂pμ ;

then

ðUjΓÞμðp; 0Þ ¼ −
∂½ðUjΣÞðpÞ�

∂pμ

is also satisfied. The latter can be rewritten as

U0
jΓ ¼ −U0

jΣ:

(2) If Γμðp; 0Þ ¼ 0, then U0
jΓ ¼ 0 (j ¼ 1, 2, 3).

We emphasize that the same symbol Uj is used for
lepton self-energy and vertexlike Feynman ampli-
tudes; the definitions for the different types are
independent from each other, the requirements con-
nect them.

These conditions are sufficient to prove combi-
natorially that the subtraction procedure defined
below is equivalent to on shell renormalization,
provided that all regularization issues are resolved.

To obtain finite integrals for each graph, more
stringent requirements are needed. We take

U0
jΓ¼ aðM2Þ; U0

jΣ¼−sðM2Þ; j¼ 1;2;

where (8), (13) are satisfied, M2 is an arbitrary real
number (it may be different for different operators).
As U0

3Γ we can take aðM2Þ or L0Γ.
Being an operator means that it is applied to a

function and depends only on this function (it does
not depend on the internal structure of the corre-
sponding subgraph). However, the same symbol Uj

is used for linear operators that are applied to

12p − q
2
, pþ q

2
are incoming and outgoing lepton momenta; q is

the photon momentum.
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Feynman amplitudes of different types (a type is the
set of the external line types); the linear operators
under the same symbol Uj for different types can be
chosen independently. Of course, Uj can be chosen
independently for different j. U1 and U3 are defined
only for the Feynman amplitudes with the external
leptons coinciding with those whose AMM is calcu-
lated; U2 are defined for all types of external leptons
(for example, it can be chosen independently for the

Feynman amplitudes with external electrons, muons,
and tau-leptons).

The expression for the subtraction and extraction of the
AMM corresponding to a Feynman graph G is

X
F¼fG1 ;…;Gng∈F½G�

G0 ∈ I ½G�∩F

ð−1Þn−1SG0
G1
…SG

0
Gn
;

where

SG
0

G00 ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

AG00 ; if G00 ¼ G0;

LG00 − ðU1ÞG00 ; if G00 ¼ G ≠ G0;

LG00 ; if G0 ⊂ G00 ⊂ G;

ðUξÞG00 ; if G00 ∈ I ½G� andG00 ⊂ G0;

ðU1ÞG00 ; if G00 ∉ I ½G� andG00 has its external leptons on the main path ofG;

ðU2ÞG00 ; if G00 has its external leptons on a lepton loop ofG;

ðU0ÞG00 ; if G00 is a photon self-energy or photon-photon scattering subgraph;

here,

ξ ¼
�
3; if the vertex incident to the external photon of the whole graphG lies on a lepton loop of G;

1 otherwise;
ð15Þ

the index of an operator denotes the subgraph to whose
Feynman amplitude it is applied; G1 ⊂ G2 or G1 ⊆ G2

means VðG1Þ ⊂ VðG2Þ or VðG1Þ ⊆ VðG2Þ, where VðGÞ
denotes the set of vertices ofG. We emphasize that thewhole
graphG is used in the definition of ξ; thus, ξ does not depend
on G0 and G00. At the level of Feynman amplitudes, each
term of the expression sequentially transforms the Feynman
amplitudes of subgraphs using corresponding linear oper-
ators (the subgraphs should be ordered by inclusion in this
sequence, from smaller to larger). Finally, the coefficient
before γμ should be taken.
For example, for the graph G from Fig. 1 the

expression is

½AGð1 − ðU3ÞGe
Þ − ðLG − ðU1ÞGÞAGe

� × ð1 − ðU2ÞGc
Þ

× ð1 − ðU1Þe2e4e5Þð1 − ðU0ÞGd
Þ × ð1 − ðU0Þc1c2c3c4Þ

× ð1 − ðU2Þc1c2c3 − ðU2Þc1c3c4Þ × ð1 − ðU2Þa1a2Þ;

where Ge ¼ aa1a2b1b2c1c2c3c4d1d2d3e1e2e3e4e5, Gd ¼
faa1a2b1b2c1c2c3c4d1d2d3g, Gc ¼ aa1a2b1b2c1c2c3c4,
I ½G� ¼ fGe;Gg, subdiagrams are denoted by enumeration
of their internal vertices; we should expand the parentheses
to obtain the forest formula. The expression for this
example does not depend on the type of leptons on the
lepton loops (U2 may be defined differently for different
types of leptons, however).

FIG. 1. An example of a Feynman diagram contributing
to AMM.

a
b

c d e

f
g h

i

FIG. 2. Another example of a Feynman diagram contributing
to AMM.
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Another example is the graph G from Fig. 2. In this case,
I ½G� ¼ fGg, the expression is

AGð1 − ðU1ÞcdefghiÞð1 − ðU0ÞfghiÞ:
The operator U1 is applied to the subgraph cdefghi,
because its external leptons are on the main path of G.
To obtain finite Feynman parametric integrals, all terms

should be placed in the same Feynman parametric space.
The algorithm for obtaining integrals from expressions is
briefly explained in [71] and in detail in [69]. The needed
value of Að2nÞ

l is simply the sum of the integrals corre-
sponding to the Feynman graphs involved.

III. DIVERGENCE ELIMINATION

The principle of divergence elimination in the method is
similar to that explained in [69] for the old method. Here,
we describe schematically how this choice of linear
operators allows us to separate divergences and how it
leads to divergence cancellation.
Let us consider the 1-loop unrenormalized vertexlike

Feynman amplitude,13

Γ1;μðp; qÞ ¼
Z

γν
=pþ =q

2
þ =kþm

ðpþ q
2
þ kÞ2 −m2 þ i0

× γμ
=p − =q

2
þ =kþm

ðp − q
2
þ kÞ2 −m2 þ i0

γν
1

k2 þ i0
d4k:

Its IR-divergent part at p2 ¼ m2 is equal to

Γ1;μðp; 0ÞIR ¼
�Z

γν
=pþm

ðpþ kÞ2 −m2 þ i0

× γμ
=pþm

ðpþ kÞ2 −m2 þ i0
γν

1

k2 þ i0
d4k

�
IR
:

With

ð=pþmÞγμð=pþmÞ ¼ 2mpμ þ 2pμ=p

and the fact that pμ commutes with all other multipliers that
may appear in the expression, we obtain

Γ1;μðp; 0ÞIR ¼ Apμ þ Bpμ=p;

where A and B some IR-divergent values.14 Thus, U1Γ1

and U2Γ1 are IR-finite. On the other hand, the UV-
divergent part of Γ1;μðp; qÞ does not depend on p, q

and is therefore proportional to γμ. Thus, ðL −UjÞΓ1,
j ¼ 1, 2 are UV-finite.
There is a general observation:
(i) ðL −UjÞΓ, j ¼ 1, 2, 3 has no overallUV divergence

for any vertexlike Feynman amplitude Γ (of any
order);

(ii) UjΓ, j ¼ 1, 2 does not have IR divergences at all,
provided that the mass renormalization has been
done properly (see below);

(iii) this is also true forUjΣ, j ¼ 1, 2, where Σ is a lepton
self-energy Feynman amplitude.

In particular, this means that U1, U2 can be used to subtract
UV divergences without generating additional IR diver-
gences (unlike L).
Consider the 2-loop ladder graph G in Fig. 3, left.15

The corresponding expression is

AG − AGðU1Þabc − ðL −U1ÞGAabc:

In this case, we have only logarithmic divergences. The
overall UV divergence corresponds to k1; k2 → ∞; it is
proportional to γμ and is cancelled in each term by A or
L − U1. The overall IR divergence corresponds to k1,
k2 → 0. In all terms, it is canceled by A since it is
proportional to the Born amplitude ðAγÞμ ¼ 0, where by
γ we denote the 4-vector of Dirac gamma matrices; this can
be shown using standard methods for studying IR diver-
gences in QED. There is also a mixed UV-IR divergence in
this graph: k1 → 0; k2 → ∞; in this case, the UV diver-
gence corresponding to abc is IR-infinitely enhanced by
the remaining propagators. In the first two terms, it is
canceled by A, because the UV-divergent part of abc is
proportional to γμ, so the “enhanced” value is proportional
to ðAγÞμ ¼ 0. In the remaining term, it is canceled in Aabc

for the same reason. The remaining divergences16 are
the UV divergence k2 → ∞ and the IR divergence
k1 → 0. The first is canceled in the sum of two terms by

FIG. 3. 2-loop examples.

13We ignore coefficients in this consideration.
14We mean that a regularization is introduced, but we omit it

for simplicity.

15Since changing the lepton line directions on a path or loop
does not change the contribution, we will sometimes work with
undirected Feynman graphs.

16This investigation is intended to demonstrate ideas only; a
rigorous proof is not the goal in this case.
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1 − U1 applied to the amplitude of abc and in the last term
by Aabc. The second does not exist in AGðU1Þabc, in AG, it
enhances the amplitude generated by Aabc by an IR-infinite
multiplier, and it is canceled by ðL −U1ÞGAabc, because
L − U1 completely extracts the IR-divergent part of the
enhancing multiplier.
Let us examine the graph G on Fig. 3, right. The

expression is

AG − AGðU1Þbc:

The difficulty in this case is the power-type IR-divergence
corresponding to k1 → 0 and a fixed k2 ≠ 0. However,
it is eliminated by the mass subtraction part in U1. To
make this possible, we give no freedom to the definition
(14) of M0 in (12). After the mass subtraction, the IR
divergence becomes logarithmic and is removed by A, as
is the overall UV divergence. The UV subdivergence of bc
is removed by 1 −U1, and no additional IR divergence is
generated.
Let us consider the graph G on Fig. 4. The expression is

½AG − AGðU3Þbcdfghi − ðL −U1ÞGAbcdfghi�ð1 − ðU0ÞfghiÞ:

The last multiplier eliminates the UV divergence corre-
sponding to fghi; in this case, there are no problems with
IR divergences. The last term of the first multiplier removes
the IR divergence corresponding to kae → 0 (the subscript
denotes the graph line by its ends). The term AGðU3Þbcdfghi
removes the UV divergence corresponding to bcdfghi. It is
important to note that it does not create any additional IR
divergence, although U3 has more freedom in definition
than U1 and U2 (we can take U3 ¼ L, for example). The
reason is that the on shell Feynman amplitude of bcdfghi
has no IR divergence, because its external photon is on a
lepton loop.
The cancellation of divergences in Feynman parametric

space for an arbitrary graph G can be shown in a similar
way as in [69], butU should be replaced everywhere by the
corresponding Uj. Let us note one more small change.

Following [69], Appendix C, we assume that G1 ⊂ … ⊂
Gn ⊂ Gnþ1 ¼ G are all elements of I ½G�. If ξ ¼ 1, where
(15) is implied, we also assume that G0 is the graph
consisting of only one vertex of G joining the external
photon (if ξ ¼ 3, we use G0 as the empty graph). By zl we
denote the Feynman parameter corresponding to the
internal line l. With the help of power counting, we
investigate the case,

zl ≍ δβl ; δ → 0;

where βl ≥ 0 are some numbers corresponding to the
internal lines. By Pj, we denote17 the set of all lines l
on the main path of G such that l∈Gjþ1 and l ∉ Gj. The
cancellation of UV divergences and UV parts of mixed
divergences is demonstrated in the same way18 as in [69]. If
all divergences not belonging to I ½G� are properly sub-
tracted, a potentially IR divergent case corresponds to a
vector of divergences ½v0;…; vn;w0;…; wn�, where
vj ≥ wj ≥ 0, 2v0 − w0 ¼ 2v1 − w1 ¼ … ¼ 2vn − wn > 0,
there exists j such that wj ¼ 0. This vector gives the
values,

βl ¼
�
vj; if l∈Pj;

wj; if l∈Gjþ1; j ∉ Gj; j ∉ Pj:

We will refer to the index j, 1 ≤ j ≤ n as a transition
index for the divergence vector ½v; w� if vj > vj−1.
Correspondingly, the index j is called an inverse transition
index if vj < vj−1. The difference with the investigation
in [69] is the following:
(1) An index j is called separating in a term of the

expression if there is an operator AGj
, LGj

or ðU3ÞGj

(U3 ¼ L) in this term. The difference with [69] is the
possibility to take U3 (if it is equal to L).

(2) If ξ ¼ 3, then no consideration of the case v0 > w0 is
necessary; this case cannot produce divergence in a
term, because G1 has its external photon on a
lepton loop.

(3) If ξ ¼ 3 and U3 ¼ L, we rewrite the expression
differently for a given index H of the inverse
transition in ½v; w�,

FIG. 4. An example with U3 in the expression.

17In [69], it is denoted by P0
j ∪ P00

j .18The expression is organized in a very similar way to
Zimmermann’s forest formula; this makes it possible to handle
UV divergences.
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−
X

1≤l<H
ðLG − ðU1ÞGÞð1 − LGn

Þ…ð1 − LGlþ1
ÞAGl

ð1 − LGl−1
Þ…ð1 − LG1

ÞÞ

þ
X

H<l≤n
ððLG − ðU1ÞGÞð1 − LGn

Þ…ð1 − LGlþ1
Þ½LGl

AGH
− AGl

�ð1 − LGH−1
Þ…ð1 − LG1

ÞÞ

þ ½AG − ðLG − ðU1ÞGÞAGH
�ð1 − LGH−1

Þ…ð1 − LG1
Þ

þ
X

H<l≤n

2
4
0
@AGð1 − LGn

Þ…ð1 − LGlþ1
Þ − ðLG − ðU1ÞGÞ

X
l<k≤n

0
@AGk

Y
l<r≤n
r≠k

ð1 − LGr
Þ
1
A
1
A

× ½LGl
LGH

− LGl
�ð1 − LGH−1

Þ…ð1 − LG1
Þ
3
5:

The last term was added to (C.7) in [69], inappro-
priate (1 −U) multipliers were removed. The factor
LGl

LGH
− LGl

cancels the divergence in this term,
analogous to the other terms.

This argument shows how it works, but a full rigorous
examination seems difficult and cumbersome; we rely on a
numerical check (see Sec. V).

IV. EQUIVALENCE TO ON-SHELL
RENORMALIZATION

A. Definition

The definition of on shell renormalization is well known
for the coefficients of the expansion in α, but it requires a

definition for subsets of Feynman graphs. We define it as
the sum of the individual graph contributions obtained by
the in-place on shell renormalization. It can be written in
terms of expressions such as those used above. The
expression for a graph G is

X
F¼fG;G1;…;Gng∈F½G�

ð−1ÞnAGSG1
…SGn

;

where

SG0 ¼

8><
>:

LG0 ; if G0 is a vertexlike graph;

BG0 ; if G0 is a lepton self-energy graph;

ðU0ÞG0 ; if G0 is a photon self-energy or photon-photon scattering graph;

here,

ðBΣÞðpÞ ¼ ½B0Σ� × ð=p −mÞ þM0Σ;

B0Σ ¼ sðm2Þ þ 2m
∂rðxÞ
∂x

����
x¼m2

þ 2m2
∂sðxÞ
∂x

����
x¼m2

;

where (13) and (14) are satisfied.
The multipliers SG0 for photon-photon scattering graphs

G0 can be omitted in gauge-invariant classes as well as
transformations like described in [72] can be applied for
photon self-energy graphs.

B. Examples

Two-loop examples are given in [69] for the old version
of the method. In the new version, each operator U should
be replaced by U1 or U0.
The Ward identities for individual Feynman graphs play

an important role in proving the equivalence. We will

illustrate this by the gauge-invariant class shown in Fig. 5.
The investigation applies to both the new and old methods
(the difference is only in the name of the U-operator).
Table I provides the parts of the contributions, obtained

with our method, that containU-operators. The lower-order
Feynman amplitudes used in these expressions are shown
in Fig. 6. The boxed dots represent the mass vertices (the
vertices that give 1 in the Feynman rules). By Γ1 and Σ1, we
also denote the 1-loop vertexlike and lepton self-energy
amplitudes (without special vertices), respectively. In this

FIG. 5. An example of a 3-loop gauge-invariant class.
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case, I ½G� ¼ ∅, and we have no IR subtractions; therefore,
the remaining contributions are the same as those obtained
by the in-place on-shell renormalization.
After summation, we obtain

ðA0Γ1Þð−½2U0
1Γλ þ U0

1Γ× þ U0
1Σ×�

− ½2U0
1Γρ þ U0

1Γ≈ þ U0
1Σ≈�Þ

þ ½U0
1Γ1 þ U0

1Σ1�ð−3A0Γλ − 3A0Γρ

þ ðA0Γ1Þð3U0
1Γ1 þ 2U0

1Σ1ÞÞ
þ ðA0Γ1ÞðM0Σ1Þ½2U0

1ΓM þ U0
1ΣM�:

We use the following Ward identities for individual graphs:

ðΓ1Þμðp;0Þþ
∂Σ1ðpÞ
∂pμ ¼ 0; 2ðΓMÞμðp;0Þþ

∂ΣMðpÞ
∂pμ ¼ 0;

2ðΓλÞμðp; 0Þ þ ðΓ×Þμðp; 0Þ þ
∂Σ×ðpÞ
∂pμ ¼ 0;

2ðΓρÞμðp; 0Þ þ ðΓ≈Þμðp; 0Þ þ
∂Σ≈ðpÞ
∂pμ ¼ 0:

Each identity contains one lepton self-energy graph and all
vertexlike graphs obtained by inserting an external photon
into a line on the main path. Each coefficient equals 1, but

some of our coefficients equal 2, because we are working
with undirected Feynman graphs. The identities can be
proved by standard methods used in QED.19 The corollary is

U0
1Γ1 þ U0

1Σ1 ¼ 0; 2U0
1ΓM þ U0

1ΣM ¼ 0;

2U0
1Γλ þ U0

1Γ× þU0
1Σ× ¼ 0;

2U0
1Γρ þ U0

1Γ≈ þ U0
1Σ≈ ¼ 0:

From this, it follows that all terms with U0
1 are canceled.

Similarly, we can prove that all terms with L0 and B0 are
lifted in the on shell expression, which implies the
equivalence.20

Let us examine examples where the new and old
methods work differently. We start with the 4-loop class
IV(b) from Fig. 7. We suppose that the graphs contribute to
the muon g − 2 and contain an electron loop.

TABLE I. Contributions with U-operators of the graphs from Fig. 5 obtained with our method.

Set number Contribution

1 −ðA0Γ1ÞðU0
1ΓλÞ − ðA0ΓλÞðU0

1Γ1Þ þ ðA0Γ1ÞðU0
1Γ1Þ2

2 −ðA0ΓρÞðU0
1Γ1Þ − ðA0ΓλÞðU0

1Σ1Þ þ ðA0Γ1ÞðU0
1Γ1ÞðU0

1Σ1Þ þ ðA0ΓMÞðU0
1Γ1ÞðM0Σ1Þ

3 −ðA0Γ1ÞðU0
1Γ×Þ

4 −ðA0Γ1ÞðU0
1ΓλÞ − ðA0ΓλÞðU0

1Γ1Þ þ ðA0Γ1ÞðU0
1Γ1Þ2

5 −ðA0Γ1ÞðU0
1ΓρÞ − ðA0ΓλÞðU0

1Σ1Þ þ ðA0Γ1ÞðU0
1Γ1ÞðU0

1Σ1Þ þ ðA0Γ1ÞðU0
1ΓMÞðM0Σ1Þ

6 −ðA0Γ1ÞðU0
1Γ≈Þ − ðA0ΓλÞðU0

1Γ1Þ þ ðA0Γ1ÞðU0
1Γ1Þ2

7 −ðA0Γ1ÞðU0
1ΓρÞ − ðA0ΓλÞðU0

1Σ1Þ þ ðA0Γ1ÞðU0
1Γ1ÞðU0

1Σ1Þ þ ðA0Γ1ÞðU0
1ΓMÞðM0Σ1Þ

8 −2ðA0ΓρÞðU0
1Σ1Þ þ ðA0Γ1ÞðU0

1Σ1Þ2 þ 2ðA0ΓMÞðU0
1Σ1ÞðM0Σ1Þ

9 −ðA0Γ1ÞðU0
1Σ×Þ − 2ðA0ΓρÞðU0

1Γ1Þ þ 2ðA0Γ1ÞðU0
1Σ1ÞðU0

1Γ1Þ þ 2ðA0ΓMÞðM0Σ1ÞðU0
1Γ1Þ

10 −ðA0Γ1ÞðU0
1Σ≈Þ − ðA0ΓρÞðU0

1Σ1Þ þ ðA0Γ1ÞðU0
1Σ1Þ2 þ ðA0ΓMÞðM0Σ1ÞðU0

1Σ1Þ þ ðA0Γ1ÞðU0
1ΣMÞðM0Σ1Þ

FIG. 6. Feynman amplitudes participating in the expressions
for the set in Fig. 5 and the corresponding Feynman graphs.

FIG. 7. 4-loop gauge-invariant class IV(b) from [52].

19See [73].
20provided that all regularization issues are resolved; dimen-

sional regularization can be used in most cases.
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The difference is that the old method yields additional
subtractions in graphs 2,10 because each of them has a
vertexlike subgraph joining the external photon and not
lying on the main path.21 Also, the operators U2 are used
everywhere instead of U. The contribution of IV(b) is
equal to

The first term is canceled because its second multiplier
equals 0 due to the Ward identity; the light-by-light term is
similar and is canceled for the same reason. The expression
for the on shell renormalization has the same form, but the
occurrences ofU0

2 are replaced with L
0, B0; its terms already

considered are canceled due to the same reason. The
remaining terms are identical.
Consider the class IV(c) from Fig. 8. In this case, we also

assume that the graphs contribute to the muon g − 2 and
have an electron loop. Graphs 7 and 8 give terms with U3.
The total contribution of these graphs is

We ignore the terms withU0
0 andM

0 in this investigation,
because they do not cause any problems. To show that the
first term equals 0, we need the Ward identities of the form
Γμðp; 0Þ ¼ 0 for single graphs. It holds for sets of vertex-
like graphs that have the external photon on a lepton loop
that are closed under the movement of it along the loop. The
validity can be proved in the usual way. Since U3 preserves
this kind of Ward identities, its contributions are cancelled.
The remaining graphs yield

With U0
1Γ1 ¼ −U0

1Σ1, we get that all terms containing
U0

1 are canceled after summation. The total contribution
obtained by the in-place on shell renormalization is

The difference between our and on shell contributions
equals

It equals 0, because L0Γ1 ¼ −B0Σ1.
Let us summarize. To prove the equivalence, we need

two kinds of the “Ward identities” for single graphs:
(i) Γμðp; 0Þ ¼ −∂ΣðpÞ=∂pμ; the set includes one lepton

self-energy graph and all vertexlike graphs obtained
from it by inserting an external photon into a line on
the main path.

(ii) Γμðp; 0Þ ¼ 0; the set consists of vertexlike graphs
having the external photon on a lepton loop; it is
closed under the movement of the external photon
along the loop.

Graphs in the sets may contain special vertices. See also
examples of the use of the Ward identities for individual
graphs in Sec. IV.H of [32].

C. Complete proof

Suppose we have a class K of 1-particle irreducible
vertexlike Feynman graphs that is closed under the move-
ment of internal photons along lepton loops and paths, but
without jumping over the external photon. We prove that its
contribution obtained with our method is equal to the
contribution obtained with the in-place on shell renormal-
ization. Since the ideas used here are similar to those widely
used in QED, the explanation is just a framework.

FIG. 8. 4-loop gauge-invariant class IV(c) from [52].

21These subgraphs correspond to fictitious IR divergences, but
the subtraction was necessary in [69] to make the procedure
equivalent to on shell renormalization.
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Let us give some definitions.
Suppose we have one term X of the expression with

linear operators constructed for some graph G of this class.
The subgraphs to which the operators in X are applied form
a rooted tree; in this tree, G is a root, and G0 is a descendant
of G00 if G0 ⊂ G00. The contribution of X can be expressed
with A0, U0

j, L
0, L0 −U0

j, M
0, B0 applied to some graphs

with special vertices. This expression can have several
terms Y1;…; Yn, because UjΣ is split into U0

j-part and
M0-part. Each term Yj can be represented as a layer tree. A
layer is a Feynman graph obtained from one graph to which
an operator in X is applied by shrinking all its childs to
special vertices (corresponding to operators in Y). A layer
tree is a rooted tree, each node of it is ðl; O; rÞ, where l is a
layer; O is one of the operators A0, U0

j, L
0, L0 −U0

j, M
0, B0;

r is the reference to the corresponding vertex of the parent
(it does not exist for the root). The root of the layer tree
corresponds to G in X. Vertices and inputs of one vertex
that have the same type are enumerated.22 The contribution
of the layer tree (without coefficient) is the product of the
node values,23 where the value of the node ðl; O; rÞ is OΓl,
where Γl is the Feynman amplitude corresponding to the
layer l. For simplicity, we will sometimes interchange the
layer tree nodes with the layers.
For example, the term AGðU0ÞdefghiðU2Þgh for the graph

G from Fig. 9, left gives the layer tree depicted in
Fig. 9, right.
The following markers are used for vertices on images:
(1) a round dot is an ordinary γν vertex;
(2) a boxed dot is a mass vertex (which gives 1);
(3) a cross-dot is a ð=p −mÞ-vertex;
(4) a cross in a circle is a vertex coming from photon self

energy subgraphs;
(5) a diamond dot is a vertex originating from photon-

photon scattering subgraphs.
Another example is the term,

AGBbcdefghiLcdefgBdeBklnoðU0Þno

forG from Fig. 10, left, whereM0 parts are taken for each B
(the term is part of the direct on shell renormalization
expression). Its layer tree is depicted in Fig. 10, right. The
root is layer 1.

The sequence of layer tree nodes Y1;…; Yn of vertexlike
type is called the main branch if the following conditions
are satisfied:

(i) Y1 is the root of the layer tree;
(ii) Yjþ1 is the child of Yj corresponding to the vertex of

Yj joining its external photon;
(iii) Yn has no vertexlike children corresponding to its

vertex joining its external photon;
the type of a layer is its multiset of the external line types.
We say that the node X of a layer tree is locally on a path,

if the corresponding to X parent’s vertex lies on parent’s
main path; we also assume that the root of the layer tree is
locally on a path. If the node is not locally on a path, it may
be on a loop or on a special 2-photon or 4-photon vertex of
the parent.
The maximal initial segment Y1; Y2;…; Yk of the main

branch Y1; Y2;…; Yn, all elements of that are locally on a
path, is called the I-branch.
Let us proceed with the proof. We represent the con-

tribution of K obtained by our method as the sum of the
layer tree contributions (with coefficients). Each layer tree
has one node X on the I-branch that has the operator A0.
We call it the A-node. The operators corresponding
to vertexlike or lepton self-energy nodes X satisfy the
following rules:

(i) if X is the A-node, then the corresponding operator
is A0;

(ii) if X is the root but not A-node, then the operator
is L0 −U0

1;
(iii) if X is an ascendant of the A-node but not the root,

then the operator is L;
(iv) if X is a descendant of the A-node and belongs to the

I-branch, then the operator is Uξ, where (15) is
satisfied for graphs G in K;

(v) if X is not on the I-branch and all ascendants of X
and X itself are locally on a path, then the operator is
U0

1 or M0;
(vi) if X is not on the I-branch and at least one ascendant

of X or X itself is not locally on a path, then the
operator is U0

2 or M0.

FIG. 9. An example of a Feynman graph (left) and a layer
tree (right) that is possible for it (with U0

0 and U0
2 for lepton

self-energy graphs).

22The enumeration is needed to avoid symmetry problems with
4-photon vertices. If we have an enumeration, the coefficients
should be properly accounted for; this can be done with a
standard technique; we do not do this in our consideration. An
examination of the coefficients is only necessary for symmetry
issues; no reduction of similar terms takes place in our consid-
eration.

23Strictly speaking, tensor contractions are needed when we
have U0

0 layers, because for simplicity, we decided to use one
label for all kinds of special vertices that can be generated. For
example, in the definition (9), (10) for photon self-energy graphs,
U0

0 is a vector.
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Let us perform the following operations with this layer
tree sum:
(1) Remove all terms containing layers of photon-

photon scattering type. In fact, they are canceled
by the identities for individual photon-photon scat-
tering graphs of the form,

Γμ1μ2μ3μ4ð0; 0; 0; 0Þ ¼ 0;

where Γ is the corresponding Feynman amplitude,
and the external momenta are in the parentheses. The
identity is satisfied for a given set of graphs, if the set
is closed under the movement of external photons
along lepton loops, and every graph in this set
contains at least one external photon line joining
a lepton loop (we consider graphs with special
vertices; thus, an external photon can fall into a
4-photon vertex). The identities can be proved with a
standard technique that is used in QED.24 Let us
consider the elimination in detail. We say that the
layer trees T1 and T2 are equivalent if one is obtained
from the other by the movement of external photons
along lepton loops in some layers of photon-photon
scattering types, which have no descendants of
photon-photon scattering type (the absence of the
descendants guarantees that all moved photons are on
lepton loops25); we suppose that the structure of the
descendants is preserved when a photon is shifted;
the children referring to the vertex joining the moved
photon change their reference to the new photon
location on a lepton loop. It is easy to see that if T1 is
obtained from a Feynman graph ofK, this is also true
for T2. Therefore, all terms are split into equivalence

classes. In the contribution of each of these classes,
the identities mentioned above are factorized. This
leaves only the classes that have no photon-photon
scattering layers at all. Note that the movement of
photons (both external and internal) along lepton
loops does not change the 1-particle irreducibility.

(2) Remove all terms containing vertexlike layers with a
non-A0 operator and the external photon on a loop.26

The operator is L0, U0
1, U

0
2, U

0
3. All these operators

yield 0 for the Feynman amplitudes Γμðp; qÞ sat-
isfying Γμðp; 0Þ ¼ 0. Thus all these terms are
cancelled by the identities of this form mentioned
in Sec. IV B. This can be proved in a similar way as
for the case with photon-photon scattering layers.
After this step, all occurrences of U0

3 are removed,
since at least the U0

3 corresponding to the end of the
I-branch is applied to a layer with the external
photon on a lepton loop.

(3) Represent the layer trees as trees of M-blocks. An
M-block includes a node (vertexlike or lepton self-
energy-like) with an operator A0, L0, U0

j (j ¼ 1, 2) of
the layer tree, all its children with operators M0, U0

0,
their children with these operators and so on.27 For
example, there are two M-blocks in 10, right:
f1; 2; 3; 5g and f4; 6g; the latter is a child of the
former and refers to the vertex of layer 2 to which
layer 4 refers. M-blocks can also be represented as
layers. The layer is obtained from the corresponding
subgraph by shrinking the subgraphs corresponding
to its children (in the tree of M-blocks) to special
vertices (in a sense, it is obtained by gluing the layer

(1 )

(2 )
(3 )

(4 )

(6 )

(5 )

FIG. 10. An example of a Feynman graph (left) and a possible layer tree for it (right) with M0-operators.

24See [73].
25They cannot fall to 2-photon vertices due to 1-particle

irreducibility.

26We consider here only the internal structure of the layer, not
its reference to its parent.

27We do not use here that M0 properly extracts the mass part,
but it is used for the proof of gauge invariance [8].
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tree layers belonging to the M-block). An M-block
can also be viewed as a tree of nodes. Let us define
the main vertex of the M-block; if the layer has its
external photon on its main path, the main vertex is
layer’s vertex joining its external photon; otherwise,
it is the last vertex of the main path of the layer.

(4) Single out the S-branch of M-blocks in each layer
tree. We define the S-branch of M-blocks Y 0

1;…; Y 0
n

in a tree of M-blocks by the following conditions:
(i) Y 0

1 is the root of the M-block tree;
(ii) Y 0

j, j ≥ 2, is a child of Y 0
j−1 and refers to the

main vertex of Y 0
j−1;

(iii) there are no children of Y 0
n that refer to the main

vertex of Y 0
n.

An initial segment Y 0
1;…; Y 0

k of the S-branch cor-
responds to the I-branch Y1;…; Yk. Due to the
1-particle irreducibility of each subgraph to which
an operator is applied, all elements of the S-branch
are of vertexlike type.

(5) For each M-block take a one-to-one correspondence
between the layer vertices (except the main vertex)
and its Σ-chains lying on the same lepton path part or
loop. A Σ-chain is a peace of a lepton path or loop,
which ends are ordinary γμ vertices, but all inter-
mediate vertices are of ð=p −mÞ type (the situation
when there are no intermediate vertices is also
possible). We require that the Σ-chain lies on the
same side of the M-block external photon as the
corresponding vertex (if it is applicable). We should
take this correspondence deterministically (it should
depend only on the topology of the Σ-chains and
external lines). For example, for each v on a lepton
loop, we can take the outgoing from v chain; for v on
the main path, we can take the Σ-chain joining v and
having another end closer to the main vertex of the
M-block.

(6) Remove all terms containing M-blocks outside the
S-branch. Let us explain how they are canceled. An
M-block is called factorizable if it has at least one
child that does not refer to its main vertex. We say
that the M-block trees T 1 and T 2 are equivalent if
one is obtained from the other by a sequence of the
following transformations:
(i) suppose Y 0 is a factorizable M-block that has no

factorizable children, v is an ordinary γμ-vertex
in Y 0, the main vertex of Y 0 is not equal v, the
Σ-chain σ corresponds to v, the child M-block
referring to v exists and is denoted by Y 00; the
transformation is: remove the external photon in
the root layer of Y 00, move the reference of Y 00 to
the new ð=p −mÞ vertex inserted at the begin-
ning of σ; the operator applied is U0

j, j ¼ 1, 2
and remains the same after the transformation;
the structure of the descendants and their refer-
ences are preserved, the reference to the main

vertex of Y 00 is moved to the main vertex of the
transformed M-block (there are no references to
nonmain vertices, since Y 0 has no factorizable
children).

(ii) if under the same conditions there are no
children referring to v, and the intermediate
vertexes of σ are w1;…; wr, r ≥ 1 (ordered
along the line direction), Y 00 is the child M-
block referring to w1, then insert an external
photon into an arbitrary line on the main path of
the root layer of Y 00, remove w1 and move the
reference of Y 00 to v. The applied operator is U0

j,
j ¼ 1, 2 and remains the same after the trans-
formation; the structure of the descendants and
their references are preserved (as in the pre-
vious case).

These transformations are inverse to each other.
They are illustrated in Fig. 11; here, v is the round
dot, σ starts from v, T0 is a subtree referring to v in
the layer tree, the subtrees T1;…; Tn refer to the
intermediate vertexes of σ; on the right side, T0 is
replaced by T 0

0 (by removing the external photon in
the root layer) and is connected to the begin of σ.
This equivalence relation splits the terms into
equivalence classes. If a term belongs to the
expression, all equivalent terms also belong to the
expression; it is important here that these trans-
formations do not change the 1-particle irreducibil-
ity of the whole graph as well as of the subgraphs to
which the operators are applied28; the absence of
odd lepton loops in the whole graph is also
preserved. In the sum of contributions belonging
to one equivalence class, the multipliers of the form
U0

jΓþU0
jΣ (as mentioned in Sec. IV B) are factor-

ized. If the number of these multipliers is at least 1,
the contribution equals 0.
The presence of M-blocks outside the S-branch
means that there is at least one factorizable M-block

FIG. 11. Transformations leading to the cancellation of all
terms with M-blocks outside the S-branch.

28This can be proved using three facts: (1) a Feynman graph and
all its subgraphs to which the operators are applied are 1-particle
irreducible if and only if each layer of the corresponding layer tree
is 1-particle irreducible; (2) adding and removing ð=p −mÞ vertices
in internal lines does not change the 1-particle irreducibility;
(3) inserting the external photon into a lepton line (or removing it)
does not change the 1-particle irreducibility.
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in the S-branch. If it has factorizable children, take
one of them and repeat the operation until it has no
factorizable children. So there is at least one factor-
izable M-block that has no factorizable children. The
cancellation of these terms follows from this.
Note: On the one hand, the correspondence between
v and σ may cross the boundaries of the layers
constituting the M-block; on the other hand, the
procedure of inserting and removing the external
photon is always performed in the root layer of theM-
block, and the structure of Σ-chains is ignored in this
layer (the main path may contain special vertices); but
when we move the reference, we use the main vertex
of the whole M-block.

(7) Combine the terms with different placements of the
A-nodes. After the previous step, the contribution
can be written as a sum of terms like

ð−1Þn−1ðO1
0Γ1ÞðO2

0Γ2Þ…ðO0
nΓnÞ; ð16Þ

where Γ1;…;Γn are the vertexlike Feynman ampli-
tudes (after the appropriate application of −M0 and
−U0

0 for subgraphs) corresponding to the S-branch
elements Y 0

1;…; Y 0
n, the corresponding linear oper-

ators are O0
1;…; O0

n.
The Feynman graph G for which the expression is

constructed is uniquely determined from the layers
Y 0
1;…; Y 0

n by a sequential insertion of the layers into
a point; if Y 0

1;…; Y 0
j−1 have their external photons on

their main paths, then Y 0
j is inserted into the vertex

joining the external photon; otherwise, it is inserted
into the end of the main path.
The term (16) corresponding to Y 0

1;…; Y 0
n,

O0
1;…; O0

n exists in the expression for K if the
following conditions are satisfied:
(i) Y 0

j are correct vertexlike M-blocks (taking into
account their internal layer structure);

(ii) G∈K, where G is reconstructed by the pro-
cedure described above;

(iii) the vector ðO0
1;…; O0

nÞ is of the form
ðA0;U0

1;…;U0
1Þ or ðL0−U0

1;L
0;…;L0;A0;U0

1;…;
U0

1Þ, where x;…; x may have 0 elements;
(iv) for all i such that O0

i ≠ A0 the layer Y 0
i has its

external photon on its main path.
Any permutation of Y 0

1;…; Y 0
n does not change the

validity of G∈K for the reconstructed graph G.29

Thus, the sum can be represented as a sum of terms
(16) with the same conditions, but with vectors

ðO0
1;…; O0

nÞ of the form ðA0; U0
1;…; U0

1Þ or
ðA0; L0;…; L0; L0 − U0

1; U
0
1;…; U0

1Þ.
We can prove by induction that

ðU1
0; U1

0; U1
0;…; U1

0; U1
0Þ

þ ðL −U1
0; U1

0; U1
0;…; U1

0; U1
0Þ

þ ðL0; L0 −U1
0; U1

0;…; U1
0; U1

0Þ þ…

þ ðL0; L0; L0;…; L0; L0 −U1
0Þ

¼ ðL0; L0; L0;…; L0; L0Þ:

Thus, we arrive at the sum of terms,

ð−1Þn−1ðA0Γ1ÞðL0Γ2Þ…ðL0ΓnÞ; ð17Þ
with the same conditions.

With the contribution of K obtained by the in-place on
shell renormalization,30 we perform the same operations,
but without the last step and using the identities for L0 and
B0. These operations result in the same sum of terms (17)
with the same conditions.

V. COMPUTATIONAL RESULTS

The new method was tested by numerical calculations.
The contributions of 25 gauge-invariant classes contribut-
ing to Að6Þ

1 , Að6Þ
2 , Að6Þ

3 for the muon were presented in [70].
Here, we present all 4-loop results for the electron and the
muon for all gauge-invariant classes (with electron, muon,
and tau-lepton loops). They are summarized in Table II.
We used the values,

mμ=me ¼ 206.76828103; mτ=mμ ¼ 16.81665:

in our calculations. The uncertainty of the masses was not
taken into account. The aim of the calculation was to verify
the method, not to obtain precise physical results (the mass
uncertainty does not play a significant role at this level of
precision). Some of the previously known values for
comparison that are given in the tables were calculated with
other values of the mass ratios (and the uncertainties may be
inaccurate). The Monte Carlo integration was performed on
the ITP/TTP KIT computing cluster with the help of the
GPU NVidia A100 and took about three GPU-weeks; a
method similar to that described in [32,35] was used.31

Table III presents the computed contributions of the
gauge-invariant classes from Fig. 12 to Að8Þ

1 and a com-
parison with S. Laporta’s results [29]. Table IV contains all
the contributions of the classes from Fig. 13 for different

29To prove this, consider two cases: (1) each Y 0
j has its external

photon on its main path (in this case, the inability to jump over the
external photon should be taken into account); (2) at least one Y 0

j
has its external photon on a lepton loop (in this case, the external
photon is on a lepton loop).

30Note that the definition of the contribution of the gauge-
invariant class in [8] already corresponds our final representation;
however, it looks like it becomes cumbersome if graphs may have
lepton loops.

31The direct usage of the methods from [32,35] is not possible
for Feynman graphs having lepton loops. A modification was
made; it will be explained in the further papers.
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TABLE II. The calculated total 4-loop contributions (for the electron and the muon) and their comparison with
previously known values; the values for comparison are from the first reference in the lists.

Contribution Our value Value for comparison Reference

Að8Þ
1

−1.9118ð41Þ −1.91224576 [29]; [28,30,31]

Að8Þ
2 ðme=mμÞ 0.000924(11) 0.0009141970703(372) [54]; [33]

Að8Þ
2 ðme=mτÞ 0.00000710(60) 0.00000742924(118) [54]; [33]

Að8Þ
3 ðme=mμ; me=mτÞ 0.000000745(24) 0.00000074687(28) [54]; [33]

Að8Þ
2 ðmμ=meÞ 132.673(84) 132.6852(60) [52]; [53]

Að8Þ
2 ðmμ=mτÞ 0.04252(11) 0.0424941(53) [54]; [52]

Að8Þ
3 ðmμ=me;mμ=mτÞ 0.0622(33) 0.062722(10) [53]; [52]

FIG. 12. Gauge-invariant classes contributing to Að8Þ
1 . Each class is obtained from the corresponding picture by moving the internal

photon ends along the lepton paths and loops, but without jumping over the external photon.

TABLE III. Computed contributions of the classes from Fig. 12 to Að8Þ
1 and their comparison with the results of [29].

Class Value Value from [29] Class Value Value from [29]

I(a) 0.00087614(64) 0.0008768659 III(7) −0.012485ð63Þ � � �
I(b) 0.0153300(39) 0.0153252829 IV(a) 0.598864(69) 0.598842072
I(c) 0.0111324(13) 0.0111309140 IV(b) 0.82236(20) 0.8222844858
I(d) 0.049544(60) 0.0495132026 IV(c) −1.13789ð52Þ −1.1388228765
II(a1) −0.255082ð24Þ � � � IV(d1) −0.87251ð21Þ −0.872657392
II(a2) −0.317402ð29Þ � � � IV(d2) −0.117978ð94Þ −0.1179498688
II(a3) 0.151986(16) 0.1519895997 V(1) −1.9723ð12Þ −1.9710756168
II(b1) −0.0341771ð30Þ −0.034179376 V(2) −0.6227ð20Þ −0.6219210635
II(b2) 0.0065025(10) 0.0065041484 V(3) −0.1412ð21Þ −0.1424873798
II(c1) −0.0376103ð54Þ � � � V(4) 1.0865(15) 1.0866983948
II(c2) −0.0536815ð84Þ � � � V(5) −1.0397ð19Þ −1.04054241
II(c3) 0.0178533(40) 0.0178536865 V(6) 0.51153(71) 0.512462048
III(1) 0.128258(83) � � � IIða1Þ þ IIða2Þ −0.572485ð38Þ −0.5724718621
III(2) 0.242948(42) � � � IIðc1Þ þ IIðc2Þ −0.091292ð10Þ −0.09130584
III(3) −0.04388ð10Þ � � � IIIð1Þ þ IIIð5Þ 0.69078(12) 0.6904483476
III(4) 0.374317(49) 0.3743579348 IIIð2Þ þ IIIð6Þ 0.409178(76) 0.4092170285
III(5) 0.562521(92) � � � IIIð3Þ þ IIIð7Þ −0.05637ð12Þ −0.0563360902
III(6) 0.166229(64) � � �
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particles x and y. Since the contribution does not depend on
the line directions, all graphs on the images are undirected.
Also, permutting the elements on a photon does not change
the contribution, but we calculated these contributions

separately, except Að8Þ
2 ½IIðc2; xyÞ�, Að8Þ

2 ½IIðc2; yxÞ� and

Að8Þ
3 ½IIðc2; ytÞ�, Að8Þ

3 ½IIðc2; tyÞ�. Tables V and VI contain a

comparison with known values for Að8Þ
2 ½electron� and

Að8Þ
2 ½muon�, respectively. Table VII contains the contribu-

tions of the classes from Fig. 14 to Að8Þ
3 for electron and

muon; Table VIII contains their comparison with known
results.

Throughout the calculations, the operators

ðUjΓÞμðp; qÞ ¼ að−m2Þγμ;
ðUjΣÞðpÞ ¼ sð−m2Þð=p −mÞ þ rðm2Þ þ sðm2Þm;

are used for j ¼ 1, 2, 3 and all leptons, where (8) and (13)
are satisfied; therefore, U-subtractions are performed at
spacelike momenta (p2 < 0). This is a general observation:
the subtractions at spacelike points make the oscillations
slightly smaller and the convergence of the Monte Carlo
integration slightly faster [71].

TABLE IV. Calculated contributions of the classes from Fig. 13 to Að8Þ
2 for electron and muon.

Class Value × 103, x ¼ e, y ¼ μ Value × 105, x ¼ e, y ¼ τ Value, x ¼ μ, y ¼ e Value, x ¼ μ, y ¼ τ

I(a,xxy) 0.000168(35) 0.00003(37) 0.01854(19) 0.00002116(31)
I(a,xyx) 0.000077(18) 0.00008(22) 0.009378(80) 0.00001057(16)
I(a,yxy) 0.0000009(22) −0.000004ð13Þ 0.16473(32) 0.000000274(38)
I(a,yyx) 0.0000034(45) 0.000012(27) 0.32986(60) 0.000000612(77)
I(a,yyy) 0.000000006(22) 0.0000000035(78) 7.2235(18) 0.0000000180(35)
I(b,xy) 0.000963(51) 0.00050(78) 0.1195(10) 0.00014580(54)
I(b,yx) 0.000811(79) 0.0010(11) 0.33397(53) 0.00010541(69)
I(b,yy) 0.00000038(20) 0.000000053(79) 7.1267(62) 0.000001950(32)
I(c,xy) 0.004754(57) 0.00346(41) 0.16205(25) 0.00027729(30)
I(c,yx) 0.005936(32) 0.00361(37) 0.02156(40) 0.00040798(35)
I(c,yy) 0.0003543(26) 0.000127(10) 1.4372(25) 0.000053149(67)
I(d) 0.002457(32) 0.000915(62) −0.234ð15Þ 0.0003681(11)
II(a1) −0.041120ð60Þ −0.02104ð22Þ −2.3873ð57Þ −0.0037194ð13Þ
II(a2) −0.07041ð11Þ −0.04147ð57Þ −2.4684ð73Þ −0.0054854ð21Þ
II(a3) 0.025403(57) 0.01748(23) 2.0651(80) 0.0018698(11)
II(b1,xy) −0.017667ð63Þ −0.01333ð56Þ −0.37697ð57Þ −0.00098634ð55Þ
II(b1,yx) −0.027301ð55Þ −0.02399ð68Þ −0.31493ð55Þ −0.00126397ð53Þ
II(b1,yy) −0.00090489ð12Þ −0.000319911ð44Þ −6.2229ð30Þ −0.000136912ð20Þ
II(b2,xy) 0.006692(24) 0.00684(22) 0.16083(31) 0.00033086(24)
II(b2,yy) 0.000133460(43) 0.000047178(15) 2.1911(19) 0.0000204864(67)
II(c1,xy) −0.04082ð29Þ −0.0306ð33Þ −0.6564ð10Þ −0.0022605ð23Þ
II(c1,yy) −0.0009045ð88Þ −0.000336ð36Þ −6.0791ð24Þ −0.00014068ð19Þ
II(c2,xy) −0.04159ð30Þ −0.0373ð30Þ −0.4278ð10Þ −0.0019306ð26Þ
II(c2,yx) −0.04159ð30Þ −0.0373ð30Þ −0.4278ð10Þ −0.0019306ð26Þ
II(c2,yy) −0.002274ð22Þ −0.000921ð84Þ −6.7191ð37Þ −0.00027518ð40Þ
II(c3,xy) 0.03193(20) 0.0337(19) 0.36033(65) 0.0011914(16)
II(c3,yy) 0.0010686(85) 0.000539(36) 4.6173(27) 0.00009622(17)
III(1) −0.0384ð11Þ −0.0679ð70Þ 1.7884(74) 0.000526(12)
III(2) 0.23468(44) 0.2280(34) 1.7049(78) 0.0098734(51)
III(3) 0.0860(23) 0.073(10) −2.703ð14Þ 0.003569(14)
III(4) 0.2010(17) 0.1436(61) 4.375(14) 0.0111379(75)
III(5) 0.2768(11) 0.2027(75) 4.400(10) 0.016024(11)
III(6) 0.05621(29) 0.0395(15) 2.565(10) 0.0035162(48)
III(7) 0.00390(33) −0.0013ð16Þ −1.3382ð82Þ 0.0005628(56)
IV(a,xy) 0.1540(17) 0.054(16) 2.6961(53) 0.012611(17)
IV(a,yx) 0.4639(13) 0.364(13) 4.3409(74) 0.023262(12)
IV(a,yy) 0.01755(10) 0.00658(34) 116.802(27) 0.0026298(27)
IV(b) 0.04174(90) 0.0118(30) −0.423ð52Þ 0.006132(20)
IV(c) −0.1954ð50Þ −0.114ð25Þ 2.860(47) −0.018337ð83Þ
IV(d1) −0.1693ð70Þ −0.092ð38Þ −3.5037ð79Þ −0.015203ð55Þ
IV(d2) −0.0051ð45Þ −0.000ð28Þ −0.9187ð49Þ −0.000555ð22Þ
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For photon self-energy subgraphs, the replacement,

Πμνðp2Þ → p2gμν½h2ð0Þ − h2ðp2Þ�;

where (11) is implied, was used instead of subtractions.
It makes the integrand simpler and its evaluation faster.

This approach was used earlier in many calculations; see,
for example, [72]. Known lower-order analytical expres-
sions for the polarization operator were not used; the reason
is the attempt to make everything simple for realization. In
addition, the usage of known analytical formulas can
improve the calculation speed only for those contributions

FIG. 13. Gauge-invariant classes contributing to Að8Þ
2 for particle x. Each class is obtained from the corresponding image by moving

the internal photon ends along the lepton paths and loops, but without jumping over the external photon. x and y may be arbitrary
leptons.

TABLE V. Comparison with previously known values for Að8Þ
2 of the electron (x ¼ e); the values for comparison are from the first

reference in the lists.

Class Value × 103, y ¼ μ Value for comparison Value × 105, y ¼ τ Value for comparison Reference

I(a) 0.000250(40) 0.0002264 0.00012(43) 0.0000802 [54]; [33,55,60,61]
I(b) 0.001774(94) 0.001704139(76) 0.0015(14) 0.000602805(26) [33]; [55]
I(c) 0.011044(66) 0.0110072(15) 0.00720(55) 0.0069819(12) [33]
I(d) 0.002457(32) 0.0024727 0.000915(62) 0.0008746 [54]; [33]
II(a) −0.08613ð14Þ −0.0864460ð90Þ −0.04503ð65Þ −0.0456480ð70Þ [33]; [55]
II(b) −0.039048ð87Þ −0.0390003ð27Þ −0.03075ð90Þ −0.0303937ð42Þ [33]
II(c) −0.09418ð55Þ −0.095097ð24Þ −0.0721ð57Þ −0.071697ð25Þ [33]
III 0.8203(33) 0.81715 0.617(16) 0.6059 [54]; [33]
IV(a) 0.6354(21) 0.63579 0.425(21) 0.451 [54]; [33]
IV(b) 0.04174(90) 0.041574 0.0118(30) 0.01471 [54]; [33,58,59]
IV(c) −0.1954ð50Þ −0.19548262120ð20Þ −0.114ð25Þ −0.0979 [54]; [33]
IV(d) −0.1744ð83Þ −0.1778ð12Þ −0.092ð47Þ −0.0927ð13Þ [33]
I(a,yyy) 0.000000006(22) 0.000000001033 0.0000000035(78) 0.000000000001293 [60]; [55,61]
Iða; yxyÞ
þ Iða; yyxÞ

0.0000043(51) 0.0000001346 0.000008(30) 0.0000000003954 [60]; [55,61]

Iða; xxyÞ
þ Iða; xyxÞ

0.000246(40) 0.0002263 0.00011(43) 0.00008025 [60]; [55,61]

I(b,xy) 0.000963(51) 0.0010008 0.00050(78) 0.000354 [55]
I(b,yx) 0.000811(79) 0.00070428 0.0010(11) 0.000249 [55]
I(b,yy) 0.00000038(20) 0.00000017906 0.000000053(79) 0.000000000354 [55]
IIðc1; yyÞ
þ IIðc2; yyÞ
þ IIðc3; yyÞ

−0.002110ð25Þ −0.0021216 −0.00072ð10Þ −0.00075 [55]

IIðc1; xyÞ
þ IIðc2; xyÞ
þ IIðc2; yxÞ
þ IIðc3; xyÞ

−0.09207ð55Þ −0.092981 −0.0714ð57Þ −0.0710 [55]
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that already require not too large numbers of the
Monte Carlo samples to reach the needed accuracy; this
would not affect the whole calculation speed significantly.
Moreover, if the number of self-energy subgraphs is small,
the “direct” realization does not lead to a significant
increase in the complexity; this significantly affects only
the number of the integration variables (which is not a

problem for the Monte Carlo integration, provided that a
good probability density function has been chosen).

VI. CONCLUSION AND DISCUSSION

The development of techniques plays a very important
role in theoretical physics. Techniques of a certain kind first

TABLE VI. Comparison with previously known values for Að8Þ
2 of the muon (x ¼ μ); the values for the comparison are from the first

reference in the lists.

Class Value, y ¼ e Value for comparison Reference Value, y ¼ τ Value for comparison Reference

I(a) 7.7460(19) 7.745136 [53]; [52] 0.00003263(36) 0.00003242810(20) [54]; [52]
I(b) 7.5802(63) 7.58201(71) [52] 0.00025316(87) 0.000252 [52]
I(c) 1.6208(25) 1.624307(40) [52] 0.00073843(47) 0.000737 [52]
I(d) −0.234ð15Þ −0.2303620ð50Þ [56]; [52,53] 0.0003681(11) 0.0003677960(40) [54]; [52]
II(a) −2.791ð12Þ −2.77885 [53]; [52,55] −0.0073350ð26Þ −0.0073290ð10Þ [52]
II(b) −4.5628ð37Þ −4.55277ð30Þ [52] −0.00203588ð80Þ −0.002036 [52]
II(c) −9.3325ð55Þ −9.34180ð83Þ [52] −0.0052501ð46Þ −0.0052460ð10Þ [52]
III 10.792(28) 10.7934(27) [52]; [53] 0.045209(24) 0.0452089860(60) [54]; [52]
IV(a) 123.839(29) 123.78551(44) [52]; [53] 0.038504(20) 0.038519670(30) [54]; [52]
IV(b) −0.423ð52Þ −0.4170ð37Þ [52]; [53] 0.006132(20) 0.006126610(50) [54]; [52,58,59]
IV(c) 2.860(47) 2.9072(44) [52]; [53] −0.018337ð83Þ −0.01830100ð10Þ [54]; [52]
IV(d) −4.4225ð93Þ −4.43243ð58Þ [52]; [53] −0.015757ð59Þ −0.015868ð37Þ [52]
I(a,yyy) 7.2235(18) 7.22307640(80) [55]; [53,57] 0.000000037(14) 0.0000000232 [60]; [61]
I(b,xy) 0.1195(10) 0.1196024600(20) [55] � � � � � � � � �
I(b,yx) 0.33397(53) 0.333664680(10) [55] � � � � � � � � �
I(b,yy) 7.1267(62) 7.12800840(20) [55] � � � � � � � � �
I(c,xy) 0.16205(25) 0.161982(11) [74] � � � � � � � � �
I(c,yx) 0.02156(40) 0.0215830(20) [74] � � � � � � � � �
I(c,yy) 1.4372(25) 1.440744(16) [74] � � � � � � � � �
IV(a,xy) 2.6961(53) 2.69(14) [53] � � � � � � � � �
IV(a,yx) 4.3409(74) 4.33(17) [53] � � � � � � � � �
IV(a,yy) 116.802(27) 116.760(20) [53] � � � � � � � � �
Iða; yxyÞ
þ Iða; yyxÞ

0.49459(68) 0.494072030(30) [55]; [53,57] 0.000000885(86) 0.0000008757 [60]; [61]

Iða; xxyÞ
þ Iða; xyxÞ

0.02792(20) 0.0279883220(70) [55]; [53,57] 0.00003173(35) 0.0000315291 [60]; [61]

IIðc1; yyÞ
þ IIðc2; yyÞ
þ IIðc3; yyÞ

−8.1808ð51Þ −8.1895 [55] � � � � � � � � �

IIðc1; xyÞ
þ IIðc2; xyÞ
þ IIðc2; yxÞ
þ IIðc3; xyÞ

−1.1517ð18Þ −1.1532 [55] � � � � � � � � �

IIðb1; yyÞ
þ IIðb2; yyÞ
þ IIðc1; yyÞ
þ IIðc2; yyÞ
þ IIðc3; yyÞ

−12.2126ð63Þ −12.212631 [53] � � � � � � � � �

IIðb1; xyÞ
þ IIðb1; yxÞ
þ IIðb2; xyÞ
þ IIðc1; xyÞ
þ IIðc2; xyÞ
þ IIðc2; yxÞ
þ IIðc3; xyÞ

−1.6828ð20Þ −1.683165ð13Þ [53] � � � � � � � � �
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appear; then they are refined: they become simpler, less
cumbersome, more efficient, and only after that can the
technique be extended to broader classes of tasks and lead
to a breakthrough.
This work is a part of the “refinement” phase. At present,

the described method of divergence subtraction works only
for the lepton magnetic moments and QED. However,
its formulation is much simpler and compact than that of
the previously known methods. Unlike the old method
described in [69], the new method has more freedom and
does not require useless extra subtractions; but most
importantly, the ideas behind the new method appear
extendable to broader classes of problems.

It was supposed that the old method [69] only worked for

AðnÞ
1 . However, it turned out to be suitable for the compu-

tation of Að8Þ
2 , Að8Þ

3 as well. This was first discovered
numerically and was surprising, but this can be proved:
all the extra subtraction terms that the old method has have
the operator L0 or L0 − U0 applied to a layer with external
photon on a lepton loop. Thus, all these occurrences are
canceled, as it was proved in Sec. IV C for U0

3.
The old method can also lead to the situation where

subtracting a fictitious IR divergence produces a real IR
divergence (see the Discussion in [69]). The cancellation of
these divergences was conjectured in [69]. We have now

FIG. 14. Gauge-invariant classes contributing to Að8Þ
3 for particle x. Each class is obtained from the corresponding image by moving

the internal photon ends along the lepton paths and loops, but without jumping over the external photon. x and y are electron and muon
(or vice versa), τ is the tau-lepton.

TABLE VII. Computed contributions of classes from Fig. 14 to Að8Þ
3 for electron and muon.

Class Value × 107, x ¼ e Value, x ¼ μ Class Value × 107, x ¼ e Value, x ¼ μ

I(a,tty) −0.000003ð17Þ −0.0000012ð85Þ I(c,yt) 0.0797(60) 0.000383(24)
I(a,tyt) 0.0000063(85) 0.0000038(35) II(b1,ty) −0.30252ð13Þ −0.006434ð89Þ
I(a,xyt) −0.0113ð95Þ 0.000155(34) II(b1,yt) −0.22691ð14Þ −0.00457ð10Þ
I(a,ytx) −0.0033ð93Þ 0.000133(30) II(b2,yt) 0.070470(61) 0.002062(38)
I(a,yty) 0.000037(36) 0.000884(51) II(c1,yt) −0.533ð33Þ −0.00972ð23Þ
I(a,yxt) 0.008(11) 0.000147(30) II(c2,yt) −0.718ð63Þ −0.00753ð20Þ
I(a,yyt) −0.000022ð71Þ 0.00184(11) II(c2,ty) −0.718ð63Þ −0.00753ð20Þ
I(b,ty) 0.00025(20) 0.00069(13) II(c3,yt) 0.771(29) 0.00498(12)
I(b,yt) 0.00001(14) 0.001944(81) IV(a,ty) 5.94(16) 0.0482(12)
I(c,ty) 0.0965(52) 0.001389(36) IV(a,yt) 2.99(15) 0.0351(20)

TABLE VIII. Comparison with previously known values for Að8Þ
3 for the electron and the muon; the comparison values are from the

first reference in the lists.

Class Value × 107, x ¼ e Value for comparison Reference Value, x ¼ μ Value for comparison Reference

I(a) −0.007ð17Þ 0.0000119956 [54]; [33] 0.00316(14) 0.003209050(10) [53]; [52]
I(b) 0.00025(24) 0.0000140970(10) [33] 0.00264(16) 0.002611 [52]
I(c) 0.1763(79) 0.172860(21) [33] 0.001772(43) 0.001807 [52]
II(b) −0.45897ð20Þ −0.458968ð17Þ [33] −0.00895ð14Þ −0.0090080ð10Þ [52]
II(c) −1.20ð10Þ −1.18969ð67Þ [33] −0.01980ð38Þ −0.0196420ð20Þ [52]
IV(a) 8.93(22) 8.9432(25) [54]; [33] 0.0834(23) 0.083747570(90) [53]; [52]
Iða; ytyÞ þ Iða; yytÞ � � � � � � � � � 0.00273(12) 0.00274860(90) [57]
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checked this numerically: for the only 5-loop graph in
which this situation occurs, the obtained integral is indeed
finite. In addition, the reasoning in Sec. IV C looks
cumbersome and might contain mistakes; therefore, we
checked on a computer that the required combinatorial
identities are satisfied, up to six loops and three particles.
However, the fact of divergence cancellation in every single
Feynman graph requires a full rigorous proof.
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