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Abstract— Weather radars are highly sophisticated tools for
quantitative precipitation estimation (QPE) and provide obser-
vations with unmatched spatial representativeness. However,
their indirect measurement of precipitation high above ground
leads to strong systematic errors compared to direct rain gauge
measurements. Additionally, the temporal undersampling from
5-min instantaneous radar measurements requires advection
correction. We present ResRadNet, a 3-D-convolutional residual
neural network approach, to reduce these errors and, at the
same time, increase the temporal resolution of the radar rainfall
fields by a 5-min short-range prediction of 1-min time-steps. The
network is trained to process spatiotemporal sequences of radar
rainfall estimates from a composite product derived from 17 C-
band weather radars in Germany. In contrast to previous
approaches, we present a method that emphasizes the generation
of spatiotemporally consistent and advection-corrected country-
wide rainfall maps. Our approach significantly increased the
Pearson correlation coefficient (PCC) of the radar product (from
0.63 to 0.74) and decreased the root mean squared error (mse)
by 22% when compared to 247 rain gauges at a 5-min resolution.
An additional large-scale comparison to eight years of data
from 1138 independent manual daily gauges confirmed that the
improvement is robust and transferable to new locations. Overall,
our study shows the benefits of using 3-D convolutional neural
networks (CNNs) for weather radar rainfall estimation to provide
1-min, ground-adjusted, that is, bias-corrected with respect
to on-ground sensors, and advection-corrected radar rainfall
estimates.

Index Terms— Convolutional neural network (CNN), deep
learning, precipitation, residual neural network, weather radar.
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I. INTRODUCTION

WEATHER radars are one of the most advanced tools
for quantitative precipitation estimation (QPE) at high

spatial and temporal resolutions. Their observations are not
only essential for state agencies providing information for
disaster or water management. They also became one of the
most popular rainfall observation tools for citizens. The key
to their success is the high spatial representativeness of the
derived measurements. Even though they integrate over large
volumes, depending on the distance from the radar [1], they
provide several observations per km2 which is significantly
higher than rain gauge networks. For example, the average
density of rain gauges is 1/330 km−2 in Germany, which is
high in a global comparison. However, the raw measurements
of weather radars are subject to systematic and random errors
due to their indirect measurement high above ground [2], [3].
Additionally, weather radar measurements are instantaneous,
typically sampled every 5 min, which leads to a temporal
undersampling. This becomes obvious when aggregating rain
fields containing small fast-moving cells which leads to gaps
in the rain field. As a solution, advection correction methods
have been suggested [4], [5], [6].

A common approach to correct radar QPE biases is to merge
radar and rain gauge data to provide optimal rainfall estimates
near the ground. Most of them consider both radar and rain
gauge data as sources of information to achieve a combined
product. Others correct radar data to remove biases compared
to rain gauge observations using a statistical approach [3], [7],
[8]. However, scenario-dependent and advection-driven biases
between radar and rain gauge data ask for a more dynamic
approach like [9] propose. It is reasonable to assume that
the spatiotemporal dynamics contained in the rainfall fields
measured by weather radars can provide valuable information
to correctly map radar rainfall estimates to the ground.

Deep neural networks have been used effectively for mod-
eling dynamic physical systems. They provide a flexible and
computationally efficient modeling framework that can outper-
form state-of-the-art physical models with comparatively small
computational effort and at low latency [10]. The concept of
using deep neural networks to derive improved reflectivity-
rainfall (Z-R) retrieval for radar-derived QPE has been used
recently by [11] who targeted hourly observations of 45 rain
gauges from radar reflectivity at S-band using one radar.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5910-3037
https://orcid.org/0000-0002-7371-0834
https://orcid.org/0009-0004-0580-7994
https://orcid.org/0000-0001-9573-1743
https://orcid.org/0000-0002-4583-3327


5103710 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 1. (Left) Map of Germany showing the locations of the rain gauges used for the train, validation, and test split and (right) the minimal radar measurement
height above ground of the composite derived from the 17 C-band radars. Training data are taken from 2020 and validation and test data are from 2021.

Chen and Chandrasekar [12] applied a 2-D-convolutional
neural network (CNN) to derive point scale rainfall from
reflectivity and differential reflectivity in the vicinity of one
radar, also at S-band. Vogl et al. [13] applied a neural network
approach deriving rainfall estimates from reflectivity measured
at X-band using one reference rain gauge and investigated the
influence of different temporal aggregations on the neural net-
work performance. Hassan et al. [14] applied classical machine
learning algorithms to determine suitable physical retrieval
algorithms in different scenarios. Moraux et al. [15] present
a multi-modal approach for merging rain-gauge, satellite, and
radar rainfall estimates using all three data sources as model
input. In summary, these studies directly used radar reflectivity
as input for their retrievals without increasing the temporal
resolution. They provide a proof of concept that a learned
Z-R retrieval can improve radar rainfall estimates at S- or X-
band. The respective case studies involved either single radar
stations, a low amount of reference stations, or a short time
period. It remains unclear if an improved Z-R retrieval or an
estimate of the spatiotemporal dynamics and a reduced spatial
or temporal mismatch between radar and on-ground reference
is responsible for the improvement. It is also unclear if radar
rainfall estimates from a radar composite, which can include
additional errors or discontinuities, can be used to consistently
improve surface rainfall at high spatial and temporal resolu-
tions (e.g., 1 km and 1 min) at a country-wide scale.

The research questions addressed by this study target these
knowledge gaps.

1) Are 3-D-convolutional residual neural networks a suit-
able tool to increase the temporal radar resolution of
5 min by a short-term prediction of five 1-min time-
steps?

2) Can biases between high-resolution C-band weather
radar rainfall estimates and rain gauges on the ground
be effectively reduced?

3) Does the method provide spatiotemporally consistent
country-wide rainfall maps over Germany which can be
used to correct advection-driven undersampling?

In summary, we aim to show that 3-D-convolutional residual
neural networks are capable of simultaneous temporal super-
resolution, ground adjustment, and advection correction of
radar rainfall. Our evaluation is based on eight years of
country-wide radar and rain gauge observations. For the sake
of brevity, we denote our proposed method by ResRadNet.

II. DATA AND METHODS

A. Data

All data used in this study was provided by the Ger-
man meteorological service (DWD). We used two rain
gauge and two radar datasets. The 1-min rain gauge
data are freely available on DWD’s opendata online
archive (https://opendata.dwd.de/). The network operated Ott
Pluvio2 sensors until 2018. From 2018 to 2020 these rain
gauges were replaced by rain[e] sensors from Lambrecht
meteo. Both sensors are weighing gauges that provide the
accumulated rainfall amount on a 1-min basis. While they have
a different resolution (Pluvio2 0.01 mm and rain[e] 0.001 mm)
the quantization of the dataset remains the same with 0.01 mm.
The average station density was one rain gauge per 330 km2.

The daily rain gauge data is also freely available on DWD’s
opendata online archive [16]. The network consisted of Hell-
mann rain gauges with a manual readout of the accumulated
rainfall amount of the last 24 h at 5:50 UTC. Therefore, the
aggregation time was from 5:50 to 5:50 UTC on the following
day. The quantization of the dataset was 0.1 mm.

For the period from 2013 to 2021, there were 1066 1-min
and 2150 daily rain gauge stations available. Around 50% of
the daily rain gauges were located at the same site as the 1-min
rain gauges. In order to obtain an independent network of daily
rain gauges we removed these stations from the analysis. The
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Fig. 2. Schematic overview of the ResRadNet architecture, the input, and the target data. To predict (e) one set of five 1-min rain gauge observations,
the model uses (a) the minimal measurement height above ground, and (b) five 5-min radar time-steps with a spatial extent of 11 × 11 pixels (≡11 km),
centered at the rain gauge location. The neural network (c) is using convolutional layers (orange) and (d) skip connections with added layers organized as
residual blocks. The height and the rainfall information are processed by separate input branches and later concatenated before being processed by another
convolutional block and a final fully connected part. Beneath the 1-min rain gauge observations Rst1, (e) also shows the 5-min average rainfall from the center
radar pixel Rry/5 and the rain gauge reference Rst5. ResRadNet was trained to predict Rst1 from (a) and (b) and thus improve Rry/5.

remaining 1138 locations are shown as black dots in Fig. 1.
Note that not all stations were available for the full period
due to maintenance, redistribution, and new installation. The
number of missing gauges per year was less than 5%.

The radar products from DWD used in this study
are RADOLAN-RY, RADOLAN-RW, and RADKLIM-YW.
A detailed explanation of the operational routines of these
three radar products from DWD, e.g., on the used three-
part Z-R relation, the rain gauge adjustment or climatological
corrections can be found in [17] for RADOLAN-RY and
RADOLAN-RW and in [18] for RADKLIM-YW.

RADOLAN-RY is a quality-checked and attenuation-
corrected composite of 17 weather radars in Germany, with
a temporal resolution of 5 min and a spatial resolution of 1 ×

1 km on a 900 × 900 km equally spaced grid. DWD derives
the rainfall rate from a Z-R relationship based on measured
reflectivity at C-band.

RADOLAN-RW is an hourly aggregated and
gauge-adjusted version of RADOLAN-RY. The adjustment
consists of a weighted combination of multiplicative and
additive factors derived from the comparison of the 1-min
rain gauges described above with the radar grid at an hourly
aggregation.

For RADKLIM-YW, the DWD uses the same radar and
gauge data, as well as the daily rain gauges described above
to derive a gauge-adjusted and climatologically corrected radar
product at a temporal resolution of 5 min and a spatial
resolution of 1 × 1 km on an equally spaced grid of 1100 ×

900 km extending 100 km to the east and west compared
to RADOLAN-RY. It should be noted that the adjustment
weights are calculated at a 1-h resolution and remain constant
for the 12 5-min timesteps within this hour. Thus, the 5-
min observations still deviate from the rain gauges used
for adjustment. The climatological corrections aim to reduce
errors for example radar spokes from beam blockage and
range-dependent underestimation. We used RADKLIM-YW as
a visual reference for high-resolution maps.

The dataset covers the years 2001–2021, but we omitted
the time period between 2001 and 2012 since the number of
available rain gauges was much lower due to the ongoing
set-up of the gauge network. To compare our results to
an advection-corrected version of RADOLAN-RY we used
the Lucas-Kanade algorithm [19] implemented in PYSTEPS
version 1.7.1 [6]. We used a base resolution of 5 min and
five intermediate timesteps. To compare 1-min neural network
estimates to RADOLAN-RY we interpreted the 5-min reso-
lution as a constant average during the 5 min [see Rry/5 in
Fig. 2(e)].

The minimal measurement height above ground (see Fig. 1)
is derived from the terrain following the beam angle of
the precipitation scan and is provided on the same grid as
RADOLAN-RY. Where no terrain is blocking the beam an
angle of 0.8◦ is used. In the radar composite, the minimum
of the measurement heights of two overlapping radar scans is
used. This usually gives the measurement height of the closest
radar which also has the highest weight in the composite of
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measurements. In some parts of Germany, the measurement
height exceeds 2.5 km.

B. Data Pre-Processing

We train our model on sequences of RADOLAN-RY radar
images with the objective to predict an assigned sequence of
rain gauge measurements. The selection of radar sequences
and the assigned rain gauge were defined as shown in Fig. 2:
If a rain gauge Y was contained in the radar pixel X t,i, j at
time t in minutes, then X i, j was associated with rain gauge
measurements (Yt ′)t ′∈{t,...,t+4}. For grid calculations we used
ωradlib [20]. As model input, the neighboring radar pixels
{Xk,l}k∈{i−5,...,i+5},l∈{ j−5,..., j+5} at times t − 20, t − 15, . . . , t
were concatenated to form a sample of shape (5, 11, 11) [see
Fig. 2(b)]. Additional model input was given by the minimal
measurement height above ground from the 11 × 11 radar
pixels [see Fig. 2(a)].

We excluded all samples where the radar input contained
missing values or where all values were zero. We also excluded
all samples where the associated rain gauge had a missing
value, but no additional requirements were made for the rain
gauge reference. Data were split into spatially and temporally
separated train, validation, or test sets by a random selection
of 581 stations for training, 238 for validation, and 247 for
testing of the model. The locations of the selected rain gauges
are shown in Fig. 1. For training only the year 2020 was con-
sidered and, if not indicated otherwise, the full year 2021 was
used for both validation and testing. The training data were
used to train the neural network and the validation data were
used for model selection and bias correction as described
below. The test dataset was an independent dataset only
used for validation. The training dataset contained 8 773 000
samples in randomized order.

C. Model Architecture

The model architecture of ResRadNet consisted of a
two-branch CNN with two 3-D-residual blocks in the radar
input branch and a 2-D convolution block in the measurement
height branch. A schematic overview is given in Fig. 2(c),
a more precise description of the layers and connections is
given in Table I, and code to re-build the model or retrieve
the trained model is given in [21]. The model architecture
was designed using the Keras API in Tensorflow version 2.7.0
[22] and optimized with the AMSgrad version of the Adam
algorithm and a learning rate of 0.0001 [23], [24] using a
mean squared error (mse) loss [see (3)]. The residual blocks
consisted of two convolutional branches receiving the same
input [see Fig. 2(d)]. The first uses two 3-D convolutional
layers with a kernel size of 3 and ReLU activation. The second
uses one 3-D convolutional layer with a kernel size of 1.
They are followed by an added layer that combines the two
branches. In general, such a design allows for the use of deeper
networks to learn more complex features without running into
gradient vanishing problems [25]. More specifically, as [26]
describe this network design encourages the representation of
features as a perturbation of the input. Therefore, in our case,
the model is encouraged to learn to represent the optical flow

of a field rather than to produce a precise representation of
the field itself in every layer.

We trained the model with a batch size of 1000. After
each epoch, the same 100 000 random validation samples
were evaluated and the model was saved. We did not use the
full validation set to speed up training time. After training,
the model with the best validation loss was selected. Due
to the skewed distribution of rainfall estimates, there was a
multiplicative bias of the form Rst/Rnn = α ̸= 1, where
Rst is the rain gauge reference, Rnn is the neural network
prediction and where the R indicates the mean of the quantity.
We decided to remove this bias by using a bias correction
factor Rnn 7→ αRnn which is equivalent to a common mean
field bias reduction [8]. We computed this factor using the
validation dataset.

In inference mode, the final model was used like a
spatio-temporal filter kernel that was applied to the neighbor-
hood of every radar pixel. The computation time for a full
radar image was 5 s per time step using an NVIDIA Tesla
V100 32 GB GPU. The performance loss on smaller GPUs is
negligible due to the small size of the input data. An approx-
imate 20-s overhead for serialization and de-serialization of
the samples could be omitted by parallel computation.

D. Evaluation

The derived QPE is evaluated for different temporal aggre-
gations (1, 5 min, and daily) using a set of pixel-wise error
metrics which are commonly used in the field [27]. The
Pearson correlation coefficient (PCC) measuring the linear
correlation between predicted values and ground truth is
defined as

PCC =

∑
n

(
Rst − Rst

)(
R − R

)√∑
n

(
Rst − Rst

)2 ∑
n

(
R − R

)2
(1)

where Rst is the rain gauge reference and R is the radar
(Rry) or neural network (Rnn) prediction. Accordingly, the
mse, (normalized) root mse (NRMSE), and normalized bias
(NBIAS) are given by

mse = (Rst − R)2 (2)

NRMSE =
1

Rst

√
(Rst − R)2 (3)

and

NBIAS =
Rst − R

Rst
∗ 100. (4)

The NBIAS is independent of the temporal resolution and,
therefore, also reflects the relative bias for the whole evaluation
period. Let R+ and R+

st indicate if radar or rain gauges
detect rainfall, i.e., let them be equal to 1 if the value of R
(respectively, Rst) is larger than zero and zero otherwise. Then
the mean detection error (MDE) is defined as the frequency
of cases, where R+

st ̸= R+. Additionally, we investigate the
similarity, or rather maximal dissimilarity, between the two
distributions using the Kolmogorov–Smirnov (KS) test. It is
defined as the maximum deviation between the cumulative
distribution of reference and predicted values.
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TABLE I
ARCHITECTURE OF RESRADNET. THE TABLE RESEMBLES THE MODEL SUMMARY GIVEN BY THE KERAS API OF TENSORFLOW VERSION 2.7.0. THE

TOTAL NUMBER OF TRAINABLE PARAMETERS WAS 177 985

Fig. 3. Two-dimensional-histograms showing the relationship between RADOLAN-RY [Rry in (a) and (d)] or ResRadNet [Rnn in (b), (c), (e), and (f)] and
rain gauge (Rst) observations. For (a) and (b) temporal resolution is 5 min. For (c) it is 1-min. (d)–(f) Zoomed-in version of (a)–(c) with smaller bin widths
to visualize what is happening for smaller rainfall amounts below 1 mm.

III. RESULTS

A. Model Selection and Comparison at 1-min Resolution

ResRadNet achieved the best mse on the 100 000 sample
validation set after 15 epochs. For this validation data, the bias
correction factor α was close to 1 with a value of 1.176 and
we applied it to all predicted rainfall estimates presented
hereafter. Therefore, the model achieved zero NBIAS, a PCC

of 0.68, and an MDE of 0.16 when compared to the full 1-min
validation set. A constant prediction of five 1-min values using
the average RADOLAN-RY value achieved worse results with
an NBIAS of −24.3%, a PCC of 0.57, and an MDE of 0.26.
For the test data results at a 1-min resolution were similar
with a slightly increased NBIAS (see Table II). The 2-D
histogram comparing Rnn1 and Rst1 shown in Fig. 3(f) showed
that missed extremes (Rnn1 ≪ Rst1) were more frequent than
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false extremes (Rnn1 ≫ Rst1) considering the higher values of
bins close to the x-axis.

B. Comparison at 5-min Resolution

The results of the test dataset at a 5-min resolution are
shown in Table II. Both RADOLAN-RY’s and ResRadNet’s
PCC improved compared to the 1-min results. The KS-test
and MDE improved for the radar and worsened for the neural
network. The RMSE increased in both cases and the NBIAS
was independent of the resolution. Except for the KS-test the
ResRadNet achieved better results than RADOLAN-RY.

Fig. 3 shows a scatter density comparison of the rain gauge
and the radar or neural network predictions. The most obvious
improvement of ResRadNet could be observed near the x- and
y-axis of the plots [comparing panels Fig. 3(a) and (b)] and
for the smaller values comparing panels Fig. 3(d) and (e). The
panels showing ResRadNet data show a higher concentration
of points along the diagonal and a lower concentration closer
to the axes. While there is still a large uncertainty for extreme
values, outliers close to both axes could be reduced.

Fig. 4 shows a long-term analysis using the test stations
and the years 2013 to 2021. It confirms that for the 5-min
resolution, ResRadNet performed better than the radar for all
years and all scores. The average improvement was 0.2 for
the PCC, 2 for the NRMSE, 20% for the NBIAS and 7% for
the MDE. The year 2016 showed exceptionally poor PCC and
NRMSE for RADOLAN-RY while ResRadNet seemed to be
able to correct this issue.

C. Comparison to Daily Rain Gauge Data

The comparison to the independent set of daily rain gauge
measurements confirmed the 5-min test results. ResRadNet
improved the PCC with a value of 0.86 compared to 0.84 for
RADOLAN-RY and decreased the RMSE from 3.28 to 2.65.
The MDE and KS-Test were very similar for both products.
The resolution-independent NBIAS was similar to the 1-min
gauges despite the different station locations (see Table II).
The long-term evaluation from 2013 to 2021 (excluding the
training year 2020) showed that the improvement was very
consistent (see Fig. 4). The 2021 scores were, again, the high-
est for both RADOLAN and ResRadNet and the improvement
was smaller than in previous years. The NBIAS shows the
same temporal dynamics as for the 5-min data but is slightly
higher for both products.

As an additional reference, we compared the operational
gauge adjustment routine of the DWD (RADOLAN-RW)
and the daily rain gauge data, which was not used for this
adjustment (see Fig. 4). It could be observed that, at this
temporal resolution, the MDE is only marginally better than
for RADOLAN-RY or ResRadNet. The NBIAS and NRMSE
are lower than for ResRadNet and the PCC is higher with
values around 0.9. An exception is the year 2016 when
RADOLAN-RW suffers from a similar performance decrease
as RADOLAN-RY and does not outperform ResRadNet.

D. Spatial and Temporal Coherence

The spatial and temporal coherence of the rainfall fields
can be seen in the maps shown in Fig. 5 and the animation

Fig. 4. Long-term performance comparison of (orange) RADOLAN-RY,
(green) RADOLAN-RW, and (blue) ResRadNet. The PCC, NRMSE, NBIAS
and MDE metrics are shown using the 247 5-min test (solid lines) and
1138 daily (dashed lines) rain gauges as a reference. RADOLAN-RW is not
available at a 5-min resolution.

provided on Zenodo [28]. Since no radar reference at a 1-min
resolution was available, the analysis of the 1-min rainfall
maps from the neural network was done by visual inspection.

The maps showed that, compared to RADOLAN-RY and
RADKLIM-YW, ResRadNet produced smoother structures
with more gentle gradients. However, no additional structures
with an artificial character like previously discovered in [29]
were produced and the spatial distribution and connection of
rain cells looked reasonable. Fig. 5 shows that the neural
network decreased the overestimation (less red colors) in the
southwest of Germany and around the upper two rain cells
in the southeast without an increased underestimation (more
blue colors). It even improved the severe misplacement of the
small rain cell with the highest intensity close to the border
of the study area in the southeast.

The temporal coherence of the neural network predictions
was judged by visual inspection of the provided animation.
It was similar to both radar products, that is, between 5-min
time steps similar discontinuities could be observed. However,
the 1-min neural network resolution removed these disconti-
nuities at the presented scale creating a fluid motion.

To investigate if this fluid motion presented a plausible
advection scheme we compared a 180-min aggregation of rain-
fall fields containing small, fast-moving cells. The products we
used were RADOLAN-RY, RADKLIM-YW, an aggregation
of every fifth neural network prediction (ResRadNet every
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TABLE II
RESULTS FOR THE 1- AND 5-MIN RESOLUTION OF THE TEST DATA AND THE INDEPENDENT DAILY GAUGES

5 min) to simulate a temporal undersampling, an aggregation
of all ResRadNet predictions, and the advection corrected
RADOLAN-RY. The maps are shown in Fig. 6. The two most
prominent observations were that the neural network was mov-
ing the center of mass of the rainfall field on the bottom toward
the center of mass of RADKLIM-YW, which was gauge-
adjusted. And, the discontinuities that are visible for RY, YW,
and “ResRadNet every 5 min” are gone for the “ResRadNet
every 1 min” and the advection corrected RADOLAN-RY
and RADKLIM-YW predictions. The smoothing of the rain
field and the attenuation of extreme values is less pronounced
for the neural network than for the Lucas–Kanade advection
correction.

E. Influence of Measurement Height Above Ground

To investigate the influence of the measurement height
above ground we analyzed all time steps in the test dataset with
a reference rainfall amount of at least 0.1 mm. The considered
variables in those time steps were the minimal measurement
height above ground and the absolute error between Rnn1
and Rst1. Fig. 7 shows a linear fit to the two variables that
minimizes the squared error. The slope of the linear model
can be interpreted as a 3.7% increase in the mean absolute
error per kilometer.

In addition to the version of ResRadNet that was presented
above, we trained a second model in exactly the same way but
excluded the height information by omitting the concatenate
layer. The results show that the slope and intercept of the
linear fit are higher for the model that does not use the height
information. Here, the slope represents an increase of 4.6% of
the MAE per kilometer. This model also showed a decreased
PCC of 0.60 which was computed using the 1-min test data
analogous to the first column of Table II where the model
with the height information achieved a PCC of 0.67 and
RADOLAN-RY achieved a PCC of 0.57.

IV. DISCUSSION

We evaluated the ability of a 3-D-CNN to produce spatially
and temporally coherent rainfall fields at an increased temporal
resolution while reducing biases to rain gauge measurements
on the ground.

The spatial structure of the neural network images is
smoother than for the unadjusted instantaneous radar rainfall
measurements, but less smooth than the Lucas-Kanade advec-
tion corrected RADOLAN-RY product. The comparison to
the rain gauges shows that the point-wise accuracy measured
by PCC, RMSE, and MDE is much better for ResRadNet.

We see two possible factors explaining this. On the one
hand, a diffusive process due to the advection, collision, and
coalescence of raindrops may lead to an actual diffusion of the
distribution of rainfall on the ground. On the other hand, the
location of the rain gauge in the radar pixel is not considered
in this study, which leads to the neural network prediction as
a maximum likely rain gauge measurement anywhere within
the pixel. This may of course lead to a smoother distribution
than the actual radar measurement.

Despite this slight imprecision of the rain gauge location,
we could show that the added information about the minimal
measurement height above ground significantly increases the
model performance, thus increasing the confidence in a mean-
ingful ground adjustment.

The temporal coherence of the neural network at a 5-min
resolution is similar to RADOLAN-RY. However, the fluid
motion created by the 1-min predictions indicates that the
neural network acts as a reasonable optical flow estimator,
even though it was trained to provide pixel-wise predictions
and not spatiotemporally consistent fields. RADOLAN-RY
achieved a better MDE at a 5-min resolution than at a 1-min
resolution, while the opposite holds for the neural network.
This also shows that the neural network is able to perform
useful temporal interpolation.

The scores show in general that the neural network is able to
significantly improve the rainfall estimates of RADOLAN-RY.
Compared to [5] we found that our combined advection correc-
tion and ground adjustment method does impact and improve
light rain estimation. The comparison at the daily resolution
showed that the performance gain is a significant step toward
the performance of the operational hourly gauge-adjusted
product RADOLAN-RW while operating at a much higher
temporal resolution. While RADKLIM-YW is gauge-adjusted
and climatology-corrected and therefore assumed to be much
better than the un-adjusted product, the improvement of the
neural network toward RADKLIM-YW is larger than we
would have anticipated. Our evaluation strategy using a set
of independent rain gauges and a separate time period shows
that ResRadNet is transferable to new locations with similar
rainfall climatology.

A clear limitation of the neural network is that the uncer-
tainty for extreme values cannot be reduced and that they are
underestimated. However, as explained in Section III outliers
close to the axis (see Fig. 4) could be reduced effectively.
Another drawback is that the multiplicative correction factor
was necessary to correct the NBIAS. We assume that both
the extreme value underestimation and the correction factor
are due to the heavily skewed distribution of precipitation.
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Fig. 5. Maps of rainfall intensity for 18:00 on July 6, 2021. The upper row shows the 5-min rain gauges, RADOLAN-RY, RADKLIM-YW, an aggregation
of the neural network predictions from 18:00 to 18:05 (ResRadNet 5 min), and the single neural network prediction from 18:00 (ResRadNet 1 min). The
bottom row shows the selected study area in Germany and the difference between the rain gauge value and the grid cell it is contained in using the product
on top of the respective map. Red colors indicate an overestimation compared to the rain gauges and blue colors are an underestimation.

Fig. 6. Maps of rainfall sum between 16:00 and 19:00 on July 6, 2021. The
products shown are from top to bottom: RADOLAN-RY, RADKLIM-YW,
and the neural network predictions. The left column shows an aggregation of
5-min instantaneous measurements and the right column shows the advection
corrected radar products and all 1-min time steps.

In the progress of this work, we experimented with log
transformations to reduce this problem, but without reasonable
success. These drawbacks clearly need to be considered when
using ResRadNet. However, the considerably improved scores
that proved to be consistent over a period of eight years and
the temporal super-resolution we achieved make our approach
very valuable. Additionally, we were able to show that the
model can be used to correct for advection-based temporal
undersampling when aggregating multiple time steps with less

Fig. 7. Impact of measurement height above ground on rainfall estimates at
a 5-min resolution. The lines show a linear fit to the absolute error between
ResRadNet and the rain gauge reference in the test dataset, where the rainfall
amount exceeded 0.1 mm. The orange line shows ResRadNet using the
minimal measurement height above ground as described in the method section
and the blue line shows a ResRadNet version where the height information
is not given to the model (by omitting the concatenate layer).

smoothing of gradients than common advection correction
techniques.

Finally, we emphasize the real-time applicability of our
method: With the low latency of 5 s for the production of five
1-min time-steps of rainfall maps covering all of Germany,
an application to a real radar system with measurements
performed every 5 min is realistic. Additionally, the required
data consisting of 25 min of available radar data and an
estimate for the measurement height above ground should be
available to potential users.

V. CONCLUSION

In this study, we evaluated the performance of a
3-D-convolutional residual neural network for simultane-
ous ground adjustment, advection correction, and temporal
super-resolution of weather radar images. In an attempt to
solve all three issues by training a single neural network,
we were able to significantly increase the quality of the gridded
country-wide 5-min radar product RADOLAN-RY.
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We were able to show that 3-D-convolution in a residual
network architecture is a suitable tool to increase the temporal
radar resolution of 5 min by a short-term prediction of five
1-min time-steps. While our neural network ResRadNet is
only trained to predict one pixel value at a time, it generates
continuous predictions for neighboring pixels, resulting in
spatially and temporally consistent rainfall fields. Using the
raw RADOLAN-RY radar product as a baseline, the model
was able to effectively reduce biases between country-wide
C-band weather radar rainfall estimates and 247 1-min and
1138 daily rain gauges on the ground. By using a separate set
of rain gauges for training and evaluation we demonstrated the
transferability of the network to new locations. With plausible
advection schemes and a 1-min resolution produced by the
neural network, an exemplary case study showed that the
model acts as a suitable optical flow estimator that can be used
for advection correction. Despite the significant improvements
that ResRadNet provides, we experienced a common issue
with using neural networks for modeling precipitation. The
heavily skewed distribution of rainfall leads to an underesti-
mation of extremes and makes an additional mean field bias
correction necessary. Logarithmic transformations of the input
data did not yield the desired improvements. Higher potential
for an accurate representation of extreme values may be given
by probabilistic (ensemble) neural networks like generative
adversarial networks. A potential point of view is that the
current deterministic approach naturally favors the maximum
likely predictions over extremes. As for this study, we point
out that the produced rainfall fields may be understood as
a well-performing maximum likely estimate. Future studies
should aim to provide stochastic approaches to extremes.

APPENDIX

ANIMATION

The animation is available at Zenodo [28].
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