Extremizers and Stability of the Betke—Weil Inequality

FERENC A. BARTHA, FERENC BENCS, KAROLY
J. BOROCZKY, & DANIEL HUuG

To the memory of Ulrich Betke and Wolfgang Weil

ABSTRACT. Let K be a compact convex domain in the Euclidean plane.
The mixed area A(K, —K) of K and —K can be bounded from above
by 1/(6«/§)L(K)2, where L(K) is the perimeter of K. This was
proved by Ulrich Betke and Wolfgang Weil [5]. They also showed
that if K is a polygon, then equality holds if and only if K is a regu-
lar triangle. We prove that among all convex domains, equality holds
only in this case, as conjectured by Betke and Weil. This is achieved

by establishing a stronger stability result for the geometric inequality
67/3A(K, —K) < L(K)?.

1. Introduction

For convex domains K, M (compact convex sets with nonempty interior) in R?,
let L(K) be the perimeter of K, let A(K) be the area of K, and let A(K, M)
denote the mixed area of K and M (see Schneider [17, Section 5.1] or Section 2).
Betke and Weil [5] proved the following theorem.

THEOREM 1.1 (Betke and Weil [5]). If K, M C R2 are convex domains, then
L(K)L(M)>8A(K,M) (1.1)
with equality if and only if K and M are orthogonal (possibly degenerate) seg-

ments.

This result has been generalized to higher dimensions in [7], where also various
improvements in the sense of stability results have been obtained. What makes
the variational analysis of (1.1) convenient is the fact that K and M can be varied
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independently of each other and the dependence on K and M is Minkowski linear
(in the Euclidean plane). Betke and Weil [5] also considered the case where M =
—K and found the following sharp geometric inequality.

THEOREM 1.2 (Betke and Weil [5]). If K is a convex domain in R2, then
L(K)? > 6V/3A(K, —K). 1.2)

In addition, if K is a polygon, then equality holds if and only if K is a regular
triangle.

It is clear from the continuity of the involved functionals that it is sufficient to
establish this inequality for convex polygons to deduce it for general convex do-
mains in the plane. However, it has remained an open problem to characterize
the equality case in (1.2) among all convex domains. We resolve this problem
by proving more generally a stability version of Theorem 1.2. We refer to [7]
(and in particular to the literature cited there) for a brief introduction to stability
improvements of geometric inequalities.

THEOREM 1.3. If K is a convex domain in R* and
L(K)? < (1+&)6v3A(K, —K)

for some & € [0,2728], then there exists a regular triangle T with centroid z such
that
T—zCK—2zC(1+400/¢)(T —2).

The optimality of the stability exponent % of ¢ can be seen by considering a regu-
lar triangle T of edge length 2. Then we add over each edge E; of T an isosceles
triangle with height /e that has the side E; in common with T (for i = 1, 2, 3).
For the resulting hexagon H, we have L(H)2 — 6«/§A(H, —H) = 36¢. However,
if di. (H) is the minimal number p > 0 for which there is a regular triangle 7y with
centroid z such that To —z C H — z C (1 + p)(To — z), then it is easy to check
that d (H) > /.

COROLLARY 1.4. Equality holds in (1.2) if and only if K is a regular triangle.

Betke and Weil [5] also discuss an application of their Theorem 1.2 to an inequal-
ity for characteristics of a planar Boolean model. As a consequence of Corol-
lary 1.4, the equality condition for the lower bound provided in [5. Theorem 3]
now turns into an “if and only if”’ statement.

For the proof of inequality (1.2), it is sufficient to consider (convex) polygons
with at most k vertices for any fixed k > 3. This task was accomplished by Betke
and Weil, and we add the observation (extracted from an adaptation of their ar-
gument) that for a polygon P that is not a regular k-gon with an odd number of
sides, there exist polygons P’ with at most k vertices arbitrarily close to P such
that

L(P')? L(P)*
AP, —P) " A(P.—P)’




see Proposition 5.1. Although this can be used to prove the inequality, it does not
give control over the equality cases. To determine all extremal sets, we show that
if K is a convex domain that is not too far from a regular triangle, then inequality
(1.2) can be strengthened to a stability result, that is, we show that if K also
satisfies
L(K)? < (14 &)6+/3A(K, —K),

then K is e-close to a regular triangle (if € > 0 is small enough). This local stabil-
ity result is stated and proved in Section 4 (see Proposition 4.1). An outline of the
proof of Proposition 4.1, which is divided into six steps, is given at the beginning
of the proof. A major geometric idea underlying the argument is to approximate
K from inside by a triangle 7 C K with maximal area. With 7 and K we asso-
ciate hexagons Hj, H» such that H; D K and T C Hy C K. Another hexagon H
is derived from H; so that the perimeter is minimized. Then we show that

L(K)? —633A(K, —K) > L(Ho)? — 65/3A(Hy, —Hy) > 0.

The fact that the right-hand side is nonnegative is far from obvious. More gen-
erally, we use a variational argument and validated numerics to establish a lower
bound that involves five parameters, which determine the shapes of 7 and H;
(see Lemma 3.1). In the course of the proofs, we have to determine various mixed
areas of polygons. These mixed areas are obtained by a classical formula due to
Minkowski and by a more recent one, which is due to Betke [4] and was first
applied in [5].

Validated numerics is a well-established field of mathematics, which pro-
vides rigorous results by controlling both rounding and discretization errors in
computer-aided proofs. For an introduction, we refer to [1; 14; 18; 19] or [
Section 2.1]. A slightly weaker version of Theorem 1.3 can be proved without us-
ing validated numerics; namely, when the positive constant 2728 in Theorem
is replaced by an unknown positive constant (see the remark after the proof of
Lemma 3.1). Naturally, this weaker version also yields Corollary

2. Notation and Mixed Area

For p1,...,pe € R2, ¢ € N, we denote by [p1, ..., pe] the convex hull of the point
set {p1, ..., pe}. In particular, [p1, p2] is the segment connecting p; and p;, and
if p1, p2, p3 are not collinear, then [p1, p2, p3] is the triangle with vertices p1, p2,
p3. In addition, the positive hull of p1, p> € RZ s given by pos{p1, p2} = {1 p1+
azp2 o, a2 > 0}. The scalar product of x, y € R2 is denoted by (x, y), and the
corresponding Euclidean norm of x is ||x|| = (x, x) 12 The angle enclosed by two
unit vectors u, v € R? is denoted by Z(u,v) € [0, ] and satisfies cos Z(u, v) =
(u, v). In addition, the determinant of a 2 x 2 matrix with columns x, y € R? is
denoted by det(x, y).

The space of compact convex sets in R? is equipped with the Hausdorff metric.
In the following, by a polygon we always mean a convex set. For a (convex)
polygon P in R?, let U/(P) denote the finite set of exterior unit normals to the
sides of P. For u € U(P), we denote by Sp(u) the length of the side of P with



exterior normal u. As usual, the support function hg of a compact convex set
K C R? is defined by hg (x) = h(K, x) =max{(x, y): y € K} for x € R?.

We recall that for compact convex sets K and M in R2, the mixed area
A(K,M) of K and M is determined by the polynomial expansion A(AK +
uM) =12AK) + n2A(M) 4+ 2ApnA(K, M) for A, > 0 (see [17. Section 5.1]
or [13, Section 3.3]), where A(K) is the area of K. In particular, the perimeter of
K is L(K) =2A(K, B?), where B? is the unit circular disk centered at the origin.
We will use repeatedly two formulas which allow us to calculate and analyze the
mixed area A(P, Q) of two polygons P and Q. The first is due to Minkowski (see
[17,(5.23)] or [13. (4.1)]) and states that

1
A(P, Q)=5 Z ho(u)Sp(u). 2.1
ucld(P)
Since h_p(u) = hp(—u) for u € R?, (2.1) implies that
1
AP, —P) =3 > hp(—w)Sp). (2.2)
ueld(P)

Since A(P,—P) = A(—P, P) (see also below) and S_p(u) = Sp(—u), we also
have .
APP,=P)=5 3 hp@)Sp(-u).
ueld(P)
For instance, if P is a triangle, then it follows from (2.2) that A(P, —P) =2A(P).
Another useful formula was established much later by Betke [4]. If w is a unit
vector such that w ¢ U(P) UU(—Q), then

2-A(P, Q)= > | det(u, v)|Sp(u)So(v). (2.3)

ueld(P),veld(Q)
wepos{u,—v}

In particular, (2.3) yields that if w ¢ U/ (P) for a (fixed) unit vector w, then

AP.—P)= Y |det(u,v)|Sp)Sp(v), 2.4)

{u,v}CU(P)
wepos{u,v}

where the factor 2 from the preceding formula cancels, since we do not consider
ordered pairs. Formula (2.4) was used in a clever way by Betke and Weil [5] to
prove the Betke—Weil inequality stated in Theorem

For compact convex sets K, K1, Ko, M C R2, Minkowski proved the follow-
ing properties of mixed areas (see [17; 13]):

AK, M) =AM, K),
AK +21,M+22) = A(K, M) forz;,z; € R?,
A(DK, DM) = |det d|- A(K, M) for ® € GL(2, R),
A(K, K) = A(K),
A1 K1+ Ko, M) =1 A(K1, M) + ap A(K2, M) for o, oy >0,
AK1,M) < A(Kp,M) if K| CK>.



We note that it is a subtle issue to decide under which conditions on convex
polygons P C Q the inequality A(P, —P) < A(Q, —Q) is strict. For example,
let P be a triangle with its centroid at the origin o. Let vy, v, vz denote the
vertices of P, and let Q be the hexagon with vertices vy, vz, v3, —v1, —V2, —V3.
Then P C Q and P # Q, actually A(Q) =2A(P), and we still have A(P, —P) =
2A(P) = A(Q) = A(Q, —0).

Finally, we recall that A(., -) is additive (a valuation) in both arguments. By
this we mean that if K, M, L are compact convex sets in the plane and K U M is
also convex, then

AKUM,L)+AKNM,L)=A(K,L)+ AM, L).

By symmetry the same property holds for the second argument.
Following the usual convention, the interior and boundary of a set K C R? are
denoted by int K and 0K, respectively.

3. An Auxiliary Result for Associated Hexagons

Let T C K denote a triangle of maximal area contained in K. Let vy, v2, vz be
the vertices of 7', let a; be the side opposite to v;, whose length is also denoted by
a; fori =1,2,3, and let h; be the height of T corresponding to a;. Then we have

2A(T) =a1hy = aphy = azhs.

We observe that v; is a point of K of maximal orthogonal distance from the side
a; by the maximality of the area of T'. Therefore the line passing through v; and
parallel to the side a; is a supporting line to K. The width of K orthogonal to a;
can be expressed in the form (1 4 #;)A; for some ¢#; € [0, 1], where #; < 1 since T
has the maximal area among all triangles in K. (The width of K orthogonal to a;
equals the length of the projection of K onto a line orthogonal to g;.) It follows
that K is contained in a circumscribed hexagon H» such that, for i =1, 2,3, H;
has two sides parallel to a;, one of which contains v; and has length (¢; + #)a;,
{i, j, k} = {1, 2,3}, and the opposite side has length (1 — f;)a; (see Figure 1).
The vertices of Hj in clockwise order are denoted by w31, w3z, wi2, w13, W3,
wp1 with v; € [w;j, wir] for {7, j, k} = {1, 2, 3}. Moreover, we denote by wlfj the
intersection point of the line through w;; and wy; and the line through v; and v;.
The preceding statements follow by elementary geometry from the similarity of
corresponding triangles. In fact, with the notation from Figure |, we have

a as
|ws, —wsnll=—"lwsz —v3l| and |wh, —wsnl =-— - nhs,
as h2

hence
lwi, — w3l = nas, lwsz — v3|| = t2a3,

and similarly for permutations of the indices. Moreover,

||w§2 - wiz” _ hay(1+1)
an o /’lz ’



W13

Wa3
(1 — t3)113

Figure 1 [Illustration of the geometric construction with
the triangle T = [v{,vp,v3], the outer hexagon H, =
[w32, w31, wap, w23, w13, wiz2], the inscribed hexagon H; =

[v1, 42, v3, 41, v2, 93], and the hexagon Hy = [vy, p2, v3, p1, V2, p3].
In particular, we have ||w;; —v; || = tja; and [[w;j —wgjll = (1 —tj)a;
for {i, j, k} = {1,2,3}.

so that [|w}, — wi, || = (1 +2)ay, and hence
lwsz —wizll = (1 + n)az — [why — wall — [w), — w2l =1 — n)as.

Next,fori =1,2,3and {i, j, k} = {1, 2, 3}, we choose a point g; € [w;, wg;]N
K. Then we define the (possibly degenerate) hexagon H; = [v1, ¢2, V3, g1, V2,
q3] C K. In addition, let p; be the point on the line determined by [w;, w;]
(and parallel to a;) that lies on the perpendicular bisector of the side a; of T, and
let Hy be the hexagon with vertices vy, p2, v3, p1, v2, p3 (see Figure ). Note
that in general Hy may not be convex, but the restricted choice of parameters
encountered in the following will always ensure that Hy is convex.



As Hi C K C Hy and L(Hy) < L(H;), we have
L(K)? —6V3A(K, —K)
> L(H))* — 6v/3A(Hy, —Hp) > L(Ho)* — 6v/3A(Ha, —Ha). (3.1

Clearly, T is also a triangle of maximal area contained in H;. As among convex
domains of given area, the maximal area of an inscribed triangle is the smallest
for ellipses (see Blaschke [0], Sas [16], and Schneider [17, Theorem 10.3.3]), we
have

3J3

A(T) > - CA(H) >04-AH) =041 +1 + 1 +)A(T),
1
and hence
t+tH+r<l1.5. (3.2)

The following lemma is the basis for obtaining better bounds on 71, 7, 13 if we
know that L(K)? — 6+/3A(K, —K) is small.

Lemma 3.1. Ifa; =2,a2,a3 € [2,2+ %], andty, t,t3 €0, %], then the hexagons
Hy and Hj constructed as above satisfy

L(Ho)* — 6/3A(Ha, —Ha)
> (@ —2)* + (a3 — 2> + (11 — 10)* + (12 — 10)* + (13 — 10)*
fortg=(t1 +t» +13)/3.

REMARK. In the lemma, we do not need K, only the triangle 7' and t1, 2,13 > 0
are required to define Hy and H;. Moreover, although Hy will be convex in the
situation of the lemma, this will not be needed in the argument.

Proof. By the translation invariance of the mixed area we can assume that v; is
the origin. Then from (2.2) we obtain that

1
A(Hp, —Hp) = E{(l —t)az -0+ (1 +)aztzhs + (1 — t))arhy

+ (11 +13)a2h2 (1 + 12) + (1 — t3)azhs + (12 + t3)arhity}
=2A(T)(1 +t11p + trt3 + t3t1).

By Heron’s formula,

2A(T) =a1h) = axhy = azhs

1
= E\/(al +ap +az)(—ay +ax +az)(ay — ax +az)(ay + ax — az),

and in addition we have

3
L(Ho) =Y _\/a? +4t?h?.
i=1



Setting b; = 2t;h; = A4 for j = 1,2,3, it follows from the Minkowski in-

equality (or, equivalently,L the triangle inequality for (a;, b;), i = 1,2, 3) that

3 2
L(Hp)* = (Z,/ai2 +bi2>
i=1

> (a1 + ax +a3)? + (b + by + b3)?
= (a1 +ax +a3)* + 16A(T)(t1 /a1 + 12 /az + t3/a3)?
=: fi(az, a3, 1, 2, 13).

Recall that a; = 2. For the subsequent analysis, we set fa(az,as, t,t, 13) :=
16A(T)? (which is independent of #1, 12, £3), hence

f2(az, a3, 11,1, 13) = (a1 +az +a3)(—a1 +az +az) (a1 —az +az) (a1 +az — az),
and we consider
filaz, az, 11, 1, 13) = (a1 + az + a3)*
+ falaz, a3, t1, . 13) (1 /ay + ta/ay + t3/a3)*.
Finally,
flaz, a3, 11,12, 13) := fi(az, a3, 11,12, 13)

- 3\/§\/f2(612, as, t1, t, 3)(1 + 11ty + tr13 + 1317).

Thus we obtain
L(Ho)* — 6v3 - A(Ha, —Hp) > f(az,a3,11, 12, 13). (3.3)

In the following, we consider

1 1
W .= {(az,ag,tl,tz,tg)T eR’ rap, a3 € |:2,2+ 61| and t1,1,13 € |:07 E:H,

T 1
Zl::(zvzstvtvt) ) te Osg )
and the orthonormal basis

T T -1\
el=(150707050) ) 62=(051707050) ) €3 = 070’_9_7 )

<001 1 —2)T (001 1 1)T

€4 = U, ——=, —=, —= s €5 = U, — =, —=, —= .

V6 V6 V6 V3 V3 V3

We write Df (x) : R’ — R for the derivative (a linear map) and D? f(x) : R x
R> — R for the second derivative (a symmetric bilinear form) of f at x. With
respect to a given scalar product (-,-) on R>, we can identify Df (x) with the
gradient of f at x (a vector) and D’ f(x) with a symmetric linear map R> —
R3 via sz(x)(a, b) = {(a, sz(x)(b)) for a, b € R>. Moreover, we also write
D? f (x) for the Hessian matrix with respect to the standard basis ef, ..., eg of R3.



Using a computer algebra system (for convenience) or direct calculations, we
obtain that if # € [0, £, then

f(z) =0, Df(z1) =o. 34
It follows from the Taylor formula and (3.4) that for any x € W, there exists
& =£&(x) € (0, 1) such that

1
FO) =200 =2, D2 f(z +E(x —2))(x —2)).
By relation (3.3) Lemma 3.1 follows once we have shown that
f@) = lx =zl (3.5)

forx = (a2, a3, 11,12, 13) | € Wand 1 = (11 + 12 + 13) /3.

Since for x = (ay, as, 11, ta, t3)—r e W, we have x — z; € esl (we write esl for
the orthogonal complement of e5) with r = (1 +#+13)/3and z;, +E(x —z;) € W,
the proof will be finished if we can verify that

(v, D> f(F)v) = 2|v|]>, TeW,vees. (3.6)

Using a computer algebra system (such as SageMath or Maple) or tedious
calculations, for the Hessian matrix of f at (2,2, 0,0, O)T, we obtain that

12 -6 0 0 0
—6 12 0 0 0
D*£(2,2,0,0,00=] 0 0 24 —12 —-12
0 0 -12 24 -12
0 0 -—-12 —-12 24

has the eigenvalues 6, 18, 36, 36, 0, and as associated pairwise orthogonal
eigenvectors, we can choose (1, 1,0,0, O)T to correspond to the eigenvalue 6,
(1,—-1,0,0, 0)T to correspond to 18, e3 and e4 to correspond to 36, and, finally,
es to correspond to 0.

Define the orthogonal matrix S := (ej...es5) € O(5) and write y = (yq, ...,
y5) | € R>. Further, we define

5
FO1 s ys) = f(Z)’iez) = f(Sy).
i=1

It follows that f(x) = f(S'x) for x € R>. By the chain rule, for x € W and
v € R3, we have

(v, D> F(x)v) = (STv, D> f(STx)S Tv).

In addition, note that || ST v||> = ||v||? and

T Ik g\ﬁzﬁr[ﬁ}
S(W)C|:2,2+6i| ><|: V3 5V3 x |0, 5

~ 172
cW:.= |:2, 2+ 6:| x [—0.14, 0.14]2 x [0, 0.3].



Here we use that for y = S (a2, a3, 1,12, 13) |,
1 1
}{% +)’Z = E(tl — 1)+ g(t] +1—213)°
21 2 2 2
= 55[03 —0) + (13— 1)+ (2 —11)7]
2 , 2
= gmax{n, b, 6} =34

3 62
and

1 1
O<ys=—(n+n+m)=V3
f
Moreover, v € e5 if and only if (ST v, es) = 0, where 5 = (0,0,0,0, DT.
Hence (3.6) follows if we can verify that

(0, D (o) = 218]%, yeW,ie()r.
Writing H (y) := (sz(y)l] )1 =1 for the 4 x 4 matrix (principal minor) obtained

from the 5 x 5 Hessian matrix representing D> f (y) with respect to the standard
basis ef, ..., e5 of R, we want to verify that

(0, H(y)o) = 2l|5]%, yeW,veR, 3.7
that is, all eigenvalues of H(y) are at least 2. Let
E:={(D,....04) €[-1,11*:0;=1forsomei € {1,...,4}}.
By the scaling invariance of (3.7) with respect to o € R*, (3.7) is equivalent to
(0, HY)D) = 2[0l°, yeW,0eE, (3.8)
Since all eigenvalues of H((2, 2,0, 0, 0)") are pos1t1ve this holds if and only if

all eigenvalues of H (y)? are at least 4 for Y€ W. The latter means that we have
to show that (v, H(y)?0) > 4||v||* for y € W and 7 € R* or, equivalently,

IH) B2 > 415]%, ye W, eR*. 3.9)

Again by the scaling invariance of (3.9) with respect to v, (3.9) is in turn equiva-
lent to
IHOI? = 4]0]°, yeW.5ecE. (3.10)

Direct rigorous numerical analysis of the eigendecomposition of the Hessian
D*f(y) forye W may be challenging due to requiring too many subdivisions of
W to achieve the required precision [15; 12; 9; 11]. As both, W and E are compact
and finite-dimensional, and as the desired inequalities, either (3.8) or ( ), are
expected to be strict, they are well suited for being studied by rigorous numerics
[14; 15 19].

Namely, for small W' C W and & C E, we perform the following procedure
with all computations being carried out rigorously using interval arithmetic and
automatic differentiation [14; 1; 19; 10]. First, we bound the jet of f up to Tay-
lor coefficients of degree 6 over W'. To increase precision and eliminate some of
the dependency issues, for a given W', the degree 6 jet of f is bound both over



W’ and over the midpoint of W'. Hence, using the multivariate Taylor expan-
sions with appropriate remainder term, we obtain enhanced bounds on the Taylor
coefficients of f over W’ and, in turn, a better enclosure of the Hessian matrix
H(y) = D®f(y). Second, we test if we can guarantee inequality (3.8) or ( )
for all v € E'. If that is not the case, then an adaptive bisection scheme of W’ x &'
is used, and the arising subsets of W’ x E' are processed separately.

We have implemented our software using the package CAPD [8] and verified
both inequalities independently and successfully. The required number of subsets
(of W x &) and the associated computational times (without parallelization on an
17-9750) were
e (3.8): 25880 subsets, 8 m 14 s;

o ( ): 2440 subsets, 46 s.

We note that the increased complexity of (3.8) is most likely just an artefact of the

naive computation of the inner product and could be decreased (to that of ( )

by choosing a more efficient evaluation scheme. The source code and output logs
are available at [2].

In particular, both (3.8) and ( ) and, in turn, Lemma have been verified.

O

REMARK. We note that a slightly weaker version of Lemma can be proved
without validated numerics; namely, when the positive constant % in Lemma

is replaced by an unknown positive constant ¢ < %. The point is that the eigenval-
ues of the restriction of D? f£(2,2,0,0,0) to eé‘ are all larger than 2. Therefore
(3.6) holds by the continuity of D? f if v € eé- and x lies in a small but unknown
neighborhood of (2,2,0,0,0)" instead of lying in W. In turn, using the same
argument as below, this slightly weaker version of Lemma 3.1 still yields a some-
what weaker version of Theorem 1.3 where the positive constant 2728 is replaced
by an unknown positive constant.

4. Local Stability

In the proof of Proposition 4.1, we will use the following two claims.

CLaM 4.1. If the regular triangle Ty of side length b contains a triangle T that
has a side of length at most a, where % <a<b,then A(T) < %A(To).

Proof. Let £ be the line containing a side of 7' of length at most a. We may assume
that the vertex v of T opposite to £ N T is also a vertex of Tp.

If the distance of ¢ from v (that is, the height of T') is at most b3 /2, then we
are done. Therefore we may now assume that the distance of £ from v is larger
than b+/3/2. Let D, be the circular disc with center v and radius b+/3/2. Since
the side £ N T is disjoint from D,, it lies in one of the two connected components
of Ty \ Dy. It follows that T is contained in one of the two triangles obtained
by cutting Ty into two subtriangles by the height emanating from v, and thus
A(T) < 3A(Ty).



CrLam 4.2. If 01, 02, 03 are the side lengths of a triangle T and A(T) > & for

some & € [0, 01], then
2

Q2+Q3ZQ1+$—.
Q1

Proof. The height h of T corresponding to o is at least 2£, and g> + @3 is mini-
mized under this condition if g7 = g3; thus

2 2

/ 1652
0 +03=2 (Q—1> 2z JR 1= 1425 50+ 2
2 Ql 01

which proves the claim. O

For any convex domain K, let di;(K) be the minimal p > 0 such that there exists
aregular triangle T with centroid z satisfying

T—zCK—-—zC U+ p)(T—2).

In particular, dy;(K) measures how close K is to a suitable regular triangle.

PrOPOSITION 4.1. Suppose that K is a convex domain with dy(K) < 672 and
L(K)2§(1+8)6\/§A(K,—K) “4.1n
for some ¢ € [0, (6 - 180)~2]. Then dy(K) < 400./¢.

Proof. Letdy(K)=n< 672, and let ¢ be as in the statement of the proposition.

There exists a regular triangle Ty of side length b containing K such that a trans-

late of ﬁTo is contained in K. For a triangle 7 C K of maximal area contained

in K, we have

AT) > A(Tp) . A(To) _
(I+n)2 ~ 143y

From now on, we use the notions and auxiliary constructions introduced for
K and T at the beginning of Section 3, including the hexagons Hy, H, H>, the
parameters t1, fp, t3 > 0, etc.

The main part of the proof is divided into several steps. In Step |, we prove
that T is 4/e-close to a regular triangle, and Step 2 shows that A(H, —H>) —
A(K, —K) is ¢ small. Based on these findings, Step 3 verifies that if H; is close
to 7 in the sense that max{t|, 2, 13} < 100./¢ (see ( )), then Proposition
holds.

The rest of the argument is indirect. Starting from Step 4, we assume that the
assumption max{ry, o, 13} > 1004/¢ (see ( )) is satisfied and derive a contra-
diction. Under this assumption, we prove in Step 4 that Hj is reasonably close
to Hp in the sense that || p; — g;|| is reasonably small for i =1, 2, 3 (see ( ).
Then Step 5 verifies that K C D = %Hl + %Hz and clearly D C H». Finally, in
Step 6, we prove that the gap between A(H,, —H>) and A(D, —D) (and hence
the gap between A(H», —H3) and A(K, —K) by Step 5) is too large, which yields
the desired contradiction.

“4.2)



SteP 1. T is /e-close to a regular triangle.

By the scaling invariance of the statement (and symmetry) we may assume that
the side lengths of T satisfy
ai<ap<az and a;=2.

Assuming that a; < %’, we can apply Claim 4.1 with a = b/2 and get
1 1
AT) = SAT) < 5 (1 +m)A(T)

by (4.2), which is a contradiction, since 1 < 6~2. Hence we have % <aj; <b,and
another application of Claim 4.1 now yields that

A(T) < ab—lA(To) < ‘;—la + 30 A(T),

so that b
<a1=2<a3<b,
1+3n_a1 =4=
and hence |
a3§b§2(1+3n)=2+6n§2+8. 4.3)

It also follows from (4.2) that
(I+1+n+6)AT)=A(H) < AK) < A(To) < (1 +3n)A(T),
and therefore

1 1
ti5E<6 fori =1,2,3. (4.4)

Thus the condition di(K) < 62 ensures that Lemma can be applied.
Hence by a combination of (3.1) with Lemma and assumption (4.1) of the
proposition we see that

(a; —2)> <6/3A(K, —K)e < 11A(K, —K)e fori=2,3, (4.5)
(t; —1)* <6/3A(K, —K)e

1
<A, =K)e fort=z(+n+6).0=123. (4.6)

To estimate A(K, —K), we observe that the height 41 of T corresponding to the
side a; = 2 satisfies h1 < ,/a% — 1 <2(sinceap > ay), thus A(T) < ,/a% —1<2
by (4.3), and hence
A(K,—K) < A(Ty, —Ty) =2A(Tp) <2(1 +3n)A(T)
1 13

5<2+8)'2=? 4.7

Now (4.5)—(4.7) imply that
2<a; <2+7¢ fori=2,3, (4.8)
lt; —t] <7/e fori=1,2,3. (4.9)



a +a2 a3

We observe that is an increasing function of ay > 2 as a3z > aj. Writing

«; to denote the angle of T opposite to the side a; and using that 7>./e < 1, we
have

a? +a? —a? 2+ 7/¢)? _4- 29
cosaz = — 2 %z — @+ [) \/_ ——4J§>O
2ai1ap 8
In particular, we have o] <oy <3 <7w/2, 03 > n/3, and oy < 7/3.
Since cos'(s) = —sins < —+/3/2 for s € ER 71, the mean value theorem im-
plies that

a3<§+74«/_ —+5«/_

Since 7 < a1 + 203 < o] + 2(% + 5./¢), we conclude that

%—10ﬁsalsazsass§+sﬁ. (4.10)

As a first estimate, we deduce tanaz < 2, and thus tan’(s) = 1 + (tan 5)2 <5 for
s €[5, a3]. In particular, (4.10) yields

V3 =50 <tana; <tanas <tanas < /3 +25%. 4.11)

Now let 7 be the regular triangle of edge length 2 positioned in such a way that
the side a; is common with T and int 7 N int T{ # (). Recalling that v, and v3 are
the endpoints of a1, we denote by v] the third vertex of T}, by z; the centroid of
Tl’, andby m = %(vz + v3) the midpoint of a;. As az > az and > a3 > Z, there
exists a point g such that v; € [m,q] and v; € [v3,¢q]. In addmon, we con51der
the intersection point {p} = [¢g, m] N [v}, v2] # @ (see Figure 2).

We deduce from ( ) that

lg — v} || = tan(a3) — v/3 <25\/¢
and
lp — m|| = tan(a) > tan(ery) > v/3 — 50/,
and if p € [v], m], then also
lp—vill = ||v’1 —m| —||p —m|l = +/3 — tan(e2) < 50/e.

Therefore ||v] —z1 ]| = f implies that in any case

254/3
(1—25«/5«/5)(T{—z1)CT—21 C ( ;/— s)(Tl/—m). 4.12)
For the regular triangle
Ty =21+ (1 - 25V3e)(T] — z1)
with centroid at z;, we have

Ti—z1 CT —z1 C (1+70/&)(T) — z1). (4.13)



..
_,n"‘

Figure 2 Illustration of the triangles T = [vy,vp,v3], T =
[1/1, vy, v3] together with the auxiliary points m, p, g, z1 in the case
where p € [v],m]. In the case p ¢ [v},m] (not shown in the figure),
we have Tl’ CTand p=qg=vj.

In addition, let z be the centroid of 7. The argument above also shows that

254/3
—fﬁm’—m.

/
vy EV] +
! 2

Since z = %(vl 4+ vy +v3)and 71 = %(vi + vy + v3), we get

3
2.\/3—\/5' (T{ —z1) C 10/ - (T — z1),

71 — 2 €20/ - (Th — z1),

t-use (4.14)

where for the second containment, we used that — (77 — z;) C 2(T} — z1). In
summary, (4.13) and (4.14) show that the regular triangle 77 is a very good ap-
proximation of 7.

Note that p; and g; lie on the same side of H, (parallel to and near a;) for
i =1, 2,3. This follows from «; < %, a; > 2, (4.3), and (4.4), which imply that
tiaj < %(2—}— %) <02<1< “7" for i, j, k € {1, 2, 3}. Moreover, fori =1, 2, 3,



we have
177> (1 + 4y2) (V3 +25Vz) > %tan(og)
> i = 5 tan(@) = V3 505 > 1.68, (4.15)
and hence in particular

2> 177> A(T)=h; > 1.68 > 1.5. (4.16)

STEP2. A(K,—K) and A(Hy, —H>3) are e-close, and L(Hy), L(Hy), and L(K)
are g-close.

We deduce from (4.7) that 6+/3A(K,—K) < 264/3 < 50. Therefore (4.1),
Lemma 3.1, Hy C K C H», and L(Hp) < L(Hp) imply that

50e > L(K)*> — 65/3A(K, —K) > L(K)? — 65/3A(H,, —H»)
> L(H,)? — 6v/3A(Hy, —Hy) > L(Ho)? — 65/3A(Hy, —H») > 0. (4.17)
In particular,
L(K)?> —6v3A(K, —K) < 50e,
6V3A(Hy, —H) — L(K)* <0,
which yields
A(Hy, —Hy) < A(K, —K) + 5¢. (4.18)
Using L(K) > L(Hy) > L(Hp) > L(T) > 6 and
L(K)? — 6v/3A(H,, —H,) < 50¢,
6v3A(Hy, —Hy) — L(H)* <0,

we get
50 > L(K)* — L(H1)* = (L(K) — L(H}))(L(K) + L(H)))
= 12(L(K) — L(H1)).
We deduce that
L(K) <L(Hp) + 5e. (4.19)
A similar argument shows that
L(H) < L(Hp) + 5e. (4.20)

This completes Step 2.
For the remaining part of the proof, we set y = 10%. In the following, we
distinguish whether

max({ry, 1, 13} < y /€ 4.21)

is satisfied or not. If ( ) holds, then H, is /e-close to K (see the argument
below).



StEP 3. If (4.21) holds, then di(K) < 4y .\/e.

It follows from ( Yand T C K that
Ti—z1CK —z. (4.22)
Using (4.21) and recalling that z is the centroid of T', we get
K—zCHy—zC(14+3max{t;,tr,3})(T —2) C (1 + 3)/\/5)(T —2).
Therefore ( ) and ( ) imply that if ( ) holds, then
K-—z1=K—z+ (@ —z21) C (1+3yVe)(T —z1) +3ye(z1 —2)
C [1+70Ve +3y /e +210ye + 60y e |(T) — 1)
C(1+4yﬁ)(T1 —21). (4.23)

In view of ( ), we conclude Proposition if ( ) holds.
It remains to consider the case where

max{ty, tr, 13} > y\/g, 4.24)

which will finally lead to a contradiction.
It follows from (4.9) and ( ) that

min{t;, 2, 13} > 86./€. (4.25)
STEP 4. Assuming ( ), Hy is reasonably close to Hy.

More precisely, we claim that
lpi —qill <0.06 fori=1,2,3, (4.26)

which is what we mean by saying that H is “reasonably close” to Hy.

Let {i, j, k} = {1, 2,3}, and assume that g; # p; (otherwise, ( ) readily
holds). For the line ¢; through p; and ¢; and parallel to a;, let v; be the re-
flection of v; through ¢;; hence p; is the midpoint of [, vg]. For the triangle
T} =[gi, v}, vr], we have

AT) =2Aq;. pi.vi)) = Il pi — qilltihi.
Recall from (4.15) that 1.68 < h; < 1.77. Using (4.8) and ; < {5, by (4.4) we get

- a; 1 1
lv; —vell =2l pi — vkl < 2(;’ + Em) <a;+ ghi
<2+ ! +1 1.77 <2.31
- " '6.180 6 < T
Therefore
~ lpi — qillti -
AT) = |Ipi —qillti - 1.68 > ————"" - 1.68 - |§; — v
2.31
Since
Ipi —aillti y oo G 168 <a; < |1 — wll.

2.31 —12-2.31



Figure 3 Illustration for D = 1 H + %Hz.

Claim 4.2 can be applied. In combination with #; > 86./¢ (by (4.25)), this leads
to

lgi —vjll + llgi — vkl = llgi — 01l + llgi — vill

B 1 C—qilt - 1.68\?
2||Uj_vk||+ <||Pz q:”: )

2.31 2.31
5 ,1.68?
=pi —vjll +lpi — vl + lpi —qill"¢; XIE
o pi = il + 191 — vl + i — a2 2
- 2.313
We deduce from (4.20) that
2 2
5¢> |l pi —q,-nz%e,

and hence (4.26) follows.
STEP 5. Assuming (4.24), we have K C D := %Hl + %Hg.

The polygon D C H» has twelve sides (see Figure 3).
Six of these sides are subsets of the six sides of Hy as hy, (u) = hy,(u) for all
u € U(H>), and the other six sides of D are parallel to the sides of H;. We prove

KcD 4.27)



indirectly, so we assume that there exists x € K \ D and seek a contradiction. Then
there exists u € U (D) such that hg (u) > (x,u) > hp(u). Since x € K C Hp, u is
normal to a side of D parallel to a side of Hj. Let u be normal to [v;, g;], i # J,
so that w;; is the vertex of H> where u is a normal to H;. For

A=hp,(u) —hp W) = (U, wij —q;),
we have
A-llgj —vill =2Agj, vi, wij]) = tjhjllwij —q;ll.
We have h; > 1.68 by ( ), and since #; < 11—2 by (4.4) and h; < 2, we obtain
using ( ) that

a; 1 3 1
ligj —vill < llpi — vill +0.1 55’+Ehi+0.1 =5+ +01<2

and .
lwij = qjll = llwij = pjll = 0.1 5 = 0.1 = 1-0.1=0.9.
Thus we get
1
Azztj-1.68~0.9z60\/5.
We deduce that
1 A
(,x —qj) > hp@) —hu (u) = E(th(u)_hH1(u)): 5 > 304/,
and therefore
(u,x —q;) - llg; — vill
Allgj. v, x]) = IS 2 15Ve - llg; — vill-

2

Note that 15\/¢ < 0.02 and [lg; — vi|| > llpj — vill — 0.1 > 0.9. It follows from
Claim and ||g; — v; || <2 that

1 2
lx —vill +llx —q;ll = llg; —vill + T ol (15V¢)" = llg; — vill + 15¢.

llg; — vil
Denoting by H the polygon that is the convex hull of x and H;, we have that
[vi, x] and [x, g;] are sides of H, and hence

L(K)= L(H) = L(H) + 15¢,

contradicting ( ). In turn, we conclude ( ).
STEP 6. Assuming ( ), A(Hy, —H>) — A(K, —K) is too large.

To calculate A(D, —D) for D = %Hl + %Hz, we claim that Dy = 174 %Hz (see
Figure 4) satisfies

A(D,—D) = A(Dy, —Dg) + A(T)(t112 + t2t3 + t113). (4.28)

We prove ( ) by applying Betke’s formula (2.4) three times. First, we intro-
duce some notation for any i, j, k with {i, j, k} = {1, 2, 3}, where i, j, k are fixed
for this paragraph. Let b; be the side of D containing ¢; (and hence b; is contained
in the “long” side of H, parallel to a;), and let &; € U (D) be the normal to D at
the vertex v; of T, and hence —u; is the exterior unit normal to b;. In addition, let



w13

Figure 4 Illustration for D = %Hl + %Hg and Do = %T + %Hz.

d; be the diagonal of D that cuts off b; and the two sides neighboring b; from D,
and hence d; is parallel to b;. There is a side of D that is cut off by [¢;, v;] and
is parallel to [g;, v;], and we denote by v;; the exterior unit normal to that side of
D. In particular, v;; and vj are the normals to the two sides neighboring b;.

Now d; dissects D into a trapezoid and a polygon D; with 10 sides, and on
the way to verify (4.28), we first claim that

A(D, —D) = A(D1, —D1) + Sp(it1)Sp(vi2)| det(itq, vi2)|. (4.29)

To prove ( ), we choose a unit vector u| # i1 very close to i1 and such that
(11, v2 —v3) > 0, where very close means that Z(u1, 1) < Z(u, uy) for any (exte-
rior or interior) unit normal u # i to a side of D. When we apply Betke’s formula
(2.4) to calculate the difference A(D, —D) — A(D1, —Dy) using u as the refer-
ence vector, we deduce after cancelation of summands common to A(D, —D) and
A(D1, — D) that the exterior unit normal —iz; to the sides b; of D and d; of D;
does not occur in either term and precisely one of the two exterior unit normals
of the two sides of D neighboring by, in this case vi», occurs. To see this, we
observe that if {i, j, k} = {1, 2, 3}, then

Z(—ﬁi, l),'j) <0.16 (4.30)

because /(—it;, vij) = L(g; — vj, vk — v;) satisfies tan Z(—ii;, v;;) < (t;h;) /(1 —
0.06) < 0.16 using the estimates ( ), hi <1.77,and t; < % (cf. (4.4)). On the



one hand, if {i, j} = {2, 3}, then (4. 10), (4.30), and v/ < (6 - 180)~" yield
LUy, vin) = LGy, —i;) — L(=H;, vi1) = of — L(=ii;, vi1)
> % — 10z —0.16 > 0.87;

therefore the angle of i1 with any other exterior unit normal to D or Dy is at least
0.87. On the other hand, Z(—ii, v;;) < 0.16 for j =2,3 by ( ), concluding
the proof of ( ).

Since
1 5 1
Sp(vi2) = §||611 — vl Sp(iy) = E(tz +n)ar=bH+1,
. tihy
|det(iiy, vi2)| = ————,
llg1 — vall

we deduce from ( ) that
1
A(D,—D)=A(D1,—D1)+Etl(t2+t3)A(T)- (4.31)

Next, we observe that do dissects D into a trapezoid and a polygon D, with
eight sides. Choosing a unit vector uy # ii» close enough to i and applying
Betke’s formula (2.4) to calculate A(D;, —D1) — A(D>, —D») with u, as a ref-
erence vector, we conclude as before that

1
A(D1, —Dy) = A(D2, —D2) + Etz(n +13)A(T).

Finally, the analogous argument for a unit vector u3 # 3 close enough to i3
implies that

1
A(Dy, —D3) = A(Dy, — Do) + §t3(fl +n)A(T).
Thus we arrive at
1
A(D,—D) = A(Dy, —Dp) + E[fl (t2 + 13) + 12t +13) + 13(t1 + 12)]A(T),

which completes the proof of (4.28).

We recall that A(T, —T) =2A(T) and A(H>, —Hy) =2A(T)(1 +t1tr + trt3+
t3t1) and observe that A(H,>, —T) = A(T, —H) = A(T, —T) by the symmetry
and rigid motion invariance of the mixed area and Minkowski’s formula (2.1).
Thus (4.28) and the linearity of the mixed area imply

A(D, —D) = A(Dy, —Dg) + A(T) (1112 + 1213 + 1113)

1 1 1 1
=A(=T+-H),,—~T — - H A(T) (1112 + tat3 + 111
(2 +2 2=5 5 2>+ (TY(h112 + 0213 + 1113)

1 2 1
=1 2A(0) + 3 2A(0) + 1 24 (1L + 12 + 1215+ 1311)
+ A(T) (111 + tat3 + 1113)

3
=2A(T)+ EA(T)(tll‘z + 03 + 1311).



We deduce from ( ), K C D (see ( ), ( ), and A(T) > 3/2 that
S5e > A(Hy, —Hy) — A(K,—K) > A(H, —H>) — A(D, —D)

3
=2AM)(1+ i+ 3+ 1311) = 2A(T) = SAT) (162 + 13 + 1311)

1 1 3
=AM+t +130) 2 5 - 22 (86 YINE =y,

which is a contradiction, proving that (4.24) does not hold. Therefore the argu-
ment in Step 3 proves Proposition 4. 1. O

5. Proof of Theorem

Before starting the actual proof of Theorem 1.3, we recall Proposition and
Lemma proved in essence by Betke and Weil as Lemmas 1 and 2 in [5]. We
slightly modified the argument from [5] and added a useful observation.

ProposiTION 5.1 (Betke and Weil [5]). If P is a polygon with k > 3 sides, and P
is not a regular polygon with an odd number of sides, then there exists a polygon
P’ with k sides and arbitrarily close to P such that
L(P')? L(P)?
< .
A(P',—P") A(P,—P)

Proof. For a vertex v of the polygon P, we write Np(v) for the normal cone of
P at v; that is, if u1, up € U(P) are the exterior unit normals of the two sides
meeting at v, then Np(v) = pos{ui, us}.

Case 1. There exist vertices v and vy of P such that —Np(vy) C Np(v2).

In this case, P is not a triangle. Let v3, vs4 be the neighbors of v;. For
v} € [vr,v4]\{v1, v4}, let P’ be obtained from P by replacing the vertex v
by v}. In particular, there exists a unit vector w € —int Np(v) orthogonal to
[v’l, v3]. Using this vector w in (2.4) and the property —Np(vi) C Np(va), we
get A(P', —P’) = A(P, —P), whereas obviously L(P’) < L(P) by strict con-
tainment.

Case 2. There exist no vertices vy and vy of P such that —Np(v1) C Np(v2) as
in Case 1, but there exist a vertex v and a side e with exterior normal ug € U(P)
such that —ug € Np(v) and —uq does not halve the angle of Np(v).

In this case, P does not have any parallel sides, since we are not in Case 1. The
line £ through v parallel to e is a support line of P. Let v4 denote the point pre-
ceding v and v3 the point following v on 9 P in the clockwise order. Let vy denote
the unit vector orthogonal to ug such that (v4 — v)/||vs — v||, (v3 —Vv)/|lv3 — V],
and vg are in counterclockwise order on the unit circle. Let o4 denote the angle
enclosed by v4 — v and —vy, and let 3 denote the angle enclosed by v3 — v and
vo. Let u; denote the exterior unit normal of [v;, v] for i = 3, 4. Since —uqg does
not halve the angle enclosed by u3, u4, we have o3 # 4. We may assume that
o4 > a3. By Fermat’s principle, moving v along £ an arbitrarily small amount
in the direction of vp to v" and denoting by P’ the polygon obtained from P by



replacing v by v/, we get L(P’) < L(P). Clearly, we thus still get a convex k-gon
if v/ is sufficiently close to v.

To prove A(P, —P) = A(P’, —P’), we denote by Q the (nonempty) convex
hull of the (common) vertices of P and P’ (thus v, v’ are removed). Note that in
the case where P (and hence also P’) is a triangle, Q is a segment. We consider
the triangles A = [v3, v4, v] and A" = [v3, vg, v'] that satisfy P = QU A and P’ =
Q U A/, For the segment I = [v3, v4], we have A(A, —1) = A(A, T) = A(D).
Using this and the additivity of the mixed area in both arguments, we obtain

A(P,—P)=A(Q,—-0) +2A(Q, -4) = 2A(Q, - D).

A similar expression is obtained for P’ with A replaced by A’.

We choose vs, vg such that e = [vs, vg] and vg — vs is a positive multiple of
v —v. If v is sufficiently close to v, then the first assumption in Case 2 ensures
that for the exterior unit normals u; of the sides of Q between v4 and vs (in
counterclockwise order), we have

ha(uj) = (vs,uj)=hp(u;)

and that for the exterior unit normals u ; of the sides of Q between vg and v3 (in
counterclockwise order), we have

ha(uj) = (ve,uj)=hn(u;).
Then (writing e also for the length of the edge e)
A(Q7 _A) - A(Q’ _A/) = e<u07 _U> - e(uo’ _U/> = e(”O, U/ - U) = Oa

which proves the statement.

Case 3. There exist no vertices vy and vy of P such that —Np(v1) C Np(v2),
and for any vertex v and side e with exterior normal uy € U(P) such that —ug €
Np(v), the vector ugy halves the angle of Np(v), but P is not a regular polygon
with an odd number of sides.

Letuy, ..., u; be the exterior unit normals to the sides of P in clockwise order.
We observe that no closed half-plane having the origin on its boundary contains
uy,...,ux. Wesetu;jyp=u; fori=1,...,k.

We can assume that Z(uy, up) = min{/Z(u;,u;+1) :i € {1, ..., k}. By the first
assumption of Case 3, u; # —u; for i, j € {1,..., k}. Hence there is a unique
m € {2,...,k — 1} such that —u; € intpos{u, u;u+1}. By the second assump-
tion of Case 3 we have Z(—uy, uy) = L(—uy, un4+1) =: o;. Moreover, applying
twice the first assumption of Case 3, it follows that —uy € intpos{u,+1, Um+2},
and by the second assumption we then get Z(—u2, up4+1) = L(—u2, Uy42) =: a3.
Thus we obtain o + ap = £(—uy, —u2) = L(uy,uz). By the minimality of
L(uy, up) we conclude that oy = ap, and hence Z(upy,, Uy 1) = L(Umt1, Umt2) =
L(uy, u).

Considering successively in this way the normal vectors u3, u;;43, ..., Uy—1,
Uk, Uy, U1, we conclude that k = 2m — 1 is odd, —u; € intpos{u;tm—1,Ui+m}
halves the angle enclosed by u;,,—1 and u;yp,, and Z(uy, up) = L(u;, uj+1) for
i e{l,..., k}. Inturn, we find that all exterior angles of P are 2r/k.



Fori € {1, ..., k}, we denote by e; both the side corresponding to u; of P and
its length, and we denote by ¢; the line containing e;. We set e; .y = €; fori =

1,..., k. Since P is not regular, the side lengths of P are not the same. Therefore
there exist 2 < p < g <k + 1 such that
ep_1+e,F#e; 1+e,. 6.1
Fixi e {1, ..., k} for the moment. If |¢| is small, then let P; ; be the k-gon bounded
cos 2T
by the lines £, j € {1,...,k}\{i}, and & + ru;. Set k = 2! s;";k . Then we get
F
L(P;;)=L(P)+2t < ! ! ) L(P)+«-t
i) = N =) = K-t
b sin 27” tan 27”

Choosing w = —u; in (2.4), we see that

A(P; ¢, =P )=A(P,—P)+ (€igm +€ixm—1)-0"1,

where o = :1:12?,, . We deduce that
sin 5
d A(Pis,—Piy) (€itm +€i4m—1)-0-L(P)— A(P,—P) -2k
— | —0= . (5.2
dt  L(Piy)? = L(P)3
From (5.1) and (5.2) we conclude the existence of i € {1, ..., k} such that
d A(Pi, —Piy) | 0.
dt L(Pi,,)2 =

In particular, we can choose a t # 0 with arbitrarily small absolute value such that
A(Pi;,—Pi) AP, —P)
>
L(P;1)? L(P)?

)

and hence we can choose P’ = P;;, completing the proof of Proposition 5.1. O

For regular polygons with an odd number of sides, we have the following esti-
mates.

LeEMMA 5.2. If P is a regular polygon with an odd number k > 5 of sides, then

du(P) > 0.25, (5.3)
L(P)? s

U S o0sinZ > 1.1-6V3. 5.4

AP, —p) -5 7 V3 (54)

Proof. We may assume that L(P) = 1, and hence A(P, —P) = (4ksin %)’1 ac-
cording to (2.2), proving (5.4). For (5.3), assuming that the origin is the centroid
of P, we have —P C (cos %)’1P, and hence A(P, —P) < (cos %)’IA(P). On
the other hand, if 7o C P is a regular triangle with centroid zop and P — z9 C
(1 +d)(Ty — zp), then

A(P,—P) > A(Ty, —Tp) = 2A(Tp) > 2(1 + d)2A(P),

and hence dy;(P) > ,/2cos T — 1> 0.25.



Proof of Theorem |.3. Lete € [0,2728], and let K C R? be a convex domain with
L(K)? < (14 &)6v3A(K,—K). Then 0 < & < (6 -2400)2 < (6 - 180)"2. We
distinguish two cases.

Case 1: dy(K) < 672. Then Proposition implies that di;(K) < 4004/¢, and
the proof is finished.

Case 2: dy(K) > 6~2. We will show that in fact this case does not occur. We
fix a number &’ such that 0 < & < &' < (6 - 2400) 2. Since di(-), A(-, -), and L(-)
are continuous, there is a polygon P C R? with dy(P) > 6 2 and L(P)%2 < (1 +
8/)6«/§A(P, —P). Since dy;:(-), A(-, -), and L(-) are translation invariant, d(-) is
scaling invariant, and K +—> L2(K)/A(K, —K) (for convex domains K C R2) is
also scaling invariant, we can assume that o € P and A(P,—P)=1.Letk >3
be the number of vertices of P. We write P for the set of all polygons G C R?
with at most k vertices, di(G) > 62, 0€ G, A(G,—G) =1, and L(G)? < (1 +
¢)6+/3. Then in particular we have P € Py # 0.

We claim that there is Py € P such that L(Py) = inf{L(G) : G € P¢}. For the
proof, it is sufficient to consider a minimizing sequence P; € Py with L(P;) <
L(P) for i € N. Let B? denote the unit disc with center at the origin. Then
P; C L(P)B? for i € N. An application of Blaschke’s selection theorem (see [
Theorem 1.8.7] or [13, Theorem 3.4]) shows that the sequence P;, i € N, has a
convergent subsequence with limit Py C R?. Since all conditions involved in the
definition of Py are preserved under limits and L(-) is continuous, we conclude
that Py € P realizes the infimum.

Since d(Py) > 672, Py is not a regular triangle. Assuming (for the moment)
that Py is a regular r-gon with r odd, we have k > r > 5. Then Lemma shows
that L(Py)? > 1.1 - 6+/3. Since also L(Py)? < (1 + £')6+/3, we get ¢’ > 0.1, a
contradiction.

Hence Py € Py is a k-gon but not a regular polygon with an odd number of
edges. Assume (for the moment) that di.(Pp) > 672. Proposition then shows
that there is a k-gon P; such that di(Py) > 62 and

L(P))? - L(Py)?
A(P1,—P1) A(Py,—Po)

= L(Py)>.

Again by scaling and translation invariance we obtain a k-gon P, for which
d(P2) > 672, A(P2, —P2) = 1, 0 € P», and L(P2)* < L(Po)* < (1 +£)6+/3,
that is, P, € Pg. This contradicts the minimality of L(Py). Therefore we conclude
that dy(Py) = 672. Since L(Py)? < (1 4 &")6+/3A(Py, — Py), it follows from an-
other application of Proposition 4.1 that

62 = dy(Py) < 400+’ <400 - (6-2400)"! =672,

a contradiction. This finally shows that the present case does not occur, which
completes the argument.
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