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Abstract. Let K be a compact convex domain in the Euclidean plane.
The mixed area A(K,−K) of K and −K can be bounded from above
by 1/(6

√
3)L(K)2, where L(K) is the perimeter of K . This was

proved by Ulrich Betke and Wolfgang Weil [5]. They also showed
that if K is a polygon, then equality holds if and only if K is a regu-
lar triangle. We prove that among all convex domains, equality holds
only in this case, as conjectured by Betke and Weil. This is achieved
by establishing a stronger stability result for the geometric inequality
6
√

3A(K,−K) ≤ L(K)2.

1. Introduction

For convex domains K , M (compact convex sets with nonempty interior) in R
2,

let L(K) be the perimeter of K , let A(K) be the area of K , and let A(K,M)

denote the mixed area of K and M (see Schneider [17, Section 5.1] or Section 2).
Betke and Weil [5] proved the following theorem.

Theorem 1.1 (Betke and Weil [5]). If K,M ⊂R
2 are convex domains, then

L(K)L(M) ≥ 8A(K,M) (1.1)

with equality if and only if K and M are orthogonal (possibly degenerate) seg-
ments.

This result has been generalized to higher dimensions in [7], where also various
improvements in the sense of stability results have been obtained. What makes
the variational analysis of (1.1) convenient is the fact that K and M can be varied
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independently of each other and the dependence on K and M is Minkowski linear
(in the Euclidean plane). Betke and Weil [5] also considered the case where M =
−K and found the following sharp geometric inequality.

Theorem 1.2 (Betke and Weil [5]). If K is a convex domain in R
2, then

L(K)2 ≥ 6
√

3A(K,−K). (1.2)

In addition, if K is a polygon, then equality holds if and only if K is a regular
triangle.

It is clear from the continuity of the involved functionals that it is sufficient to
establish this inequality for convex polygons to deduce it for general convex do-
mains in the plane. However, it has remained an open problem to characterize
the equality case in (1.2) among all convex domains. We resolve this problem
by proving more generally a stability version of Theorem 1.2. We refer to [7]
(and in particular to the literature cited there) for a brief introduction to stability
improvements of geometric inequalities.

Theorem 1.3. If K is a convex domain in R
2 and

L(K)2 ≤ (1 + ε)6
√

3A(K,−K)

for some ε ∈ [0,2−28], then there exists a regular triangle T with centroid z such
that

T − z ⊂ K − z ⊂ (
1 + 400

√
ε
)
(T − z).

The optimality of the stability exponent 1
2 of ε can be seen by considering a regu-

lar triangle T of edge length 2. Then we add over each edge Ei of T an isosceles
triangle with height

√
ε that has the side Ei in common with T (for i = 1,2,3).

For the resulting hexagon H , we have L(H)2 − 6
√

3A(H,−H) = 36ε. However,
if dtr(H) is the minimal number ρ ≥ 0 for which there is a regular triangle T0 with
centroid z such that T0 − z ⊂ H − z ⊂ (1 + ρ)(T0 − z), then it is easy to check
that dtr(H) ≥ √

ε.

Corollary 1.4. Equality holds in (1.2) if and only if K is a regular triangle.

Betke and Weil [5] also discuss an application of their Theorem 1.2 to an inequal-
ity for characteristics of a planar Boolean model. As a consequence of Corol-
lary 1.4, the equality condition for the lower bound provided in [5, Theorem 3]
now turns into an “if and only if” statement.

For the proof of inequality (1.2), it is sufficient to consider (convex) polygons
with at most k vertices for any fixed k ≥ 3. This task was accomplished by Betke
and Weil, and we add the observation (extracted from an adaptation of their ar-
gument) that for a polygon P that is not a regular k-gon with an odd number of
sides, there exist polygons P ′ with at most k vertices arbitrarily close to P such
that

L(P ′)2

A(P ′,−P ′)
<

L(P )2

A(P,−P)
;



see Proposition 5.1. Although this can be used to prove the inequality, it does not
give control over the equality cases. To determine all extremal sets, we show that
if K is a convex domain that is not too far from a regular triangle, then inequality
(1.2) can be strengthened to a stability result, that is, we show that if K also
satisfies

L(K)2 ≤ (1 + ε)6
√

3A(K,−K),

then K is ε-close to a regular triangle (if ε > 0 is small enough). This local stabil-
ity result is stated and proved in Section 4 (see Proposition 4.1). An outline of the
proof of Proposition 4.1, which is divided into six steps, is given at the beginning
of the proof. A major geometric idea underlying the argument is to approximate
K from inside by a triangle T ⊂ K with maximal area. With T and K we asso-
ciate hexagons H1, H2 such that H2 ⊃ K and T ⊂ H1 ⊂ K . Another hexagon H0
is derived from H1 so that the perimeter is minimized. Then we show that

L(K)2 − 6
√

3A(K,−K) ≥ L(H0)
2 − 6

√
3A(H2,−H2) ≥ 0.

The fact that the right-hand side is nonnegative is far from obvious. More gen-
erally, we use a variational argument and validated numerics to establish a lower
bound that involves five parameters, which determine the shapes of T and H2
(see Lemma 3.1). In the course of the proofs, we have to determine various mixed
areas of polygons. These mixed areas are obtained by a classical formula due to
Minkowski and by a more recent one, which is due to Betke [4] and was first
applied in [5].

Validated numerics is a well-established field of mathematics, which pro-
vides rigorous results by controlling both rounding and discretization errors in
computer-aided proofs. For an introduction, we refer to [1; 14; 18; 19] or [3,
Section 2.1]. A slightly weaker version of Theorem 1.3 can be proved without us-
ing validated numerics; namely, when the positive constant 2−28 in Theorem 1.3
is replaced by an unknown positive constant (see the remark after the proof of
Lemma 3.1). Naturally, this weaker version also yields Corollary 1.4.

2. Notation and Mixed Area

For p1, . . . , p� ∈ R
2, � ∈N, we denote by [p1, . . . , p�] the convex hull of the point

set {p1, . . . , p�}. In particular, [p1,p2] is the segment connecting p1 and p2, and
if p1, p2, p3 are not collinear, then [p1,p2,p3] is the triangle with vertices p1, p2,
p3. In addition, the positive hull of p1,p2 ∈ R

2 is given by pos{p1,p2} = {α1p1 +
α2p2 : α1, α2 ≥ 0}. The scalar product of x, y ∈ R

2 is denoted by 〈x, y〉, and the
corresponding Euclidean norm of x is ‖x‖ = 〈x, x〉1/2. The angle enclosed by two
unit vectors u,v ∈ R

2 is denoted by � (u, v) ∈ [0,π] and satisfies cos � (u, v) =
〈u,v〉. In addition, the determinant of a 2 × 2 matrix with columns x, y ∈ R

2 is
denoted by det(x, y).

The space of compact convex sets in R
2 is equipped with the Hausdorff metric.

In the following, by a polygon we always mean a convex set. For a (convex)
polygon P in R

2, let U(P ) denote the finite set of exterior unit normals to the
sides of P . For u ∈ U(P ), we denote by SP (u) the length of the side of P with



exterior normal u. As usual, the support function hK of a compact convex set
K ⊂R

2 is defined by hK(x) = h(K,x) = max{〈x, y〉 : y ∈ K} for x ∈R
2.

We recall that for compact convex sets K and M in R
2, the mixed area

A(K,M) of K and M is determined by the polynomial expansion A(λK +
μM) = λ2A(K) + μ2A(M) + 2λμA(K,M) for λ,μ ≥ 0 (see [17, Section 5.1]
or [13, Section 3.3]), where A(K) is the area of K . In particular, the perimeter of
K is L(K) = 2A(K,B2), where B2 is the unit circular disk centered at the origin.
We will use repeatedly two formulas which allow us to calculate and analyze the
mixed area A(P,Q) of two polygons P and Q. The first is due to Minkowski (see
[17, (5.23)] or [13, (4.1)]) and states that

A(P,Q) = 1

2

∑
u∈U(P )

hQ(u)SP (u). (2.1)

Since h−P (u) = hP (−u) for u ∈R
2, (2.1) implies that

A(P,−P) = 1

2

∑
u∈U(P )

hP (−u)SP (u). (2.2)

Since A(P,−P) = A(−P,P ) (see also below) and S−P (u) = SP (−u), we also
have

A(P,−P) = 1

2

∑
u∈U(P )

hP (u)SP (−u).

For instance, if P is a triangle, then it follows from (2.2) that A(P,−P) = 2A(P ).
Another useful formula was established much later by Betke [4]. If w is a unit

vector such that w /∈ U(P ) ∪ U(−Q), then

2 · A(P,Q) =
∑

u∈U(P ),v∈U(Q)
w∈pos{u,−v}

|det(u, v)|SP (u)SQ(v). (2.3)

In particular, (2.3) yields that if w /∈ U(P ) for a (fixed) unit vector w, then

A(P,−P) =
∑

{u,v}⊂U(P )
w∈pos{u,v}

|det(u, v)|SP (u)SP (v), (2.4)

where the factor 2 from the preceding formula cancels, since we do not consider
ordered pairs. Formula (2.4) was used in a clever way by Betke and Weil [5] to
prove the Betke–Weil inequality stated in Theorem 1.2.

For compact convex sets K,K1,K2,M ⊂ R
2, Minkowski proved the follow-

ing properties of mixed areas (see [17; 13]):

A(K,M) = A(M,K),

A(K + z1,M + z2) = A(K,M) for z1, z2 ∈R
2,

A(�K,�M) = |det�| · A(K,M) for � ∈ GL(2,R),

A(K,K) = A(K),

A(α1K1 + α2K2,M) = α1A(K1,M) + α2A(K2,M) for α1, α2 ≥ 0,

A(K1,M) ≤ A(K2,M) if K1 ⊂ K2.



We note that it is a subtle issue to decide under which conditions on convex
polygons P ⊂ Q the inequality A(P,−P) ≤ A(Q,−Q) is strict. For example,
let P be a triangle with its centroid at the origin o. Let v1, v2, v3 denote the
vertices of P , and let Q be the hexagon with vertices v1, v2, v3, −v1, −v2, −v3.
Then P ⊂ Q and P �= Q, actually A(Q) = 2A(P ), and we still have A(P,−P) =
2A(P ) = A(Q) = A(Q,−Q).

Finally, we recall that A(·, ·) is additive (a valuation) in both arguments. By
this we mean that if K , M , L are compact convex sets in the plane and K ∪ M is
also convex, then

A(K ∪ M,L) + A(K ∩ M,L) = A(K,L) + A(M,L).

By symmetry the same property holds for the second argument.
Following the usual convention, the interior and boundary of a set K ⊂R

2 are
denoted by intK and ∂K , respectively.

3. An Auxiliary Result for Associated Hexagons

Let T ⊂ K denote a triangle of maximal area contained in K . Let v1, v2, v3 be
the vertices of T , let ai be the side opposite to vi , whose length is also denoted by
ai for i = 1,2,3, and let hi be the height of T corresponding to ai . Then we have

2A(T ) = a1h1 = a2h2 = a3h3.

We observe that vi is a point of K of maximal orthogonal distance from the side
ai by the maximality of the area of T . Therefore the line passing through vi and
parallel to the side ai is a supporting line to K . The width of K orthogonal to ai

can be expressed in the form (1 + ti )hi for some ti ∈ [0,1], where ti ≤ 1 since T

has the maximal area among all triangles in K . (The width of K orthogonal to ai

equals the length of the projection of K onto a line orthogonal to ai .) It follows
that K is contained in a circumscribed hexagon H2 such that, for i = 1,2,3, H2

has two sides parallel to ai , one of which contains vi and has length (tj + tk)ai ,
{i, j, k} = {1,2,3}, and the opposite side has length (1 − ti )ai (see Figure 1).
The vertices of H2 in clockwise order are denoted by w31, w32, w12, w13, w23,
w21 with vi ∈ [wij ,wik] for {i, j, k} = {1,2,3}. Moreover, we denote by w′

ij the
intersection point of the line through wij and wkj and the line through vi and vj .
The preceding statements follow by elementary geometry from the similarity of
corresponding triangles. In fact, with the notation from Figure 1, we have

‖w′
32 − w32‖ = a2

a3
· ‖w32 − v3‖ and ‖w′

32 − w32‖ = a2

h2
· t2h2,

hence

‖w′
32 − w32‖ = t2a2, ‖w32 − v3‖ = t2a3,

and similarly for permutations of the indices. Moreover,

‖w′
32 − w′

12‖
a2

= h2(1 + t2)

h2
,



Figure 1 Illustration of the geometric construction with
the triangle T = [v1, v2, v3], the outer hexagon H2 =
[w32,w31,w21,w23,w13,w12], the inscribed hexagon H1 =
[v1, q2, v3, q1, v2, q3], and the hexagon H0 = [v1,p2, v3,p1, v2,p3].
In particular, we have ‖wij −vi‖ = tj ai and ‖wij −wkj‖ = (1− tj )aj

for {i, j, k} = {1,2,3}.

so that ‖w′
32 − w′

12‖ = (1 + t2)a2, and hence

‖w32 − w12‖ = (1 + t2)a2 − ‖w′
32 − w32‖ − ‖w′

12 − w12‖ = (1 − t2)a2.

Next, for i = 1,2,3 and {i, j, k} = {1,2,3}, we choose a point qi ∈ [wji,wki]∩
K . Then we define the (possibly degenerate) hexagon H1 = [v1, q2, v3, q1, v2,

q3] ⊂ K . In addition, let pi be the point on the line determined by [wji,wki]
(and parallel to ai ) that lies on the perpendicular bisector of the side ai of T , and
let H0 be the hexagon with vertices v1, p2, v3, p1, v2, p3 (see Figure 1). Note
that in general H0 may not be convex, but the restricted choice of parameters
encountered in the following will always ensure that H0 is convex.



As H1 ⊂ K ⊂ H2 and L(H0) ≤ L(H1), we have

L(K)2 − 6
√

3A(K,−K)

≥ L(H1)
2 − 6

√
3A(H2,−H2) ≥ L(H0)

2 − 6
√

3A(H2,−H2). (3.1)

Clearly, T is also a triangle of maximal area contained in H1. As among convex
domains of given area, the maximal area of an inscribed triangle is the smallest
for ellipses (see Blaschke [6], Sas [16], and Schneider [17, Theorem 10.3.3]), we
have

A(T ) ≥ 3
√

3

4π
· A(H1) > 0.4 · A(H1) = 0.4(1 + t1 + t2 + t3)A(T ),

and hence

t1 + t2 + t3 < 1.5. (3.2)

The following lemma is the basis for obtaining better bounds on t1, t2, t3 if we
know that L(K)2 − 6

√
3A(K,−K) is small.

Lemma 3.1. If a1 = 2, a2, a3 ∈ [2,2+ 1
6 ], and t1, t2, t3 ∈ [0, 1

6 ], then the hexagons
H0 and H2 constructed as above satisfy

L(H0)
2 − 6

√
3A(H2,−H2)

≥ (a2 − 2)2 + (a3 − 2)2 + (t1 − t0)
2 + (t2 − t0)

2 + (t3 − t0)
2

for t0 = (t1 + t2 + t3)/3.

Remark. In the lemma, we do not need K , only the triangle T and t1, t2, t3 ≥ 0
are required to define H0 and H2. Moreover, although H0 will be convex in the
situation of the lemma, this will not be needed in the argument.

Proof. By the translation invariance of the mixed area we can assume that v2 is
the origin. Then from (2.2) we obtain that

A(H2,−H2) = 1

2
{(1 − t2)a2 · 0 + (t1 + t2)a3t3h3 + (1 − t1)a1h1

+ (t1 + t3)a2h2(1 + t2) + (1 − t3)a3h3 + (t2 + t3)a1h1t1}
= 2A(T )(1 + t1t2 + t2t3 + t3t1).

By Heron’s formula,

2A(T ) = a1h1 = a2h2 = a3h3

= 1

2

√
(a1 + a2 + a3)(−a1 + a2 + a3)(a1 − a2 + a3)(a1 + a2 − a3),

and in addition we have

L(H0) =
3∑

i=1

√
a2
i + 4t2

i h2
i .



Setting bi = 2tihi = 4A(T )ti
ai

for i = 1,2,3, it follows from the Minkowski in-
equality (or, equivalently, the triangle inequality for (ai, bi), i = 1,2,3) that

L(H0)
2 =

( 3∑
i=1

√
a2
i + b2

i

)2

≥ (a1 + a2 + a3)
2 + (b1 + b2 + b3)

2

= (a1 + a2 + a3)
2 + 16A(T )2(t1/a1 + t2/a2 + t3/a3)

2

=: f1(a2, a3, t1, t2, t3).

Recall that a1 = 2. For the subsequent analysis, we set f2(a2, a3, t1, t2, t3) :=
16A(T )2 (which is independent of t1, t2, t3), hence

f2(a2, a3, t1, t2, t3) = (a1 +a2 +a3)(−a1 +a2 +a3)(a1 −a2 +a3)(a1 +a2 −a3),

and we consider

f1(a2, a3, t1, t2, t3) = (a1 + a2 + a3)
2

+ f2(a2, a3, t1, t2, t3)(t1/a1 + t2/a2 + t3/a3)
2.

Finally,

f (a2, a3, t1, t2, t3) := f1(a2, a3, t1, t2, t3)

− 3
√

3
√

f2(a2, a3, t1, t2, t3)(1 + t1t2 + t2t3 + t3t1).

Thus we obtain

L(H0)
2 − 6

√
3 · A(H2,−H2) ≥ f (a2, a3, t1, t2, t3). (3.3)

In the following, we consider

W :=
{
(a2, a3, t1, t2, t3)

� ∈ R
5 : a2, a3 ∈

[
2,2 + 1

6

]
and t1, t2, t3 ∈

[
0,

1

6

]}
,

zt := (2,2, t, t, t)�, t ∈
[

0,
1

6

]
,

and the orthonormal basis

e1 = (1,0,0,0,0)�, e2 = (0,1,0,0,0)�, e3 =
(

0,0,
1√
2
,
−1√

2
,0

)�
,

e4 =
(

0,0,
1√
6
,

1√
6
,
−2√

6

)�
, e5 =

(
0,0,

1√
3
,

1√
3
,

1√
3

)�
.

We write Df (x) : R5 → R for the derivative (a linear map) and D2f (x) : R5 ×
R

5 → R for the second derivative (a symmetric bilinear form) of f at x. With
respect to a given scalar product 〈·, ·〉 on R

5, we can identify Df (x) with the
gradient of f at x (a vector) and D2f (x) with a symmetric linear map R

5 →
R

5 via D2f (x)(a, b) = 〈a,D2f (x)(b)〉 for a, b ∈ R
5. Moreover, we also write

D2f (x) for the Hessian matrix with respect to the standard basis e◦
1, . . . , e

◦
5 of R5.



Using a computer algebra system (for convenience) or direct calculations, we
obtain that if t ∈ [0, 1

6 ], then

f (zt ) = 0, Df (zt ) = o. (3.4)

It follows from the Taylor formula and (3.4) that for any x ∈ W , there exists
ξ = ξ(x) ∈ (0,1) such that

f (x) = 1

2
〈x − zt ,D

2f (zt + ξ(x − zt ))(x − zt )〉.
By relation (3.3) Lemma 3.1 follows once we have shown that

f (x) ≥ ‖x − zt‖2 (3.5)

for x = (a2, a3, t1, t2, t3)
� ∈ W and t = (t1 + t2 + t3)/3.

Since for x = (a2, a3, t1, t2, t3)
� ∈ W , we have x − zt ∈ e⊥

5 (we write e⊥
5 for

the orthogonal complement of e5) with t = (t1 + t2 + t3)/3 and zt +ξ(x−zt ) ∈ W ,
the proof will be finished if we can verify that

〈v,D2f (x̄)v〉 ≥ 2‖v‖2, x̄ ∈ W,v ∈ e⊥
5 . (3.6)

Using a computer algebra system (such as SageMath or Maple) or tedious
calculations, for the Hessian matrix of f at (2,2,0,0,0)�, we obtain that

D2f (2,2,0,0,0) =

⎛⎜⎜⎜⎜⎝
12 −6 0 0 0
−6 12 0 0 0
0 0 24 −12 −12
0 0 −12 24 −12
0 0 −12 −12 24

⎞⎟⎟⎟⎟⎠
has the eigenvalues 6, 18, 36, 36, 0, and as associated pairwise orthogonal
eigenvectors, we can choose (1,1,0,0,0)� to correspond to the eigenvalue 6,
(1,−1,0,0,0)� to correspond to 18, e3 and e4 to correspond to 36, and, finally,
e5 to correspond to 0.

Define the orthogonal matrix S := (e1 . . . e5) ∈ O(5) and write y = (y1, . . . ,

y5)
� ∈R

5. Further, we define

f̃ (y1, . . . , y5) := f

( 5∑
i=1

yiei

)
= f (Sy).

It follows that f (x) = f̃ (S�x) for x ∈ R
5. By the chain rule, for x ∈ W and

v ∈R
5, we have

〈v,D2f (x)v〉 = 〈S�v,D2f̃ (S�x)S�v〉.
In addition, note that ‖S�v‖2 = ‖v‖2 and

S�(W) ⊂
[

2,2 + 1

6

]2

×
[
−1

6

√
2

3
,

1

6

√
2

3

]2

×
[

0,

√
3

6

]
⊂ W̃ :=

[
2,2 + 1

6

]2

× [−0.14,0.14]2 × [0,0.3].



Here we use that for y = S�(a2, a3, t1, t2, t3)
�,

y2
3 + y2

4 = 1

2
(t1 − t2)

2 + 1

6
(t1 + t2 − 2t3)

2

= 2

3

1

2
[(t3 − t2)

2 + (t3 − t1)
2 + (t2 − t1)

2]

≤ 2

3
max{t1, t2, t3}2 = 2

3
· 1

62

and

0 ≤ y5 = 1√
3
(t1 + t2 + t3) ≤ √

3 · 1

6
.

Moreover, v ∈ e⊥
5 if and only if 〈S�v, e◦

5〉 = 0, where e◦
5 = (0,0,0,0,1)�.

Hence (3.6) follows if we can verify that

〈ṽ,D2f̃ (y)ṽ〉 ≥ 2‖ṽ‖2, y ∈ W̃ , ṽ ∈ (e◦
5)

⊥.

Writing H(y) := (D2f̃ (y)ij )
4
i,j=1 for the 4 × 4 matrix (principal minor) obtained

from the 5 × 5 Hessian matrix representing D2f̃ (y) with respect to the standard
basis e◦

1, . . . , e
◦
5 of R5, we want to verify that

〈v̄,H(y)v̄〉 ≥ 2‖v̄‖2, y ∈ W̃ , v̄ ∈ R
4, (3.7)

that is, all eigenvalues of H(y) are at least 2. Let

� := {(v̄1, . . . , v̄4)
� ∈ [−1,1]4 : v̄i = 1 for some i ∈ {1, . . . ,4}}.

By the scaling invariance of (3.7) with respect to v̄ ∈R
4, (3.7) is equivalent to

〈v̄,H(y)v̄〉 ≥ 2‖v̄‖2, y ∈ W̃ , v̄ ∈ �. (3.8)

Since all eigenvalues of H((2,2,0,0,0)�) are positive, this holds if and only if
all eigenvalues of H(y)2 are at least 4 for y ∈ W̃ . The latter means that we have
to show that 〈v̄,H(y)2v̄〉 ≥ 4‖v̄‖2 for y ∈ W̃ and v̄ ∈ R

4 or, equivalently,

‖H(y)v̄‖2 ≥ 4‖v̄‖2, y ∈ W̃ , v̄ ∈R
4. (3.9)

Again by the scaling invariance of (3.9) with respect to v̄, (3.9) is in turn equiva-
lent to

‖H(y)v̄‖2 ≥ 4‖v̄‖2, y ∈ W̃ , v̄ ∈ �. (3.10)

Direct rigorous numerical analysis of the eigendecomposition of the Hessian
D2f̃ (y) for y ∈ W̃ may be challenging due to requiring too many subdivisions of
W̃ to achieve the required precision [15; 12; 9; 11]. As both, W̃ and � are compact
and finite-dimensional, and as the desired inequalities, either (3.8) or (3.10), are
expected to be strict, they are well suited for being studied by rigorous numerics
[14; 1; 19].

Namely, for small W̃ ′ ⊂ W̃ and �′ ⊂ �, we perform the following procedure
with all computations being carried out rigorously using interval arithmetic and
automatic differentiation [14; 1; 19; 10]. First, we bound the jet of f̃ up to Tay-
lor coefficients of degree 6 over W̃ ′. To increase precision and eliminate some of
the dependency issues, for a given W̃ ′, the degree 6 jet of f is bound both over



W̃ ′ and over the midpoint of W̃ ′. Hence, using the multivariate Taylor expan-
sions with appropriate remainder term, we obtain enhanced bounds on the Taylor
coefficients of f̃ over W̃ ′ and, in turn, a better enclosure of the Hessian matrix
H(y) = D2f̃ (y). Second, we test if we can guarantee inequality (3.8) or (3.10)
for all v ∈ �′. If that is not the case, then an adaptive bisection scheme of W̃ ′ ×�′
is used, and the arising subsets of W̃ ′ × �′ are processed separately.

We have implemented our software using the package CAPD [8] and verified
both inequalities independently and successfully. The required number of subsets
(of W̃ ×�) and the associated computational times (without parallelization on an
i7-9750) were

• (3.8): 25880 subsets, 8 m 14 s;
• (3.10): 2440 subsets, 46 s.

We note that the increased complexity of (3.8) is most likely just an artefact of the
naive computation of the inner product and could be decreased (to that of (3.10))
by choosing a more efficient evaluation scheme. The source code and output logs
are available at [2].

In particular, both (3.8) and (3.10) and, in turn, Lemma 3.1 have been verified.
�

Remark. We note that a slightly weaker version of Lemma 3.1 can be proved
without validated numerics; namely, when the positive constant 1

6 in Lemma 3.1
is replaced by an unknown positive constant c ≤ 1

6 . The point is that the eigenval-
ues of the restriction of D2f (2,2,0,0,0) to e⊥

5 are all larger than 2. Therefore
(3.6) holds by the continuity of D2f if v ∈ e⊥

5 and x̄ lies in a small but unknown
neighborhood of (2,2,0,0,0)� instead of lying in W . In turn, using the same
argument as below, this slightly weaker version of Lemma 3.1 still yields a some-
what weaker version of Theorem 1.3 where the positive constant 2−28 is replaced
by an unknown positive constant.

4. Local Stability

In the proof of Proposition 4.1, we will use the following two claims.

Claim 4.1. If the regular triangle T0 of side length b contains a triangle T that
has a side of length at most a, where b

2 ≤ a ≤ b, then A(T ) ≤ a
b
A(T0).

Proof. Let � be the line containing a side of T of length at most a. We may assume
that the vertex v of T opposite to � ∩ T is also a vertex of T0.

If the distance of � from v (that is, the height of T ) is at most b
√

3/2, then we
are done. Therefore we may now assume that the distance of � from v is larger
than b

√
3/2. Let Dv be the circular disc with center v and radius b

√
3/2. Since

the side � ∩ T is disjoint from Dv , it lies in one of the two connected components
of T0 \ Dv . It follows that T is contained in one of the two triangles obtained
by cutting T0 into two subtriangles by the height emanating from v, and thus
A(T ) ≤ 1

2A(T0).



Claim 4.2. If �1, �2, �3 are the side lengths of a triangle T and A(T ) ≥ ξ�1 for
some ξ ∈ [0, �1], then

�2 + �3 ≥ �1 + ξ2

�1
.

Proof. The height h of T corresponding to �1 is at least 2ξ , and �2 + �3 is mini-
mized under this condition if �2 = �3; thus

�2 + �3 ≥ 2

√(
�1

2

)2

+ h2 ≥
√

�2
1 + 16ξ2 = �1

√
1 + 16ξ2

�2
1

≥ �1 + ξ2

�1
,

which proves the claim. �

For any convex domain K , let dtr(K) be the minimal ρ ≥ 0 such that there exists
a regular triangle T with centroid z satisfying

T − z ⊂ K − z ⊂ (1 + ρ)(T − z).

In particular, dtr(K) measures how close K is to a suitable regular triangle.

Proposition 4.1. Suppose that K is a convex domain with dtr(K) ≤ 6−2 and

L(K)2 ≤ (1 + ε)6
√

3A(K,−K) (4.1)

for some ε ∈ [0, (6 · 180)−2]. Then dtr(K) ≤ 400
√

ε.

Proof. Let dtr(K) = η ≤ 6−2, and let ε be as in the statement of the proposition.
There exists a regular triangle T0 of side length b containing K such that a trans-
late of 1

1+η
T0 is contained in K . For a triangle T ⊂ K of maximal area contained

in K , we have

A(T ) ≥ A(T0)

(1 + η)2
≥ A(T0)

1 + 3η
. (4.2)

From now on, we use the notions and auxiliary constructions introduced for
K and T at the beginning of Section 3, including the hexagons H0, H1, H2, the
parameters t1, t2, t3 ≥ 0, etc.

The main part of the proof is divided into several steps. In Step 1, we prove
that T is

√
ε-close to a regular triangle, and Step 2 shows that A(H2,−H2) −

A(K,−K) is ε small. Based on these findings, Step 3 verifies that if H2 is close
to T in the sense that max{t1, t2, t3} ≤ 100

√
ε (see (4.21)), then Proposition 4.1

holds.
The rest of the argument is indirect. Starting from Step 4, we assume that the

assumption max{t1, t2, t3} > 100
√

ε (see (4.24)) is satisfied and derive a contra-
diction. Under this assumption, we prove in Step 4 that H1 is reasonably close
to H0 in the sense that ‖pi − qi‖ is reasonably small for i = 1,2,3 (see (4.26)).
Then Step 5 verifies that K ⊂ D = 1

2H1 + 1
2H2 and clearly D ⊂ H2. Finally, in

Step 6, we prove that the gap between A(H2,−H2) and A(D,−D) (and hence
the gap between A(H2,−H2) and A(K,−K) by Step 5) is too large, which yields
the desired contradiction.



Step 1. T is
√

ε-close to a regular triangle.

By the scaling invariance of the statement (and symmetry) we may assume that
the side lengths of T satisfy

a1 ≤ a2 ≤ a3 and a1 = 2.

Assuming that a1 < b
2 , we can apply Claim 4.1 with a = b/2 and get

A(T ) ≤ 1

2
A(T0) ≤ 1

2
(1 + η)2A(T )

by (4.2), which is a contradiction, since η ≤ 6−2. Hence we have b
2 ≤ a1 ≤ b, and

another application of Claim 4.1 now yields that

A(T ) ≤ a1

b
A(T0) ≤ a1

b
(1 + 3η)A(T ),

so that
b

1 + 3η
≤ a1 = 2 ≤ a3 ≤ b,

and hence

a3 ≤ b ≤ 2(1 + 3η) = 2 + 6η ≤ 2 + 1

6
. (4.3)

It also follows from (4.2) that

(1 + t1 + t2 + t3)A(T ) = A(H1) ≤ A(K) ≤ A(T0) ≤ (1 + 3η)A(T ),

and therefore

ti ≤ 1

12
<

1

6
for i = 1,2,3. (4.4)

Thus the condition dtr(K) ≤ 6−2 ensures that Lemma 3.1 can be applied.
Hence by a combination of (3.1) with Lemma 3.1 and assumption (4.1) of the

proposition we see that

(ai − 2)2 ≤ 6
√

3A(K,−K)ε ≤ 11A(K,−K)ε for i = 2,3, (4.5)

(ti − t)2 ≤ 6
√

3A(K,−K)ε

≤ 11A(K,−K)ε for t = 1

3
(t1 + t2 + t3), i = 1,2,3. (4.6)

To estimate A(K,−K), we observe that the height h1 of T corresponding to the

side a1 = 2 satisfies h1 ≤
√

a2
3 − 1 < 2 (since a2 ≥ a1), thus A(T ) ≤

√
a2

3 − 1 < 2
by (4.3), and hence

A(K,−K) ≤ A(T0,−T0) = 2A(T0) ≤ 2(1 + 3η)A(T )

≤
(

2 + 1

6

)
· 2 = 13

3
. (4.7)

Now (4.5)–(4.7) imply that

2 ≤ ai ≤ 2 + 7
√

ε for i = 2,3, (4.8)

|ti − t | ≤ 7
√

ε for i = 1,2,3. (4.9)



We observe that
a2

1+a2
2−a2

3
a2

is an increasing function of a2 ≥ 2 as a3 ≥ a1. Writing

αi to denote the angle of T opposite to the side ai and using that 72√ε ≤ 1, we
have

cosα3 = a2
1 + a2

2 − a2
3

2a1a2
≥ 8 − (2 + 7

√
ε)2

8
≥ 4 − 29

√
ε

8
≥ 1

2
− 4

√
ε > 0.

In particular, we have α1 ≤ α2 ≤ α3 < π/2, α3 ≥ π/3, and α1 ≤ π/3.
Since cos′(s) = − sin s ≤ −√

3/2 for s ∈ [π
3 , π

2 ], the mean value theorem im-
plies that

α3 ≤ π

3
+ 2√

3
4
√

ε ≤ π

3
+ 5

√
ε.

Since π ≤ α1 + 2α3 ≤ α1 + 2(π
3 + 5

√
ε), we conclude that

π

3
− 10

√
ε ≤ α1 ≤ α2 ≤ α3 ≤ π

3
+ 5

√
ε. (4.10)

As a first estimate, we deduce tanα3 ≤ 2, and thus tan′(s) = 1 + (tan s)2 ≤ 5 for
s ∈ [π

3 , α3]. In particular, (4.10) yields
√

3 − 50
√

ε ≤ tanα1 ≤ tanα2 ≤ tanα3 ≤ √
3 + 25

√
ε. (4.11)

Now let T ′
1 be the regular triangle of edge length 2 positioned in such a way that

the side a1 is common with T and intT ∩ intT ′
1 �= ∅. Recalling that v2 and v3 are

the endpoints of a1, we denote by v′
1 the third vertex of T ′

1, by z1 the centroid of
T ′

1, and by m = 1
2 (v2 + v3) the midpoint of a1. As a3 ≥ a2 and π

2 > α3 ≥ π
3 , there

exists a point q such that v′
1 ∈ [m,q] and v1 ∈ [v3, q]. In addition, we consider

the intersection point {p} = [q,m] ∩ [v1, v2] �= ∅ (see Figure 2).
We deduce from (4.11) that

‖q − v′
1‖ = tan(α3) − √

3 ≤ 25
√

ε

and

‖p − m‖ = tan(α2) ≥ tan(α1) ≥ √
3 − 50

√
ε,

and if p ∈ [v′
1,m], then also

‖p − v′
1‖ = ‖v′

1 − m‖ − ‖p − m‖ = √
3 − tan(α2) ≤ 50

√
ε.

Therefore ‖v′
1 − z1‖ = 2√

3
implies that in any case

(
1 − 25

√
3
√

ε
)
(T ′

1 − z1) ⊂ T − z1 ⊂
(

1 + 25
√

3

2

√
ε

)
(T ′

1 − z1). (4.12)

For the regular triangle

T1 = z1 + (
1 − 25

√
3
√

ε
)
(T ′

1 − z1)

with centroid at z1, we have

T1 − z1 ⊂ T − z1 ⊂ (
1 + 70

√
ε
)
(T1 − z1). (4.13)



Figure 2 Illustration of the triangles T = [v1, v2, v3], T ′
1 =

[v′
1, v2, v3] together with the auxiliary points m, p, q , z1 in the case

where p ∈ [v′
1,m]. In the case p /∈ [v′

1,m] (not shown in the figure),
we have T ′

1 ⊂ T and p = q = v1.

In addition, let z be the centroid of T . The argument above also shows that

v1 ∈ v′
1 + 25

√
3

2

√
ε(T ′

1 − z1).

Since z = 1
3 (v1 + v2 + v3) and z1 = 1

3 (v′
1 + v2 + v3), we get

z − z1 ∈ 25
√

3

2 · 3

√
ε · (T ′

1 − z1) ⊂ 10
√

ε · (T1 − z1),

z1 − z ∈ 20
√

ε · (T1 − z1),

(4.14)

where for the second containment, we used that −(T1 − z1) ⊂ 2(T1 − z1). In
summary, (4.13) and (4.14) show that the regular triangle T1 is a very good ap-
proximation of T .

Note that pi and qi lie on the same side of H2 (parallel to and near ai ) for
i = 1,2,3. This follows from αi ≤ π

2 , ai ≥ 2, (4.3), and (4.4), which imply that
tiaj ≤ 1

12 (2 + 1
6 ) < 0.2 < 1 ≤ ak

2 for i, j, k ∈ {1,2,3}. Moreover, for i = 1,2,3,



we have

1.77 >
(
1 + 4

√
ε
)(√

3 + 25
√

ε
) ≥ ai

2
tan(α3)

≥ hi ≥ ai

2
tan(α1) ≥ √

3 − 50
√

ε > 1.68, (4.15)

and hence in particular

2 > 1.77 > A(T ) = h1 > 1.68 > 1.5. (4.16)

Step 2. A(K,−K) and A(H2,−H2) are ε-close, and L(H0), L(H1), and L(K)

are ε-close.

We deduce from (4.7) that 6
√

3A(K,−K) ≤ 26
√

3 < 50. Therefore (4.1),
Lemma 3.1, H1 ⊂ K ⊂ H2, and L(H0) ≤ L(H1) imply that

50ε ≥ L(K)2 − 6
√

3A(K,−K) ≥ L(K)2 − 6
√

3A(H2,−H2)

≥ L(H1)
2 − 6

√
3A(H2,−H2) ≥ L(H0)

2 − 6
√

3A(H2,−H2) ≥ 0. (4.17)

In particular,

L(K)2 − 6
√

3A(K,−K) ≤ 50ε,

6
√

3A(H2,−H2) − L(K)2 ≤ 0,

which yields

A(H2,−H2) ≤ A(K,−K) + 5ε. (4.18)

Using L(K) ≥ L(H1) ≥ L(H0) ≥ L(T ) ≥ 6 and

L(K)2 − 6
√

3A(H2,−H2) ≤ 50ε,

6
√

3A(H2,−H2) − L(H1)
2 ≤ 0,

we get

50ε ≥ L(K)2 − L(H1)
2 = (L(K) − L(H1))(L(K) + L(H1))

≥ 12(L(K) − L(H1)).

We deduce that

L(K) ≤ L(H1) + 5ε. (4.19)

A similar argument shows that

L(H1) ≤ L(H0) + 5ε. (4.20)

This completes Step 2.
For the remaining part of the proof, we set γ = 102. In the following, we

distinguish whether

max{t1, t2, t3} ≤ γ
√

ε (4.21)

is satisfied or not. If (4.21) holds, then H2 is
√

ε-close to K (see the argument
below).



Step 3. If (4.21) holds, then dtr(K) ≤ 4γ
√

ε.

It follows from (4.13) and T ⊂ K that

T1 − z1 ⊂ K − z1. (4.22)

Using (4.21) and recalling that z is the centroid of T , we get

K − z ⊂ H2 − z ⊂ (1 + 3 max{t1, t2, t3})(T − z) ⊂ (
1 + 3γ

√
ε
)
(T − z).

Therefore (4.13) and (4.14) imply that if (4.21) holds, then

K − z1 = K − z + (z − z1) ⊂ (
1 + 3γ

√
ε
)
(T − z1) + 3γ

√
ε(z1 − z)

⊂ [
1 + 70

√
ε + 3γ

√
ε + 210γ ε + 60γ ε

]
(T1 − z1)

⊂ (
1 + 4γ

√
ε
)
(T1 − z1). (4.23)

In view of (4.22), we conclude Proposition 4.1 if (4.21) holds.
It remains to consider the case where

max{t1, t2, t3} > γ
√

ε, (4.24)

which will finally lead to a contradiction.
It follows from (4.9) and (4.24) that

min{t1, t2, t3} ≥ 86
√

ε. (4.25)

Step 4. Assuming (4.24), H1 is reasonably close to H0.

More precisely, we claim that

‖pi − qi‖ < 0.06 for i = 1,2,3, (4.26)

which is what we mean by saying that H1 is “reasonably close” to H0.
Let {i, j, k} = {1,2,3}, and assume that qi �= pi (otherwise, (4.26) readily

holds). For the line �i through pi and qi and parallel to ai , let ṽj be the re-
flection of vj through �i ; hence pi is the midpoint of [ṽj , vk]. For the triangle
T̃i = [qi, ṽj , vk], we have

A(T̃i) = 2A([qi,pi, vk]) = ‖pi − qi‖tihi .

Recall from (4.15) that 1.68 < hi < 1.77. Using (4.8) and ti ≤ 1
12 , by (4.4) we get

‖ṽj − vk‖ = 2‖pi − vk‖ ≤ 2

(
ai

2
+ 1

12
hi

)
≤ ai + 1

6
hi

≤ 2 + 7

6 · 180
+ 1

6
· 1.77 ≤ 2.31.

Therefore

A(T̃i) ≥ ‖pi − qi‖ti · 1.68 ≥ ‖pi − qi‖ti
2.31

· 1.68 · ‖ṽj − vk‖.
Since ‖pi − qi‖ti

2.31
· 1.68 ≤ ai

12 · 2.31
· 1.68 < ai ≤ ‖ṽj − vk‖,



Figure 3 Illustration for D = 1
2H1 + 1

2H2.

Claim 4.2 can be applied. In combination with ti ≥ 86
√

ε (by (4.25)), this leads
to

‖qi − vj‖ + ‖qi − vk‖ = ‖qi − ṽj‖ + ‖qi − vk‖

≥ ‖ṽj − vk‖ + 1

2.31

(‖pi − qi‖ti · 1.68

2.31

)2

= ‖pi − vj‖ + ‖pi − vk‖ + ‖pi − qi‖2t2
i

1.682

2.313

≥ ‖pi − vj‖ + ‖pi − vk‖ + ‖pi − qi‖2 862 · 1.682

2.313
ε.

We deduce from (4.20) that

5ε ≥ ‖pi − qi‖2 862 · 1.682

2.313 ε,

and hence (4.26) follows.

Step 5. Assuming (4.24), we have K ⊂ D := 1
2H1 + 1

2H2.

The polygon D ⊂ H2 has twelve sides (see Figure 3).
Six of these sides are subsets of the six sides of H2 as hH1(u) = hH2(u) for all

u ∈ U(H2), and the other six sides of D are parallel to the sides of H1. We prove

K ⊂ D (4.27)



indirectly, so we assume that there exists x ∈ K \D and seek a contradiction. Then
there exists u ∈ U(D) such that hK(u) ≥ 〈x,u〉 > hD(u). Since x ∈ K ⊂ H2, u is
normal to a side of D parallel to a side of H1. Let u be normal to [vi, qj ], i �= j ,
so that wij is the vertex of H2 where u is a normal to H2. For

� = hH2(u) − hH1(u) = 〈u,wij − qj 〉,
we have

� · ‖qj − vi‖ = 2A([qj , vi,wij ]) = tj hj‖wij − qj‖.
We have hj ≥ 1.68 by (4.15), and since ti ≤ 1

12 by (4.4) and hi < 2, we obtain
using (4.26) that

‖qj − vi‖ ≤ ‖pi − vi‖ + 0.1 ≤ ai

2
+ 1

12
hi + 0.1 ≤ 3

2
+ 1

6
+ 0.1 < 2

and
‖wij − qj‖ ≥ ‖wij − pj‖ − 0.1 ≥ aj

2
− 0.1 ≥ 1 − 0.1 = 0.9.

Thus we get

� ≥ 1

2
tj · 1.68 · 0.9 ≥ 60

√
ε.

We deduce that

〈u,x − qj 〉 > hD(u) − hH1(u) = 1

2
(hH2(u) − hH1(u)) = �

2
≥ 30

√
ε,

and therefore

A([qj , vi, x]) = 〈u,x − qj 〉 · ‖qj − vi‖
2

≥ 15
√

ε · ‖qj − vi‖.
Note that 15

√
ε ≤ 0.02 and ‖qj − vi‖ ≥ ‖pj − vi‖ − 0.1 ≥ 0.9. It follows from

Claim 4.2 and ‖qj − vi‖ ≤ 2 that

‖x − vi‖ + ‖x − qj‖ ≥ ‖qj − vi‖ + 1

‖qj − vi‖ · (15
√

ε
)2 ≥ ‖qj − vi‖ + 15ε.

Denoting by H̃ the polygon that is the convex hull of x and H1, we have that
[vi, x] and [x, qj ] are sides of H̃ , and hence

L(K) ≥ L(H̃ ) ≥ L(H1) + 15ε,

contradicting (4.19). In turn, we conclude (4.27).

Step 6. Assuming (4.24), A(H2,−H2) − A(K,−K) is too large.

To calculate A(D,−D) for D = 1
2H1 + 1

2H2, we claim that D0 = 1
2T + 1

2H2 (see
Figure 4) satisfies

A(D,−D) = A(D0,−D0) + A(T )(t1t2 + t2t3 + t1t3). (4.28)

We prove (4.28) by applying Betke’s formula (2.4) three times. First, we intro-
duce some notation for any i, j , k with {i, j, k} = {1,2,3}, where i, j , k are fixed
for this paragraph. Let bi be the side of D containing qi (and hence bi is contained
in the “long” side of H2 parallel to ai ), and let ũi ∈ U(D) be the normal to D at
the vertex vi of T , and hence −ũi is the exterior unit normal to bi . In addition, let



Figure 4 Illustration for D = 1
2H1 + 1

2H2 and D0 = 1
2T + 1

2H2.

di be the diagonal of D that cuts off bi and the two sides neighboring bi from D,
and hence di is parallel to bi . There is a side of D that is cut off by [qi, vj ] and
is parallel to [qi, vj ], and we denote by νij the exterior unit normal to that side of
D. In particular, νij and νik are the normals to the two sides neighboring bi .

Now d1 dissects D into a trapezoid and a polygon D1 with 10 sides, and on
the way to verify (4.28), we first claim that

A(D,−D) = A(D1,−D1) + SD(ũ1)SD(ν12)|det(ũ1, ν12)|. (4.29)

To prove (4.29), we choose a unit vector u1 �= ũ1 very close to ũ1 and such that
〈u1, v2 −v3〉 > 0, where very close means that � (u1, ũ1) < � (u, ũ1) for any (exte-
rior or interior) unit normal u �= ũ1 to a side of D. When we apply Betke’s formula
(2.4) to calculate the difference A(D,−D) − A(D1,−D1) using u1 as the refer-
ence vector, we deduce after cancelation of summands common to A(D,−D) and
A(D1,−D1) that the exterior unit normal −ũ1 to the sides b1 of D and d1 of D1

does not occur in either term and precisely one of the two exterior unit normals
of the two sides of D neighboring b1, in this case ν12, occurs. To see this, we
observe that if {i, j, k} = {1,2,3}, then

� (−ũi , νij ) < 0.16 (4.30)

because � (−ũi , νij ) = � (qi − vj , vk − vj ) satisfies tan � (−ũi , νij ) ≤ (tihi)/(1 −
0.06) < 0.16 using the estimates (4.26), hi < 1.77, and ti ≤ 1

12 (cf. (4.4)). On the



one hand, if {i, j} = {2,3}, then (4.10), (4.30), and
√

ε < (6 · 180)−1 yield

� (ũ1, νi1) = � (ũ1,−ũi ) − � (−ũi , νi1) = αj − � (−ũi , νi1)

≥ π

3
− 10

√
ε − 0.16 > 0.87;

therefore the angle of ũ1 with any other exterior unit normal to D or D1 is at least
0.87. On the other hand, � (−ũ1, ν1j ) < 0.16 for j = 2,3 by (4.30), concluding
the proof of (4.29).

Since

SD(ν12) = 1

2
‖q1 − v2‖, SD(ũ1) = 1

2
(t2 + t3)a1 = t2 + t3,

|det(ũ1, ν12)| = t1h1

‖q1 − v2‖ ,

we deduce from (4.29) that

A(D,−D) = A(D1,−D1) + 1

2
t1(t2 + t3)A(T ). (4.31)

Next, we observe that d2 dissects D1 into a trapezoid and a polygon D2 with
eight sides. Choosing a unit vector u2 �= ũ2 close enough to ũ2 and applying
Betke’s formula (2.4) to calculate A(D1,−D1) − A(D2,−D2) with u2 as a ref-
erence vector, we conclude as before that

A(D1,−D1) = A(D2,−D2) + 1

2
t2(t1 + t3)A(T ).

Finally, the analogous argument for a unit vector u3 �= ũ3 close enough to ũ3
implies that

A(D2,−D2) = A(D0,−D0) + 1

2
t3(t1 + t2)A(T ).

Thus we arrive at

A(D,−D) = A(D0,−D0) + 1

2
[t1(t2 + t3) + t2(t1 + t3) + t3(t1 + t2)]A(T ),

which completes the proof of (4.28).
We recall that A(T ,−T ) = 2A(T ) and A(H2,−H2) = 2A(T )(1+ t1t2 + t2t3 +

t3t1) and observe that A(H2,−T ) = A(T ,−H2) = A(T ,−T ) by the symmetry
and rigid motion invariance of the mixed area and Minkowski’s formula (2.1).
Thus (4.28) and the linearity of the mixed area imply

A(D,−D) = A(D0,−D0) + A(T )(t1t2 + t2t3 + t1t3)

= A

(
1

2
T + 1

2
H2,−1

2
T − 1

2
H2

)
+ A(T )(t1t2 + t2t3 + t1t3)

= 1

4
· 2A(T ) + 2

4
· 2A(T ) + 1

4
· 2A(T )(1 + t1t2 + t2t3 + t3t1)

+ A(T )(t1t2 + t2t3 + t1t3)

= 2A(T ) + 3

2
A(T )(t1t2 + t2t3 + t3t1).



We deduce from (4.18), K ⊂ D (see (4.27)), (4.25), and A(T ) ≥ 3/2 that

5ε ≥ A(H2,−H2) − A(K,−K) ≥ A(H2,−H2) − A(D,−D)

= 2A(T )(1 + t1t2 + t2t3 + t3t1) − 2A(T ) − 3

2
A(T )(t1t2 + t2t3 + t3t1)

= 1

2
A(T )(t1t2 + t2t3 + t3t1) ≥ 1

2
· 3

2
· 2 · (86 · γ )

√
ε

2 ≥ γ 2ε,

which is a contradiction, proving that (4.24) does not hold. Therefore the argu-
ment in Step 3 proves Proposition 4.1. �

5. Proof of Theorem 1.3

Before starting the actual proof of Theorem 1.3, we recall Proposition 5.1 and
Lemma 5.2 proved in essence by Betke and Weil as Lemmas 1 and 2 in [5]. We
slightly modified the argument from [5] and added a useful observation.

Proposition 5.1 (Betke and Weil [5]). If P is a polygon with k ≥ 3 sides, and P

is not a regular polygon with an odd number of sides, then there exists a polygon
P ′ with k sides and arbitrarily close to P such that

L(P ′)2

A(P ′,−P ′)
<

L(P )2

A(P,−P)
.

Proof. For a vertex v of the polygon P , we write NP (v) for the normal cone of
P at v; that is, if u1, u2 ∈ U(P ) are the exterior unit normals of the two sides
meeting at v, then NP (v) = pos{u1, u2}.

Case 1. There exist vertices v1 and v2 of P such that −NP (v1) ⊂ NP (v2).
In this case, P is not a triangle. Let v3, v4 be the neighbors of v1. For

v′
1 ∈ [v1, v4]\{v1, v4}, let P ′ be obtained from P by replacing the vertex v1

by v′
1. In particular, there exists a unit vector w ∈ − intNP (v1) orthogonal to

[v′
1, v3]. Using this vector w in (2.4) and the property −NP (v1) ⊂ NP (v2), we

get A(P ′,−P ′) = A(P,−P), whereas obviously L(P ′) < L(P ) by strict con-
tainment.

Case 2. There exist no vertices v1 and v2 of P such that −NP (v1) ⊂ NP (v2) as
in Case 1, but there exist a vertex v and a side e with exterior normal u0 ∈ U(P )

such that −u0 ∈ NP (v) and −u0 does not halve the angle of NP (v).
In this case, P does not have any parallel sides, since we are not in Case 1. The

line � through v parallel to e is a support line of P . Let v4 denote the point pre-
ceding v and v3 the point following v on ∂P in the clockwise order. Let ν0 denote
the unit vector orthogonal to u0 such that (v4 − v)/‖v4 − v‖, (v3 − v)/‖v3 − v‖,
and ν0 are in counterclockwise order on the unit circle. Let α4 denote the angle
enclosed by v4 − v and −ν0, and let α3 denote the angle enclosed by v3 − v and
ν0. Let ui denote the exterior unit normal of [vi, v] for i = 3,4. Since −u0 does
not halve the angle enclosed by u3, u4, we have α3 �= α4. We may assume that
α4 > α3. By Fermat’s principle, moving v along � an arbitrarily small amount
in the direction of ν0 to v′ and denoting by P ′ the polygon obtained from P by



replacing v by v′, we get L(P ′) < L(P ). Clearly, we thus still get a convex k-gon
if v′ is sufficiently close to v.

To prove A(P,−P) = A(P ′,−P ′), we denote by Q the (nonempty) convex
hull of the (common) vertices of P and P ′ (thus v, v′ are removed). Note that in
the case where P (and hence also P ′) is a triangle, Q is a segment. We consider
the triangles � = [v3, v4, v] and �′ = [v3, v4, v

′] that satisfy P = Q∪� and P ′ =
Q ∪ �′. For the segment I = [v3, v4], we have A(�,−I ) = A(�, I ) = A(�).
Using this and the additivity of the mixed area in both arguments, we obtain

A(P,−P) = A(Q,−Q) + 2A(Q,−�) − 2A(Q,−I ).

A similar expression is obtained for P ′ with � replaced by �′.
We choose v5, v6 such that e = [v5, v6] and v6 − v5 is a positive multiple of

v′ − v. If v′ is sufficiently close to v, then the first assumption in Case 2 ensures
that for the exterior unit normals uj of the sides of Q between v4 and v5 (in
counterclockwise order), we have

h�(uj ) = 〈v5, uj 〉 = h�′(uj )

and that for the exterior unit normals uj of the sides of Q between v6 and v3 (in
counterclockwise order), we have

h�(uj ) = 〈v6, uj 〉 = h�′(uj ).

Then (writing e also for the length of the edge e)

A(Q,−�) − A(Q,−�′) = e〈u0,−v〉 − e〈u0,−v′〉 = e〈u0, v
′ − v〉 = 0,

which proves the statement.
Case 3. There exist no vertices v1 and v2 of P such that −NP (v1) ⊂ NP (v2),

and for any vertex v and side e with exterior normal u0 ∈ U(P ) such that −u0 ∈
NP (v), the vector u0 halves the angle of NP (v), but P is not a regular polygon
with an odd number of sides.

Let u1, . . . , uk be the exterior unit normals to the sides of P in clockwise order.
We observe that no closed half-plane having the origin on its boundary contains
u1, . . . , uk . We set ui+k = ui for i = 1, . . . , k.

We can assume that � (u1, u2) = min{� (ui, ui+1) : i ∈ {1, . . . , k}. By the first
assumption of Case 3, ui �= −uj for i, j ∈ {1, . . . , k}. Hence there is a unique
m ∈ {2, . . . , k − 1} such that −u1 ∈ int pos{um,um+1}. By the second assump-
tion of Case 3 we have � (−u1, um) = � (−u1, um+1) =: α1. Moreover, applying
twice the first assumption of Case 3, it follows that −u2 ∈ int pos{um+1, um+2},
and by the second assumption we then get � (−u2, um+1) = � (−u2, um+2) =: α2.
Thus we obtain α1 + α2 = � (−u1,−u2) = � (u1, u2). By the minimality of
� (u1, u2) we conclude that α1 = α2, and hence � (um,um+1) = � (um+1, um+2) =
� (u1, u2).

Considering successively in this way the normal vectors u3, um+3, . . . , um−1,

uk, um,u1, we conclude that k = 2m − 1 is odd, −ui ∈ int pos{ui+m−1, ui+m}
halves the angle enclosed by ui+m−1 and ui+m, and � (u1, u2) = � (ui, ui+1) for
i ∈ {1, . . . , k}. In turn, we find that all exterior angles of P are 2π/k.



For i ∈ {1, . . . , k}, we denote by ei both the side corresponding to ui of P and
its length, and we denote by �i the line containing ei . We set ei+k = ei for i =
1, . . . , k. Since P is not regular, the side lengths of P are not the same. Therefore
there exist 2 ≤ p < q ≤ k + 1 such that

ep−1 + ep �= eq−1 + eq . (5.1)

Fix i ∈ {1, . . . , k} for the moment. If |t | is small, then let Pi,t be the k-gon bounded

by the lines �j , j ∈ {1, . . . , k}\{i}, and �i + tui . Set κ = 2
1−cos 2π

k

sin 2π
k

. Then we get

L(Pi,t ) = L(P ) + 2t ·
(

1

sin 2π
k

− 1

tan 2π
k

)
= L(P ) + κ · t.

Choosing w = −ui in (2.4), we see that

A(Pi,t ,−Pi,t ) = A(P,−P) + (ei+m + ei+m−1) · � · t,
where � = sin π

k

sin 2π
k

. We deduce that

d

dt

A(Pi,t ,−Pi,t )

L(Pi,t )2

∣∣
t=0=

(ei+m + ei+m−1) · � · L(P ) − A(P,−P) · 2κ

L(P )3 . (5.2)

From (5.1) and (5.2) we conclude the existence of i ∈ {1, . . . , k} such that

d

dt

A(Pi,t ,−Pi,t )

L(Pi,t )2

∣∣
t=0 �= 0.

In particular, we can choose a t �= 0 with arbitrarily small absolute value such that

A(Pi,t ,−Pi,t )

L(Pi,t )2
>

A(P,−P)

L(P )2
,

and hence we can choose P ′ = Pi,t , completing the proof of Proposition 5.1. �

For regular polygons with an odd number of sides, we have the following esti-
mates.

Lemma 5.2. If P is a regular polygon with an odd number k ≥ 5 of sides, then

dtr(P ) > 0.25, (5.3)

L(P )2

A(P,−P)
≥ 20 sin

π

5
> 1.1 · 6

√
3. (5.4)

Proof. We may assume that L(P ) = 1, and hence A(P,−P) = (4k sin π
k
)−1 ac-

cording to (2.2), proving (5.4). For (5.3), assuming that the origin is the centroid
of P , we have −P ⊂ (cos π

k
)−1P , and hence A(P,−P) ≤ (cos π

k
)−1A(P ). On

the other hand, if T0 ⊂ P is a regular triangle with centroid z0 and P − z0 ⊂
(1 + d)(T0 − z0), then

A(P,−P) ≥ A(T0,−T0) = 2A(T0) ≥ 2(1 + d)−2A(P ),

and hence dtr(P ) ≥
√

2 cos π
5 − 1 > 0.25.



Proof of Theorem 1.3. Let ε ∈ [0,2−28], and let K ⊂R
2 be a convex domain with

L(K)2 ≤ (1 + ε)6
√

3A(K,−K). Then 0 ≤ ε < (6 · 2400)−2 < (6 · 180)−2. We
distinguish two cases.

Case 1: dtr(K) ≤ 6−2. Then Proposition 4.1 implies that dtr(K) ≤ 400
√

ε, and
the proof is finished.

Case 2: dtr(K) > 6−2. We will show that in fact this case does not occur. We
fix a number ε′ such that 0 ≤ ε < ε′ < (6 · 2400)−2. Since dtr(·), A(·, ·), and L(·)
are continuous, there is a polygon P ⊂ R

2 with dtr(P ) > 6−2 and L(P )2 ≤ (1 +
ε′)6

√
3A(P,−P). Since dtr(·), A(·, ·), and L(·) are translation invariant, dtr(·) is

scaling invariant, and K �→ L2(K)/A(K,−K) (for convex domains K ⊂ R
2) is

also scaling invariant, we can assume that o ∈ P and A(P,−P) = 1. Let k ≥ 3
be the number of vertices of P . We write Pk for the set of all polygons G ⊂ R

2

with at most k vertices, dtr(G) ≥ 6−2, o ∈ G, A(G,−G) = 1, and L(G)2 ≤ (1 +
ε′)6

√
3. Then in particular we have P ∈Pk �= ∅.

We claim that there is P0 ∈ Pk such that L(P0) = inf{L(G) : G ∈ Pk}. For the
proof, it is sufficient to consider a minimizing sequence Pi ∈ Pk with L(Pi) ≤
L(P ) for i ∈ N. Let B2 denote the unit disc with center at the origin. Then
Pi ⊂ L(P )B2 for i ∈N. An application of Blaschke’s selection theorem (see [17,
Theorem 1.8.7] or [13, Theorem 3.4]) shows that the sequence Pi , i ∈ N, has a
convergent subsequence with limit P0 ⊂ R

2. Since all conditions involved in the
definition of Pk are preserved under limits and L(·) is continuous, we conclude
that P0 ∈ Pk realizes the infimum.

Since dtr(P0) ≥ 6−2, P0 is not a regular triangle. Assuming (for the moment)
that P0 is a regular r-gon with r odd, we have k ≥ r ≥ 5. Then Lemma 5.2 shows
that L(P0)

2 ≥ 1.1 · 6
√

3. Since also L(P0)
2 ≤ (1 + ε′)6

√
3, we get ε′ ≥ 0.1, a

contradiction.
Hence P0 ∈ Pk is a k-gon but not a regular polygon with an odd number of

edges. Assume (for the moment) that dtr(P0) > 6−2. Proposition 5.1 then shows
that there is a k-gon P1 such that dtr(P1) > 6−2 and

L(P1)
2

A(P1,−P1)
<

L(P0)
2

A(P0,−P0)
= L(P0)

2.

Again by scaling and translation invariance we obtain a k-gon P2 for which
dtr(P2) > 6−2, A(P2,−P2) = 1, o ∈ P2, and L(P2)

2 < L(P0)
2 ≤ (1 + ε′)6

√
3,

that is, P2 ∈ Pk . This contradicts the minimality of L(P0). Therefore we conclude
that dtr(P0) = 6−2. Since L(P0)

2 ≤ (1 + ε′)6
√

3A(P0,−P0), it follows from an-
other application of Proposition 4.1 that

6−2 = dtr(P0) ≤ 400
√

ε′ < 400 · (6 · 2400)−1 = 6−2,

a contradiction. This finally shows that the present case does not occur, which
completes the argument.
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