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1. Introduction

Interpolation of bounded linear operators on Banach spaces is a widely used technique 
in analysis, in which key roles are played by the real and complex interpolation methods. 
Besides these well-known methods, there is a wealth of other interpolation methods used 
in applications. Our main goal is to develop an interpolation method for Banach spaces 
that are equipped with a space of sequences, which is motivated by applications of the 
Rademacher interpolation method [38], γ-interpolation method [66] and �q-interpolation 
method [41] to the study of partial differential equations. Before turning to our abstract 
framework, we will first explain these motivating applications.

1.1. New interpolation methods for partial differential equations

The scales of Besov spaces and Triebel-Lizorkin spaces play prominent roles in function 
space theory and its applications to the study of partial differential equations (PDEs). 
Many classical spaces, such as Sobolev spaces and variants with fractional smoothness, 
are contained in them. As both scales admit a description through Littlewood-Paley 
decompositions, their theories have many similarities. However, there are also major 
differences. Whereas the Besov space Bs

p,q(Rd) arises as the real interpolation space 
between the Lebesgue space Lp(Rd) and the Sobolev space Wm

p (Rd), the Triebel-Lizorkin 
space F s

p,q(Rd) is in general not an interpolation space between Lp(Rd) and Wm
p (Rd) in 

the sense of classical interpolation theory. This issue was, to some extent, overcome by 
Kunstmann in [41], going beyond the realm of classical interpolation. More explicitly, 
it was shown that F s

p,q(Rd) can be obtained from Lp(Rd) and Wm
p (Rd) by the newly 

introduced �q-interpolation method. The philosophy in [41] is that, roughly speaking, 
for the scale of Triebel-Lizorkin spaces, the �q-method plays the same role as the real 
interpolation method plays for the scale of Besov spaces.

The �q-interpolation method is formally defined for couples of Banach spaces that are 
equipped with an isometric embedding J : X → E into some Banach function space 
E. The idea behind this is that one can make sense of expressions like ‖(

∑
j |xj |q)1/q‖X

through the embedding J . In this setting �q-interpolation is, loosely speaking, obtained 
by modifying the discrete mean method for real interpolation by Lions and Peetre [48], 
moving the �q-sequence space from “the outside” to “the inside”.
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Our interest in the �q-interpolation method comes from trace theory for parabolic 
boundary value problems. It is a classical application of interpolation theory that in 
the maximal regularity approach to evolution equations, the space of initial values is 
given as a real interpolation space. In the concrete case of maximal Lp-Lq-regularity 
for parabolic boundary value problems, this real interpolation space can be identified as 
Besov space. The treatment of boundary values gets quite involved on the function space 
theoretic side in the case that p �= q (see e.g. [22,30,43,50,61,71]), which is a case that is 
of crucial importance, as has become apparent through recent advances in the maximal 
Lp-Lq-regularity approach to quasi-linear PDEs based on a novel systematic approach in 
critical spaces [3,4,33,63,62]. For e.g. the heat equation with Dirichlet boundary condition 
on a domain O in Rd and an time interval J = (0, T ), the boundary value has to be in 
the intersection space

F δ
p,q(J ;Lq(∂O)) ∩ Lp(J ;F 2δ

q,q(∂O)), δ = 1 − 1
2q . (1.1)

The appearances of Triebel-Lizorkin spaces suggest a connection between �q-interpolation 
and the space of boundary values in analogy to the treatment of initial values.

However, in the development of the theory of �q-interpolation, it turns out that the 
setting of Banach spaces equipped with an isometric embedding into a Banach function 
space as in [41] has some limitations. It is, for instance, not broad enough to work 
with Littlewood-Paley decompositions, spaces on domains (defined as quotients) and 
anisotropic mixed-norm spaces related to (1.1). In these applications the relevant �q-
space of sequences comes naturally with the given function space and is dependent on 
the context. Trying to fit these applications into a generalization of �q-interpolation seems 
to make matters unnecessarily complicated.

The issue with Littlewood-Paley decompositions and anisotropic mixed-norm spaces 
related to (1.1) is the that �q-space should not be placed on “the inside”, but “somewhere 
in between”. More specifically, given an inhomogeneous Littlewood-Paley decomposition 
ϕ = (ϕn)n∈N of Rd, the Sobolev space Wm

p (Rd) admits the corresponding Littlewood-
Paley decomposition

‖f‖Wm
p (Rd) �p,d,m ‖(2nmϕn ∗ f)n∈N‖Lp(Rd;�2(N)).

This decomposition provides an isomorphic embedding into the Banach function space 
Lp(Rd; �2(N)) and the natural �q-structure Lp(Rd; �2(N; �q(Z))) induces an �q-structure 
on Wm

p (Rd) through this embedding. However, in this way one does not obtain the 
natural �q-structure Wm

p (Rd; �q(Z)). Indeed, for q ∈ (1, ∞), the Littlewood-Paley de-
composition of the vector-valued Sobolev space Wm

p (Rd; �q(Z)) takes the form

‖F‖Wm
p (Rd;�q(Z)) �p,d,m,q ‖(2nmϕn ∗ F )n∈N‖Lp(Rd;�q(Z;�2(N))).

This illustrates that in order to exploit the power of harmonic analysis, one needs to 
leave the current framework of �q-interpolation from [41].
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The above suggests to build the �q-interpolation framework in a setting of Banach 
spaces equipped with an �q-space of sequences, instead of having the construction of the 
sequence space built into the framework. It turns out that, for a major part of the theory, 
the space of sequences does not even need to resemble some kind of �q-structure, which 
opens the door for us to set up a very general theory of interpolation.

The advantage of such a general theory of interpolation is that it allows us to develop 
other modern interpolation methods, such as the Rademacher and γ-methods, simultane-
ously. These two methods are closely connected to the H∞-calculus of sectorial operators 
[38,39]. This functional calculus can be thought of as an extension of the spectral theory 
of self-adjoint operators on Hilbert spaces. It was initially developed by McIntosh and 
collaborators [11,53], motivated by the longstanding Kato square root problem, which 
was eventually solved in [1] using techniques inspired by the H∞-calculus. For a general 
introduction to the H∞-calculus we refer the reader to [32,72].

Verifying the boundedness of the H∞-calculus for concrete operators can get quite in-
volved. A powerful tool for this are comparison principles, which allow one to transfer the 
property of having a bounded H∞-calculus from one sectorial operator to another. Such 
principles, based on the Rademacher and γ-interpolation methods, have been developed 
in e.g. [38,39,42].

1.2. The sequentially structured interpolation method

Motivated by the preceding discussion, we will develop a method for the interpola-
tion of Banach spaces that are equipped with a space of sequences. This will allow us 
to simultaneously develop the Rademacher method, γ-method and �q-method and its 
variants. Moreover, we will treat known results for the real and complex interpolation 
methods in a unified fashion.

The starting point for our framework is the discrete mean method for real interpolation 
by Lions and Peetre. In order to describe their method, let (X0, X1) be a compatible 
couple of Banach spaces and θ ∈ (0, 1). In [48] Lions and Peetre introduced the real 
interpolation spaces (X0, X1)θ,p0,p1 for p0, p1 ∈ [1, ∞] as the space of all x ∈ X0 + X1

such that

‖x‖(X0,X1)θ,p0,p1
= inf max

j=0,1

∥∥(ek(j−θ)xk)k∈Z
∥∥
�pj (Z;Xj)

< ∞, (1.2)

where the infimum is taken over all sequences (xk)k∈Z in X0∩X1 such that 
∑

k∈Z xk = x

with convergence in X0+X1. These spaces are isomorphic to the real interpolation spaces 
(X0, X1)θ,p, defined using the K-functional, where 1

p = 1−θ
p0

+ θ
p1

. In this paper we will 
study the spaces defined by the right hand-side of (1.2), in which we replace the sequence 
spaces �pj (Z; Xj) by a sequence structure Sj for j = 0, 1.

A sequence structure S on a Banach space X is a translation invariant Banach space 
of X-valued sequences such that
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�1(Z;X) ↪→ S ↪→ �∞(Z;X)

contractively. Given a sequence structure Sj on Xj , we set Xj := [Xj , Sj ] for j = 0, 1
and define the space (X0, X1)θ as the space of all x ∈ X0 + X1 for which

‖x‖(X0,X1)θ := inf max
j=0,1

∥∥(ek(j−θ)xk)k∈Z
∥∥
Sj

< ∞,

where the infimum is taken over all sequences (xk)k∈Z in X0∩X1 such that 
∑

k∈Z xk = x

with convergence in X0 + X1.
For specific choices of Sj for j = 0, 1, this framework includes, for example, the 

following interpolation methods:

(i) The real interpolation method, using the sequence spaces �pj (Z; Xj).
(ii) The lower and upper complex interpolation methods [10], using the space of Fourier 

coefficients of functions in C(T ; Xj) and measures in Λ∞(T ; Xj) respectively.
(iii) The Rademacher and γ-interpolation methods [38,66], using the random sequence 

spaces εp(Z; Xj) and γp(Z; Xj).
(iv) The �q-interpolation method [41], using the spaces Xj(�q(Z)).
(v) The α-interpolation method [39] for a global Euclidean structure α, using the spaces 

α(Z; Xj).

In the literature there exist many works that unify various interpolation methods, see, for 
example, the generalized interpolation spaces by Williams [73], the minimal and maximal 
methods of interpolation by Janson [35], the method of orbits by Ovchinnikov [56] and 
the general real interpolation method (see [7,9] and the references therein). The closest 
work to our approach is the unified framework for commutator estimates by Cwikel, 
Kalton, Milman and Rochberg [16], for which a detailed comparison will be given in 
Remark 3.4. A major difference between these prior works and our framework is that 
our assumptions do not necessarily give rise to an interpolation functor in the classical 
sense. This relaxation from prior works allows us to include e.g. the �q-interpolation 
method and related methods in our framework, which is crucial for future applications 
to trace theory for parabolic boundary value problems.

One of the merits of our approach is that properties of all interpolation methods fitting 
in our framework can be studied simultaneously. Questions regarding e.g. density of 
X0 ∩X1, interpolation of operators, duality, embeddings between different interpolation 
methods, reiteration and change of basis are reduced to properties of the associated 
sequence structures (see Sections 3, 5 and 6). While these results are well-known for the 
real and complex interpolation methods, our general theorems provide a wealth of new 
results for e.g. the less thoroughly developed Rademacher, γ-, �q- and α-interpolation 
methods. Moreover, some of these results were phrased as open problems for the method 
developed in [16], see [37, p.662].
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Our framework also explains quite clearly the need for additional assumptions in 
certain results for concrete interpolation methods. For example, the real interpolation 
method is self-dual for any compatible couple of Banach spaces (duality of the sequence
spaces �p(Z; X)), whereas one needs an additional geometric assumption for the complex 
interpolation method to be self-dual (duality of the function spaces C(T ; X)).

As we noted before, the complex interpolation method fits into our framework by using 
e.g. the space of Fourier coefficients of functions in C(T ; Xj). While this formulation of 
the complex interpolation method is well-known (see Cwikel [20]), it is not the original 
one introduced by Calderón [10]. This raises the question what the relation between 
the classical formulation of the complex interpolation method and our framework is. It 
turns out that our framework admits a complex formulation, which yields a complex 
formulation of all previously mentioned interpolation methods (see Section 4). This in 
particular means that, from our viewpoint, the real and complex interpolation methods 
are not inherently real or complex. These interpolation methods are rather living on 
opposite sides of the Fourier transform.

Since our interpolation framework admits a real and complex formulation, results 
that were previously only known for either the real or the complex method, can now be 
extended to all interpolation methods that fit in our framework. A prime example of this 
observation is the fact that we are able to deduce a version of the interpolation of analytic 
families of operators of Stein [65] for our interpolation framework (see Theorem 5.5). This 
theorem is well-known for the complex interpolation method and was proven for the γ-
interpolation method in [66]. For the specific case of real interpolation, we used similar 
ideas in a continuous setting in [45]. We remark that for the interpolation framework 
developed in [16], Stein interpolation was phrased as an open problem [37, p.662].

As an example of the generalization of a result only known for the real inter-
polation method, we will extend Peetre’s result on the interpolation of intersections 
[59] to our interpolation framework. In particular, we will show that under suitable 
assumptions on the sequence structures X , Y and Z (see Theorem 7.1), one has 
(X , Y)θ ∩ (X , Z)θ = (X , Y ∩ Z)θ. In the specific case of �q-interpolation, this result 
yields intersection representations for Triebel–Lizorkin spaces.

1.3. Open questions

Besides the basic properties of our sequentially structured interpolation method in 
Section 3, the selection of topics in interpolation theory covered in this article is based 
on the application of our theory to trace theory of parabolic boundary value problems 
and H∞-calculus. There are of course many other topics that would be interesting to 
study in our framework. A non-exhaustive list of such topics is given below.

• In [16] Cwikel, Kalton, Milman and Rochberg build their interpolation framework 
to study commutator estimates. Studying such estimates in our setting, and thus 
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obtaining commutator estimates for e.g. the �q-interpolation method, could be quite 
interesting.

• In [64] Šnĕıberg proved the stability of the invertibility of operators on the complex 
interpolation scale. His result was proven on the real interpolation scale by Zafran 
[76]. In [2] this result was extended to the general interpolation framework of [16]. 
It would be interesting to study these results in our setting as well.

• Wolff’s reiteration theorem [74] (see also [36]) roughly states that if X1, X2, X3, X4

are Banach spaces such that
– X2 is a real or complex interpolation space between X1 and X3,
– X3 is a real or complex interpolation space between X2 and X4,
then X2 and X3 are also real, respectively complex, interpolation spaces between X1

and X4. A sequentially structured proof of this theorem could provide new insights 
in this area.

• If an operator T is compact from X0 to Y0 and bounded from X1 to Y1, one may 
wonder whether T is also compact from an intermediate space between X0 and X1 to 
an intermediate space between Y0 and Y1. For the real interpolation method this was 
answered affirmatively by Cwikel [21], with an alternative proof by Cobos, Kühn 
and Schonbek [17]. For the complex interpolation method this is a long standing 
open problem, for which a breakthrough partial solution was given by Cwikel and 
Kalton [14]. A, probably very hard, open question is whether one could obtain such 
an interpolation of compactness result in our framework.

1.4. Structure

• In Section 2 we will introduce sequence structures and some of their basic properties.
• In Section 3 we introduce the sequentially structured interpolation method and study 

all the basic properties, i.e. density of X0∩X1, equivalent norms, duality, embeddings 
between different interpolation methods and changes of basis. Most of the proofs are 
adaptations from the corresponding results for the real interpolation method. To 
make this section suitable for a first introduction to interpolation theory, we include 
full details.

• Section 4 is our first section with major, new results. It contains complex formulations 
of the sequentially structured interpolation method modelled after both Calderón’s 
lower and upper complex interpolation methods.

• In Section 5 we discuss the interpolation of operators and analytic operator families 
using the sequentially structured interpolation method.

• In Section 6 we give a general reiteration theorem for the sequentially structured 
interpolation method, which we make more concrete for the real, complex and γ-
interpolation methods.

• In Section 7 we generalize a result by Peetre on the interpolation of intersections to 
our interpolation framework.
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Results for specific interpolation methods, like the Rademacher, γ- and �q-interpolation 
methods, will typically be put in examples and are scattered throughout the text. The ex-
amples should therefore not be overlooked and, in some sense, contain the main concrete 
results of this paper.

1.5. Notation and conventions

We denote by T the one-dimensional torus

T = R�2πZ 	 S1 =
{
eit : t ∈ [−π, π)

}
⊆ C,

which we often identify with [−π, π) equipped with the Lebesgue measure.
For a Banach space X we denote by �0(Z; X) the space of all X-valued sequences 

x = (xk)k∈Z equipped with the topology of pointwise convergence. The subspace of 
�0(Z; X) consisting of all finitely nonzero sequences is denoted by c00(Z; X).

For two topological vector spaces X and Y , we will write X = Y to state that X and 
Y are isomorphic, unless explicitly specified otherwise.

Given a normed space X that is a linear subspace of a vector space X, we will view 
the norm ‖ · ‖X on X as an extended norm on X by setting ‖x‖X = ∞ for x ∈ X \X.

By �a,b,... we mean that there is a constant C > 0 depending on a, b, . . . such that 
inequality holds and by �a,b,... we mean that �a,b,... and �a,b,... hold.

2. Sequence structures

A sequence structure on a Banach space X is a Banach space S ⊆ �0(Z; X) which is 
translation invariant and satisfies

�1(Z;X) ↪→ S ↪→ �∞(Z;X) (2.1)

contractively. Equivalently, S is a sequence structure on X if the following hold:

‖(. . . , 0, x, 0, . . .)‖S = ‖x‖X , x ∈ X, (2.2)

‖(xk+n)k∈Z‖S = ‖x‖S, x ∈ S, n ∈ Z, (2.3)

‖xn‖X ≤ ‖x‖S, x ∈ S, n ∈ Z. (2.4)

The pair X = [X, S] is called a sequentially structured Banach space. In the rest of 
the paper, we will use the shorthand notation X , Y and Z to denote the sequentially 
structured Banach spaces X = [X, S], Y = [Y, T] and Z = [Z, U], respectively, with a 
similar convention for indexed variants.

For each n ∈ N we define the Cesàro operator Cn on �0(Z; X) by

Cnx := 1
n + 1

n∑
(. . . , 0, x−m, . . . , xm, 0, . . .), x ∈ �0(Z;X). (2.5)
m=0
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If we have

sup
n∈N

‖Cnx‖S ≤ ‖x‖S, x ∈ S, (2.6)

we call S (and X ) Cesàro bounded and if we additionally have

lim
n→∞

Cnx = x, x ∈ S, (2.7)

we call S (and X ) Cesàro convergent. Note that (2.6) and (2.7) hold in particular if

sup
n∈N

∥∥(. . . , 0, x−n, . . . , xn, 0, . . .)
∥∥
S
≤ ‖x‖S, x ∈ S, (2.8)

lim
n→∞

(. . . , 0, x−n, . . . , xn, 0, . . .) = x, x ∈ S, (2.9)

respectively. In most concrete examples we will be able to check (2.8) and (2.9), but we 
use the slightly more general assumptions (2.6) and (2.7) to make our results applicable 
to the complex interpolation method.

If S is a Cesàro convergent sequence structure, then c00(Z; X) is dense in S. Con-
versely we have the following:

Lemma 2.1. Let S be an Cesàro bounded sequence structure on a Banach space X and 
suppose that c00(Z; X) is dense in S. Then S is Cesàro convergent.

Proof. As S is Cesàro bounded, we have ‖Cn‖S→S ≤ 1 for all n ∈ N. Moreover note 
that Cnx → x as n → ∞ for all x ∈ c00(Z; X), so the lemma follows by density. �

For a sequence structure S on a Banach space X and a ∈ (0, ∞) we define the 
weighted space S(a) ⊆ �0(Z; X) as the Banach space

S(a) :=
{
x ∈ �0(Z;X) : (akxk)k∈Z ∈ S

}
with norm ‖x‖S(a) := ‖(akxk)k∈Z‖S. Note that S satisfies (2.6) or (2.7) if and only if 
S(a) satisfies (2.6) or (2.7), respectively.

We will now give some examples of sequence structures.

Example 2.2. Let X be a Banach space.

(i) Let p ∈ [1, ∞]. Then �p(Z; X) is a sequence structure on X, which is Cesàro con-
vergent if p < ∞ and Cesàro bounded if p = ∞.

(ii) Let p ∈ [1, ∞) and define

L̂p(T ;X) :=
{
f̂ : f ∈ Lp(T ;X)

}
,
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with norm

‖f̂ ‖L̂p(T ;X) := 1
(2π)1/p

‖f‖Lp(T ;X),

where we use the 2π-periodic Fourier transform

f̂(k) := 1
2π

∫
T

f(t)e−ikt dt, k ∈ Z.

Then L̂p(T ; X) is a Cesàro convergent sequence structure on X. Similarly, we 
define the Cesàro convergent sequence structure Ĉ(T ; X) on X as the space of all 
sequences f̂ for f ∈ C(T ; X) with norm ‖f̂ ‖Ĉ(T ;X) := ‖f‖C(T ;X).

(iii) Let p ∈ [1, ∞] and let Λp(T ; X) be the space of vector-valued measures ν such that 
the Radon–Nikodým derivative of |ν| with respect to the Lebesgue measure is in 
Lp(T ) (see [60, Chapter 2] for an introduction). We define

Λ̂p(T ;X) :=
{
f̂ : f ∈ Λp(T ;X)

}
,

with norm

‖μ̂ ‖Λ̂p(T ;X) := 1
(2π)1/p

‖μ‖Λp(T ;X),

where we use the 2π-periodic Fourier transform

μ̂(k) := 1
2π

∫
T

e−ikt dμ(t), k ∈ Z.

Then Λ̂p(T;X) is an Cesàro bounded sequence structure on X.
(iv) Let (εk)k∈Z be a sequence of independent Rademachers on a probability space 

(Ω, P ) and fix p ∈ [1, ∞). Define εp(Z; X) as the space of all x ∈ �0(Z; X) such 
that 

∑
k∈Z εkxk converges in Lp(Ω; X) with norm

‖x‖εp(Z;X) :=
∥∥∑
k∈Z

εkxk

∥∥
Lp(Ω;X) = sup

n∈N

∥∥ n∑
k=−n

εkxk

∥∥
Lp(Ω;X).

Then εp(Z; X) is a Cesàro convergent sequence structure on X.
(v) We define γp(Z; X) similarly to εp(Z; X), with a sequence of independent Gaussians 

(γk)k∈Z instead of Rademachers (εk)k∈Z. Then γp(Z; X) is a Cesàro convergent 
sequence structure on X.

(vi) Suppose that X is a Banach lattice and let q ∈ [1, ∞). Define X(�q+(Z)) as the 
space of all x ∈ �0(Z; X) for which the norm
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‖x‖X(�q+(Z)) := sup
n∈N

∥∥∥( n∑
k=−n

|xk|q
)1/q∥∥∥

X

is finite, where (
∑n

k=−n|xk|q)1/q is defined through the Krivine calculus (see [49, 
Theorem 1.d.1]). Then X(�q+(Z)) is an Cesàro bounded sequence structure on X. 
We let X(�q(Z)) be the closure of c00(Z; X) in X(�q+(Z)), which is a Cesàro con-
vergent sequence structure on X.

We define X(�∞(Z)) = X(�∞+ (Z)) as the space of all x ∈ �0(Z; X) for which the 
norm

‖x‖X(�∞(Z)) := sup
n∈N

∥∥∥ sup
|k|≤n

|xk|
∥∥∥
X

is finite, which is a Cesàro bounded sequence structure on X. We let X(c0(Z))
be the closure of c00(Z; X) in X(�∞(Z)), which is a Cesàro convergent sequence 
structure on X.

(vii) In [39] the notion of a Euclidean structure α on X is introduced. The space α(Z; X)
defined in [39, Section 3.3] is a Cesàro convergent sequence structure on X. These 
spaces are a generalization of the γp(Z; X)-spaces in (v).

Proof. (i) is clear. For (ii) we note that for x ∈ X

‖(. . . , 0, x, 0, . . .)‖L̂p(T ;X) = 1
(2π)1/p

‖1T ·x‖Lp(T ;X) = ‖x‖X ,

and for x ∈ L̂p(T ; X), f ∈ Lp(T ; X) such that f̂ = x, n ∈ Z and ε = ±1, writing 
en(t) = eint, we have

‖(xk+n)k∈Z‖L̂p(T ;X) = 1
(2π)1/p

‖t �→ e−n(t) · f(t)‖Lp(T ;X) = ‖x‖L̂p(T ;X),

‖xn‖X = 1
(2π)1+1/p ‖en ∗ f‖Lp(T ;X) ≤

1
(2π)1/p

‖f‖Lp(T ;X) = ‖x‖L̂p(T ;X).

Moreover, since the Fejér kernel is an approximate identity (see e.g. [26, Proposition 
3.1.10]), (2.7) holds. Similar reasoning also shows that Ĉ(T ; X) is a Cesàro convergent 
sequence structure and Λ̂p(T ; X) in (iii) is an Cesàro bounded sequence structure. For 
(iv), (2.2) and (2.3) are clear, (2.4) follows from [32, Proposition 6.1.5] and (2.9) is a 
consequence of the convergence of 

∑
k∈Z εkxk in Lp(Ω; X). (v) follows similarly. The 

spaces in (vi) are Banach spaces by [49, Section 1.d], the sequence structure properties 
and (2.6) are clear and (2.7) follows from Lemma 2.1. Finally, (vii) is discussed in detail 
in [39]. �
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3. Sequentially structured interpolation

We call a pair of Banach spaces (X0, X1) a compatible couple if both X0 and X1

are continuously embedded into a Hausdorff topological vector space X. We define the 
Banach spaces

X0 ∩X1 := {x ∈ X : x ∈ X0 and x ∈ X1},

X0 + X1 := {x ∈ X : x = x0 + x1 with x0 ∈ X0, x1 ∈ X1},

with norms

‖x‖X0∩X1 := max
j=0,1

‖x‖Xj
,

‖x‖X0+X1 := inf
{
‖x0‖X0 + ‖x1‖X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1

}
.

We call a Banach space X an intermediate space with respect to (X0, X1) if we have 
continuous embeddings

X0 ∩X1 ↪→ X ↪→ X0 + X1.

If this is the case we define X◦ as the closure of X0 ∩X1 in X.
Let Xj = [Xj , Sj ] be sequentially structured Banach spaces for j = 0, 1. We call the 

pair (X0, X1) a compatible couple of sequentially structured Banach spaces if the pair 
(X0, X1) is a compatible couple of Banach spaces. We will define a discrete interpolation 
method for (X0, X1), which is modelled after the mean method for real interpolation by 
Lions and Peetre [48].

Definition 3.1. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces and let θ ∈ (0, 1). For x ∈ X0 + X1 we set

‖x‖(X0,X1)θ := inf ‖x‖S0(e−θ)∩S1(e1−θ),

where the infimum is taken over all sequences x ∈ S0(e−θ) ∩ S1(e1−θ) such that ∑
k∈Z xk = x with convergence in X0 + X1. We define

(X0,X1)θ :=
{
x ∈ X0 + X1 : ‖x‖(X0,X1)θ < ∞

}
,

with norm ‖ · ‖(X0,X1)θ .

Remark 3.2. Note that the convergence of 
∑

k∈Z xk in X0 + X1 is automatic for x ∈
S0(e−θ) ∩S1(e1−θ), since we have by (2.2) and (2.4) that
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∑
k∈Z

‖xk‖X0+X1 ≤
∑

k∈Z≤0

ekθ‖e−kθxk‖X0 +
∑

k∈Z>0

e−k(1−θ)‖ek(1−θ)xk‖X1

≤ ‖x‖S0(e−θ)∩S1(e1−θ)

( ∑
k∈Z≤0

ekθ +
∑

k∈Z>0

e−k(1−θ)
)
< ∞.

Before turning to the properties of our interpolation method, let us connect this 
definition to already existing interpolation methods using the sequence structures from 
Example 2.2.

Example 3.3. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces and let θ ∈ (0, 1).

(i) If Sj = �pj (Z; Xj) for j = 0, 1 with p0, p1 ∈ [1, ∞], then

(X0,X1)θ = (X0, X1)θ,p0,p1 ,

where (X0, X1)θ,p0,p1 is the Lions–Peetre mean method [48]. In particular, for 1
p =

1−θ
p0

+ θ
p1

we have

(X0,X1)θ = (X0, X1)θ,p,

where (X0, X1)θ,p denotes the real interpolation method.
(ii) Let p0, p1 ∈ [1, ∞]. If

Sj =
{
L̂pj (T ;Xj) if pj ∈ [1,∞),
Ĉ(T ;Xj) if pj = ∞,

for j = 0, 1, then

(X0,X1)θ = [X0, X1]θ,

where [X0, X1]θ denotes the complex interpolation method [10]. If Sj = Λ̂pj (T ; Xj)
for j = 0, 1, then

(X0,X1)θ = [X0, X1]θ,

where [X0, X1]θ denotes Calderón’s upper complex interpolation method [10]. We 
will prove these identities in Examples 4.6 and 4.17.

(iii) If Sj = εp(Z; Xj) for j = 0, 1 and p ∈ [1, ∞), then

(X0,X1)θ = (X0, X1)θ,ε,

where (X0, X1)θ,ε denotes the Rademacher interpolation method [38].
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(iv) If Sj = γp(Z; Xj) for j = 0, 1 and p ∈ [1, ∞), then

(X0,X1)θ = (X0, X1)θ,γ ,

where (X0, X1)θ,γ denotes the γ-interpolation method [66,67].
(v) Suppose that there is a Banach lattice Ej and an isometric embedding J : Xj → Ej

for j = 0, 1. Let q0, q1 ∈ [1, ∞]. If Sj is the space of all x ∈ �0(Z; Xj) such that

‖x‖Sj
:= ‖(Jxk)k∈Z‖Ej(�qj (Z)) < ∞,

then

(X0,X1)θ = (X0, X1)θ,�q0 ,�q1 ,

where (X0, X1)θ,�q0 ,�q1 denotes the �q-interpolation method introduced in [41]. We 
define (X0, X1)θ,c0,c0 and (X0, X1)θ,�q0+ ,�

q1
+

similarly.
(vi) The Rademacher, γ- and �q-interpolation methods were inspired by the α-

interpolation method for a global Euclidean structure α introduced in [39], a 
preprint of which circulated since the beginning of the 2000s. If Sj = α(Z; Xj)
for j = 0, 1, then

(X0,X1)θ = (X0, X1)θ,α,

where (X0, X1)θ,α denotes the α-interpolation method. For details we refer to [39, 
Section 3.3 and 3.4].

The real and complex interpolation methods in Example 3.3(i)-(ii) were already stud-
ied by Peetre [58] from this viewpoint, where also the problem was posed to study these 
methods in an abstract, translation invariant setting as we do in the present article (see 
[58, Problème 1]).

Remark 3.4. In [16] Cwikel, Kalton, Milman and Rochberg gave a different ap-
proach to [58, Problème 1] in order to study commutator estimates, using so-called 
pseudo-Z-lattices instead of sequence structures. Comparing our basic assumptions to 
the pseudo-Z-lattices in [16], we note:

• We assume translation invariance, while this is not a requirement for a pseudo-Z-
lattice. Various results in [16] do additionally assume either translation invariance or 
decay of the operator norm of translation operators.

• We assume contractivity of coordinate projections, while this is not a requirement 
for a pseudo-Z-lattice. Various results in [16] rely on Laurent compatibility, which is 
implied by the contractivity of coordinate projections.
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• A pseudo-Z-lattice is assumed to be an interpolation functor, whereas our sequen-
tially structured interpolation framework does not insist on defining an interpolation 
functor in the classical sense.

While the assumptions on a sequence structure are rather different from the assumptions 
on a pseudo-Z-lattices, most of the main examples satisfying either set of assumptions 
also satisfy the other set. The key example that fits our framework, but not the framework 
of [16], is the �q-interpolation method in Example 3.3(v) and its variants discussed in the 
introduction. These methods will play a major role in our applications to trace theory 
for parabolic boundary value problems in future work.

Remark 3.5. There are also various generalizations of real interpolation based on the 
K-functional, replacing Lq(R) or �q(Z) by a Banach function or sequence space E, see 
e.g. [15,55,7,9] and the references therein. We note that these generalizations are disjoint 
from our approach, as, on the one hand, the assumptions on E can be more lenient 
than our assumptions on S, but, on the other hand, the complex, Rademacher, γ- and 
�q-interpolation methods do not fit into such a framework.

3.1. Basic properties

Having motivated the sequentially structured interpolation method with some exam-
ples, let us turn to a few basic properties. We start by proving that (X0, X1)θ is an 
intermediate space with respect to X0 and X1.

Proposition 3.6. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces and let θ ∈ (0, 1). Then (X0, X1)θ is a Banach space and we have continuous 
embeddings

X0 ∩X1 ↪→ (X0,X1)θ ↪→ X0 + X1.

The key ingredient in the proof of Proposition 3.6 is the observation that (X0, X1)θ
can be realized as a quotient, which for future reference will be convenient to record as 
the following remark.

Remark 3.7. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces and let θ ∈ (0, 1). By Remark 3.2,

T : S0(e−θ) ∩S1(e1−θ) → X0 + X1,

given by x �→
∑

k∈Z xk is a well-defined, bounded linear operator. Note that ran(T ) =
(X0, X1)θ and that T induces a well-defined isometric linear isomorphism

T̃ : S0(e−θ) ∩S1(e1−θ)
� → (X0,X1)θ
ker(T )
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given by [x] �→ Tx.

Proof of Proposition 3.6. Let T and T̃ be as in Remark 3.7. Then ker(T ) is a closed 
linear subspace of the Banach space S0(e−θ) ∩S1(e1−θ). Therefore, the quotient space 
[S0(e−θ) ∩S1(e1−θ)]/ ker(T ), which is isometrically isomorphic to (X0, X1)θ through T̃ , 
is a Banach space.

We will now check the continuous embeddings. Take x ∈ X0 ∩X1, then we have by 
(2.2)

‖x‖(X0,X1)θ ≤ max
j=0,1

‖(. . . , 0, x, 0, . . .)‖Sj
≤ ‖x‖X0∩X1 .

For the second embedding let x ∈ (X0, X1)θ and take a sequence x ∈ S0(e−θ) ∩S1(e1−θ)
such that Tx =

∑
k∈Z xk = x. Then, by the boundedness of T , we have

‖x‖X0+X1 = ‖Tx‖X0+X1 � ‖x‖S0(e−θ)∩S1(e1−θ).

The second embedding now follows by taking the infimum over all such x. �
In Definition 3.1 we can actually improve the maximum of the Sj-norms to a log-

convex combination of the Sj-norms, as we will show next.

Lemma 3.8. Let (X0, X1) be a compatible couple of sequentially structured Banach spaces 
and let θ ∈ (0, 1). For x ∈ (X0, X1)θ we have

‖x‖(X0,X1)θ � inf ‖x‖1−θ
S0(e−θ) · ‖x‖

θ
S1(e1−θ),

where the infimum is taken over all sequences x ∈ S0(e−θ) ∩ S1(e1−θ) such that ∑
k∈Z xk = x with convergence in X0 + X1. In particular,

‖x‖(X0,X1)θ �θ ‖x‖1−θ
X0

‖x‖θX1
, x ∈ X0 ∩X1.

Proof. We only need to show the inequality “�”. Let x ∈ S0(e−θ) ∩ S1(e1−θ) such 
that 

∑
k∈Z xk = x with convergence in X0 + X1, set aj := ‖x‖Sj(ej−θ) for j = 0, 1

and let n ∈ Z such that en ≤ a0
a1

≤ en+1. Then the sequence y := (xk−n)k∈Z satisfies ∑
k∈Z yk = x and by (2.3) we have

‖y‖Sj(ej−θ) =
∥∥(ek(j−θ)xk−n)k∈Z

∥∥
Sj

= en(j−θ)aj , j = 0, 1.

Therefore

‖x‖(X0,X1)θ ≤ max
j=0,1

en(j−θ)aj = a1−θ
0 aθ1 · max

j=0,1

(
e−n a0

a1

)θ−j ≤ e · a1−θ
0 aθ1.

Taking the infimum over all such x concludes the proof of the equivalence. �
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As a consequence of Lemma 3.8, we obtain that X0∩X1 is dense in (X0, X1)θ if either 
S0 or S1 is Cesàro convergent, which without the aid of Lemma 3.8 would require a 
Cesàro convergence assumption on both S0 and S1.

Corollary 3.9. Let (X0, X1) be a compatible couple of Cesàro bounded sequentially struc-
tured Banach spaces and let θ ∈ (0, 1). If either S0 or S1 is Cesàro convergent, then 
X0 ∩X1 is dense in (X0, X1)θ.

Proof. Fix x ∈ (X0, X1)θ and x ∈ S0(e−θ) ∩ S1(e1−θ) such that 
∑

k∈Z xk = x with 
convergence in X0 +X1. For n ∈ N we define yn := Cnx and yn :=

∑
k∈Z ynk , where Cn

is the Cesàro operator given in (2.5). Then yn ∈ X0 ∩X1 and by Lemma 3.8

‖x− yn‖(X0,X1)θ �
∥∥x− yn

∥∥1−θ

S0(e−θ) ·
∥∥x− yn

∥∥θ
S1(e1−θ).

Now, by (2.7) and (2.7), one of the terms on the right-hand side converges to 0 as n → ∞
and the other stays bounded, finishing the proof. �
3.2. Finite approximation

Using Corollary 3.9, we can often reduce considerations to elements of X0 ∩X1. For 
such elements, we can simplify our arguments even further by only considering finitely 
nonzero sequences in Definition 3.1. Moreover, in applications it is sometimes useful to 
restrict arguments to a dense subspace of X0 ∩ X1, for example the space of simple 
functions when X0 and X1 are Lp-spaces.

The following approximation lemma will play a key role in many of our subsequent 
results. In the setting of the interpolation framework in [16], a related result was obtained 
in [34].

Lemma 3.10. Let (X0, X1) be a compatible couple of Cesàro bounded sequentially struc-
tured Banach spaces, let X̆ be a dense subspace of X0 ∩X1 and let θ ∈ (0, 1). For x ∈ X̆

we have

‖x‖(X0,X1)θ � inf ‖x‖S0(e−θ)∩S1(e1−θ),

where the infimum is taken over all x ∈ c00(Z; X̆) such that 
∑

k∈Z xk = x.

Proof. Since we are taking the infimum over a smaller collection of sequences than the 
collection of sequences in Definition 3.1, we only need to show that the infimum can be 
dominated by ‖x‖(X0,X1)θ .

Step 1: We will first consider the special case that X̆ = X0∩X1. Let x ∈ X0∩X1 and 
take y ∈ S0(e−θ) ∩S1(e1−θ) such that 

∑
k∈Z yk = x with convergence in X0 + X1 and

‖y‖S0(e−θ)∩S1(e1−θ) ≤ 2 ‖x‖(X0,X1)θ . (3.1)
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For n ∈ N let Cn be the Cesáro operator as in (2.5) and define zn := Cny. For m ∈ Z

set

zn,+m := 1
n + 1

∞∑
k=m+1

yk = 1
n + 1

(
x−

m∑
k=−∞

yk

)
,

zn,−m := 1
n + 1

−m−1∑
k=−∞

yk = 1
n + 1

(
x−

∞∑
k=m

yk

)
,

which converge in X0 + X1. Note that for M ∈ Z we have by (2.4)

M∑
k=−∞

‖yk‖X0 ≤
∥∥(e−kθyk)k∈Z

∥∥
S0

·
M∑

k=−∞
ekθ < ∞,

∞∑
k=M

‖yk‖X1 ≤
∥∥(ek(1−θ)yk)k∈Z

∥∥
S1

·
∞∑

k=M

e−k(1−θ) < ∞.

Since x ∈ X0 ∩X1, we deduce that zn,+m , zn,−m ∈ X0 ∩X1 for all m ∈ Z. Thus, defining 
wn := zn + wn,+ + wn,− with

wn,±
m :=

{
zn,±m if m = ±0, · · · ,±n

0 otherwise
, m ∈ Z,

we have that wn ∈ c00(Z; X0 ∩ X1) and 
∑

k∈Z wn
k = x with convergence in X0 + X1. 

Since S0 and S1 are Cesàro bounded, using (3.1) we find

‖zn‖S0(e−θ)∩S1(e1−θ) ≤ ‖y‖S0(e−θ)∩S1(e1−θ) ≤ 2 ‖x‖(X0,X1)θ .

Moreover, using (2.2), (2.4) and (3.1), we have

‖wn,+‖S0(e−θ) ≤
1

n + 1

n∑
m=0

e−mθ
(
‖x‖X0 +

m∑
k=−∞

‖yk‖X0

)

≤ 1
n + 1 ·

(eθ ‖x‖X0

eθ − 1 +
n∑

m=0
e−mθ

m∑
k=−∞

ekθ‖(e−�θy�)�∈Z‖S0

)

≤ 1
n + 1 · eθ ‖x‖X0

eθ − 1 + 2eθ

eθ − 1 · ‖x‖(X0,X1)θ

and similarly

‖wn,−‖S0(e−θ) ≤
1

n + 1

n∑
emθ

−m−1∑
‖yk‖X0
m=0 k=−∞
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≤ 1
n + 1

n∑
m=0

emθ
−m−1∑
k=−∞

ekθ‖(e−�θy�)�∈Z‖S0

≤ 2
eθ − 1 · ‖x‖(X0,X1)θ .

Doing similar computations for S1, one also obtains

‖wn,+‖S1(e1−θ) ≤
2

e1−θ − 1 · ‖x‖(X0,X1)θ

‖wn,−‖S1(e1−θ) ≤
1

n + 1 · e1−θ ‖x‖X1

e1−θ − 1 + 2e1−θ

e1−θ − 1 · ‖x‖(X0,X1)θ

Thus, taking

n + 1 ≥ max
{ ‖x‖X0

‖x‖(X0,X1)θ
,

‖x‖X1

‖x‖(X0,X1)θ

}
we obtain

max
j=0,1

‖wn‖Sj(ej−θ) �θ ‖x‖(X0,X1)θ .

Step 2: We derive the general case, for which we fix x ∈ X̆. Then, in particular, 
x ∈ X0 ∩ X1 and by Step 1 there thus exists w ∈ c00(Z; X0 ∩ X1) with 

∑
k∈Z wk = x

and

max
j=0,1

‖w‖Sj(ej−θ) �θ ‖x‖(X0,X1)θ . (3.2)

Now take a v ∈ c00(Z; X̆) such that∑
k∈Z

max{e−kθ, ek(1−θ)}‖vk − wk‖X0∩X1 ≤ ‖x‖(X0,X1)θ . (3.3)

Then 
∑

m∈Z wm − vm = x −
∑

m∈Z vm ∈ X̆, thus setting

xk :=
{
vk, k ∈ Z \ {0},
v0 +

∑
m∈Z wm − vm, k = 0,

we have that x ∈ c00(Z; X̆), 
∑

k∈Z xk = x and, using (2.2), (3.2) and (3.3), we have

max
j=0,1

‖x‖Sj(ej−θ) ≤ max
j=0,1

‖v −w‖Sj(ej−θ) + max
j=0,1

‖w‖Sj(ej−θ)

+
∥∥∑
m∈Z

wm − vm
∥∥
X0∩X1

�θ ‖x‖(X0,X1)θ ,
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which proves the lemma. �
Let (X0, X1) be a couple of sequentially structured Banach spaces. Recall that for 

j = 0, 1 we defined X◦
j and (X0, X1)◦θ as the closure of X0 ∩ X1 in Xj and (X0, X1)θ

respectively. Let S◦
j denote the closure of c00(Z; X◦

j ) in Sj . Then we note that

(X ◦
0 ,X ◦

1 ) := ([X◦
0 ,S

◦
0], [X◦

1 ,S
◦
1])

is a compatible couple of sequentially structured Banach spaces.

Proposition 3.11. Let (X0, X1) be a compatible couple of Cesàro bounded sequentially 
structured Banach spaces and let θ ∈ (0, 1). Then we have (X0, X1)◦θ = (X ◦

0 , X ◦
1 )θ. If 

additionally either S0 or S1 is Cesàro convergent, then (X0, X1)θ = (X ◦
0 , X ◦

1 )θ.

Proof. Since X ◦
0 is Cesàro convergent by Lemma 2.1, we note that X0 ∩X1 is dense in 

(X ◦
0 , X ◦

1 )θ by Corollary 3.9. Thus, for the first claim it suffices to prove a norm equivalence 
for x ∈ X0 ∩ X1. This norm equivalence is a direct consequence of Lemma 3.10. The 
second claim follows from Corollary 3.9. �
3.3. Alternative mean method formulation

We based the sequentially structured interpolation method on the discrete second 
Lions–Peetre mean method [48]. In this subsection we will consider a formulation of the 
sequentially structured interpolation method based on the first discrete mean method 
of Lions–Peetre. In the framework of Cwikel, Kalton, Milman and Rochberg, a related 
theorem was proven in [16, Section 8]

Theorem 3.12. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces and let θ ∈ (0, 1). For x ∈ X0 + X1 we have

‖x‖(X0,X1)θ �θ inf
∑
j=0,1

‖xj‖Sj(ej−θ) = ‖(. . . , x, x, x, . . .)‖S0(e−θ)+S1(e1−θ),

where the infimum is taken over all x0 ∈ S0(e−θ) and x1 ∈ S1(e1−θ) such that x =
x0
k + x1

k for all k ∈ Z.

Proof. Take x ∈ (X0, X1)θ and choose an x ∈ S0(e−θ) ∩S1(e1−θ) such that 
∑

k∈Z xk = x

with convergence in X0 + X1 and

‖x‖S0(e−θ)∩S1(e1−θ) ≤ 2 ‖x‖(X0,X1)θ . (3.4)

For n ∈ Z define y0
n :=

∑n
k=−∞ xk and y1

n :=
∑∞

k=n+1 xk. Then it is clear that y0
k+yk1 = x

for all k ∈ Z. Moreover, for j = 0, 1 we have by (2.2) and (2.4) that for any n1, n2 ∈ Z

with n1 < n2
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∥∥ n2∑
k=n1

xk

∥∥
Xj

≤
n2∑

k=n1

e−k(j−θ)‖ek(j−θ)xk‖Xj

≤
∥∥(ek(j−θ)xk)k∈Z

∥∥
Sj

n2∑
k=n1

e−k(j−θ)

≤ 2 ‖x‖(X0,X1)θ

n2∑
k=n1

e−k(j−θ).

For j = 0 this tends to zero when n1, n2 → −∞ and for j = 1 this tends to zero when 
n1, n2 → ∞, which implies that y0

k ∈ X0 and y1
k ∈ X1 for all k ∈ Z. Using (2.3), we 

furthermore have

‖y0‖S0(e−θ) =
∥∥∥( n∑

k=−∞
e−nθxk

)
n∈Z

∥∥∥
S0

=
∥∥∥( ∑

k∈Z≤0

ekθe−(n+k)θxn+k

)
n∈Z

∥∥∥
S0

≤
∑

k∈Z≤0

ekθ
∥∥(e−(n+k)θxn+k)n∈Z

∥∥
S0

= eθ

eθ − 1 ‖x‖S0(e−θ).

Combined with a similar estimate in S1(e1−θ) and (3.4), this proves that

inf
∑
j=0,1

‖xj‖Sj(ej−θ) �θ ‖x‖(X0,X1)θ .

Conversely, take x ∈ X0 + X1 such that the right-hand side is less than some C > 0. 
Choose x0 ∈ S0(e−θ) and x1 ∈ S1(e1−θ) such that x0

k + x1
k = x for all k ∈ Z and∑

j=0,1
‖xj‖Sj(ej−θ) ≤ 2C. (3.5)

For n ∈ Z define yn := x0
n+1 − x0

n = −(x1
n+1 − x1

n) ∈ X0 ∩X1. Then for k1, k2 ∈ Z with 
k1 < k2 we have

k2∑
n=k1

yn = x0
k2+1 − x0

k1
= −(x1

k2+1 − x1
k1

).

Moreover, by (2.4) and (3.5), we have for j = 0, 1

‖xj
k‖Xj

≤ 2 · e−k(j−θ) C, k ∈ Z,

and therefore
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x = x− lim
k1→−∞

x0
k1

− lim
k2→∞

x1
k2+1 = lim

k1,k2→∞

k2∑
n=−k1

yn =
∑
n∈Z

yn

with convergence in X0 + X1. Using (3.5) we furthermore have

‖x‖(X0,X1)θ ≤ max
j=0,1

∥∥(en(j−θ)yn)n∈Z
∥∥
Sj

≤ max
j=0,1

(1 + e−(j−θ))
∥∥(ek(j−θ)xj

k)k∈Z
∥∥
Sj

≤ 2(1 + e)C,

which finishes the proof. �
3.4. Duality

For a sequentially structured Banach space X = [X, S] we will write X ∗ := [X∗, S∗]. 
As a preparation for the duality of the sequentially structured interpolation method, we 
note the following lemma.

Lemma 3.13. Let X be a Cesàro convergent sequentially structured Banach space. Then 
X ∗ is a Cesàro bounded sequentially structured Banach space.

Proof. Since S is a Cesàro convergent sequence structure, we have �1(Z; X) ↪→ S ↪→
c0(Z; X) densely and contractively. Therefore, by [31, Proposition 1.3.3] we have 
�1(Z; X∗) ↪→ S∗ ↪→ �∞(Z; X∗) contractively. Moreover for x∗ ∈ S∗ we have, by the 
translation invariance of S, that

‖(x∗
k+n)k∈Z‖S∗ = sup

‖x‖S≤1

∣∣∣∑
k∈Z

〈xk, x
∗
k+n〉

∣∣∣ = sup
‖x‖S≤1

∣∣∣∑
k∈Z

〈xk−n, x
∗
k〉
∣∣∣ = ‖x∗‖S∗

for all n ∈ Z, which proves that S∗ is a sequence structure. Finally, for n ∈ N let Cn

denote the Cesàro operator as in (2.5) and note that for x∗ ∈ S∗ we have, using that S
is Cesàro bounded, that

‖Cnx
∗‖S∗ = sup

‖x‖S≤1

∣∣∣〈Cnx,x
∗〉
∣∣∣ ≤ ‖x∗‖S∗ .

Therefore, S∗ is Cesàro bounded. �
When (X0, X1) is a compatible couple of Banach spaces such that X0 ∩X1 is dense 

in X0 and X1, the dual pair (X∗
0 , X

∗
1 ) is also a compatible couple of Banach spaces and 

we have

(X0 ∩X1)∗ = X∗
0 + X∗

1 ,

(X + X )∗ = X∗ ∩X∗,
(3.6)
0 1 0 1
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see e.g. [8, Theorem 2.7.1].
Furthermore, note that for a Cesàro convergent sequentially structured Banach space 

X we have

X (a)∗ = X ∗(a−1), a ∈ (0,∞) (3.7)

which can be seen easily after observing that �1(Z; Xj)(a) ↪→ Sj(a) densely for j = 0, 1
and thus Sj(a)∗ ↪→ �∞(Z; Xj)(a−1).

Using Lemma 3.13 and the alternative formulation of (X0, X1)θ in Theorem 3.12, we 
can now prove a duality result for the sequentially structured interpolation method. Let 
us note that in the framework of [16] this was posed as an open problem, see [37, p.662]. 
In the following proposition we call a sequentially structured Banach space X reflection 
invariant if

‖x‖S = ‖(x−k)k∈Z‖S, x ∈ S.

In this case the reflection operator defines a isometry from X (a) to X (a−1).

Proposition 3.14. Let (X0, X1) be a compatible couple of reflection invariant Cesàro con-
vergent sequentially structured Banach spaces and θ ∈ (0, 1). Suppose that X0 ∩ X1 is 
dense in X0 and X1. Then (X0, X1)∗θ = (X ∗

0 , X ∗
1 )θ.

Proof. Note that, using the reflection invariance of the sequence structures, the norm 
equivalence from Theorem 3.12 means that

S : (X0,X1)θ → S0(eθ) + S0(eθ−1),

given by x �→ (. . . , x, x, x, . . .) is a topological linear embedding. Therefore, using (3.6)
and (3.7), we have (see e.g. [18, Theorem III.10.1 and Proposition VI.1.8])

ran(S)∗ = S∗
0(e−θ) ∩S∗

1(e1−θ)
�ran(S)⊥ = S∗

0(e−θ) ∩S∗
1(e1−θ)

�ker(S∗).

So the adjoint

S∗ : S∗
0(e−θ) ∩S∗

1(e1−θ) → (X0,X1)∗θ

induces a topological linear isomorphism

S̃∗ : S
∗
0(e−θ) ∩S∗

1(e1−θ)
�ker(S∗) → (X0,X1)∗θ, [x∗] �→ S∗x∗. (3.8)

In order to compute S∗, let x∗ ∈ S∗
0(e−θ) ∩ S∗

1(e1−θ) and x ∈ X0 ∩ X1. Then, by 
Remark 3.2 and (3.6), we have x∗ ∈ �1(Z; (X0 ∩X1)∗), so
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〈x, S∗x∗〉 = 〈Sx,x∗〉 = 〈(. . . , x, x, x, . . .),x∗〉 =
∑
k∈Z

〈x, x∗
k〉 =

〈
x,

∑
k∈Z

x∗
k

〉
.

Since we know that (X0, X1)∗θ ↪→ (X0 ∩X1)∗ by Corollary 3.9, we deduce that S∗x∗ =∑
k∈Z x∗

k. In view of Remark 3.7, we may thus conclude that (X0, X1)∗θ = (X ∗
0 , X ∗

1 )θ. �
Using Proposition 3.14 we immediately obtain duality results for the methods intro-

duced in Example 3.3. In the following example we will use some Banach space geometry. 
For an introduction to the Radon–Nýkodim property, or RNP, we refer to [60, Chapter 
2] and for nontrivial type we refer to [32, Chapter 7]. Finally, for an introduction to 
Kantorovich–Banach spaces, or KB-spaces, we refer to [54, Section 2.4]

Example 3.15. Let (X0, X1) be a compatible couple of Banach spaces and let θ ∈ (0, 1). 
Suppose that X0 ∩X1 is dense in X0 and X1.

(i) For p0, p1 ∈ [1, ∞) we have

(X0, X1)∗θ,p0,p1
= (X∗

0 , X
∗
1 )θ,p′

0,p
′
1
.

(ii) We have

[X0, X1]∗θ = [X∗
0 , X

∗
1 ]θ

and if either X∗
0 or X∗

1 has RNP, then

[X0, X1]∗θ = [X∗
0 , X

∗
1 ]θ.

(iii) If X0 and X1 have nontrivial type, we have(
(X0, X1)θ,ε

)∗ = (X∗
0 , X

∗
1 )θ,ε,(

(X0, X1)θ,γ
)∗ = (X∗

0 , X
∗
1 )θ,γ .

(iv) If X0 and X1 are Banach lattices, we have for p0, p1 ∈ [1, ∞)(
(X0, X1)θ,�p0 ,�p1

)∗ = (X∗
0 , X

∗
1 )

θ,�
p′0
+ ,�

p′1
+
.

and if either X0 or X1 is a KB-space, then(
(X0, X1)θ,�p0 ,�p1

)∗ = (X∗
0 , X

∗
1 )

θ,�p
′
0 ,�p

′
1 .

Note that the statements for the real and complex interpolation methods are well-
known, the statements for the Rademacher and γ-interpolation methods could be ex-
tracted from [39, Section 3.3] and the statement for the �q-interpolation method is new. 
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All statements follow in a unified way from Example 3.3, Proposition 3.14 and suitable 
identifications of dual sequence space structures.

Proof of Example 3.15. (i) is a consequence of �pj (Z; Xj)∗ = �p
′
j (Z; X∗

j ) for j = 0, 1 (see 
[31, Proposition 1.3.3]). The first statement in (ii) follows from the duality

L2(T ;Xj)∗ = Λ2(T ;X∗
j ), j = 0, 1,

see [60, Chapter 2]. For the second statement in (ii), assume without loss of generality 
that X0 has RNP. Then L2(T ; X0) = Λ2(T ; X0), so Λ2(T ; X0) is Cesàro convergent. 
Thus, since [X1, Λ̂2(T ; X1)]◦ = [X1, L̂2(T ; X1)], the statement follows from Proposi-
tion 3.11. For (iii) note that X0 and X1 are K-convex by [32, Theorem 7.4.23]. Therefore 
we have

ε2(Z;X∗
j ) = ε2(Z;Xj)∗, j = 0, 1,

γ2(Z;X∗
j ) = γ2(Z;Xj)∗, j = 0, 1,

by [32, Theorem 7.4.14 and 9.1.24], from which (iii) follows. For the first identity in (iv) 
note that X(�pj (Z))∗ = X∗(�p

′
j

+ (Z)) by [49, Section 1.d.]. For the final identity note that 
�pj (Z; Xj) = �

pj

+ (Z; Xj) for either j = 0 or j = 1, from which the embedding follows by 
Proposition 3.11 as before. �

When either S∗
0 or S∗

1 is Cesàro convergent, it follows from Proposition 3.14 and 
Corollary 3.9 that X∗

0 ∩ X∗
1 is norming for (X0, X1)θ. Using the description (3.8) from 

the proof Proposition 3.14, we can actually deduce that X∗
0 ∩X∗

1 is norming for (X0, X1)θ
without any assumptions on S∗

0 or S∗
1.

The key step in the proof of this norming result will be the following lemma.

Lemma 3.16. Let (X0, X1) be a compatible couple of Cesàro convergent sequentially struc-
tured Banach spaces and let θ ∈ (0, 1). Suppose that X0 ∩ X1 is dense in X0 and X1. 
Then

c00(Z;X∗
0 ∩X∗

1 ) ⊆ S∗
0(e−θ) ∩S∗

1(e1−θ)

is norming for S0(eθ) + S1(eθ−1).

Proof. Let x ∈ S0(eθ) +S1(eθ−1) and let ε > 0. As a consequence of (3.6), there exists 
an x∗ ∈ S∗

0(e−θ) ∩S∗
1(e1−θ) of norm 1 such that

‖x‖S0(eθ)+S1(eθ−1) ≤ |〈x,x∗〉| + ε

2 .

For n ∈ N we define xn := Cnx and yn := Cnx
∗, where Cn is the Cesàro operator 

given in (2.5). Note that 〈xn, x∗〉 = 〈x, yn〉. As Xj is Cesàro convergent, we have x =
limn→∞ xn in S0(eθ) + S1(eθ−1), so that
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‖x‖S0(eθ)+S1(eθ−1) ≤ |〈x,x∗〉| + ε

2 = lim
n→∞

|〈xn,x∗〉| + ε

2
= lim

n→∞
|〈x,yn〉| + ε

2 .

There thus exists n ∈ N such that ‖x‖S0(eθ)+S1(eθ−1) ≤ |〈x, yn〉| + ε. As X ∗
j is Cesàro 

bounded by Lemma 3.13, we have

‖yn‖S∗
0(e−θ)∩S∗

1(e1−θ) ≤ ‖x∗‖S∗
0(e−θ)∩S∗

1(e1−θ) = 1.

The observation that yn ∈ c00(Z; X∗
0 ∩X∗

1 ) finishes the proof. �
We can now prove the announced proposition.

Proposition 3.17. Let (X0, X1) be a compatible couple of reflection invariant Cesàro con-
vergent sequentially structured Banach spaces and let θ ∈ (0, 1). Suppose that X0 ∩ X1
is dense in X0 and X1. Then for x ∈ (X0, X1)θ we have

‖x‖(X0,X1)θ �θ sup
{
|〈x, x∗〉| : x∗ ∈ X∗

0 ∩X∗
1 , ‖x∗‖(X∗

0 ,X∗
1 )θ ≤ 1

}
. (3.9)

In particular, setting Yj := (X ∗
j )◦ for j = 0, 1, we have

‖x‖(X0,X1)θ �θ sup
{
|〈x, x∗〉| : x∗ ∈ X∗

0 ∩X∗
1 , ‖x∗‖(Y0,Y1)θ ≤ 1

}
. (3.10)

Proof. Using Proposition 3.11 and Lemma 3.13, we know that the right-hand sides of 
(3.9) and (3.10) are equivalent. Note that the inequality “�” in (3.9) follows directly from 
Proposition 3.14. For the inequality “�” in (3.9) fix x ∈ (X0, X1)θ. By Theorem 3.12 and 
the reflection invariance of the sequence structures, we have (. . . , x, x, x, . . .) ∈ S0(eθ) +
S1(eθ−1) with

‖x‖(X0,X1)θ �θ ‖(. . . , x, x, x, . . .)‖S0(eθ)+S1(eθ−1).

Combining this with Lemma 3.16, we see that there exists x∗ ∈ c00(Z; X∗
0 ∩X∗

1 ) of norm 
1 such that ‖x‖(X0,X1)θ �θ |〈(. . . , x, x, x, . . .), x∗〉|. Now note that

〈(. . . , x, x, x, . . .),x∗〉 = 〈x, S∗x∗〉

in the notation of the proof of Proposition 3.14. Therefore,

x∗ := Sx∗ =
∑
k∈Z

x∗
k ∈ X∗

0 ∩X∗
1

satisfies ‖x‖(X0,X1)θ �θ |〈x, x∗〉| and

‖x∗‖(X∗
0 ,X∗

1 )θ ≤ ‖x∗‖(S∗
0)◦(e−θ)∩(S∗

1)◦(e1−θ) = 1.

This proves the inequality “�” in (3.9), as desired. �
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Concerning Example 3.15(ii) on the duality for the complex interpolation method, 
Proposition 3.17 allows one to avoid the upper complex method in certain duality argu-
ments without assuming RNP. We record this observation for future reference.

Example 3.18. Let (X0, X1) be a compatible couple of Banach spaces and let θ ∈ (0, 1). 
Suppose that X0 ∩X1 is dense in X0 and X1. Then for x ∈ [X0, X1]θ we have

‖x‖[X0,X1]θ �θ sup
{
|〈x, x∗〉| : x∗ ∈ X∗

0 ∩X∗
1 , ‖x∗‖[X∗

0 ,X
∗
1 ]θ ≤ 1

}
.

3.5. Embeddings

We can obtain embeddings between various interpolation methods from embeddings 
between the corresponding sequence structures, using the following proposition.

Proposition 3.19. Let (X0, X1) and (Y0, Y1) be compatible couples of sequentially struc-
tured Banach spaces. Suppose that X0 + X1 ⊆ Y0 + Y1 and Sj ↪→ Tj for j = 0, 1. Then 
(X0, X1)θ ↪→ (Y0, Y1)θ for θ ∈ (0, 1).

Proposition 3.19 follows directly from the definition of our sequentially structured 
interpolation method. In view of (2.1) and Example 3.3(i), it has the following direct 
consequence for embeddings for the real interpolation method: Let (X0, X1) be a com-
patible couple of sequentially structured Banach spaces and let θ ∈ (0, 1). Then we 
have

(X0, X1)θ,1 ↪→ (X0,X1)θ ↪→ (X0, X1)θ,∞. (3.11)

Moreover, it directly implies embeddings like (X0, X1)θ,p ↪→ (X0, X1)θ,q for 1 ≤ p ≤ q ≤
∞ by the corresponding embeddings for the sequence spaces �p(Z; Xj) for j = 0, 1.

Let us next apply Proposition 3.19 to combinations of the interpolation methods 
introduced in Example 3.3. In the following example we will again use some Banach 
space geometry. For an introduction to type and cotype we refer to [32, Chapter 7], 
for an introduction to Fourier type to [25] and for p-convexity and p-concavity to [49, 
Section 1.d].

Example 3.20. Let (X0, X1) be a compatible couple of Banach spaces and let θ ∈ (0, 1).

(i) Suppose Xj has Fourier type pj ∈ [1, 2] for j = 0, 1. Then we have

(X0, X1)θ,p0,p1 ↪→ [X0, X1]θ ↪→ (X0, X1)θ,p′
0,p

′
1
.

(ii) Suppose Xj has type pj ∈ [1, 2] and cotype qj ∈ [2, ∞] for j = 0, 1. Then we have

(X0, X1)θ,p0,p1 ↪→ (X0, X1)θ,γ ↪→ (X0, X1)θ,q0,q1 .
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(iii) If X0 and X1 have type 2, then

[X0, X1]θ ↪→ (X0, X1)θ,γ

and if X0 and X1 have cotype 2, then

(X0, X1)θ,γ ↪→ [X0, X1]θ.

(iv) Suppose X0 and X1 are Banach lattices and let p0, p1 ∈ [1, ∞]. If Xj is pj-convex 
for j = 0, 1, then

(X0, X1)θ,p0,p1 ↪→ (X0, X1)θ,�p0 ,�p1

and if Xj is pj-concave for j = 0, 1, then

(X0, X1)θ,�p0 ,�p1 ↪→ (X0, X1)θ,p0,p1 .

We note that the embeddings for the �q-interpolation method in (iv) are new, whereas 
the embeddings for the γ-interpolation method in (ii) and (iii) can be found in [39, Section 
3.4] and the embedding between real and complex interpolation in (i) was first proven 
in [57]. All embeddings will follow in a unified way from Example 3.3, Proposition 3.19
and suitable embeddings of sequence structures.

Proof of Example 3.20. The embeddings in (i) follow directly from the equivalence of 
Fourier type and periodic Fourier type (see [25, Theorem 6.6]) and (ii) is a consequence 
of the equivalence of (co)type and Gaussian (co)type (see [32, Proposition 7.1.18 and 
Corollary 7.2.11]).

For (iii) take x ∈ L̂2(T ; X) and let f ∈ L2(T ; X) be such that f̂ = x. Since

h �→
( 1

2π

∫
T

h(t)e−ikt dt
)
k∈Z

is an isometry from L2(T ) to �2(Z), we have by [32, Theorem 9.1.10 and 9.2.10]

‖x‖γ(Z;X) ≤
1

(2π)1/2
‖f‖γ(T ;X) � 1

(2π)1/2
‖f‖L2(T ;X) = ‖x‖L̂2(T ;X).

The second embedding in (iii) can be proven similarly. Finally the embeddings in (iv) 
follow directly from the definition of pj-convexity. �
3.6. Interpolation of Banach function spaces

In this subsection we will study the interpolation spaces (X0, X1)θ in the case that X0
and X1 are Banach function spaces.
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Let (S, Σ, μ) be a measure space. A Banach space X consisting of measurable functions 
x : S → C is called a Banach function space if it satisfies

(i) If x ∈ X and y : S → C is measurable with |y| ≤ |x|, then y ∈ X with ‖y‖X ≤ ‖x‖X .
(ii) There is an x ∈ X with x > 0 a.e.
(iii) If 0 ≤ xn ↑ x for (xn)∞n=1 in X and supn∈N‖xn‖X < ∞, then x ∈ X and ‖x‖X =

supn∈N‖xn‖X .

We say that X is order-continuous if for any 0 ≤ xn ↑ x with (xn)∞n=1 in X and x ∈ X we 
have ‖xn − x‖X → 0. For an introduction to Banach function spaces we refer to [46,75].

For two Banach function spaces X0 and X1 over the same measure space (S, μ) and 
θ ∈ (0, 1) we can define the Calderón–Lozanovskii product (see [10,47]) as

X1−θ
0 Xθ

1 :=
{
x ∈ L0(S) : |x| ≤ |x0|1−θ|x1|θ, x0 ∈ X0, x1 ∈ X1

}
,

which we equip with the norm

‖x‖X1−θ
0 Xθ

1
:= inf

|x|≤|x0|1−θ|x1|θ
‖x0‖1−θ

X0
‖x1‖θX1

.

Then X1−θ
0 Xθ

1 is a Banach function space with

X0 ∩X1 ↪→ X1−θ
0 Xθ

1 ↪→ X0 + X1,

i.e. X1−θ
0 Xθ

1 is an intermediate space with respect to (X0, X1).
Since a Banach function space X is in particular a Banach lattice, it admits the 

sequence structure X(�q(Z)) introduced in Example 2.2(vi). Thus we can apply the 
�q-interpolation method from Example 3.3(v) to a couple of Banach function spaces 
(X0, X1) over the same measure space (S, Σ, μ). It turns out that the resulting interme-
diate spaces are just complex interpolation spaces.

Example 3.21. Let (X0, X1) be a compatible couple of Banach function spaces over a 
measure space (S, Σ, μ) and let θ ∈ (0, 1). For q0, q1 ∈ [1, ∞) we have

[X0, X1]θ = (X0, X1)θ,�q0 ,�q1 = (X0, X1)θ,c0,c0 .

Proof. We start by considering the case q0 = q1 = 1. By a Poisson integral argument (see 
[10, Section 13.6]), we have [X0, X1]θ ↪→ (X1−θ

0 Xθ
1 )◦. We will prove that (X1−θ

0 Xθ
1 )◦ ↪→

(X0, X1)θ,�1,�1 . Take x ∈ X0 ∩ X1 and assume without loss of generality x ≥ 0. Let 
x0 ∈ X0 and x1 ∈ X1 such that x = |x0|1−θ|x1|θ and ‖x0‖1−θ

X0
‖x1‖θX1

≤ 2 ‖x‖(X1−θ
0 Xθ

1 )◦ . 
Define

E := {x ∈ S : x(s) �= 0}
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Ek :=
{
s ∈ E : ek ≤ |x1|

|x0|
≤ ek+1}, k ∈ Z.

Take n ∈ N such that ‖x‖X0 ≤ enθ‖x‖X0 and ‖x‖X1 ≤ en(1−θ)‖x‖X1 . Define

yk :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x1Ek

, if |k| ≤ n

x1⋃∞
m=n+1 Em

, if k = n + 1
x1⋃−∞

m=−n−1 Em
, if k = −n− 1

0, otherwise.

Then (ek(j−θ)yk)k∈Z ∈ Xj(�1(Z)) for j = 0, 1 and 
∑

k∈Z yk = x. Moreover, we have

‖(e−kθyk)k∈Z‖X0(�1(Z)) ≤
∥∥∥ n∑
k=−n

e−kθ|x0|1−θ|x1|θ 1Ek

∥∥∥
X0

+ ‖e−(n+1)θx1⋃∞
m=n+1 Em

‖X0

+
∥∥∥ −∞∑
m=−n−1

e(n+1)θ|x0|1−θ|x1|θ 1Em

∥∥∥
X0

≤ eθ
∥∥∥ n∑
k=−n

|x0|1Ek

∥∥∥
X0

+ e−(n+1)θ‖x‖X0

+ eθ
∥∥∥ −∞∑
m=−n−1

e(m+n)θ|x0|1Em

∥∥∥
X0

≤
(
eθ + e−θ + eθ

eθ − 1
)
‖x‖X0 .

Combined with a similar estimate for (ek(1−θ)yk)k∈Z in X1(�1(Z)) and Lemma 3.8, we 
obtain

‖x‖(X0,X1)θ,�1,�1
�θ ‖x‖(X1−θ

0 Xθ
1 )◦ .

This proves the embedding by the density of X0 ∩X1 in (X1−θ
0 Xθ

1 )◦, finishing the proof 
of the embedding [X0, X1]θ ↪→ (X0, X1)θ,�1,�1

For the converse embedding take x ∈ �1(Z; Xj) and note that

f(t) :=
∑
k∈Z

eiktxk, t ∈ T ,

converges by assumption. Therefore

‖x‖L̂1(T ;Xj) = 1
2π ‖f‖L1(T ;Xj) ≤ sup

t∈T

∥∥∑ eiktxk

∥∥
Xj

≤ ‖x‖�1(Z;Xj),

k∈Z
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i.e. �1(Z; Xj) ↪→ L̂1(T ; Xj) for j = 0, 1. This proves the embedding (X0, X1)θ,�1,�1 ↪→
[X0, X1]θ by Proposition 3.6, concluding the proof in the case q0 = q1 = 1.

For the remaining cases, we note that, by Proposition 3.19 and the embeddings

�1(Z;Xj) ↪→ �qj (Z;Xj) ↪→ c0(Z;Xj),

it suffices to show (X0, X1)θ,c0,c0 ↪→ [X0, X1]θ. By Proposition 3.11 we may without 
loss of generality assume that X0 ∩X1 is dense in X0 and X1. Fix x ∈ X0 ∩X1, so in 
particular x ∈ [X0, X1]θ. By Example 3.18 there exists x∗ ∈ [X∗

0 , X
∗
1 ]θ with norm 1 such 

that

‖x‖[X0,X1]θ �θ |〈x, x∗〉|.

Then, using embedding [X0, X1]θ ↪→ (X0, X1)θ,�1,�1 ↪→ (X0, X1)θ,�1+,�1+
from the first 

part of this proof, we obtain by Proposition 3.14

‖x‖[X0,X1]θ � |〈x, x∗〉| ≤ ‖x‖(X0,X1)θ,c0,c0
‖x∗‖(X∗

0 ,X
∗
1 )θ,�1+,�1+

�θ ‖x‖(X0,X1)θ,c0,c0
.

Since X0 ∩X1 is dense in (X0, X1)θ,c0,c0 by Corollary 3.9, this finishes the proof. �
Remark 3.22. Example 3.21 also yields that, if X0 and X1 have finite cotype, we have

[X0, X1]θ = (X0, X1)θ,ε = (X0, X1)θ,γ ,

which was already observed in [39, Section 3.4]. Indeed, this follows directly from the 
comparability of Rademacher, Gaussian and �2-sums (see [32, Corollary 7.2.10 and The-
orem 7.2.13]) and Proposition 3.6.

Moreover, combined with Example 3.20(iv), we see that for p0, p1 ∈ [1, ∞] we have

(X0, X1)θ,p0,p1 ↪→ [X0, X1]θ

if Xj is pj-convex for j = 0, 1 and

[X0, X1]θ ↪→ (X0, X1)θ,p0,p1 .

if Xj is pj-concave for j = 0, 1.

When E is a Banach function space and [X, S] is a sequentially structured Banach 
space, the pair [E(X), E(S)] is a sequentially structured Banach space as well. In the 
following proposition we will relate the associated sequentially structured interpolation 
spaces.
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Proposition 3.23. Let E be an order-continuous Banach function space and let (X0, X1)
be a compatible couple of Cesàro bounded sequentially structured Banach spaces. Assume 
that either S0 or S1 is a Cesàro convergent. Define

E(Xj) := [E(Xj), E(Sj)], j = 0, 1.

Then we have for θ ∈ (0, 1)

(
E(X0), E(X1)

)
θ

= E((X0,X1)θ).

Proof. Let (S, Σ, μ) be the measure space on which E is defined. We start by showing

(
E(X0), E(X1)

)
θ
↪→ E((X0,X1)θ).

Take x ∈
(
E(X0), E(X1)

)
θ

and let xj ∈ E(Sj)(ej−θ) for j = 0, 1 be such that x0
k+x1

k = x

for all k ∈ Z. Then we obtain by Theorem 3.12 that

‖x‖E((X0,X1)θ) �θ

∥∥s �→ ∑
j=0,1

‖xj(s)‖Sj(ej−θ)
∥∥
E

≤
∑
j=0,1

‖xj‖E(Sj)(ej−θ).

So, taking the infimum over all decompositions of x, the embedding follows by another 
application of Theorem 3.12.

For the converse embedding, note that, by the order-continuity of E, either E(S0)
or E(S1) is Cesàro convergent, so E(X0) ∩E(X1) is dense in (E(X0), E(X1))θ by Corol-
lary 3.9. Since any f ∈ E(X0) ∩ E(X1) is strongly measurable as an X0 ∩ X1-valued 
function by the Pettis measurability theorem, we have, using the order-continuity of 
E and [31, Corollary 1.1.21], that the simple functions f : S → X0 ∩ X1 are dense in 
(E(X0), E(X1))θ. Fix such an f and write

f(s) =
N∑

n=1
1An

(s)xn, s ∈ S,

with A1, · · · , AN ∈ Σ pairwise disjoint and x1, · · · , xN ∈ X0 ∩ X1. For 1 ≤ n ≤ N let 
xn ∈ S0(e−θ) ∩S1(e1−θ) be such that 

∑
k∈Z xn

k = xn and∥∥xn
∥∥
Sj(ej−θ) ≤ 2 ‖xn‖(X0,X1)θ , j = 0, 1.

Define fk(s) :=
∑N

n=1 1An
xk
n for k ∈ Z. Then we have

‖f‖(E(Y0),E(Y1))θ ≤ max
∥∥(fk)k∈Z

∥∥
E(Sj)(ej−θ)
j=0,1



N. Lindemulder, E. Lorist / Advances in Mathematics 440 (2024) 109506 33
= max
j=0,1

∥∥∥ N∑
n=1

1An
·‖xn‖Sj(ej−θ)

∥∥∥
E

≤ 2
∥∥∥ N∑
n=1

1An
·‖xn‖(X0,X1)θ

∥∥∥
E

= 2 ‖f‖E((X0,X1)θ).

This implies E((X0, X1)θ) ↪→ (E(X0), E(X1))θ by density. �
3.7. Changing the base number

The choice of the base number e in the sequentially structured interpolation method is 
rather arbitrary. All of the theory up to this point could equally well have been established 
for b ∈ (1, ∞). However, the version of the sequentially structured interpolation method 
with base b = e is sufficient for most of our purposes. For simplicity of exposition we 
have therefore chosen to only treat that case.

An important exception is our discussion of reiteration in Section 6, for which we 
cannot avoid using the sequentially structured interpolation for a general base number 
b. This motivates us to discuss the more general base b ∈ (1, ∞) in this subsection.

Definition 3.24. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces, let b ∈ (1, ∞) and let θ ∈ (0, 1). For x ∈ X0 + X1 we set

‖x‖(X0,X1)θ;b := inf ‖x‖S0(b−θ)∩S1(b1−θ)

where the infimum is taken over all sequences x ∈ S0(b−θ) ∩ S1(b1−θ) such that ∑
k∈Z xk = x with convergence in X0 + X1. We define

(X0,X1)θ;b :=
{
x ∈ X0 + X1 : ‖x‖(X0,X1)θ;b < ∞

}
,

with norm ‖ · ‖(X0,X1)θ;b .

In the next proposition we will show that (X0, X1)θ;b is independent of b under suitable 
assumptions on X0 and X1. Loosely speaking these assumptions will be stability under 
multipliers a ∈ �∞(Z) and stability under inserting or removing zeros in a sequence 
x. In order to formulate this second assumption, it will be convenient to introduce the 
following notation. We denote by π(Z) the set of all mappings σ : Z → Z ∪{∗} with the 
property that #σ−1({n}) ≤ 1 for all n ∈ Z. Given a Banach space X and σ ∈ π(Z), we 
define the linear operator Tσ : �0(Z; X) → �0(Z; X) by

Tσx(k) :=
{

0, σ(k) = ∗,
x , σ(k) ∈ Z.
σ(k)
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Proposition 3.25. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces such that for j = 0, 1

‖(αkxk)k∈Z‖Sj
≤ ‖α‖�∞(Z)‖x‖Sj

, α ∈ �∞(Z), x ∈ Sj , (3.12)

‖Tσx‖Sj
≤ ‖x‖Sj

, x ∈ Sj , σ ∈ π(Z). (3.13)

Then, for all a, b ∈ (1, ∞) and θ ∈ (0, 1), we have

(X0,X1)θ;a = (X0,X1)θ;b.

Proof. Assume without loss of generality a �= b and write b = aδ with δ ∈ (0, ∞) \ {1}. 
First assume that δ < 1. Then h(k) := �k

δ � defines a strictly increasing function h : Z →
Z, where �t� denotes the least integer part of t ∈ R. We can thus define σ ∈ π(Z) by

σ(n) :=
{
∗, n /∈ h(Z),
k, n = h(k), k ∈ Z.

Now let x ∈ (X0, X1)θ;a. Take x ∈ S0(a−θ) ∩S1(a1−θ) such that x =
∑

k∈Z xk in X0+X1
and set y := Tσx. Then x =

∑
k∈Z yk in X0 + X1. Note that, for n = h(k) with k ∈ Z

and j = 0, 1, we have

b(j−θ)n = a(j−θ)δn = a(j−θ)(k−δ·frac( k
δ )) = b−(j−θ)·frac( k

δ )a(j−θ)k,

where frac(t) = t − �t� ∈ [0, 1) denotes the fractional part of t ∈ R. We thus have

(b(j−θ)nyn)n∈Z = Tσ

(
b−(j−θ)·frac( k

δ )a(j−θ)kxk

)
k∈Z,

so that

‖y‖Sj(bj−θ) = ‖Tσ(b−(j−θ)·frac( k
δ )a(j−θ)kxk)k∈Z‖Sj

(3.13)
≤ ‖(b−(j−θ)·frac( k

δ )a(j−θ)kxk)k∈Z‖Sj

(3.12)
� θ,b ‖(a(j−θ)kxk)k∈Z‖Sj

= ‖x‖Sj(aj−θ).

Therefore,

‖x‖(X0,X1)θ;b ≤ ‖y‖S0(b−θ)∩S1(b1−θ) �θ,a,b ‖x‖S0(a−θ)∩S1(a1−θ).

Taking the infimum over all x as above we obtain that ‖x‖(X0,X1)θ;b �θ,a,b ‖x‖(X0,X1)θ;a .
Next we assume that δ > 1. Then g(k) := �k

δ � defines a surjection g : Z → Z with

kn := #g−1({n}) ∈ {�δ�, �δ� + 1}, n ∈ Z.



N. Lindemulder, E. Lorist / Advances in Mathematics 440 (2024) 109506 35
Let us write #g−1({n}) = {in,1, . . . , in,kn
} with in,1 < . . . < in,kn

and define σm ∈ π(Z)
for m = 1, . . . , �δ� + 1 by

σm(n) :=
{
in,m, m ≤ kn,

∗, m = kn + 1.

Now let x ∈ (X0, X1)θ;a. Take x ∈ S0(a−θ) ∩ S1(a1−θ) such that x =
∑

k∈Z xk in 

X0 + X1 and set y :=
∑�δ�+1

m=1 Tσm
x. Then x =

∑
k∈Z yk in X0 + X1. Note that for 

m = 1, . . . , �δ� + 1 and j = 0, 1

b(j−θ)n = a(j−θ)δn = a(j−θ)(in,m−δ·frac( in,m
δ )) = b−(j−θ)·frac( in,m

δ )a(j−θ)in,m .

We thus have

(b(j−θ)nyn)n∈Z =
�δ�+1∑
m=1

Tσm

(
b−(j−θ)·frac( k

δ )a(j−θ)kxk

)
k∈Z,

so that

‖y‖Sj(bj−θ) ≤
�δ�+1∑
m=1

‖Tσm
(b−(j−θ)·frac( k

δ )a(j−θ)kxk)k∈Z‖Sj

(3.13)
≤ (�δ� + 1)‖(b−(j−θ)·frac( k

δ )a(j−θ)kxk)k∈Z‖Sj

(3.12)
� θ,a,b ‖(a(j−θ)kxk)k∈Z‖Sj

= ‖x‖Sj(aj−θ).

Therefore,

‖x‖(X0,X1)θ;b ≤ ‖y‖S0(b−θ)∩S1(b1−θ) �θ,a,b ‖x‖S0(a−θ)∩S1(a1−θ).

Taking the infimum over all x as above we obtain that ‖x‖(X0,X1)θ;b �θ,a,b ‖x‖(X0,X1)θ;a .
�

Proposition 3.25 shows that all the concrete interpolation methods from Example 3.3, 
with the exception of the complex methods in (ii), can be realized with any base number 
b ∈ (1, ∞). In Example 4.18 we will see that the base number can also be changed for 
the complex methods.

4. Complex formulations

As we noted in Example 3.3(ii), the complex interpolation methods are contained in 
our framework by using spaces of Fourier coefficients. However, this formulation is not 
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the original one introduced by Calderón [10], which is in terms of analytic functions on 
the strip

S := {z ∈ C : 0 < Re(z) < 1}.

One may wonder if there is a relation between our framework and the classical formu-
lation of the complex interpolation methods. It turns out that our framework admits 
a formulation in terms of analytic functions on S, which yields a complex formulation 
of all interpolation methods in our framework. This in particular means that, from our 
viewpoint, there is nothing inherently real or complex about the real and complex in-
terpolation methods. These interpolation methods are rather living on opposite sides of 
the Fourier transform.

The idea to use analytic functions for interpolation methods beyond the complex 
interpolation methods is not new. Implicitly it goes back to the work of Lions and Peetre 
[48, Section 1.4] (see also [57]). In a more explicit form, analytic functions were used in 
the context of the real interpolation method by Zafran [76] (see also [13]) to study 
the spectrum of bounded linear operators on interpolation spaces. Moreover, analytic 
functions in the context of the γ-interpolation method were used by Suárez and Weis 
[66] (see also [39]) to interpolate analytic operator families. Furthermore, Cwikel, Kalton, 
Milman and Rochberg [16] made extensive use of analytic functions to prove commutator 
estimates in their interpolation framework.

Let X be a Banach space and let H (S; X) be the space of all analytic functions 
f : S → X. The space Hπ(S; X) is the 2π-periodic subspace of H (S; X), consisting of 
all f ∈ H (S; X) such that

f(z) = f(z + 2πi), z ∈ S.

To f ∈ H (S; X) we associate the functions

fs(t) := f(s + it), t ∈ R, s ∈ (0, 1).

It is sometimes more convenient to work with analytic functions on the annulus

A :=
{
z ∈ C : 1 < |z| < e

}
,

which is obtained from S by the conformal mapping z �→ ez. We let H (A; X) be the space 
of all analytic functions f : A → X. Given f ∈ H (A; X), we note that for g(z) := f(ez)
we have g ∈ Hπ(S; X). Furthermore, for s ∈ (0, 1) and k ∈ Z, we can compute the k-th 
Fourier coefficient of gs as follows

e−ksĝs(k) = e−ks 1
2π

∫
g(s + it)e−ikt dt
T
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= 1
2π

∫
T

f(es+it)e−k(s−it) dt = 1
2πi

∫
γs

f(z)
zk+1 dz

where γs is the curve parameterized by γs(t) = es+it for t ∈ [0, 1]. So {e−ksĝs(k)}k∈Z
coincides with the Laurent series of f around 0. Since the Laurent series of f around 0
does not depend on s, this yields the following observation:

Lemma 4.1. Let X be a Banach space. For f ∈ Hπ(S; X) the sequence (e−ksf̂s(k))k∈Z
is independent of s ∈ (0, 1).

Let (X0, X1) be a compatible couple of sequentially structured Banach spaces and let 
s ∈ (0, 1). We define Hπ(S; X0, X1) as the space of all f ∈ Hπ(S; X0 + X1) such that

‖f‖Hπ(S;X0,X1) := max
j=0,1

‖f̂s‖Sj(ej−s) < ∞,

which is independent of s by Lemma 4.1. Similarly, we define H (A; X0, X1) as the space 
of all f ∈ H (A; X0 + X1) such that

‖f‖H (A;X0,X1) := max
j=0,1

∥∥{fk}k∈Z∥∥Sj(ej)
< ∞,

where {fk}k∈Z denotes the Laurent series of f around 0. From the discussion preceding 
Lemma 4.1 it is clear that Hπ(S; X0, X1) and H (A; X0, X1) are isometrically isomorphic. 
The connection to the sequentially structured interpolation method will become clear in 
the following lemma.

Lemma 4.2. Let (X0, X1) be a compatible couple of sequentially structured Banach spaces 
and let θ ∈ (0, 1). The map f �→ f̂θ from Hπ(S; X0, X1) to S0(e−θ) ∩ S1(e1−θ) is an 
isometric isomorphism with inverse

x �→
[
z �→

∑
k∈Z

ek(z−θ)xk

]
.

Proof. The map f �→ f̂θ is contractive by definition. Conversely, for x ∈ S0(e−θ) ∩
S1(ej−θ) we have by (2.4)

‖xk‖X0+X1 ≤ min{ekθ, ek(θ−1)}, k ∈ Z,

so we know that

f(z) :=
∑
k∈Z

ek(z−θ)xk, z ∈ S,

converges uniformly on any compact subset of S and therefore we have f ∈ Hπ(S; X0 +
X1). Moreover, we have f̂θ = x and thus f ∈ Hπ(S; X0, X1), finishing the proof. �
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Using Lemma 4.2, our first complex formulation of the sequentially structured inter-
polation method now follows immediately.

Proposition 4.3. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces and let θ ∈ (0, 1). For x ∈ X0 + X1 we have

‖x‖(X0,X1)θ = inf
{
‖f‖Hπ(S;X0,X1) : f ∈ Hπ(S;X0,X1), f(θ) = x

}
= inf

{
‖f‖H (A;X0,X1) : f ∈ H (A;X0,X1), f(eθ) = x

}
.

Proof. The first equality follows directly from Lemma 4.2 and the observation that 
f(θ) =

∑
k∈Z f̂θ. The second equality follows from the isometric isomorphism between 

Hπ(S; X0, X1) and H (A; X0, X1). �
We remark that the formulation in Proposition 4.3 in terms of functions on the annulus 

A is very close in spirit to the complex formulation of the interpolation framework in 
[16].

Although Proposition 4.3 expresses the norm of the sequentially structured inter-
polation method in terms of analytic functions, taking the sequence structures as in 
Example 3.3(ii) does not yield the classical formulation of the complex interpolation 
methods of Calderón [10]. Indeed, the main culprit is that the norm of e.g. Hπ(S; X0, X1)
is expressed in terms of the function fθ for some θ ∈ (0, 1), whereas the norm of clas-
sical complex interpolation methods is expressed in terms of boundary functions fj for 
j = 0, 1.

For f ∈ Hπ(S; X0, X1) it is not clear whether an extension to S exists and thus whether 
a reformulation of Proposition 4.3 closer in spirit to the complex interpolation methods 
is possible. In the upcoming two subsections we will handle this extension problem in 
two different ways:

• In Subsection 4.1 we will restrict Hπ(S; X0, X1) to those functions that have a con-
tinuous extension to S, yielding a formulation close in spirit to Calderón’s lower 
complex interpolation method.

• In Subsection 4.2 we will show that any function in Hπ(S; X0, X1) extends to S
in a distributional sense, yielding a formulation close in spirit to Calderón’s upper 
complex interpolation method.

Both approaches have advantages and disadvantages. The first approach is the least 
technical, but in general only yields a norm equivalence for x ∈ X0 ∩ X1. The second 
approach does yield a norm equivalence for x ∈ X0 + X1, but requires us to develop 
some distribution theory on the torus.
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4.1. The lower complex formulation

We start with the formulation of the sequentially structured interpolation method in 
the spirit of the lower complex interpolation method. Let Hπ(S; X) be the subspace 
of Hπ(S; X) consisting of all functions f ∈ Hπ(S; X) which extend to a continuous 
function f : S → X and for j = 0, 1 define

fj(t) := f(j + it), t ∈ R.

Note that in the following theorem one only obtains a norm equivalence for x ∈ X0∩X1.

Theorem 4.4. Let (X0, X1) be a compatible couple of sequentially structured Banach spaces 
and let θ ∈ (0, 1). For x ∈ X0 + X1 we define

‖x‖(c)
(X0,X1)θ := inf

{
max
j=0,1

‖f̂j‖Sj
: f ∈ Hπ(S;X0 + X1), f(θ) = x

}
.

Then

‖x‖(X0,X1)θ ≤ ‖x‖(c)
(X0,X1)θ , x ∈ X0 + X1, (4.1)

and, if S0 and S1 are Cesàro bounded, we have

‖x‖(X0,X1)θ �θ ‖x‖(c)
(X0,X1)θ , x ∈ X0 ∩X1. (4.2)

Proof. Suppose that x ∈ X0 +X1 with ‖x‖(c)
(X0,X1)θ < ∞ and fix an f ∈ Hπ(S; X0 +X1)

with f(θ) = x. Taking the limit s → j in Lemma 4.1, we have

f̂j(k) = ek(j−θ)f̂θ(k), k ∈ Z.

Since Hπ(S; X0 +X1) ⊆ Hπ(S; X0 +X1), we deduce (4.1) directly from Proposition 4.3.
Next we assume that S0 and S1 are Cesàro bounded. Take x ∈ X0 ∩X1 and choose 

a finitely non-zero x ∈ S0(e−θ) ∩S1(e1−θ) such that 
∑

k∈Z xk = x. For

f(z) :=
∑
k∈Z

ek(z−θ)xk, z ∈ S

we have f ∈ Hπ(S; X0 + X1), f(θ) = x and f̂j(k) = ek(j−θ)xk for all k ∈ Z. Therefore,

max
j=0,1

‖f̂j‖Sj
= max

j=0,1
‖x‖Sj(ej−θ),

so taking the infimum over all such x, we obtain ‖x‖(c)
(X0,X1)θ � ‖x‖(X0,X1)θ by 

Lemma 3.10. �
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Note that the proof of Theorem 4.4 shows that, in the inequality (4.2), it is already 
enough to restrict the infimum in the definition of ‖ · ‖(c)

(X0,X1)θ to f ∈ Hπ(S; X0 + X1)
of the form

f(z) =
N∑

k=−N

ek(z−θ)xk, z ∈ S,

with (xk)Nk=−N ⊆ X0∩X1 and N ∈ N. Furthermore, using the full power of Lemma 3.10, 
we can restrict to a dense subspace of X0 ∩ X1. For future reference we record this 
observation in the following corollary.

Corollary 4.5. Let (X0, X1) be a compatible couple of Cesàro bounded sequentially struc-
tured Banach spaces, let X̆ be a dense subspace of X0 ∩X1 and let θ ∈ (0, 1). Then we 
have for x ∈ X̆

‖x‖(X0,X1)θ �θ inf
{

max
j=0,1

‖f̂j‖Sj
: f ∈ HTrig(S) ⊗ X̆, f(θ) = x

}
,

where we set

HTrig(S) := {z �→ ekz : k ∈ Z} ⊆ Hπ(S).

Let (X0, X1) be a compatible couple of sequentially structured Banach spaces and let 
θ ∈ (0, 1). Then

(X0,X1)(c)θ :=
{
x ∈ X0 + X1 : ‖x‖(c)

(X0,X1)θ < ∞
}

is a normed space. Indeed, it follows readily from the definition that ‖ · ‖(c)
(X0,X1)θ is a 

semi-norm and it follows from (4.1) that it is also positive definite.
Theorem 4.4 raises the question whether

(X0,X1)θ = (X0,X1)(c)θ . (4.3)

In the case that S0 and S1 are Cesàro bounded and additionally either S0 or S1 is 
Cesàro convergent, we have that X0∩X1 is a dense subspace of (X0, X1)θ by Corollary 3.9, 
so we would be able to extend (4.2) by density if (X0, X1)(c)θ defines a Banach space.

Although the above question is interesting from a theoretical perspective, Theorem 4.4
already suffices for most applications involving Cesàro convergent sequence structures. 
In particular, this is the case for proving the first part of Example 3.3(ii). Therefore, 
we will first engage ourselves in the latter in the next example and come back to (4.3)
afterwards.

Example 4.6. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces, let θ ∈ (0, 1) and take p0, p1 ∈ [1, ∞]. If
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Sj =
{
L̂pj (T ;Xj) if pj < ∞,

Ĉ(T ;Xj) if pj = ∞,

for j = 0, 1, then we have (X0, X1)θ = [X0, X1]θ.

Let us mention that the above example for p = ∞ is implicitly contained in [10,20].

Proof. Let Yj = [Xj , Tj ] be given by Tj := Ĉ(T ; Xj) for j = 0, 1. By Proposition 3.19, 
we have (Y0, Y1)θ ↪→ (X0, X1)θ, so it suffices to show that (X0, X1)θ ↪→ [X0, X1]θ and 
[X0, X1]θ ↪→ (Y0, Y1)θ.

In order to show that (X0, X1)θ ↪→ [X0, X1]θ, let x ∈ X0∩X1 and let f ∈ Hπ(S) ⊗(X0∩
X1) be such that f(θ) = x. Then we have for g(z) := e(z−θ)2f(z) that g ∈ H (S; X0+X1), 
g(θ) = x and

‖gj‖Lpj (R;Xj) ≤ e(j−θ)2
∑
k∈Z

e−k2π2‖fj‖Lpj (T ;Xj) � ‖f̂j‖L̂pj (T ;Xj) = ‖f̂j‖Sj
.

Therefore, by [31, Corollary C.2.11], we have

‖x‖[X0,X1]θ �θ,p0,p1 max
j=0,1

‖f̂j‖Sj
.

Taking the infimum over all such f , we obtain the estimate ‖x‖[X0,X1]θ �θ,p0,p1

‖x‖(X0,X1)θ by Corollary 4.5. Since X0 ∩X1 is dense in (X0, X1)θ by Corollary 3.9, the 
embedding (X0, X1)θ ↪→ [X0, X1]θ follows.

Next, in order to prove the embedding [X0, X1]θ ↪→ (Y0, Y1)θ, let x ∈ [X0, X1]θ. Take 
f ∈ H (S; X0 + X1) such that f(θ) = x. Define

ψ(z) := 1
z − θ

(
ez−θ − 1

)
· e(z−θ)2 , z ∈ S, (4.4)

which is analytic on S and satisfies ψ(θ) = 1 and ψ(θ + 2πik) = 0 for k ∈ Z \ {0}. Thus 
if we define

g(z) :=
∑
n∈Z

f(z + 2πin) · ψ(z + 2πin), z ∈ S,

we have g ∈ Hπ(S; X0 + X1) and g(θ) = f(θ) = x. Moreover, for j = 0, 1 we have

‖gj‖L∞(T ;Xj) ≤ ‖fj‖L∞(R;Xj) · sup
t∈T

∑
n∈Z

|ψ(j + it + 2πin)|

�θ ‖fj‖L∞(R;Xj)

Thus, using Theorem 4.4, we have
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‖x‖(X0,X1)θ ≤ max
j=0,1

‖ĝj‖Ĉ(T ;Xj) ≤ max
j=0,1

‖gj‖L∞(T ;Xj) �θ max
j=0,1

‖fj‖L∞(R;Xj).

Taking the infimum over all such f , the embedding [X0, X1]θ ↪→ (Y0, Y1)θ follows. �
Remark 4.7. The classical definition of the lower complex interpolation method uses non-
periodic holomorphic functions on the strip S, which in turn give rise to a function, rather 
than a sequence, on the Fourier side. In order to fit this into our abstract framework, one 
would need a continuous version of a sequence structure, which is not always possible. 
For the specific case of real interpolation, this was done in [45].

Now let us return to the question in (4.3), which is mainly of theoretical interest. 
It boils down to the question whether (X0, X1)(c)θ is a Banach space. To answer this 
question, let us define some auxiliary normed spaces. Let (X0, X1) be a compatible couple 
of sequentially structured Banach spaces. We define

Hπ(S;X0,X1) := Hπ(S;X0,X1) ∩ Hπ(S;X0 + X1),

equipped with the norm

‖f‖Hπ(S;X0,X1) := ‖f‖Hπ(S;X0,X1) = max
j=0,1

‖f̂j‖Sj
,

where the second equality follows by taking limits in Lemma 4.1. Furthermore, we define

H ∞
π (S;X0,X1) := Hπ(S;X0,X1) ∩ Cb(S;X0 + X1)

equipped with the intersection norm. Note that we have

H ∞
π (S;X0,X1) = Hπ(S;X0,X1)

as sets, but their respective norms differ. We start with two preparatory lemmata.

Lemma 4.8. Let (X0, X1) be a compatible couple of sequentially structured Banach spaces. 
Then H ∞

π (S; X0, X1) is a Banach space.

Proof. Let (fn)n∈N be a Cauchy sequence in H ∞
π (S; X0, X1). On the one hand, as 

Hπ(S; X0 + X1) is a closed linear subspace of the Banach space Cb(S; X0 + X1), we 
obtain that f = limn→∞ fn in Cb(S; X0 + X1) for some f ∈ Hπ(S; X0 + X1). On 
the other hand, as (f̂n

j )n∈N is a Cauchy sequence in Sj , we have xj = limn→∞ f̂n
j in 

Sj for some xj ∈ Sj for j = 0, 1. The convergence in Cb(S; X0 + X1) implies that 
fj = limn→∞ fn

j in

Cb(T ;X0 + X1) ↪→ L1(T ;X0 + X1)
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for j = 0, 1, so that

f̂j(k) = lim
n→∞

f̂n
j (k), k ∈ Z, j = 0, 1.

Since xj = limn→∞ f̂n
j in Sj ↪→ �0(Z; X0 + X1), it follows that f̂j = xj and thus 

f̂j = limn→∞ f̂n
j in Sj for j = 0, 1. Therefore, f = limn→∞ fn in H ∞

π (S; X0, X1). �
Lemma 4.9. Let (X0, X1) be a compatible couple of sequentially structured Banach spaces. 
Let Tj be the sequence structure on Xj given by Tj := Sj ∩ Ĉ(T ; X0 + X1) and set 
Yj := [Xj , Tj ]. Then

H ∞
π (S;X0,X1) = Hπ(S;Y0,Y1) = H ∞

π (S;Y0,Y1)

with an equality of norms.

Proof. By the Phragmén-Lindelöf theorem, we have for every function f ∈ Hπ(S; X0 +
X1) that

‖f‖L∞(S;X0+X1) = max
j=0,1

‖fj‖Cb(R;X0+X1),

from which the desired result follows. �
We are now ready to characterize when (4.3) holds.

Proposition 4.10. Let (X0, X1) be a compatible couple of Cesàro bounded sequentially 
structured Banach spaces such that S0 or S1 is Cesàro convergent and let θ ∈ (0, 1). Let 
Tj be the sequence structure on Xj given by

Tj := Sj ∩ Ĉ(T ;X0 + X1)

and set Yj := [Xj , Tj ]. Then the following statements are equivalent.

(i) (X0, X1)θ = (X0, X1)(c)θ with an equivalence of norms.
(ii) (X0, X1)(c)θ is a Banach space.
(iii) There exists a finite constant C ≥ 1 such that, for all f ∈ Hπ(S; X0, X1) there 

exists g ∈ H ∞
π (S; X0, X1) with g(θ) = f(θ) and

‖g‖H ∞
π (S;X0,X1) ≤ C‖f‖Hπ(S;X0,X1).

(iv) (X0, X1)θ = (Y0, Y1)θ with an equivalence of norms.

Before we go to the proof of Proposition 4.10, let us note that the sequence structure 
Tj on Xj in Proposition 4.10 is not a “natural” sequence structure. Loosely speaking, 
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unless Sj ↪→ Ĉ(T ; Xj), Tj has information of the other Banach space Xk, j �= k ∈ {0, 1}, 
built into its definition. In this sense Proposition 4.10 provides many “artificial” examples 
for which (4.3) holds true. However, there are only a few “natural” examples, such as 
complex interpolation and real interpolation with parameter 1.

Proof. The equivalence “(i)⇔(ii)” follows from a combination of Theorem 4.4 and Corol-
lary 3.9. For “(ii)⇔(iii)” note that

(X0,X1)(c)θ = Hπ(S;X0,X1)�{f ∈ Hπ(S;X0,X1) : f(θ) = 0
}.

Defining

(X0,X1)(c);∞θ := H ∞
π (S;X0,X1)�{f ∈ H ∞

π (S;X0,X1) : f(θ) = 0
},

we have (X0, X1)(c)θ = (X0,X1)(c);∞θ as linear spaces with (X0,X1)(c);∞θ ↪→ (X0, X1)(c)θ

thanks to the fact that Hπ(S; X0, X1) = H ∞
π (S; X0, X1) as linear spaces with 

H ∞
π (S; X0, X1) ↪→ Hπ(S; X0, X1). Recall that (X0, X1)(c)θ is a normed space. Further-

more, as {
f ∈ H ∞

π (S;X0,X1) : f(θ) = 0
}

is a closed linear subspace of H ∞
π (S; X0, X1), we see that (X0,X1)(c);∞θ is a Banach space 

in view of Lemma 4.8. Therefore, by the open mapping theorem, (ii) holds true if and 
only if (X0, X1)(c)θ ↪→ (X0,X1)(c);∞θ , which is readily be seen to be equivalent to (iii).

For “(i)⇒(iv)” assume that (i) holds true. Then, by the above, (iii) holds true as well. 
So (X0, X1)θ = (X0, X1)(c)θ ↪→ (X0,X1)(c);∞θ . By the Phragmén-Lindelöf theorem we note 
that

‖f‖L∞(S;X0+X1) = max
j=0,1

‖fj‖Cb(R;X0+X1), f ∈ Hπ(S;X0 + X1), (4.5)

so we have (X0,X1)(c);∞θ = (Y0, Y1)(c)θ . Since (Y0, Y1)(c)θ ↪→ (Y0, Y1)θ by Theorem 4.4
and since (Y0, Y1)θ ↪→ (X0, X1)θ by Proposition 3.19, it follows that

(X0,X1)θ ↪→ (Y0,Y1)θ ↪→ (X0,X1)θ.

This shows that (iv) holds true.
Finally, for “(iv)⇒(i)” assume that (iv) holds true. Note that by (4.5) we know that 

(iii) holds true with (Y0, Y1) in place of (X0, X1). Furthermore, note that Y0 and Y1 are 
Cesàro bounded sequentially structured Banach spaces such that either T0 or T1 is Cesàro 
convergent. Therefore, by the equivalence of (i) and (iii) applied to (Y0, Y1) instead of 
(X0, X1), we have (Y0, Y1)θ = (Y0, Y1)(c)θ . Since we clearly have (Y0, Y1)(c)θ ↪→ (X0, X1)(c)θ

and since (X0, X1)(c)θ ↪→ (X0, X1)θ by Theorem 4.4, it follows that
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(X0,X1)θ = (Y0,Y1)θ ↪→ (X0,X1)(c)θ ↪→ (X0,X1)θ.

Therefore, (i) holds true. �
4.2. The upper complex formulation

We now turn to a formulation of the sequence structured interpolation method in 
the spirit of the upper complex method. This formulation is more general than the 
formulation in the spirit of the lower complex method in the previous subsection, as it 
allows for sequence structures which are not Cesàro bounded and it gives a norm equality 
for all x ∈ (X0, X1)θ, rather than just x ∈ X0 ∩X1. The price we pay is that we need to 
work with distributions, rather than functions, on the boundary of S.

We will need some distribution theory on the torus in this section. Let X be a Banach 
space and define the following spaces of Schwartz functions:

S (R;X) := {f : R → X : f rapidly decreasing and smooth},

S (T ;X) := {f : T → X : f smooth},

S (Z;X) := {f : Z → X : f rapidly decreasing},

with their natural topologies. We omit X when X = C. For G ∈ {R, T , Z} we define the 
spaces of distributions

S ′(G;X) := L(S (G), X).

We equip these spaces of distributions the topology of pointwise convergence, which is 
the analogue of the usual weak∗ topology from the scalar-valued case X = C. However, 
we will also use the topology of bounded convergence. To this end, it will be convenient 
to write S ′

bc(G; X) for S ′(G; X) equipped with the topology of bounded convergence.
Let us remark that, although the topology of bounded convergence is stronger than 

the topology of pointwise convergence, S ′(G; X) and S ′
bc(G; X) actually have the same 

convergent sequences since the Schwartz space S (G) is a so-called Montel space (see e.g. 
[68, Section 34.4])

We note that (using the topology of bounded convergence) we have the topological 
linear isomorphism (which can be seen by inspection of [6, Remark 3.22])

S ′
bc(Z;X) = OM(Z;X), (4.6)

where OM(Z; X) is the space of all f : Z → X of at most polynomial growth, i.e. the 
space of all f : Z → X such that there exist an N > 0 such that

‖f(k)‖X � (1 + |k|)N , k ∈ Z,
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with its natural inductive limit topology. Furthermore we note that the Fourier transform 
and its inverse

F : S (T ;X) → S (Z;X), (Ff)(k) := 1
2π

∫
T

f(t)eikt dt,

F−1 : S (Z;X) → S (T ;X), (F−1g)(t) :=
∑
k∈Z

eiktg(k),

are continuous and F−1 ◦ F and F ◦ F−1 are the identity mappings on S (T ; X) and 
S (Z; X) respectively (see [6, Section 3.3]). On the spaces of distributions the mappings

F : S ′(T ;X) → S ′(Z;X), Fu (f) := u
(
(F−1f)(−·)

)
,

F : S ′(Z;X) → S ′(T ;X), F−1u (g) := u ((Fg)(−·)) ,

have similar properties. The latter remains true when S ′ replaced by S ′
bc, that is, 

when we use the topology of bounded convergence instead of the topology of pointwise 
convergence.

There is a continuous embedding (cf. [23, Theorem 16.3])

ιT ,R : S ′
bc(T ;X) ↪→ S ′

bc(R;X), (4.7)

with the property that, for all μ ∈ Λ1(T ; X) ⊆ S ′(T ; X), ιT ,Rμ equals the 2π-periodic 
extension of μ. This can be seen as follows. Note that

T : S (R) → S (T ), φ �→
∑
k∈Z

φ( · + 2πk),

is a well-defined continuous linear mapping with the property that, for every f ∈
Λ1(T ; X)⊆S ′(T ; X), μ ◦ T equals the 2π-periodic extension of μ. Therefore, we can 
define ιT ,R u := u ◦ T .

Lemma 4.1 allows us to define “distributional boundary values” fj of certain f ∈
Hπ(S; X) under a suitable condition that connects well with the setting of Proposi-
tion 4.3.

Lemma 4.11. Let X be a Banach space and let θ ∈ (0, 1). Then, for each f ∈ Hπ(S; X)
with

(ek(j−θ)f̂θ(k))k∈Z ∈ S ′(Z;X), j = 0, 1, (4.8)

there exist unique distributions fj ∈ S ′(T ; X) with the property that

fj = lim fs in S ′
bc(T ;X), j = 0, 1. (4.9)
s→j
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Moreover, the Fourier transform of fj is given by

f̂j(k) = ek(j−θ)f̂θ(k), k ∈ Z, j = 0, 1. (4.10)

Proof. Uniqueness follows from the uniqueness of limits in S ′
bc(T ; X). By assumption 

(4.8) we can define fj ∈ S ′(T ; X) through (4.10). We only need to show the convergence 
in (4.9).

As the Fourier transform is a topological isomorphism from S ′
bc(T ; X) to S ′

bc(Z; X), 
(4.9) is equivalent to

f̂j = lim
s→j

f̂s in S ′
bc(Z;X),

which, using (4.6), can be reformulated as the existence of N ∈ N such that

lim
s→j

sup
k∈Z

(1 + |k|)−N ‖f̂j(k) − f̂s(k)‖X = 0. (4.11)

We claim that (4.11) holds true for N = M + 1, where M ∈ N is such that

C := sup
k∈Z

(1 + |k|)−M max{e−kθ, ek(1−θ)}‖f̂θ(k)‖X < ∞,

which exists thanks to the assumption in (4.8). Note that, by (4.10) and Lemma 4.1,

f̂j(k) − f̂s(k) = (ek(j−θ) − ek(s−θ))f̂θ(k).

Moreover, we have

|e(j−θ)k − e(s−θ)k| ≤ |j − s| |k|max{e(1−θ)k, e−θk}.

Therefore,

‖f̂j(k) − f̂s(k)‖X ≤ |j − s| |k|max{ek(1−θ), e−kθ}‖f̂θ(k)‖X
≤ C|j − s|(1 + |k|)M+1,

which shows that (4.11) indeed holds true for N = M + 1. �
The next lemma allows us to bootstrap pointwise convergence to bounded convergence 

for f ∈ Hπ(S; X).

Lemma 4.12. Let X be a Banach space, let θ ∈ (0, 1), let f ∈ Hπ(S; X) and let fj ∈
S ′(T ; X) for j = 0, 1. Then the following assertions are equivalent:

(i) f̂j(k) = ek(j−θ)f̂θ(k) for k ∈ Z and j = 0, 1.
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(ii) f̂j(k) = ek(j−s)f̂s(k) for every k ∈ Z, s ∈ (0, 1) and j = 0, 1.
(iii) fj = lims→j fs in S ′

bc(T ; X) for j = 0, 1.
(iv) fj = lims→j fs in S ′(T ; X) for j = 0, 1.

Proof. Note that the implication “(i)⇒(iii)” follows from Lemma 4.11 and the impli-
cation “(iii)⇒(iv)” is a direct consequence of the fact that the topology of bounded 
convergence is stronger than the topology of pointwise convergence. As the implication 
“(ii)⇒(i)” holds true trivially, it thus suffices to prove that “(iv)⇒“(ii)”

For “(iv)⇒“(ii)” we deduce from fj = lims→j fs in S ′(T ; X) and the continuity of 
the Fourier transform from S ′(T ; X) to S ′(Z; X) that f̂j = lims→j f̂s in S ′(Z; X) ↪→
�0(Z; X). After pointwise multiplication with (e(j−s)k)k∈Z we thus find that for j = 0, 1

f̂j(k) = lim
s→j

e(j−s)kf̂s(k), k ∈ Z.

In view of Lemma 4.1, the latter implies that f̂j(k) = e(j−s)kf̂s(k) for all s ∈ (0, 1) and 
k ∈ Z. �

Combining Lemma 4.11 and Lemma 4.12, we now obtain the following statement on 
the existence of boundary values for functions in Hπ(S; X0, X1).

Proposition 4.13. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces and let θ ∈ (0, 1). Let f ∈ Hπ(S; X0 + X1). Then we have f ∈ Hπ(S; X0, X1) if 
and only if there exist unique distributions fj ∈ S ′(T ; Xj) with f̂j ∈ Sj and with the 
property that

fj = lim
s→j

fs in S ′(T ;X0 + X1), j = 0, 1.

Moreover, we have

‖f‖Hπ(S;X0,X1) = max
j=0,1

‖f̂j‖Sj
.

Proof. First assume that f ∈ Hπ(S; X0, X1). Since Sj ↪→ �∞(Z; Xj) ↪→ S ′(Z; X0 +X1)
for j = 0, 1, we see that f satisfies (4.8), so by Lemma 4.11 we obtain the existence of 
fj ∈ S ′(T ; X0 + X1) with the convergence fj = lims→j fs in S ′

bc(T ; X0 + X1), which 
implies convergence in S ′(T ; X0 + X1). Furthermore we know that

f̂j = (ek(j−θ)f̂θ(k))k∈Z ∈ Sj ↪→ S ′(Z;Xj),

so fj ∈ S ′(T ; Xj) and we have the norm equality. The converse implication is a direct 
consequence of Lemma 4.12. �

Proposition 4.13 shows that, for an analytic f : S → X0+X1, we can fully characterize 
when f belongs to Hπ(S; X0, X1) in terms of the existence of boundary data with certain 
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properties. Moreover, it allows us to rewrite the norm of Hπ(S; X0, X1) in terms of 
this boundary data. Combined with Proposition 4.3, this now yields the upper complex 
method reformulation of our sequentially structured interpolation method.

Theorem 4.14. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces and let θ ∈ (0, 1). For x ∈ X0 + X1 we have

‖x‖(X0,X1)θ = inf
{

max
j=0,1

‖f̂j‖Sj
: f ∈ Hπ(S;X0,X1), f(θ) = x

}
.

Theorem 4.14 will enable us to use the formulation of Calderón’s upper complex in-
terpolation method given in [60, Section 8.3] to prove the second part of Example 3.3(ii). 
As a preparation, let us discuss when one can write a holomorphic function on the strip 
S as a Poisson integral.

The Poisson kernels for the strip S are the functions Pj for j = 0, 1 on S×R given by

Pj(u + iv; t) = sin(πu) exp(π(v − t))
sin2(πu) + (cos(πu) − (−1)j exp(π(v − t)))2

, (4.12)

for u ∈ (0, 1) and v, t ∈ R. Note that, for each z ∈ S, Pj(z; · ) ∈ S (R).

Lemma 4.15. Let X be a Banach space. Let f ∈ H (S; X) be such that

sup
s0<Re(z)<s1

‖f(z)‖X < ∞, 0 < s0 < s1 < 1,

and the limits fj = lims→j fs exist in S ′(R; X) for j = 0, 1. Then

f(z) = f0[P0(z; · )] + f1[P1(z; · )], z ∈ S. (4.13)

Proof. Fix z0 ∈ S. Choose 0 < s0 < s1 < 1 such that s0 < Re(z0) < s1. Then g(z) :=
f((1 − z)s0 + zs1) for z ∈ S defines a bounded function g ∈ H (S; X). Therefore, by [31, 
Lemma C.2.9],

g(z) =
∫
R

g0(t)P0(z; t) dt +
∫
R

g1(t)P1(z; t) dt, z ∈ S.

In particular, taking z = z0, interpreting fs0 and fs1 as tempered distributions and using 
the definition of g, we have

f((1 − z0)s0 + z0s1) = fs0 [P0(z0; ·)] + fs1 [P1(z0; ·)].

Since Pj(z; · ) ∈ S (R) for j = 0, 1, we obtain (4.13) in the limit by letting s0 ↘ 0 and 
s1 ↗ 1. �
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If (X0, X1) is a compatible couple of sequentially structured Banach spaces, any f ∈
Hπ(S; X0, X1) satisfies the conditions of Lemma 4.15 by Proposition 4.13. Moreover, one 
can check the convergence assumption fj = lims→j fs for j = 0, 1 in Lemma 4.15 for 
bounded functions in H (S; X), in which case we have a stronger form of convergence.

Lemma 4.16. Let X be a Banach space. For each bounded function f ∈ H (S; X) there 
exists unique measures μj ∈ Λ∞(R; X) for j = 0, 1 with ‖μj‖Λ∞(R;X) ≤ ‖f‖L∞(S;X) and 
with the property that for all φ ∈ L1(R).∫

R

φ(t) dμj(t) = lim
s→j

∫
R

φ(t)fs(t) dt (4.14)

with convergence in X.

Proof. Note that μj is uniquely determined by the condition (4.14). In order to establish 
the existence, for s, t ∈ (0, 1) and a, b ∈ R with s �= t and a < b we denote by Γs,t,a,b the 
rectangle with corners

s + ai, t + ai, t + bi, s + bi,

oriented clockwise if s > t and counterclockwise if s < t. Then, by the Cauchy-Goursat 
theorem,

0 =
∫

Γs,t,a,b

f(z) dz = i

b∫
a

fs(τ) − ft(τ) dτ +
t∫

s

f(τ + ib) − f(τ + ia) dτ.

As a consequence,

lim
s→j

b∫
a

fs(τ) dτ =
b∫

a

ft(τ) dτ + i

t∫
j

[f(τ + ib) − f(τ + ia)] dτ

and therefore

∥∥∥lim
s→j

b∫
a

fs(τ) dτ
∥∥∥
X

≤ lim sup
t→j

(
(b− a) + 2|t− j|

)
‖f‖L∞(S;X)

= (b− a)‖f‖L∞(S;X).

As in [60, Remark 2.17], it can then be shown that

μj([a, b)) := lim
s→j

b∫
fs(τ) dτ, a, b ∈ R, a < b, (4.15)
a
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extends to a unique X-valued measure μj ∈ Λ∞(R; X) with ‖μj‖Λ∞(R;X) ≤ ‖f‖L∞(S;X). 
From (4.15) it follows that (4.14) holds true for all step functions φ ∈ L1(R). As f
is bounded on S, an approximation argument subsequently yields (4.14) for all φ ∈
L1(R). �

Let (X0, X1) be a compatible couple of Banach spaces. As in [60, Section 8.3], we 
denote by F̃(X0, X1) the space of all bounded analytic functions f : S → X0 + X1 that 
are given as the Poisson transform

f(z) =
∫
R

P0(z; t) dμ0(t) +
∫
R

P1(z; t) dμ1(t), z ∈ S, (4.16)

for (necessarily unique) measures μj ∈ Λ∞(R; Xj), j = 0, 1. F̃(X0, X1) is equipped with 
the norm

‖f‖F̃(X0,X1) := max
j=0,1

‖μj‖Λ∞(R;Xj).

In this notation, [60, Theorem 8.31] states that we can formulate the norm of Calderón’s 
upper complex method [10] as

‖x‖[X0,X1]θ = inf
{
‖f‖F̃(X0,X1) : f ∈ F̃(X0, X1), f(θ) = x

}
. (4.17)

Example 4.17. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces and let θ ∈ (0, 1). Take p0, p1 ∈ [1, ∞]. If Sj = Λ̂pj (T ; Xj) for j = 0, 1, then we 
have (X0, X1)θ = [X0, X1]θ.

Proof. Let Yj = [Xj , Tj ] be given by Tj := Λ̂∞(T ; Xj) for j = 0, 1. Then, by Propo-
sition 3.19, (Y0, Y1)θ ↪→ (X0, X1)θ. Therefore, it suffices to show that (X0, X1)θ ↪→
[X0, X1]θ and [X0, X1]θ ↪→ (Y0, Y1)θ.

In order to show that (X0, X1)θ ↪→ [X0, X1]θ, let x ∈ (X0, X1)θ. Take f ∈
Hπ(S; X0, X1) with f(θ) = x. Then we have for g(z) := e(z−θ)2f(z) that g ∈ H (S; X0 +
X1) and g(θ) = x. Define hs(t) := e(s+it−θ)2 , which means that gs = hsfs for each 
s ∈ (0, 1). Note that lims→j hs = hj in S (R). Furthermore, note that {hs}s∈(0,1) is 
bounded in S (R) and, as a consequence, pointwise multiplication with {hs}s∈(0,1) is 
a uniformly bounded collection of operators on S (R). By Proposition 4.13 and (4.7), 
we have fj = lims→j fs in S ′

bc(T ; X) ↪→ S ′
bc(R; X). Therefore, setting gj := hjfj , we 

obtain for every φ ∈ S (R) that

gj [φ] − gs[φ] =
(
fj [hjφ] − fj [hsφ]

)
+

(
fj [hsφ] − fs[hsφ]

)
→ 0 for s → j

for j = 0, 1, i.e. lims→j gs = gj in S ′(R; X).
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Now, as in the proof of Example 4.6,

‖gj‖Λpj (R;Xj) ≤ e(j−θ)2
∑
k∈Z

e−k2π2‖fj‖Λpj (T ;Xj)

� ‖f̂j‖Λ̂pj (T ;Xj) ≤ max
j=0,1

‖f̂j‖Sj
.

Since g is given as

g(z) = g0[P0(z; · )] + g1[P1(z; · )], z ∈ S,

by Lemma 4.15, it follows from [60, Remark 8.36] that

‖x‖[X0,X1]θ �p0,p1 max
j=0,1

‖gj‖Λpj (R;Xj) � max
j=0,1

‖f̂j‖Sj
.

Taking the infimum over all f as above, we conclude ‖x‖[X0,X1]θ �p0,p1 ‖x‖(X0,X1)θ by 
Theorem 4.14.

Next, in order to prove the embedding [X0, X1]θ ↪→ (Y0, Y1)θ, let x ∈ [X0, X1]θ. 
Take f ∈ F̃(X0, X1) such that f(θ) = x. Then, by a combination of Lemma 4.15 and 
Lemma 4.16, we have that f is given as (4.16) for measures μj ∈ Λ∞(R; X0 + X1), 
j = 0, 1, with for φ ∈ L1(R) ∫

R

φ dμj = lim
s→j

∫
R

φ(t)fs(t) dt (4.18)

with convergence in X0 + X1. By the discussion on [60, p. 322], μ0 and μ1 are uniquely 
determined by (4.16). Therefore, μj ∈ Λ∞(R; Xj) with

max
j=0,1

‖μj‖Λ∞(R;Xj) = ‖f‖F̃(X0,X1)

by definition of F̃(X0, X1). Let ψ be as in (4.4) and define

g(z) :=
∑
n∈Z

f(z + 2πin) · ψ(z + 2πin), z ∈ S

νj(A) :=
∑
n∈Z

∫
A+2πn

ψ(j + it) dμj(t), A ∈ B(T ).

Then, as in the proof of Example 4.6, we have g ∈ Hπ(S; X0 +X1) with g(θ) = f(θ) = x

and ‖νj‖Λ∞(T ;Xj) � ‖μj‖Λ∞(R;Xj). Moreover, using (4.18), we find that∫
φ dνj = lim

s→j

∫
φ(t)gs(t) dt in X0 + X1, φ ∈ L1(T ),
R R
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so that νj = lims→j gs in S ′(T ; X0 + X1). Therefore, by Proposition 4.13, we have 
g ∈ Hπ(S; Y0, Y1) with

‖g‖Hπ(S;Y0,Y1) = max
j=0,1

‖νj‖Λ∞(T ;Xj) � max
j=0,1

‖μj‖Λ∞(R;Xj) = ‖f‖F̃(X0,X1).

By Proposition 4.3, we thus obtain that ‖x‖(Y0,Y1)θ � ‖f‖F̃(X0,X1). Taking the infimum 
over all f as above we deduce that ‖x‖(Y0,Y1)θ � ‖x‖[X0,X1]θ by (4.17). �
4.3. Changing the base number and the torus

Recall from Subsection 3.7 that all the concrete interpolation methods from Ex-
ample 3.3, with the exception of the complex methods in (ii), fulfil the conditions of 
Proposition 3.25 and can thus be realized with any base number b ∈ (1, ∞). In this 
subsection we will see that the complex interpolation methods from Example 3.3(ii) can 
also be realized with any base number b ∈ (1, ∞) as well as with any underlying torus 
Tλ with λ ∈ (0, ∞), where

Tλ := R�2λZ 	
{
ei

π
λ t : t ∈ [−λ, λ)

}
.

This will play an important role in our study of reiteration in Section 6.
Let λ ∈ (0, ∞). For p ∈ [1, ∞] and a Banach space X, we set

L̂p(Tλ;X) :=
{
Fλf : f ∈ Lp(Tλ;X)

}
,

with norm

‖Fλf‖L̂p(T ;X) := 1
(2λ)1/p

‖f‖Lp(Tλ;X),

where we use the 2λ-periodic Fourier coefficients

Fλf (k) := 1
2λ

∫
Tλ

f(t)e−π
λ ikt dt, k ∈ Z.

We define Ĉ(Tλ; X) and Λ̂p(Tλ; X) analogously.
Let b ∈ (1, ∞) and λ ∈ (0, ∞) satisfy λ = π

log b . As mentioned in Subsection 3.7, all 
the general theory of sequentially structured interpolation carries over verbatim from 
(X0, X1)θ = (X0, X1)θ;e to (X0, X1)θ;b. For the theory on complex formulations in this 
section we need to add that the torus T = Tπ needs to be replaced by the torus Tλ

and that the 2π-periodicity in the spaces of analytic functions needs to be replaced by 
2λ-periodicity. Regarding notation, we will correspondingly write Hλ instead of Hπ in 
each of the spaces of analytic functions that appear in this section.
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In the specific case of the complex interpolation methods from Example 3.3(ii), we 
can change the base number and the torus independently from each other thanks to the 
scaling properties of the Fourier transform and the corresponding function spaces on the 
Fourier side, which is the content of the next example.

Example 4.18. Let (X0, X1) be a compatible couple of sequentially structured Banach 
spaces, let q0, q1 ∈ [1, ∞], let b ∈ (1, ∞), let λ ∈ (0, ∞) and let θ ∈ (0, 1).

(i) If

Sj =
{
L̂pj (Tλ;Xj) if pj ∈ [1,∞)
Ĉ(Tλ;Xj) if pj = ∞,

for j = 0, 1, then

[X0, X1]θ = (X0,X1)θ;b.

(ii) If Sj = Λ̂pj (Tλ; Xj) for j = 0, 1, then

[X0, X1]θ = (X0,X1)θ;b.

Proof. Set μ := π
log b ∈ (0, ∞) and note that the proofs of Example 4.6 and Example 4.17

remain valid with the base number b instead of e and the torus Tμ instead of T = Tπ. 
Defining Tj in the same way as Sj with Tλ replaced by Tμ, we accordingly find that

([X0,T0], [X1,T1])θ;b =
{

[X0, X1]θ, in case (i),
[X0, X1]θ, in case (ii).

On the other hand, the observation that

F−1
μ x = [F−1

λ x](λ
μ
· ), x ∈ S ′(Z;Xj),

implies that Sj = Tj for j = 0, 1. Combining the above we arrive at the desired re-
sult. �
5. Interpolation of operators

We now turn to the interpolation of operators using the sequentially structured in-
terpolation method. Let (X0, X1) and (Y0, Y1) be compatible couples of sequentially 
structured Banach spaces. To interpolate the boundedness of an operator T : X0 +Y0 →
X1 + Y1 with the sequentially structured interpolation method, it is in general not suffi-
cient to assume boundedness of T from Xj to Yj for j = 0, 1. Instead, we need a so-called 
(Sj , Tj)-boundedness assumption on T for j = 0, 1, which we will introduce now.
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5.1. (S, T)-boundedness

Let X and Y be sequentially structured Banach spaces. Let T ∈ �0(Z; L(X, Y )) and 
define

Tx := (Tkxk)k∈Z, x ∈ �0(Z;X).

We say that T is (S, T)-bounded if T defines a bounded operator from S to T. When 
X = Y we say that T is S-bounded. We say that a single operator T ∈ L(X, Y ) is 
(S, T)-bounded if the sequence (. . . , T, T, T, . . .) is (S, T)-bounded and write

‖T‖S→T := ‖(. . . , T, T, T, . . .)‖S→T.

For specific choices of the sequence structures S and T we have that any T ∈ L(X, Y )
is (S, T)-bounded. Indeed, this is for example the case in the following examples:

(i) S = �p(Z; X) and T = �p(Z; Y ) for p ∈ [1, ∞].
(ii) S = L̂p(T ; X) and T = L̂p(T ; Y ) for p ∈ [1, ∞].
(iii) S = Λ̂p(T ; X) and T = Λ̂p(T ; Y ) for p ∈ [1, ∞].
(iv) S = εp(Z; X) and T = εq(Z; Y ) for p, q ∈ [1, ∞).
(v) S = γp(Z; X) and T = γq(Z; Y ) for p, q ∈ [1, ∞).
(vi) If X and Y are Banach lattices and S = X(�2(Z)) and T = Y (�2(Z)).

The proof of the first four claims is trivial, the fifth and sixth follow from the Kahane-
Khintchine inequalities (see [31, Section 6.2.b]) and the final claim is a consequence of 
the Krivine-Grothendieck theorem (see [49, Theorem 1.f.14]). The final claim fails when 
one replaces the 2 by any q ∈ [1, ∞] \ {2} (see [40, Example 2.16]).

For sequences T ∈ �0(Z; L(X, Y )), we have the following relations to pre-existing 
notions in the literature.

Example 5.1. Let X and Y be Banach spaces and T ∈ �0(Z; L(X, Y )).

(i) For p ∈ [1, ∞] we have

‖T ‖�p(Z;X)→�p(Z;Y ) = sup
k∈Z

‖Tk‖X→Y .

(ii) For p, q ∈ [1, ∞) we have

‖T ‖εp(Z;X)→εq(Z;Y ) �p,q ‖{Tk : k ∈ Z}‖R
‖T ‖γp(Z;X)→γq(Z;Y ) �p,q ‖{Tk : k ∈ Z}‖γ ,

where ‖Γ‖R and ‖Γ‖γ denote the R- and γ-bound of a set Γ ⊆ L(X, Y ) respectively 
(see [32, Chapter 8]).
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(iii) If X and Y are Banach lattices, we have for q ∈ [1, ∞]

‖T ‖X(�q(Z))→Y (�q(Z)) ≤ ‖{Tk : k ∈ Z}‖�q

where ‖Γ‖�q denotes the �q-bound of a set Γ ⊆ L(X, Y ) (see [40]).

5.2. Interpolation of operators

Let (X0, X1) and (Y0, Y1) be compatible couples of sequentially structured Banach 
spaces. To interpolate the boundedness of an operator T : X0 + Y0 → X1 + Y1 with the 
sequentially structured interpolation method, we will use (Sj, Tj)-boundedness assump-
tions on T . As we saw in the previous subsection, when Sj and Tj are e.g. the sequence 
structures associated with real or complex interpolation method, the boundedness of T
from Xj to Yj implies the (Sj , Tj)-boundedness of T for j = 0, 1. So, in these cases, our 
theory covers the well-known interpolation of operators with these methods. Our the-
ory also covers e.g. �q-interpolation, in which case we can only interpolate �q-bounded 
operators.

Theorem 5.2. Let (X0, X1) and (Y0, Y1) be compatible couples of sequentially structured 
Banach spaces. Let T : X0 +X1 → Y0 + Y1 be a linear operator such that T : Xj → Yj is 
(Sj , Tj)-bounded for j = 0, 1. Then T acts as a bounded linear operator from (X0, X1)θ
to (Y0, Y1)θ for any θ ∈ (0, 1) with

‖T‖(X0,X1)θ→(Y0,Y1)θ ≤ eθ‖T‖1−θ
S0→T0

‖T‖θS1→T1
.

Proof. Let x ∈ (X0, X1)θ and ε > 0 and assume without loss of generality that 
‖T‖S0→T0 , ‖T‖S1→T1 > 0. Let x ∈ S0(e−θ) ∩ S1(e1−θ) such that 

∑
k∈Z xk = x with 

convergence in X0 + X1 and

‖x‖S0(e−θ)∩S1(e1−θ) ≤ ‖x‖(X0,X1)θ + ε.

Let n ∈ Z be such that en ≤ ‖T‖S0→T0
‖T‖S1→T1

≤ en+1 and define y := (xk−n)k∈Z. Then ∑
k∈Z yk = x with convergence in X0 + X1. Moreover, by (2.3), we have y ∈ S0(e−θ) ∩

S1(e1−θ) with

‖y‖S0(e−θ)∩S1(e1−θ) ≤ en(j−θ) ‖x‖S0(e−θ)∩S1(e1−θ).

Therefore, we obtain

‖Tx‖(Y0,Y1)θ ≤ max
j=0,1

∥∥(ek(j−θ)Tyk)k∈Z
∥∥
Tj

≤ max en(j−θ)‖T‖Sj→Tj

∥∥(ek(j−θ)xk)k∈Z
∥∥
Sj
j=0,1
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≤ max
j=0,1

‖T‖Sj→Tj

(‖T‖S0→T0

‖T‖S1→T1

)j−θ

eθ‖x‖Sj(ej−θ)

≤ eθ‖T‖1−θ
S0→T0

‖T‖θS1→T1

(
‖x‖(X0,X1)θ + ε

)
Noting that ε > 0 was arbitrary, this proves the proposition. �
Remark 5.3. The constant eθ in Theorem 5.2 is an artifact of our discrete method. Upon 
inspection of the proof of Theorem 5.2, one sees that one can get rid of this constant 
when ‖T‖S0→T0

‖T‖S1→T1
= en for some n ∈ Z. This holds in particular in the important special 

case that ‖T‖S0→T0 = ‖T‖S1→T1 = 1.

Let us illustrate that the (Sj , Tj)-boundedness assumptions for j = 0, 1 in Theo-
rem 5.2 can not be omitted in general, but also that it is not a necessary condition in 
all cases.

Example 5.4. Let q ∈ (1, ∞) and θ ∈ (0, 1). Set

(X0,X1) :=
(
[L2(Rn), L2(Rn; �q(Z))], [W 1,2(Rn),W 1,2(Rn; �q(Z))]

)
,

and

(Y0,Y1) :=
(
[L2(Rn), L2(Rn; �q(Z))], [L2

1(Rn), L2
1(Rn; �q(Z))]

)
,

where for a Banach space X we set

L2
s(Rn;X) =

{
f ∈ L0(Rn;X) : (1 + | · |2)s/2f ∈ L2(Rn;X)

}
, s ∈ R.

Then the Fourier transform F is bounded from Xj to Yj for j = 0, 1, while, on the one 
hand,

F ∈ L ((X0,X1)θ, (Y0,Y1)θ) (5.1)

if and only if q ∈ (1, 2] and, on the other hand, F is (Sj , Tj)-bounded for j = 0, 1 if and 
only if q = 2.

Proof. Let us first note that the statement on the (Sj, Tj)-boundedness of F follows 
from Kwapień’s theorem (see e.g. [31, Theorem 2.1.18]). So it remains to prove the 
characterization of (5.1).

By [41, Proposition 5.1] and [40, Proposition 4.13], we have

(X0,X1)θ = F θ
2,q(Rn),

where F θ
2,q(Rn) denotes a Triebel-Lizorkin space. Furthermore, by Example 3.21 and [69, 

1.18.5], we have
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(Y0,Y1)θ = (Y0, Y1)θ,�q,�q = [L2(Rn), L2
1(Rn)]θ = L2

θ(Rn).

Therefore, (5.1) is equivalent to F θ
2,q(Rn) ↪→ Hθ,2(Rn), where Hθ,2(Rn) denotes a Bessel 

potential space. In view of the Littlewood-Paley decomposition Hθ,2(Rn) = F θ
2,2(Rn), 

the embedding F θ
2,q(Rn) ↪→ Hθ,2(Rn) holds true if and only if q ∈ (1, 2]. This finishes 

the proof. �
The above example implies that (X0, X1)θ and (Y0, Y1)θ are not necessarily what in 

the literature is called an interpolation pair for (X0, X1) and (Y0, Y1). However, this is 
not the right way to think about sequentially structured interpolation, as it does not 
take the given sequence structures on (X0, X1) and (Y0, Y1) into account. Instead, we 
need to think about (X0, X1)θ and (Y0, Y1)θ as an interpolation pair for (X0, X1) and 
(Y0, Y1). See also [41, Remark 2.12] for some category theoretical considerations for the 
�q-interpolation method.

5.3. Stein interpolation

In [65] Stein proved a convexity principle for the interpolation of analytic operator 
families on Lp-spaces. An important special case of [65, Theorem 1] states that an ana-
lytic family of linear operators {Tz}z∈S for which

‖Tj+itf‖Lqj (S) ≤ Mj‖f‖Lpj (S), t ∈ R,

for any simple function f and p0, p1, q0, q1 ∈ [1, ∞] also satisfies

‖Tθf‖Lq(S) ≤ M1−θ
0 Mθ

1 ‖f‖Lp(S),

for θ ∈ (0, 1), 1
p = 1−θ

p0
+ θ

p1
and 1

q = 1−θ
q0

+ θ
q1

. After the development of the com-
plex interpolation method by Calderón [10], this theorem was generalized to general 
compatible couples of (quasi)-Banach spaces, see e.g. [12,19,70]. In [66] Stein interpola-
tion was proved for the γ-interpolation method, using the complex formulation of the 
γ-interpolation method in [39]. Using the complex formulation of the sequentially struc-
tured interpolation method, we will now prove Stein interpolation for any two compatible 
couples of sequentially structured Banach spaces (X0, X1) and (Y0, Y1). In particular we 
obtain Stein interpolation for the real interpolation method, which we already treated 
in a continuous setting in [45]. Note that Stein interpolation for the abstract framework 
in [16] was posed as an open problem, see [37, p.662].

Theorem 5.5. Let (X0, X1) and (Y0, Y1) be compatible couples of sequentially structured 
Banach spaces and let X̆ be a dense subspace of X0 ∩X1. Suppose that S0 and S1 are 
Cesàro bounded. Let {T (z)}z∈S be a family of linear operators from X̆ to Y0 + Y1 such 
that:
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(i) T (·)x ∈ Hπ(S; Y0 + Y1) for all x ∈ X̆

(ii) For j = 0, 1 there are Mj > 0 such that for any x ∈ c00(Z; X̆).

∥∥∥F
(
t �→

∑
k∈Z

eiktT (j + it)xk

)∥∥∥
Sj

≤ Mj ‖x‖Sj
.

Then we have T (θ)X̆ ⊆ (Y0, Y1)θ for any θ ∈ (0, 1) with

‖T (θ)x‖(Y0,Y1)θ �θ M1−θ
0 Mθ

1 ‖x‖(X0,X1)θ , x ∈ X̆.

In particular, if either X0 or X1 is Cesàro convergent, T (θ) extends to a bounded linear 
operator from (X0, X1)θ to (Y0, Y1)θ

Proof. Let x ∈ X̆. Using Corollary 4.5 we can find an x ∈ c00(Z; X̆) such that f(z) :=∑
k∈Z ek(z−θ)xk satisfies f(θ) = x and

max
j=0,1

‖f̂j‖Sj
�θ ‖x‖(X0,X1)θ .

Note that (ek(j−θ)xk)k∈Z = f̂j . Let n ∈ Z such that en ≤ M0
M1

≤ en+1 and define 
g(z) := en(z−θ)T (z)f(z). Then g(θ) = T (θ)x and by our assumptions g ∈ Hπ(S; Y0+Y1). 
Thus, using Theorem 4.4 and (2.3), we have

‖T (θ)x‖(Y0,Y1) ≤ max
j=0,1

‖ĝj‖Sj

= max
j=0,1

en(j−θ)
∥∥∥F

(
t �→

∑
k∈Z

ek(j−θ) · ei(k+n)t · T (j + it)xk

)∥∥∥
Sj

≤ eθ max
j=0,1

(M0

M1

)j−θ

Mj ‖(e(k−n)(j−θ)xk−n)k∈Z‖Sj

�θ M1−θ
0 Mθ

1 ‖x‖(X0,X1)θ ,

proving the first claim. The second claim follows by density (see Corollary 3.9). �
Remark 5.6.

(i) Stein interpolation for the complex method is often formulated for families of ana-
lytic operators from either X0 + X1 or X0 ∩X1 to Y0 + Y1. However, checking the 
analyticity of T (·)x in applications is often only feasible for specific x, e.g. taking 
X̆ the space of simple functions when Xj = Lpj for j = 0, 1. See also [70, Remark 
2.2].

(ii) The periodicity assumption on {T (z)}z∈S in Theorem 5.5, which is an artifact 
of our discrete framework, can sometimes be inconvenient in applications. For 
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specific examples, one can use a continuous formulation to circumvent the peri-
odicity assumption, which for the real interpolation can be found [45] and for the 
γ-interpolation method in [66].

(iii) In the spirit of Subsection 4.3, Theorem 5.5 also works in a 2λ-periodic setting for 
λ ∈ (0, ∞).

Taking Sj = Ĉ(T ; Xj) and Tj = Ĉ(T ; Yj) in Theorem 5.5, assumption (ii) reduces 
to T (j + it)x ∈ C(T ; Yj) for all x ∈ X̆ and

‖T (j + it)x‖Yj
≤ Mj ‖x‖Xj

, t ∈ R, x ∈ X̆,

for j = 0, 1, which yields a periodic version of Stein interpolation for complex interpo-
lation (see [70, Theorem 2.1]). The power of Theorem 5.5 is of course that it also works 
for other interpolation methods. For example, using Stein interpolation for the real in-
terpolation method we interpolated weighted Lp-spaces and analytic semigroups in [45]. 
Stein interpolation for the sequentially structured interpolation method will play a key 
role in Lemma 6.10, which in turn allows us to deduce a reiteration theorem.

6. Reiteration

In this section we will study reiteration for the sequentially structured interpolation 
method, i.e. we will investigate what happens when you interpolate sequentially struc-
tured interpolation spaces. For this, it will be crucial to work with sequentially structured 
interpolation spaces with general base number, which we introduced in Subsection 3.7. 
We will freely use the developed general theory for sequentially structured interpolation 
with base number e for the general base number b, see also Subsections 3.7 and 4.3.

Our main result reads as follows:

Theorem 6.1. Let (X0, X1) and (Y0, Y1) be compatible couples of sequentially structured 
Banach spaces. Let 0 ≤ θ0 < θ1 ≤ 1 and θ ∈ (0, 1) and set ω = (1 − θ)θ0 + θθ1. Take 
a, b ∈ (1, ∞) satisfying b = aθ1−θ0 and suppose

S0(a−θj ) ∩S1(a1−θj ) ↪→ Tj ↪→ S0(a−θj ) + S1(a1−θj ), (6.1)

for j = 0, 1. Then we have

(X0,X1)ω;a = (Y0,Y1)θ;b.

In Theorem 6.1, one typically takes Yj = (X0, X1)θj . In the upcoming subsections, we 
will check that the sequence structure Tj on Yj satisfies the assumed embeddings in (6.1)
in various concrete situations. Using the change of basis results in Proposition 3.25 and 
Example 4.18, this will, in particular, yield reiteration identities for the real, complex 
and γ-interpolation methods.
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Proof of Theorem 6.1. First let x ∈ (X0, X1)ω;a. Let x ∈ �0(Z; X) be such that x ∈
S0(a−ω) ∩S1(a1−ω) and x =

∑
k∈Z xk in X0 + X1. Then, as (j − θ)(θ1 − θ0) = θj − ω, 

we have by the first embedding in (6.1)

‖x‖T0(b−θ)∩T1(b1−θ) = max
j=0,1

‖x‖
Tj(aθj−ω) � max

i=0,1
‖x‖Si(ai−ω)

= ‖x‖S0(a−ω)∩S1(a1−ω).

In particular, by Remark 3.2, we know that 
∑

k∈Z xk also converges in Y0 + Y1 and 
since the second embedding in (6.1) implies that Y0 + Y1 ↪→ X0 + X1, we must have 
x =

∑
k∈Z xk in Y0 + Y1. Therefore, we obtain

‖x‖(Y0,Y1)θ;b � ‖x‖S0(a−ω)∩S1(a1−ω).

Taking the infimum over all representations x =
∑

k∈Z xk, we conclude

‖x‖(Y0,Y1)θ;b � ‖x‖(X0,X1)ω;a .

This proves the embedding (X0, X1)ω;a ↪→ (Y0, Y1)θ;b.
Now let y ∈ (Y0, Y1)θ;b and put y := (. . . , y, y, y, . . .). Let y0 ∈ T(b−θ) and y1 ∈

T(b1−θ) be such that y = y0 + y1. Then, using the second embedding in (6.1), we have

‖y‖S0(a−ω)+S1(a1−ω) ≤ ‖y0‖S0(a−ω)+S1(a1−ω) + ‖y1‖S0(a−ω)+S1(a1−ω)

� ‖y0‖T0(aθ0−ω) + ‖y1‖T1(aθ1−ω)

= ‖y0‖T0(b−θ) + ‖y1‖T1(b1−θ).

Taking the infimum over all decompositions y = y0 + y1, we find that

‖y‖S0(a−ω)+S1(a1−ω) � ‖y‖T0(b−θ)+S0(b1−θ).

By Theorem 3.12, this proves the embedding (Y0, Y1)θ;b ↪→ (X0, X1)ω;a. �
6.1. The real interpolation method

In this subsection we will show that Theorem 6.1 implies the classical reiteration 
theorem for the real interpolation method. Let us start by recalling the classes Jθ and 
Kθ (see e.g. [69, 1.10.1]). Let (X0, X1, Y ) be a compatible triple of Banach spaces and 
let θ ∈ [0, 1].

• Y is said to be of class Jθ between X0 and X1 if X0 ∩X1 ↪→ Y and for all t ∈ (0, ∞)
and x ∈ X0 ∩X1,

‖x‖Y � max
{
t−θ‖x‖X0 , t

1−θ‖x‖X1

}
=: t−θJ(t, x;X0, X1).
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• Y is said to be of class Kθ between X0 and X1 if Y ↪→ X0 +X1 and for all t ∈ (0, ∞)
and x ∈ Y ,

t−θK(t, x;X0, X1) := inf
(
t−θ‖x0‖X0 + t1−θ‖x1‖X1

)
� ‖x‖Y ,

where the infimum is taken over all x0 ∈ X0 and x1 ∈ X1 such that x = x0 + x1.

Given these definitions, the classical reiteration theorem for the real interpolation method 
(see e.g. [69, 1.10.2]) reads as follows:

Example 6.2. Let (X0, X1) and (Y0, Y1) be compatible couples of Banach spaces. Let 
0 ≤ θ0 < θ1 ≤ 1 and θ ∈ (0, 1) and set ω = (1 − θ)θ0 + θθ1. Suppose that Yj is of class 
Jθj and Kθj between X0 and X1 for j = 0, 1. Then we have for p ∈ [1, ∞]

(X0, X1)ω,p = (Y0, Y1)θ,p.

Using Example 3.3(i) and Proposition 3.25, we know that the conclusions of Theo-
rem 6.1 and Example 6.2 coincide when one takes the sequence structures in Theorem 6.1
to be �p(Z; X)-spaces. Therefore, to deduce Example 6.2 from Theorem 6.1, it suffices 
to relate the classes Jθ and Kθ to the assumed embeddings in (6.1). This is the content 
of the following proposition, which thus, in particular, implies Example 6.2.

Proposition 6.3. Let (X0, X1, Y ) be a compatible triple of Banach spaces, let p, p0, p1 ∈
[1, ∞] and θ ∈ (0, 1) satisfy 1

p = 1−θ
p0

+ θ
p1

, let Sj = �pj (Z; Xj) for j = 0, 1 and let 
T = �p(Z; Y ). Then the following statements hold true for any a ∈ (1, ∞):

(i) Y is of class Jθ between X0 and X1 if and only if

S0(a−θ) ∩S1(a1−θ) ↪→ T.

(ii) Y is of class Kθ between X0 and X1 if and only if

T ↪→ S0(a−θ) + S1(a1−θ).

Proof. We start by proving (i). First assume that S0(a−θ) ∩S1(a1−θ) ↪→ T, let t ∈ (1, ∞)
and x ∈ X0 ∩ X1. Pick k ∈ Z such that t ∈ [ak, ak+1) and consider x := x ⊗ 1{k} =
(. . . , 0, x, 0, . . .) ∈ �0(Z; X0 ∩X1). In light of (2.2) and (2.3) and by choice of k, we get

‖x‖Y = ‖x‖T � max
j=0,1

‖x‖Sj(aj−θ) = max
j=0,1

a(j−θ)k‖x‖Xj

� t−θJ(t, x;X0, X1).

Therefore, Y is of class Jθ between X0 and X1. Conversely, assume that Y is of class Jθ
between X0 and X1. Taking t = ‖x‖X0/‖x‖X1 in the definition of Jθ, we see that
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‖x‖Y � ‖x‖1−θ
X0

‖x‖θX1
, x ∈ X0 ∩X1.

Therefore, given x ∈ S0(a−θ) ∩S1(a1−θ), Hölder’s inequality yields that

‖x‖T = ‖x‖�p(Z;Y ) � ‖(a−kθxk)k∈Z‖θ�p0 (Z;X0)‖(a
k(1−θ)xk)k∈Z‖1−θ

�p1 (Z;X1)

= ‖x‖θ
S0(a−θ)‖x‖1−θ

S1(a1−θ) � ‖x‖S0(a−θ)∩S1(a1−θ),

which proves that S0(a−θ) ∩S1(a1−θ) ↪→ T.
For (ii), we first assume T ↪→ S0(a−θ) + S1(a1−θ), let t ∈ (1, ∞) and x ∈ Y . Pick 

k ∈ Z such that t ∈ [ak, ak+1) and consider

x := x⊗ 1{k} = (. . . , 0, x, 0, . . .) ∈ T.

Let xj ∈ Sj(aj−θ) for j = 0, 1 such that x = x0 +x1. By choice of k, (2.2) and (2.3) we 
have

t−θK(t, x;X0, X1) ≤ t−θ‖x0
k‖X0 + t1−θ‖x1

k‖X1 � ‖x0‖S0(a−θ) + ‖x1‖S1(a1−θ)

Taking the infimum over all such xj shows that Y is of class Kθ. For the converse we will 
only treat the case p0, p1 < ∞, the cases where p0 = ∞ and/or p1 = ∞ being similar, 
but simpler. Take τ > 0 and y ∈ Y . Using the assumption that Y is of class Kθ between 
X0 and X1 with t = τ‖y‖β , where β := p1−p0

θp0+(1−θ)p1
, we see that there exists x0 ∈ X0

and x1 ∈ X1 such that y = x0 + x1 and

τ j−θ‖xj‖Xj
= tj−θ‖xj‖Xj

‖y‖−β(j−θ)
Y ≤ C‖y‖1−β(j−θ)

Y = C‖y‖
p
pj

Y ,

for j = 0, 1. Choosing τ = ak we find that, given y ∈ T with ‖y‖T = 1, there exist 
x0 ∈ �0(Z; X0) and x1 ∈ �0(Z; X1) with y = x0 + x1 and

ak(j−θ)‖xj
k‖Xj

≤ 2C ‖yk‖
p
pj

Y , j = 0, 1,

for all k ∈ Z. So

‖y‖S0(a−θ)+S1(a1−θ) ≤ ‖x0‖S0(a−θ) + ‖x1‖S1(a1−θ)

=
∑
j=0,1

‖(ak(j−θ)xj
k)‖�pj (Z;Xj)

�
∑
j=0,1

‖(yk)k∈Z‖
p
pj

�p(Z;Y ) =
∑
j=0,1

‖y‖
p
pj

T
= 2,

proving the embedding T ↪→ S0(a−θ) + S1(a1−θ). �
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Remark 6.4. The “if” parts of the statements in Proposition 6.3 do not use the specific 
choice of S0, S1 and T and hold for any sequence structures.

The classes Jθ and Kθ can be characterized by embeddings using the real interpolation 
spaces (X0, X1)θ,1 and (X0, X1)θ,∞. In particular, we have that

(X0, X1)θ,1 ↪→ Y ↪→ (X0, X1)θ,∞.

if and only if Y is of class Jθ and Kθ between X0 and X1 (see e.g. [69, 1.10.1]). Therefore, 
in view of (3.11), we know that any for any compatible couple of sequentially structured 
Banach spaces (X0, X1) we have that (X0, X1)θ is of class Jθ and Kθ between X0 and X1
for θ ∈ (0, 1). Combining this observation with Example 6.2, we obtain:

Example 6.5. Let (X0, X1) be a compatible couple of Banach spaces. Let Sj and Tj be 
sequence structures on Xj and set Xj := [Xj , Sj ] and Yj := [Xj , Tj ] for j = 0, 1. Let 
p ∈ [1, ∞], let 0 < θ0 < θ1 < 1 and θ ∈ (0, 1) and set ω = (1 − θ)θ0 + θθ1. Then we have 
the reiteration identity

(
(X0,X1)θ0 , (Y0,Y1)θ1

)
θ,p

= (X0, X1)ω,p.

6.2. The complex interpolation method

We now turn to reiteration for the complex interpolation method. In contrast to the 
previous subsection, in which we only recovered the already known reiteration theorem 
for the real interpolation method, we will obtain various new reiteration results for the 
complex interpolation method. In particular, we will deduce the following example from 
Theorem 6.1:

Example 6.6. Let (X0, X1) be a compatible couple of Cesàro bounded sequentially struc-
tured Banach spaces such that S0 or S1 is Cesàro convergent. Assume that for j = 0, 1

‖(eiksxk)k∈Z‖Sj
� ‖x‖Sj

, s ∈ R, x ∈ Sj .

Let 0 < θ0 < θ1 < 1 and θ ∈ (0, 1) and set ω = (1 − θ)θ0 + θθ1. Then we have the 
reiteration identity

[(X0,X1)θ0 , (X0,X1)θ1 ]θ = (X0,X1)ω.

In particular, we have the reiteration identities:

[
[X0, X1]θ0 , [X0, X1]θ1

]
θ

= [X0, X1]ω,[
(X0, X1)θ0,ε, (X0, X1)θ1,ε

]
= (X0, X1)ω,ε,
θ
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[
(X0, X1)θ0,γ , (X0, X1)θ1,γ

]
θ

= (X0, X1)ω,γ ,[
(X0, X1)θ0,α, (X0, X1)θ1,α

]
θ

= (X0, X1)ω,α,

where α is a global Euclidean structure.

Remark 6.7. Concerning the complex interpolation of real interpolation spaces, it is 
known that [

(X0, X1)θ0,p0 , (X0, X1)θ1,p1

]
θ

= (X0, X1)ω,p (6.2)

is valid for all p, p0, p1 ∈ [1, ∞] with 1
p = 1−θ

p0
+ θ

p1
(see e.g. [8, Theorem 4.7.2]). However, 

this result is only contained in Example 6.6 in the specific case that p0 = p1 < ∞. The 
finiteness assumption is just a technicality caused by our proof, whereas the assumption 
p0 = p1 is inherent to our approach. Indeed, the assumed embeddings in Theorem 6.1
only connect p0 to p and p1 to p separately, so they can not encode the relation between 
p0, p1 and p required for (6.2). It would be interesting to find a suitable extension of 
(6.2) to the abstract setting of sequentially structured interpolation.

They key to deduce Example 6.6 from Theorem 6.1 is the following proposition, in 
which we prove the embeddings in (6.1) for the sequence structures associated with the 
complex interpolation method (see Example 3.3(ii)).

Proposition 6.8. Let (X0, X1) be a compatible couple of Cesàro bounded sequentially struc-
tured Banach spaces such that S0 or S1 is Cesàro convergent. Let θ ∈ (0, 1) and let 
a ∈ (1, ∞). Assume that for j = 0, 1

‖(eiksxk)k∈Z‖Sj
� ‖x‖Sj

, s ∈ R, x ∈ Sj . (6.3)

Set λ := π
log a ∈ (0, ∞). Then we have for p ∈ [1, ∞)

S0(a−θ) ∩S1(a1−θ) ↪→ L̂p(Tλ; (X0,X1)θ;a) ↪→ S0(a−θ) + S1(a1−θ).

Proof. For the first embedding we will use the isometric isomorphism between 
Hπ(S; X0, X1) and S0(e−θ) ∩ S1(e1−θ) from Lemma 4.2. Fix f ∈ Hλ(S; X0, X1) and 
note that for t ∈ R we have

‖f( · + it)‖Hλ(S;X0,X1) = max
j=0,1

∥∥Fλ[fθ( · + t)]
∥∥
Sj(ej−θ)

= max
j=0,1

∥∥(aiktFλfθ(k))k∈Z
∥∥
Sj(ej−θ)

(6.3)
� max

j=0,1

∥∥(Fλfθ(k))k∈Z
∥∥
Sj(ej−θ)

= ‖f‖Hλ(S;X0,X1).
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Therefore, using the complex formulation in Proposition 4.3, we have fθ(t) ∈ (X0, X1)θ;a
with for any t ∈ Tλ

‖fθ(t)‖(X0,X1)θ;a ≤ ‖f( · + t)‖Hλ(S;X0,X1) � ‖f‖Hλ(S;X0,X1).

Therefore, fθ ∈ Lp(Tλ; (X0, X1)θ) and

‖fθ‖Lp(Tλ;(X0,X1)θ;a) � ‖f‖Hλ(S;X0,X1)

In view of Lemma 4.2, this proves the first embedding.
We will deduce the second embedding by duality. By Lemma 2.1, we know that X ◦

0
and X ◦

1 are Cesàro convergent. Thus, by Lemma 3.13, we know that (X ◦
0 )∗ and (X ◦

1 )∗
are Cesàro bounded sequence structures, for which one can easily check that for j = 0, 1

‖(eiksx∗
k)k∈Z‖(S◦

j )∗ � ‖x∗‖(S◦
j )∗ , s ∈ R, x∗ ∈ (S◦

j )∗.

Noting that the first part of the proof did not use the Cesàro convergence assumption 
and also works for a−1 ∈ (0, 1), we have by Proposition 3.14

(S◦
0)∗(aθ) ∩ (S◦

1)∗(aθ−1) ↪→ L̂p(Tλ; ((X ◦
0 )∗, (X ◦

1 )∗)θ;a)

↪→ L̂p(Tλ; (X0,X1)θ;a)∗
(6.4)

Take x ∈ c00(Z; X0 ∩ X1) and let ε > 0. Using (3.6) we can find a x∗ ∈ (S◦
0)∗(aθ) ∩

(S◦
1)∗(aθ−1) of norm 1 such that

‖x‖S◦
0(a−θ)+S◦

1(a1−θ) ≤ |〈x,x∗〉| + ε.

Then, by the embedding in (6.4), we have

‖x‖S0(a−θ)+S1(a1−θ) ≤ |〈x,x∗〉| + ε

≤ ‖x‖L̂p(Tλ;(X0,X1)θ;a)‖x
∗‖L̂p(Tλ;(X0,X1)θ;a)∗ + ε

� ‖x‖L̂p(Tλ;(X0,X1)θ;a) + ε.

Since ε > 0 was arbitrary and c00(Z; X0 ∩X1) is dense in L̂p(Tλ; (X0, X1)θ;a) by Corol-
lary 3.9, the second embedding follows. �

Example 6.6 now follows from Theorem 6.1 using a = e1/(θ1−θ0), b = e, Yj = (X0, X1)θj
and

Tj = L̂p(Tλ; (X0,X1)θj )

for λ := π
log a and p ∈ [1, ∞). Indeed, the assumed embeddings in Theorem 6.1 follow 

from Proposition 6.8 and the conclusion of Theorem 6.1 is equivalent to the conclusion 
of Example 6.6 by Example 4.18.
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6.3. The γ-interpolation method

To conclude our discussion of reiteration, we will discuss Theorem 6.1 in the setting 
of the γ-interpolation method. In particular, will prove the following concrete example. 
For an introduction to nontrivial type and Pisier’s contraction property we refer to [32, 
Chapter 7].

Example 6.9. Let (X0, X1) be a compatible couple of Banach spaces with non-trivial 
type. Let 0 < θ0 < θ1 < 1 and θ ∈ (0, 1) and set ω = (1 − θ)θ0 + θθ1. We have the 
reiteration identity

([X0, X1]θ0 , [X0, X1]θ1)θ,γ = (X0, X1)ω,γ

and, if in addition X0 and X1 have Pisier’s contraction property, we also have the reit-
eration identity

((X0, X1)θ0,γ , (X0, X1)θ1,γ)θ,γ = (X0, X1)ω,γ .

As before, to prove that Example 6.9 follows from Theorem 6.1, we need to study 
the embeddings in (6.1). We start with an interpolation result for weighted sequence 
structures, which is an application of the Stein interpolation in Theorem 5.5.

Lemma 6.10. Let (X0, X1) be a compatible couple of Cesàro convergent sequentially struc-
tured Banach spaces, let Uj be a Cesàro convergent sequence structure on Sj and set 
Sj := [Sj , Uj ] for j = 0, 1. Suppose that∥∥((xk,n−k)k∈Z

)
n∈Z

∥∥
Uj

� ‖x‖Uj
, x =

(
(xk,n)k∈Z

)
n∈Z ∈ Uj .

for j = 0, 1. For θ ∈ (0, 1) and a ∈ (1, ∞) we have

(S0,S1)θ;a =
(
S0(a−θ),S1(a1−θ)

)
θ;a,

where Sj(aj−θ) := [Sj(aj−θ), Vj ] with

Vj :=
{

((xk,n)k∈Z)n∈Z ∈ �0(Z;Sj(aj−θ)) : ((a(j−θ)kxk,n)k∈Z)n∈Z ∈ Uj

}
.

Proof. Set λ := π
log a . Let X̆ := c00(Z; X0 ∩ X1) and let {T (z)}z∈S be the family of 

operators X̆ → S0(a−θ) + S1(a1−θ) given by

T (z)x := (ak(θ−z)xk)k∈Z.

Note that X̆ is dense in S0 ∩S1 and note that
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z �→ T (z)x ∈ Hλ(S;S0(a−θ) + S1(a1−θ)), x ∈ X̆.

For x = ((xn,k)k∈Z)n∈Z ∈ c00(Z; X̆) = c00(Z2; X0 ∩X1) we have

Fλ

[
t �→

∑
n∈Z

aintT (j + it)(xk,n)k∈Z
]

= Fλ

[
t �→

∑
n∈Z

aint(ak(θ−j−it)xk,n)k∈Z
]

=
(
Fλ

[
t �→

∑
n∈Z

ai(n−k)ta(θ−j)kxk,n

])
k∈Z

= Fλ

[
t �→

∑
n∈Z

aint(a(θ−j)kxk,n−k)k∈Z
]

=
(
(a(θ−j)kxk,n−k)k∈Z

)
n∈Z,

so that∥∥∥Fλ

[
t �→

∑
n∈Z

aintT (j + it)(xk,n)k∈Z
]∥∥∥

Vj

=
∥∥((xk,n−k)k∈Z

)
n∈Z

∥∥
Uj

� ‖x‖Uj
.

Therefore, we can apply Theorem 5.5 (see also Remark 5.6(iii)) and Corollary 3.9 to find 
that T (θ) = I extends to a bounded operator from (S0, S1)θ;a to 

(
S0(a−θ), S1(a1−θ)

)
θ;a, 

which is equivalent to the embedding “↪→”. The reverse embedding can be obtained in 
the same way. �

Using Lemma 6.10, we can prove the embeddings in (6.1) for the sequence structures 
associated with the γ-interpolation method introduced in Example 3.3(iv). Example 6.9
follows by combining the following proposition with Theorem 6.1 and Proposition 3.25.

Proposition 6.11. Let (X0, X1) be an compatible couple of Banach spaces with non-trivial 
type, let θ ∈ (0, 1), p ∈ [1, ∞) and let a ∈ (1, ∞). Set Sj = γp(Z; Xj) for j = 0, 1. Then 
we have

S0(a−θ) ∩S1(a1−θ) ↪→ γp(Z; [X0, X1]θ) ↪→ S0(a−θ) + S1(a1−θ),

and, if X0 and X1 have Pisier’s contraction property, we have

S0(a−θ) ∩S1(a1−θ) ↪→ γp(Z; (X0, X1)θ,γ) ↪→ S0(a−θ) + S1(a1−θ).

Proof. Set λ := π
log a . For the first chain of embeddings, let Uj := L̂2(Tλ; Sj) and set 

Sj := [Sj , Uj ]. By [32, Proposition 7.1.3], we know that [X0, X1]θ has non-trivial type. 
It thus follows from [32, Theorem 7.1.14 and Theorem 7.4.23] that X0, X1 and [X0, X1]θ
have finite cotype and are K-convex. We can therefore apply [32, Corollary 7.2.10 and 
Theorem 7.4.16] in combination with Example 4.18 to obtain that
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(S0,S1)θ;a =
[
γp(Z;X0), γp(Z;X1)

]
θ

=
[
εp(Z;X0), εp(Z;X1)

]
θ

= εp(Z; [X0, X1]θ) = γp(Z; [X0, X1]θ).

Using Kahane’s contraction principle (see [32, Theorem 6.1.13]) we find that, for all 
x =

(
(xk,n)k∈Z

)
n∈Z ∈ Uj ,∥∥((xk,n−k)k∈Z

)
n∈Z

∥∥
Uj

=
∥∥t �→ (

a−iktFλ[(xk,n)n∈Z](t)
)
k∈Z

∥∥
L2(Tλ;γp(Z;Xj))

≤
∥∥t �→ (

Fλ[(xk,n)n∈Z](t)
)
k∈Z

∥∥
L2(Tλ;γp(Z;Xj))

= ‖x‖Uj
.

Therefore, by Lemma 6.10, we have

(S0,S1)θ;a =
(
S0(a−θ),S1(a1−θ)

)
θ;a.

Since, by Proposition 3.6, we have

S0(a−θ) ∩S1(a1−θ) ↪→
(
S0(a−θ),S1(a1−θ)

)
θ;a ↪→ S0(a−θ) + S1(a1−θ),

this proves first chain of embeddings.
The proof of the second chain of embeddings is analogous, using Uj := γp(Z; Sj) for 

j = 0, 1. Indeed, using [66, Corollary 3.2 and Corollary 3.3], [32, Corollary 7.2.10] and 
Proposition 3.25 we find that

(S0,S1)θ;a =
(
γp(Z;X0), γp(Z;X1)

)
θ,γ

=
(
εp(Z;X0), εp(Z;X1)

)
θ,γ

= εp(Z; (X0, X1)θ,γ) = γp(Z; (X0, X1)θ,γ).

As Xj has Pisier’s contraction property, we have Uj = γp(Z2; Xj) (see [32, Corol-
lary 7.5.19]), which yields that

∥∥((xk,n−k)k∈Z
)
n∈Z

∥∥
Uj

� ‖x‖Uj
, x =

(
(xk,n)k∈Z

)
n∈Z ∈ Uj .

The proof is finished using Lemma 6.10 and Proposition 3.6 as before. �
7. Interpolation of intersections

In this final section we will study intersection representations for the sequentially 
structured interpolation method. These results can be used to derive several intersection 
representations for anisotropic mixed-norm function spaces. In future work we will for 
instance see that the intersection representation for anisotropic mixed-norm Triebel-
Lizorkin spaces (cf. (1.1))

F
(s,t) (Rd ×Rk) = F s

p,q(Rd;Lq(Rk) ∩ Lp(Rd;F t
q,q(Rk))
(p,q),q
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from [44] can be obtained from the elementary intersection representation for anisotropic 
mixed-norm Sobolev spaces

W
(m,n)
(p,q) (Rd ×Rk) = Wm

p (Rd;Lq(Rk)) ∩ Lp(Rd;Wn
q (Rk))

by means of �q-interpolation. Besides that this yields a tremendously simplified proof, 
it will also provide us valuable insight in the trace theory behind the maximal Lp-Lq-
regularity approach to parabolic boundary value problems.

The following intersection representation is an extension of a result by Peetre [59, Ko-
rollar 1.1] (also see [69, 1.12.1 and 1.12.2]) on the intersection of real interpolation spaces 
to the setting of sequentially structured interpolation. Other results on interpolation of 
intersections as well as sums can be found in [5,24,27–29,51,52].

Theorem 7.1. Let X = [X, S], Y = [Y, T] and Z = [Z, U] be sequentially structured 
Banach spaces such that (X, Y, Z) is a compatible triple of Banach spaces. Assume that 
for each k ∈ Z there exist linear operators Sk : X+Y → X and Tk : X+Y +Z → Y +Z

such that:

Sk + Tk = IX+Y , k ∈ Z, (7.1)

‖(Skvk)k∈Z‖S � ‖v‖S+T(e), v ∈ S + T(e), (7.2)

‖(Tkvk)k∈Z‖T(e) � ‖v‖S+T(e), v ∈ S + T(e), (7.3)

‖(Tkzk)k∈Z‖U � ‖z‖U, z ∈ U. (7.4)

Then, for all θ ∈ (0, 1), we have

(X ,Y)θ ∩ (X ,Z)θ = (X ,Y ∩ Z)θ, (7.5)

where Y ∩ Z = [Y ∩ Z, T ∩ U].

Remark 7.2. The existence of linear operators Sk : X + Y → X and Tk : X + Y → Y

for each k ∈ Z such that (7.1), (7.2) and (7.3) are satisfied would be the natural way 
to define the quasilinearizability of (X , Y), extending the notion of a quasilinearizable 
compatible couple of Banach spaces (see e.g. [69, 1.8.4]) to the setting of compatible 
couples of sequentially structured Banach spaces. Note that (7.2) and (7.3) hold true if 
and only if

‖(Sk)k∈Z‖S→S < ∞, ‖(e−kSk)k∈Z‖T→S < ∞, (7.6)

‖(ekTk)k∈Z‖S→T < ∞, ‖(Tk)k∈Z‖T→T < ∞, (7.7)

hold true (cf. [41, Definition 4.1]).
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Proof of Theorem 7.1. It will be convenient to define the linear operators S : �0(Z; X +
Y ) → �0(Z; X) and T : �0(Z; X + Y + Z) → �0(Z; Y + Z) by Sv := (Skvk)k∈Z and 
Tv := (Tkvk)k∈Z .

Note that “←↩” in (7.5) follows by two applications of Proposition 3.19. In order to 
establish the converse, let v ∈ (X , Y)θ ∩ (X , Z)θ ⊆ X + Y . Then, in particular, v ∈
(X , Z)θ, so that v := (. . . , v, v, v, . . .) ∈ S(e−θ) + U(e1−θ) by Theorem 3.12. Therefore, 
there exist x ∈ S(e−θ) and z ∈ U(e1−θ) such that v = x + z and

‖x‖S(e−θ) + ‖z‖U(e1−θ) ≤ 2‖v‖S(e−θ)+U(e1−θ). (7.8)

Defining

a := v − Tz
(7.1)= Sv + Tx

(7.1)= Sv + x− Sx,

b := Tz = Tv − Tx,

we have v = a + b. Furthermore, we have the following estimates:

‖a‖S(e−θ) ≤ ‖Sv‖S(e−θ) + ‖x‖S(e−θ) + ‖Sx‖S(e−θ)

(7.2)
� ‖v‖S(e−θ)+T(e1−θ) + ‖x‖S(e−θ) + ‖Sx‖S(e−θ)

(7.6)
� ‖v‖S(e−θ)+T(e1−θ) + ‖x‖S(e−θ)

(7.8)
� max

{
‖v‖S(e−θ)+T(e1−θ), ‖v‖S(e−θ)+U(e1−θ)

}
,

and

‖b‖T(e1−θ) ≤ ‖Tv‖T(e1−θ) + ‖Tx‖T(e1−θ)

(7.3)
� ‖v‖S(e−θ)+T(e1−θ) + ‖Tx‖T(e1−θ)

(7.7)
� ‖v‖S(e−θ)+T(e1−θ) + ‖x‖S(e−θ)

(7.8)
� max

{
‖v‖S(e−θ)+T(e1−θ), ‖v‖S(e−θ)+U(e1−θ)

}
,

and finally

‖b‖U(e1−θ) = ‖Tz‖U(e1−θ)

(7.4)
� ‖z‖U(e1−θ)

(7.8)
≤ 2‖v‖S(e−θ)+U(e1−θ).

Therefore,
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‖v‖S(e−θ)+[T∩U](e1−θ) ≤ ‖a‖S(e−θ) + ‖b‖[T∩U](e1−θ)

= ‖a‖S(e−θ) + max{‖b‖T(e1−θ), ‖b‖U(e1−θ)}
� max

{
‖v‖S(e−θ)+T(e1−θ), ‖v‖S(e−θ)+U(e1−θ)

}
.

By Theorem 3.12 we thus obtain that

‖v‖(X ,Y∩Z)θ � max
{
‖v‖(X ,Y)θ , ‖v‖(X ,Z)θ

}
,

finishing the proof. �
As in [59], we obtain the following corollary in the special case that Y is the sequen-

tially structured Banach space induced from X by an operator A on X, which is an 
extension of a classical result by Grisvard [27] in the setting of real interpolation.

Corollary 7.3. Let (X , Z) be a compatible couple of sequentially structured Banach and 
let A be a closed, injective linear operator on X with {ek : k ∈ Z} ⊆ ρ(−A) such that 
(ek + A)−1 has an extension to a linear operator on X + Z for which Z is an invariant 
subspace for every k ∈ Z. Assume that 

(
ek(ek + A)−1)

k∈Z is both S-bounded and U-
bounded. Let Y = [Ḋ(A), SA] with

SA =
{
y ∈ �0(Z; Ḋ(A)) : (Ayk)k∈Z ∈ S

}
.

Then, for all θ ∈ (0, 1), we have the intersection representation (7.5).

Proof. For k ∈ Z we define the linear operators Sk : X +Y → X and Tk : X +Y +Z →
Y + Z by

Sk := I − ek(ek + A)−1 = A(ek + A)−1,

Tk := ek(ek + A)−1.

Then we clearly have (7.1). From the S-boundedness of 
(
ek(ek+A)−1)

k∈Z it follows that 
(7.6) and (7.7) are satisfied, and thus by Remark 7.2, that (7.2) and (7.3) are satisfied. 
Furthermore, the U-boundedness of 

(
ek(ek + A)−1)

k∈Z yields that (7.4) is satisfied. We 
can thus apply Theorem 7.1 to obtain that there is the intersection representation (7.5)
for every θ ∈ (0, 1). �

In [59, Section 3] it is posed as an open problem to obtain a version of [59, Korollar 1.1]
for the complex interpolation functor. On an abstract level, Theorem 7.1 provides a 
solution to this problem in the full generality of sequentially structured interpolation, 
which contains the complex interpolation functor as a special case by Example 3.3(ii). 
However, it remains the question whether Theorem 7.1 or Corollary 7.3 has any practical 
relevance in this specific case. Is it for instance possible to derive [24, Lemma 9.5] from 
Corollary 7.3?
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