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Abstract: For the duplex stainless steel X2CrNiMoN22-5-3, phase-specific strain pole figures (strain
PFs) for the phases ferrite (bcc) and austenite (fcc) were analysed under uniaxial tensile loading for
various loading states in purely elastic and elasto-plastic regimes. Experimentally, strain PFs were
determined by means of in situ neutron diffraction strain measurements under defined uniaxial
loading. These experimental results were compared with strain PFs calculated using elasto-plastic
self-consistent (EPSC) modelling. The comparison was performed for two different {hkl} planes
per phase. While classic load stress and load partitioning analyses for multi-phase materials are
often limited to the load direction and a selected direction transverse to it, the results illustrate the
added value of determining a strain PF, especially when a phase-specific texture is present. The
comparison with experimental data shows how well the load partitioning behaviour can be predicted
using common EPSC models, using the example of a duplex stainless steel. The EPSC model used
was validated with the software ISODEC in its elastic range. Based on the results of the EPSC
model, and taking into account the local phase-specific crystallographic texture, a prediction can
be made as to what extent intergranular stresses and phase-specific textures could affect the results
of a (residual) stress analysis by means of the diffraction method. This makes it possible to assess
whether, for technical applications, meaningful residual stress results can be expected in certain
component directions.

Keywords: stress analysis; phase-specific stress; elasto-plastic self-consistent (EPSC) modelling;
duplex stainless steel; neutron diffraction

1. Introduction

Multiphase materials with a high fraction of contributing phases are interesting candi-
dates for structural materials in engineering applications, as such materials often combine
different material properties in a positive way. Duplex stainless steels are an example of
such a class of multiphase materials and are becoming increasingly popular as construction
materials in mechanical and industrial engineering, as these steels optimally combine the
advantages of austenitic stainless steels and ferritic steels. Such steel grades generally have
good mechanical properties, resulting in a high strength combined with good ductility. In
addition, duplex stainless steels often have better corrosion resistance than conventional
austenitic steels, which makes them attractive for applications in, i.a. the chemical and
petrochemical industries, in seawater desalination plants and in offshore technology [1–5].
In principle, when producing metallic technical components through processes where plas-
tic deformation and/or thermal energy are introduced, it can be assumed that phase-specific
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crystallographic textures and/or phase-specific residual stress (RS) states are introduced or
affected. Thus, a change in the phase-specific RS as well as the phase-specific texture can be
expected along an industrial production route [6–10]. This was impressively demonstrated
in [6] for two duplex steels processed through rolling. The duplex steels investigated devel-
oped more pronounced crystallographic textures with increasing deformation. Since these
crystallographic textures can have an influence on the resulting RS, and also on RS analysis,
it is necessary to know the existing crystallographic texture state. In [11], it was shown
for a duplex steel with a crystallographic texture subjected to a deep rolling process that
this mechanical surface treatment also affects the phase-specific crystallographic texture in
the near-surface region, with the side-effect being that, for X-ray residual stress analysis
oscillations of 2θ vs. sin2ψ distributions were drastically reduced.

For a suitable design of technically relevant components made of multiphase materials
with a high fraction of contributing phases, knowledge of the phase-specific load partition-
ing behaviour and about the development of phase-specific residual stresses resulting from
manufacturing and from elasto-plastic loading during service is necessary. Phase-specific
strain and stress can only be determined by means of diffraction methods, which are phase-
selective. If the evolution of stresses should be determined non-destructively by means
of in situ diffraction methods that gain information from the bulk of the material, either
high-energy X-ray methods (mostly synchrotron X-ray-based approaches) and neutron
diffraction strain analyses are the methods of choice. In neutronographic stress analysis,
the line position or the lattice plane spacing in the three supposedly independent princi-
pal stress directions are determined. Considering the reference lattice plane spacings for
the phase-specific strain- and/or stress-free state d{hkl}

0 , the {hkl}-dependent elastic lattice
strains in these three appointed directions can be determined. From those lattice strains,
the {hkl}- and phase-specific stress or residual stress state can be derived using Hooke’s
law (Equation (1), according to [12], p. 207) and the lattice-plane-specific diffraction elastic
constants (DECs).

σ
{hkl},p
ij =

E{hkl},p(
1 + υ{hkl},p

)[ε
{hkl},p
ij +

υ{hkl},p(
1 − 2υ{hkl},p

)(ε
{hkl},p
11 + ε
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22 + ε

{hkl},p
33

)
δij

]
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where the index ij identifies the current calculated directions and ε
{hkl},p
11 , ε

{hkl},p
22 and ε

{hkl},p
33

are the strain of the used {hkl} in phase p in the three independent directions. E{hkl},p

and υ{hkl},p correspond to the phase- and {hkl}-specific Young’s moduli and Poisson’s
ratios, respectively. Thus, the accuracy of the calculated stress value depends on the
experimentally determined lattice strains (d{hkl},p

exp. , d{hkl},p
0 ) and the used DEC. For the

calculation of stresses from the elastic lattice strain using phase-specific DECs, it is expected
that there exists a linear relationship between the experimentally determined lattice strain
and mechanical stress. In reality, however, this is only given to a limited extent, as in
the elasto-plastic stress regime the lattice strain vs. mechanical stress distributions often
become significantly non-linear as, i.a., is shown in [12–17]. In the literature, this effect
is generally termed the ‘plastic anisotropy effect’ (e.g., [12]). A consequence of plastic
anisotropy is (phase-specific) microstresses, also known as intergranular stresses [12,18].

It has been shown in the literature that, based on load stress experiments, some lattice
planes have been identified to show only a low sensitivity to these plastically induced
microstresses. For f.c.c. (face-centred cubic) phases, such as the austenite phase in duplex
stainless steels, these are the {111}, {311} and {220} diffraction lines (e.g., [12,15,19–22])
and for b.c.c. (body-centred cubic) phases, i.e., for the ferrite phase, the {110} and {211}
lattice planes are recommended for stress analysis (e.g., [12,19,23,24]). Moreover, it must be
noted that the plastic anisotropy effect (intergranular strains and stresses) is also related to
crystallographic texture and texture evolution [18]. Regarding neutron stress analysis, these
intergranular strains can also affect the reference value d{hkl}

0 and can lead, in particular,
for multiphase materials, to erroneous stress calculations. In addition, the changing load
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partitioning leads to a deviating behaviour of the different lattice planes compared to a
single-phase material. To better understand the influence of phase-specific textures on
the behaviour of the different lattice planes under load, strain pole figures (strain PFs) are
perfect. Examples of strain PFs, among others, are shown in [25–27]. Because no load stress
experiments are carried out on real components and, in addition, often in residual stress
analyses the lattice strain is determined only in the three supposedly principal directions,
a possibly occurring pronounced plastic anisotropy effect cannot be detected. For this
purpose, either a complete load stress analysis must be carried out for a sufficient number
of independent orientations or the sample must be tilted to specifically tilt the scattering
vector to detect anisotropic effects. In order to take that into account in diffraction stress
analysis, measurements performed according to the well-known sin2ψ method [28] are
frequently applied for lab-scaled X-ray stress analysis, but these could well be extended
also to neutron or high-energy synchrotron X-ray measurements.

Anisotropy effects, based on elastic or plastic anisotropy, lead to non-linear distribu-
tions of lattice strain vs. sin2ψ. One possibility for predicting these anisotropic effects for the
different lattice planes (and to correct for them in the average term) is to use elasto-plastic
self-consistent (EPSC) material models. These modelling approaches have already been
successfully applied for both single-phase (e.g., [21,25,26,29–32]) and multi-phase materials
(e.g., [33,34]). It has been shown that for the elasto-plastic self-consistent description of a
nominally identical duplex steel such as X2CrNiMoN22-5-3, as an example, very different
material data have been published in the literature. In general, EPSC models for small
elasto-plastic deformations show better agreement with the determined data than those for
large macroscopic total strains. For these, often only the principal trend of the predicted
lattice strains is correct. A plot of the EPSC modelling results versus sin2ψ is shown in [35],
where the general trend of the lattice strain distribution could be predicted as a function
of sin2ψ.

To better understand phase-specific load distribution, in this work uniaxial loading
experiments are carried out. For different total strains in the elasto-plastic regime, strain PFs
are recorded for different lattice planes. This was achieved by neutron diffraction analyses
using the SALSA instrument [36] at ILL, Grenoble (France). The model material used is the
duplex stainless steel X2CrNiMoN22-5-3, which, in the present case, has a phase-specific
texture due to the manufacturing route of the rod material. Moreover, these load stress
experiments are accompanied by EPSC modelling, which is applied to predict strain PFs
with respect to the phase-specific crystallographic texture. For the pure elastic load range, a
validation is performed by comparing the EPSC results with the well-established software
“ISODEC”. The lattice strains determined for various {hkl} planes of each phase were
further plotted versus sin2ψ to visualize and assess the effect of anisotropy by means of the
curvature of the distributions.

2. Experiment

The duplex stainless steel X2CrNiMoN22-5-3 (Materials no.: 1.4462, in accordance
with [37]) was chosen as the model material. The nominal phase contents are 50 vol% for
ferrite and 50 vol% for austenite, which was confirmed by X-ray diffraction phase analysis
(α-Fe 53:46 γ-Fe) and by means of metallography (α-Fe 51: 49 γ-Fe ± 3). The nominal
chemical composition is given in Table 1. Micrographs of the as-received state of the duplex
stainless steel, which was provided as a rod material with a diameter of 30 mm, are shown
in Figure 1. The sample was metallographically prepared and subsequently etched with
Beraha II etchant. The bright blue areas correspond to the ferrite phase.

Table 1. Chemical composition of the duplex stainless steel X2CrNiMoN22-5-3 [38], according to the
supplier’s data sheet (Balance: Fe). All values are according to DIN EN 10088-3 [39] in mass–%.

C Si Mn P S Cr Mo Ni N

0–0.03 0–1.0 0–2.0 0–0.035 0–0.015 21.0–23.0 2.5–3.5 4.5–6.5 0.1–0.22
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Figure 1. Micrographs of the sample cross-section. In (a) the cross-section is in the longitudinal
direction. This corresponds to the load direction in the load experiment. In (b) the cross-section is in
the radial plane. The microstructures were developed using Beraha II etchant. The bright blue areas
correspond to the ferrite phase.

The phase-specific crystallographic textures in the sample cross-section were deter-
mined by means of X-ray diffraction (XRD) after removing about 200 µm material from
the cut surface by electrochemical polishing. For XRD texture analysis, a Seifert PTS 3000
4-circle diffractometer (Rich. Seifert & Co, Ahrensburg, Germany), using Ni-filtered Co-Kα
radiation and a pinhole collimator on the primary side with a nominal aperture of ø 1 mm
and a 0.8◦ slit on the secondary side, was used. For the ferrite phase, the four independent
lattice plane families {110}, {200}, {211} and {220} were analysed; for the austenite phase, the
{111}, {200}, {220}, {222} and {311} planes were chosen. In all cases, incomplete pole figures
(PFs) were determined up to sample tilts of 70◦. From these, the orientation distribution
function (ODF) for both cubic phases was calculated using the open source MATLAB
toolbox MTEX [40]. The phase-specific textures, in their initial state, are shown in Figure 2b
as PFs recalculated from the ODFs. For both phases, the ODFs indicate that a specific
crystallographic texture was induced through the rolling of the rod material. According
to the m.r.d. values of 16 (for ferrite) and 19 (for austenite), the phase-specific textures are
rather distinct. While for the b.c.c. phase a fibre texture with <001> parallel to the rod
axis is predominantly present (cf. Figure 2: φ2 = 45◦ cut through ODF), for the f.c.c. phase
two fibre components are determined, i.e., a rather intense Θ fibre and a less pronounced
γ fibre.

Strain PFs under in situ loading were determined using the SALSA instrument [36] at
the Institute Laue-Langevin (ILL) (Grenoble France). For this purpose, due to symmetry
reasons, only a quarter PF was recorded at 0, 1, 4 and 10% total strain for the lattice
planes {200} and {211} of the b.c.c. ferrite phase and {220} and {311} of the f.c.c. austenite
phase, respectively. The macroscopic stress–strain curve of the experimentally investigated
sample, including the measuring positions, is shown in Figure 3. The experimental setup is
presented in Figure 4. A miniature uniaxial tension–compression rig of type LFM-S 10kN
(Walter + Bai GmbH, Löhningen, Switzerland) was mounted on the rotary table in the
Eulerian cradle of the SALSA instrument. The uniaxial tensile test was performed under
strain control using a clip-on extensometer (SANDNER Messtechnik GmbH, Biebesheim am
Rhein, Germany) attached to the cylindrical tensile testing sample. A traverse translation
speed of 0.01 mm/s was used. Interrupted tests were carried out by means of relaxation
steps that were performed under position control. The relaxation time per load step was
15 min. For each quadrant of the strain PF, 131 individual measurement points were
determined. Here, a step size of 7.5◦ in the range–45◦ ≤ φ ≤ +45◦ and a step size of 10◦ in
the range 0◦ ≤ χ≤ 90◦ (cf. Figures 4 and 5 for applied angle denotations) were chosen. Note
that all angles in this work are given in degrees. For the state after the final loading, i.e., for
the states during unloading from a total strain of 10%, only a tilt of χ could be performed
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at a constant φ angle of 30◦, due to the time constraints of the limited neutron beamtime.
This was carried out for the state at a partial unloading to about 350 MPa and for the final
unloading state. The evaluation of the measured diffractograms was performed using the
software LAMP (Version 8.5) [41]. For this purpose, a separate individual background
function was used for each lattice plane. The strain values of the experimental strain
PFs were evaluated with a {hkl}- and phase-specific d{hkl},p

0 value (lattice plane spacing
in a strain-free state), which results (with respect to [42]) from the intersection of the
lattice plane spacing distributions over χ at the different load levels. Regarding the phase-
specific reference values required for strain calculation (cf. Equation (2)), various strategies
were proposed (see, e.g., [42]). In our experience, it is extremely difficult, to the point
of impossible, to create a reference state for duplex stainless steels that is largely free of
phase-specific residual stresses. Through the processing route (at least small amount of)
phase-specific residual stresses always occur and must be taken into account, which is
due to the differences in the coefficient of thermal expansion (CTE) and the elasto-plastic
properties of the contributing ferrite and austenite phases. Hence, the above-referenced way
to obtain an orientation-independent d{hkl},p

0 value is considered to be the most suitable,
instead of free-cutting reference samples (e.g., small cubes or pins), since it can be expected
that for the material state of interest at least parts of the phase-specific residual stresses will
not be released through free cutting.
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Figure 2. Results of crystallographic texture analysis for the as-received material’s state, as used for
input data in the EPSC modelling. On the left, (a) the φ2 = 45◦ cut (Bunge notation) through the
orientation density function (ODF), and on the right, (b) PFs for the {200} and {211} lattice planes for
the ferrite phase and {220} and {311} for the austenite phase, respectively. The PFs were recalculated
from the phase-specific ODFs using the open source toolbox MTEX [40] in MATLAB.



Crystals 2024, 14, 206 6 of 23

Crystals 2024, 14, x FOR PEER REVIEW 6 of 23 
 

 

the phase-specific reference values required for strain calculation (cf. Equation (2)), vari-
ous strategies were proposed (see, e.g., [42]). In our experience, it is extremely difficult, to 
the point of impossible, to create a reference state for duplex stainless steels that is largely 
free of phase-specific residual stresses. Through the processing route (at least small 
amount of) phase-specific residual stresses always occur and must be taken into account, 
which is due to the differences in the coefficient of thermal expansion (CTE) and the elasto-
plastic properties of the contributing ferrite and austenite phases. Hence, the above-refer-
enced way to obtain an orientation-independent 𝑑଴{௛௞௟},௣  value is considered to be the 
most suitable, instead of free-cutting reference samples (e.g., small cubes or pins), since it 
can be expected that for the material state of interest at least parts of the phase-specific 
residual stresses will not be released through free cutting. 

Thus, for each orientation of the strain PF, a phase- and lattice-plane-specific strain 
can be calculated according to Equation (2). 

𝜀{௛௞௟},௣(𝜑, χ) = 𝑑௟௢௔ௗ{௛௞௟},௣(𝜑, χ) − 𝑑଴{௛௞௟},௣𝑑଴{௛௞௟},௣  (2)

All neutron diffraction measurements (line positions) were performed on the same 
sample under the specified orientation (𝜑, χ) and the indicated load level. The in situ sam-
ples from the neutron diffraction experiment and the sample from the laboratory experi-
ment that were used to determine the initial texture were clearly marked before the meas-
urements to guarantee that the results could be clearly assigned. 

The applied nominal gauge volume defined by radial collimators, with a full width 
at half maximum (FWHM) of 2 mm, was about 2 × 2 × 2 mm3, and the wavelength was set 
to 1.645 Å. The cylindrical tensile testing sample had a diameter of 4 mm at the gauge 
length 38 mm. Care was taken to ensure an accurate sample alignment in the way that the 
nominal gauge volume (the diagonal space in the above-mentioned cubic nominal gauge 
volume is about 3.46 mm) stayed always centred and hence inside the cylindrical tensile 
sample. By these means no corrections due to partially filled gauge volumes must be ap-
plied. 

The strain PFs resulting from the experiments (and the EPSC modelling) are designed 
similarly to the back-calculated texture PF from Figure 2. The top view of the sample cross-
section is shown in each case. This can be easily understood from Figure 5 in combination 
with Figure 4. Since a φ range of 90° was determined for each strain PF quadrant, all 4 
measurements could be shown in one diagram for better comprehension of their evolution 
with an increasing load. For this purpose, for each measurement the sample was rotated 
in total by 90° in the φ direction. 

 
Figure 3. Macroscopic stress–strain curve of the performed strain pole figure experiment. After
reaching the target strain (εtot = 1, 4 or 10%), the sample was held under position control for 15 min
before the measurements were started to allow for the relaxation of time-dependent effects that might
affect the results of the neutron diffraction analysis.

Crystals 2024, 14, x FOR PEER REVIEW 7 of 23 
 

 

Figure 3. Macroscopic stress–strain curve of the performed strain pole figure experiment. After 
reaching the target strain (𝜀௧௢௧ = 1, 4 or 10%), the sample was held under position control for 15 min 
before the measurements were started to allow for the relaxation of time-dependent effects that 
might affect the results of the neutron diffraction analysis. 

 
Figure 4. Experimental set-up used for SALSA/ILL [36]. In (a) the mounting of the tension–compres-
sion rig in the Eulerian cradle at the tilt position χ = 0° is shown, and the beam path is indicated, 
including the primary and secondary collimators. In (b) the tension–compression rig at a tilting 
angle χ = 90° is presented, and the rotation angles χ and φ are indicated. 

 
Figure 5. Coordinate system that is applied for the graphical illustration of the determined intensi-
ties and lattice strain data. In (a) a 2D plot with the axes Φ and χ is presented, which forms the basis 
of the presentation of the pole figure (in quadrants). For the illustration of the change of the deter-
mined values with the applied load strain, the applied macroscopic load strain in each quadrant of 
the image is indicated in a grey box. The normal to the sample surface points out from the image 
plane at the origin of the diagram; in (b) the rotation axes χ and φ are indicated for the schematical 
set-up, which are relevant for pole figure determination. 

3. Elasto-Plastic Self-Consistent Model 
The determination of effective (mechanical) properties is largely accomplished by ho-

mogenization methods. In this context, mean field methods, e.g., [43], which take into ac-
count the properties of the composite constituents, provide a numerically efficient alter-
native to full-field methods, which resolve the microstructure completely. 

Regarding the self-consistent (SC) method, formulated for elastic material behaviour, 
e.g., [44,45], each grain is considered to be an elliptical inclusion completely enclosed in a 
homogeneous medium. This homogeneous equivalent medium (HEM) in turn always has 
the average properties of all grains of the considered polycrystal. If a strain increment is 

Figure 4. Experimental set-up used for SALSA/ILL [36]. In (a) the mounting of the tension–
compression rig in the Eulerian cradle at the tilt position χ = 0◦ is shown, and the beam path
is indicated, including the primary and secondary collimators. In (b) the tension–compression rig at
a tilting angle χ = 90◦ is presented, and the rotation angles χ and φ are indicated.

Thus, for each orientation of the strain PF, a phase- and lattice-plane-specific strain
can be calculated according to Equation (2).

ε{hkl},p(φ,χ) =
d{hkl},p

load (φ,χ)− d{hkl},p
0

d{hkl},p
0

(2)

All neutron diffraction measurements (line positions) were performed on the same
sample under the specified orientation (φ,χ) and the indicated load level. The in situ
samples from the neutron diffraction experiment and the sample from the laboratory
experiment that were used to determine the initial texture were clearly marked before the
measurements to guarantee that the results could be clearly assigned.
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Figure 5. Coordinate system that is applied for the graphical illustration of the determined intensities
and lattice strain data. In (a) a 2D plot with the axes Φ and χ is presented, which forms the basis of
the presentation of the pole figure (in quadrants). For the illustration of the change of the determined
values with the applied load strain, the applied macroscopic load strain in each quadrant of the image
is indicated in a grey box. The normal to the sample surface points out from the image plane at the
origin of the diagram; in (b) the rotation axes χ and φ are indicated for the schematical set-up, which
are relevant for pole figure determination.

The applied nominal gauge volume defined by radial collimators, with a full width at
half maximum (FWHM) of 2 mm, was about 2 × 2 × 2 mm3, and the wavelength was set to
1.645 Å. The cylindrical tensile testing sample had a diameter of 4 mm at the gauge length
38 mm. Care was taken to ensure an accurate sample alignment in the way that the nominal
gauge volume (the diagonal space in the above-mentioned cubic nominal gauge volume is
about 3.46 mm) stayed always centred and hence inside the cylindrical tensile sample. By
these means no corrections due to partially filled gauge volumes must be applied.

The strain PFs resulting from the experiments (and the EPSC modelling) are designed
similarly to the back-calculated texture PF from Figure 2. The top view of the sample cross-
section is shown in each case. This can be easily understood from Figure 5 in combination
with Figure 4. Since a φ range of 90◦ was determined for each strain PF quadrant, all 4
measurements could be shown in one diagram for better comprehension of their evolution
with an increasing load. For this purpose, for each measurement the sample was rotated in
total by 90◦ in the φ direction.

3. Elasto-Plastic Self-Consistent Model

The determination of effective (mechanical) properties is largely accomplished by
homogenization methods. In this context, mean field methods, e.g., [43], which take
into account the properties of the composite constituents, provide a numerically efficient
alternative to full-field methods, which resolve the microstructure completely.

Regarding the self-consistent (SC) method, formulated for elastic material behaviour,
e.g., [44,45], each grain is considered to be an elliptical inclusion completely enclosed in
a homogeneous medium. This homogeneous equivalent medium (HEM) in turn always
has the average properties of all grains of the considered polycrystal. If a strain increment
is applied to this homogeneous equivalent medium, an interaction of the HEM with the
inclusion under consideration occurs. The resulting stress in the inclusion is compared
with the lattice-plane-specific critical resolved shear stresses (CRSS), and, moreover, the
number and orientation, as well as the activity, of the potential slip systems is determined.
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The elasto-plastic self-consistent (EPSC) method is an extension of the self-consistent
method (SC) method to elasto-plastic material behaviour. The EPSC method used in the
work at hand is based on the EPSC4 model of Clausen and Tomé [29,46], which in turn is
based on previous work by Turner and Tomé [47]. The EPSC4 model has been successfully
used in a number of single-phase material descriptions, inter alia [31,32]. This EPSC model,
originally written in FORTRAN77, was made available to us for the present project. In
the following section, the original EPSC4 model was first translated into the MATLAB
programming language and extensively validated. Subsequently, we extended its routine
for application to multiphase materials with a high fraction of contributing phases. In this
work, those extensions will be discussed in more detail with reference to [48–50].

The strain hardening caused by each of the deformation mechanisms considered
in the modelling is accounted for by using an extended dislocation density-based strain
hardening model according to [51]. This approach has the decisive advantage that the
effective lattice-plane-specific (α) and phase (p)-specific CRSS (τp,α

c ) are determined by
the summation of their individual strain hardening contributions, and thus further strain
hardening mechanisms can be added (see Equation (3)).

τ
p,α
c = τ

p,α
0 + τ

p,α
f or + τ

p,α
sub (3)

In the shown state (lab temperature ≈20 ◦C), the CRSS is composed of an initial
temperature-dependent value τ

p,α
0 and the dislocation density-dependent contributions τ

p,α
f or

and τ
p,α
sub . The second and third terms represent, in agreement with [51], the work hardening

due to dislocation interactions. Hereby, τ
p,α
f or (the index ´for´ stands for forest dislocations) is

only a simplification, according to [51], as it only considers dislocations that are interlocked
between dislocations of the same type, i.e., forest dislocations are dislocations in an inactive
slip system that penetrate the active slip plane. According to [49], the variable τ

p,α
sub de-

scribes the fraction of the substructures in the hardening. Here, this variable is related to the
variable τ

p,α
deb in [51]. With regard to the dislocation hardening approach, this model forms

a much more physically motivated hardening approach than phenomenologically com-
parable models using pure hardening parameters. As a further deformation mechanism,
an approach to describe twinning is implemented in the present EPSC material model.
However, metallographic investigations on a comparable duplex steel showed [17] that
this is not a preferred deformation mechanism of the f.c.c. austenite phase in the duplex
steel under consideration.

When using EPSC methods on two- or multiphase materials with high fractions of
contributing phases, the question of the interaction of the two or more phases with each
other has to be taken into account. It is known from the literature (e.g., [52–56]) that this
should be best implemented by considering the changing stiffnesses due to the interaction
of the two phases or the elasto-plastic stiffness modulus.

Here, as a first approach, the SC scheme described by Willis [44] is applied to determine
the effective stiffness by means of Equation (4).

C =

(
N

∑
α=1

cαCα[I<4> + Pα(Cα − C)]−1

)(
N

∑
β=1

cβ

[
I<4> + Pβ

(
Cβ − C

)]−1
)−1

(4)

In Equation (4), the effective stiffness tensor of the matrix is symbolised by C and c is
the single crystal stiffness of the considered phase α, β, taking into account the phase-
specific texture. The polarization tensor P is related to the Eshelby tensor w by
P = WC−1 [57,58]. I is the unit matrix. N stands for the number of different types of
embedded inclusions.

In many cases, the necessary phase-specific input parameters of the EPSC material
model can only be taken from literature sources in a limited way. Likewise, the experimental
determination of their individual values in cases of multiphase materials is often extremely
time-consuming or even simply not feasible. Based on this problem, we decided to deter-
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mine the required input parameters using an optimisation approach based on {hkl}-specific
experimental data. In this context, care was taken to ensure that the possible optimisation
range was limited in a way that made physical sense, i.e., the values lie within a plausible
value range. The gradient descent method was chosen as the optimisation approach, which
was also implemented in our MATLAB code [59]. The resulting phase-specific material
parameters, including the different pre-measured phase-specific textures, were used to
predict the lattice-plane-specific strains in a load stress test. For the phase-specific initial
stiffness, the values specified in Table 2 were used.

Table 3 shows the phase-specific as well as the slip-plane-specific values of the initial
CRSS τ

p,α
0 . The values listed in Tables 2 and 3 are the result of the optimisation calculation. A

change in the sample temperature during the simulation was excluded, thus no temperature
dependence of τ

p,α
0 was considered. The {123}<111> slip system was not considered.

According to [60], the system is not active at room temperature in the ferritic phase of steels.
The underlying phase-specific texture in the EPSC model was read in Bunge notation. A
total number of 4958 different orientations were considered. Each orientation represents a
separate grain or inclusion problem. For a better illustration, the recalculated PFs, using
the open-source toolbox MTEX [40], are shown in Figure 2. For the experimental PFs, the
same lattice planes were plotted, which were also determined experimentally.

Table 2. Phase-specific stiffness values used in the EPSC model. Adjusted on the basis of [59].

Ferrite Austenite

c11 (MPa) c12 (MPa) c44 (MPa) c11 (MPa) c12 (MPa) c44 (MPa)

Applied 230,000 135,000 114,000 227,700 143,750 140,300

Start values [61] 231,000 130,000 116,000 198,000 125,000 122,000

Table 3. Phase-specific initial CRSS τ
p,α
0 for the slip systems considered in the EPSC model. Adjusted

on the basis of [59].

Experiment
Ferrite Austenite

{110}<111> {112}<111> <111>{110}

Applied 282 MPa 282 MPa 178 MPa

4. Using the EPSC Model to Describe the Strain Pole Figure Experiment

Figure 6 shows the result of the EPSC modelling with the input parameters (including
the phase-specific crystallographic texture) from the strain PFs experiment. Here, the calcu-
lated lattice strain in the load direction and one transverse direction above the total strain
are presented. From the experiment, three load steps could be used for the comparison of
experimental data with EPSC modelling results for the lattice strains in the longitudinal and
transverse directions. Again, the comparison indicates that there exists a good agreement
between the experimental values and those of the EPSC simulations. Only for the strain
in the transverse direction for the ferrite {200} lattice planes can a pronounced divergence
be noticed. Here, the effect of strain reversal after the phase-specific yield point is well
described qualitatively, but this effect is overestimated in absolute terms. Small deviations
between the determined values and the predicted evolution may also be due to initial
{hkl}-specific incremental strains as well as phase-specific (micro) residual stresses in the
macroscopically stress-free sample. Although the results presented only show a change in
strain relative to the initial state, there is always a superposition of phase-specific residual
stresses and applied stresses when compared with the simulation. This could affect the
phase-specific yield strengths and the overall phase-specific mechanical behaviour and
was not considered in the EPSC modelling. In this context, and considering the state of
the art of EPSC models, the result shown in Figure 6 can be classified as very good for the
time being.
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Figure 6. Comparison of the experimentally determined phase-specific lattice strains for different
{hkl} planes for the duplex stainless steel X2CrNiMoN22-5-3 under load, i.e., longitudinal direction
and transverse direction [62] of the above-described strain pole figure experiment, with the results of
the multiphase EPSC material model.

A comparison of the CRSS values given in Table 3 with those given in the literature (see
Table 4) shows some significant differences. This applies both to phase-specific CRSS values
(as used in this model) and to existing EPSC models based on the so-called “hardening
parameters”. This is due to the fact that, nominally, the same duplex steel was used in
this experimental work, but from different batches and with possibly differing processing
parameters. As a consequence, the exact chemical composition of the phases may differ
slightly, as well as their respective phase-specific grain size distribution and phase-specific
crystallographic texture. Moreover, it must also be kept in mind that a macroscopic absence
of stress in the bulk sample is not the same as the absence of phase-specific (micro)stresses.
In addition, for the duplex stainless steel samples used in this work, initial phase-specific
stresses due to the manufacturing of the semi-finished material can be assumed, as shown
in Figure 7. When using values from simulative studies, it must always be taken into
account that the chosen model and its implementation may have an influence on the chosen
input parameters, if these have been fitted to experimental data. It should be noted that the
model used is not suitable for correctly predicting the {hkl}-specific lattice strains of any
duplex steel without an optimisation calculation using a master material data set and the
steel’s phase-specific texture.

Table 4. Selection of the determined CRSS/MPa, or those used in ESPC models, for the duplex
stainless steel X2CrNiMoN22-5-3 (1.4462/UR45N). The lower section lists the input values used for
the EPSC models that are based on the “Hardening Parameters” τ

ph
0 and θ

ph
0 .

Source Ferrite Austenite

{110}<111> {112}<111> <111>{110}

Baczmański et al. [33] 230 245 75

Pulvermacher et al. [17] 272 282 195

Hardening parameter Hardening parameter
τ

ph
0 θ

ph
0 τ

ph
0 θ

ph
0

Baczmański et al. [34]

220 110 140 225
350 110 140 225
360 110 120 225
410 190 150 380

Dakhlaoui et al. [63] 245 80 75 190
Dakhlaoui et al. [35] 220 120 140 200

125 120 125 200
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5. Results and Discussion
5.1. Experimental Results

At the beginning of the presentation of the results it is once again clearly emphasized
that the chosen experimental method is only suitable for determining strain PFs. Hence, no
“stress PF” or so-called stress functions could be determined in the present work, which
is due to the limitations of the measurement data set available. An approach using stress
functions has been described by Behnken, e.g., in [64,65], and an application of stress
factors to account for the anisotropy for duplex stainless steels can be found, e.g., in [66].
However, for determining stress functions, e.g., further {hkl} planes must be considered
for both phases, as the stress factors only account for elastic anisotropy effects. Due to the
limitations of the data set determined by means of neutron diffraction analysis, we focussed
on phase-specific strain PFs. Hence, in the present work, the experimentally determined
strain distribution (ε{hkl},p(φ,χ)) will to be compared and discussed with the phase- and
{hkl}-specific strains that were calculated using the presented EPSC model.

Figure 7 shows the experimentally determined strain distributions presented as strain
PFs. Here, according to the used convention, the azimuth angle is referred to as φ (rotation
around the normal direction) and the tilt angle as χ, with χ = 0◦ as the sample’s load
direction (cf. Figures 4 and 5). In the partial images Figure 7a,b, the strain PFs for the ferrite
{200} and {211} lattice planes are presented, respectively. The corresponding lattice strain
PFs for the austenite phases are shown in partial images Figure 7c, for the {220} lattice plane,
and Figure 7d, for the {311} lattice plane. In each case, the {hkl} plane and phase-specific
strain PFs for the initial state and for the mechanically loaded states at total strains of 1%,
4% and 10% are shown in one strain PF, i.e., each quadrant represents the lattice strain PF
for one loading state, and all four figures belonging to the same {hkl} lattice plane families
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are scaled identically. From the colour gradations of the initial state, it can be seen that
the nearly load-free sample (only 5 MPa pre-load is used as the initial load to compensate
for the backlash of the sample clamping) exhibits a phase- or {hkl}-plane-specific residual
stress state. The subsequent load direction of the sample (cf. Figures 4 and 5) is the normal
direction in Figure 7 (χ = 0◦). From this it can be seen that, for the two lattice planes of the
ferrite phase, in their initial state, rather low compressive lattice strains in the longitudinal
direction and low tensile lattice strains in the radial direction exist. For the two lattice
planes of the austenite phase, on the other hand, tensile lattice strains are present in the
later load direction and compressive lattice strains in the radial direction. It should be
emphasized that this initial lattice strain distribution is not identical for the two lattice
planes of the same phase. For instance, for the ferrite phase, for the {200} lattice plane higher
lattice strains are determined than for the {211} lattice plane. On the other hand, the residual
lattice strain state initially present is significantly lower for the austenite {220} lattice plane
compared with the {311} lattice plane. Under uniaxial mechanical load, the maximum
tensile lattice strain always appears in the centre (χ = 0◦) of the strain PFs, as expected. In
the radial direction, however, compressive lattice strains are always determined. In general,
it can be seen that all strain PFs plotted here for the loaded states are axisymmetric, as
could be expected from the intensity PFs shown in Figure 2. However, a closer look reveals
that, for the {220} lattice plane of the austenite phase, an intermediate maximum forms
under the applied load at an angle of about χ = 40◦. For the {200} lattice plane of the ferrite
phase, the formation of a lattice strain minimum at an angle of approx. χ = 65◦ can be
observed under the applied load. For all four {hkl} lattice plane families considered here,
slight variations in lattice strain are also observed along their graphs for the same φ angle.
This can be seen particularly well at 4% total strain for the ferrite {200} or the austenite
{311} lattice planes at an angle of χ = 90◦. As a first approximation, all four lattice planes
show an almost linear distribution of the lattice strain vs. the tilt angle χ in their initial
state, according to Figure 7. Overall, the strain PFs in Figure 7 do not show any strain
distributions under load that deviate from the expected conical shape. This can be expected
from their rather homogeneous texture characteristics (cf. Figure 2); hence, much larger
inhomogeneities would be expected for deviating textures, with a lower symmetry with
regard to the angle φ.

The calculation of a global phase-specific strain based on the {hkl}-specific results,
e.g., according to [67], was deliberately not carried out. This would have required further
assumptions and/or additional lattice planes of type {hkl} (which were not analysed herein).
An experimentally determined phase-specific stress could then have been derived from
these. It should be noted that this stress distribution is influenced by the local phase content,
the phase-specific texture and the phase-specific mechanical properties [17]. Furthermore, it
must be expected that for the present microstructure the influence of the grain morphology
will also affect the results [9,68]. As a consequence, it must be concluded that nominally
identical duplex stainless steels can exhibit different mechanical behaviours if, for example,
they are taken from different batches of the material. However, based on Figure 6, it
can already be estimated that in the present case the phase-specific strains in the ferrite
phase are higher than those in the austenite phase. This would be consistent with the
investigations on the same duplex stainless steel in [17].

For the example of the austenite {220} reflections, the data were also plotted in
Figure 8 vs. sin2ψ (corresponding to sin2(|χ− 90|)—cf. Figures 4 and 5), which has prac-
tical relevance and is much better suited to indicate changes by means of non-linearities
due to anisotropy effects. Moreover, the uniform scaling of all quadrants was abolished
in order to emphasize local inhomogeneities more strongly. A closer look at the results,
for instance, reveals that at sin2ψ = 0.6 a noticeable inhomogeneity in the distribution can
already be seen in the initial state. At φ = 70◦, an elastic strain of around 140 µstrains is
determined, but this is only about 67 µstrains at the angle φ = 20◦. However, under an
applied load, the location of these inhomogeneities shift somewhat, e.g., to sin2ψ ≈ 0.7,
which is clearly recognizable in the strain PFs determined at a total strain of 1 and 4%. In
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that region, the divergence becomes much larger and is around 200 µstrain. Although the
strain PF represents the entirety of the results over the orientation space, a section of the
strain PF is much more appropriate to assess the results in regard to anisotropy effects.
These sections (lattice strain vs. sin2ψ) are shown in Figures 11–14.
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Figure 8. Lattice strain PFs for the austenite {220} lattice plane (same data as in Figure 7), plotted
versus sin2Ψ. The lattice strain distribution in the initial state and at total strains of 1%, 4% and 10%
are shown, in each case, in a separate quadrant of the strain PFs. In contrast to Figure 7, a suitable
uniform scaling was dispensed with here, as a result of which minor inhomogeneities in the strain
distribution become visible.

5.2. Validation of EPSC Modelling—Elastic Material Behaviour

Before discussing the results of the EPSC modelling in more detail, validation was
carried out. For this purpose, an elastic load case was simulated. This simulation was
carried out firstly using the EPSC model presented, but also using the long-established
ISODEC software [69,70]. This software provides reliable lattice strain predictions in the
purely elastic range for single-phase materials, taking into account their phase-specific
texture [69]. For the ISODEC simulations, the same stiffnesses [see Table 2] and phase-
specific textures [see Figure 2] were applied as for the EPSC model.

The results for a section at φ = 45◦ and an assumed unidirectional loading stress of
300 MPa are shown in Figure 9. In Figure 9a,b are the ferrite phase lattice planes {211} and
{200}, respectively. In both cases there is very good agreement between the predictions
of the EPSC model and the software ISODEC. In Figure 9c,d, the results for the austenite
phase lattice planes {311} and {220} are shown. Likewise, for the austenite phase a rather
good agreement can be noticed, although there are slightly larger deviations between the
two numerical approaches. This is shown by the fact that the ISODEC prediction tends
to predict slightly lower lattice plane strains than the EPSC model, and this deviation is
slightly more pronounced for the {311} lattice plane than for the {220} lattice plane. The
{311} lattice plane of austenite has the largest deviation of about 188 µstrain in the loading
direction. Despite this deviation, there is a good agreement based on the data shown
in Figure 9, i.e., the EPSC model can be considered suitable for predicting {hkl}-specific
lattice strains.
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Figure 9. Comparison of lattice strains calculated for a section at φ = 45◦ using two simulation
approaches, i.e., using the software ISODEC and the presented EPSC model for identical material
data (cf. Table 1 and Figure 2), and a loading stress of 300 MPa. In (a) and (b) are the ferrite phase
lattice planes {211} and {200}. In the bottom row are the austenite phase lattice planes (c) {311} and
(d) {220}. All data were plotted vs. sin2ψwith ψ = |χ − 90|.

5.3. Results of EPSC Modelling—Elasto-Plastic Material Behaviour

Figure 10 shows the strain PF simulated by means of the multiphase EPSC approach.
The results are presented in the same way as the experimental data (cf. Figure 6), i.e., for
direct comparison the same {hkl} lattice planes are also considered. Since the lattice strain
evolution is always considered in the modelling, i.e., initially the lattice strains are zero,
the lattice strain distribution was added at a simulated total strain of 0.2% (εtot = 0.002),
which is slightly below the macroscopic yield point. Qualitatively, the calculated strain
PFs are very similar to those determined experimentally (cf. Figure 7). However, there are
minor deviations with regard to the absolute value of the lattice strains that were finally
determined. Depending on the {hkl} lattice planes, there may be either a slight over- or
underestimation of the lattice strains. In Figure 7a, it can be noticed that the intermediate
minimum under a tilt angle of about χ = 60◦ is only pronounced in the elasto-plastic
regime, and even at a total applied strain of 1% for data presentation with identical scaling
no extraordinary changes can be observed. The most significant deviation is shown in
Figure 7c. Here, for the lattice strain of the austenite {220} lattice plane at a total applied
strain of 10%, an intermediate maximum at an angle χ ≈ 22◦ can be noticed. The absence
of initial strains or stresses also results in the fact that the lowest applied total strain shown
in Figure 10 is 0.2%, i.e., shortly before the phase-specific yield strength is reached.
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Figure 10. Strain PFs simulated using the EPSC model for the four considered phase-specific {hkl}
lattice planes for an applied total strain of 0.2, 1, 4 and 10%, respectively. (a) The ferrite {200}, (b) the
ferrite {211}, (c) the austenite {220} and (d) the austenite {311} lattice planes.

5.4. Comparison of Numerical and Experimental Results

For the comparison of the results of the EPSC modelling and the experiment, lattice
strain vs. sin2ψ plots were chosen. As stated before, the occurrence of anisotropy effects
leads to a curvature of the distribution that is strongly linear for isotropic material states,
with no steep gradients of the stress states in the gauge volume, and for sufficiently
fine-grained microstructures. The question is whether the EPSC modelling is capable of
predicting curvatures or oscillating courses of lattice strain vs. sin2ψ distributions due to
anisotropy. Conversely, one could also ask whether the EPSC models would be suitable for
meaningful residual stress evaluations in the presence of curved or oscillating distributions.
Hereby, a direct comparison of the results from the neutron diffraction experiments with
the simulation for the purely elastic state is not possible, since the first neutronographic
measurements under load were made for a total strain of 1% and were hence already
in the elasto-plastic regime. The first assumption is that, in the elastic stress range, a
linear relationship between the predicted lattice strain and the corresponding sin2ψ (with
ψ = |χ − 90|) value exists. In general, the preciseness of the EPSC model in this region
could be validated by comparison with the ISODEC predictions, as shown in Figure 9.

In the case of unidirectional loading above the macroscopic yield point, elasto-plastic
deformation will occur in at least one of the phases involved. When the macroscopic yield
point is significantly exceeded, plastic deformation occurs in both phases. In the present
simulation, slipping at the <111>{110} system started in the austenite phase at a loading
stress of about 465 MPa (εtot = 0.22%) and slightly later in the ferrite phase; at a stress of
about 533 MPa (εtot = 0.26%) in the {112}<111> slip system and even later at a load stress of
about 566 MPa (εtot = 0.29%) in the {110}<111> slip system.
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For the experimental data plotted vs. sin2ψ (corresponding to sin2(|χ− 90|)), it can
be clearly seen that there are only small variations over the angle of rotation φ. This can be
understood with reference to Figure 2, where the intensity PFs indicate an almost concentric,
homogeneous distribution of intensities, i.e., only a very small variation in orientation
density for a chosen angle χ for different φ orientations. These small variations do not
cause significant deviations between the experimental and modelled results at a constant χ
and variable φ. Despite this observation, three angles φ are chosen in order to prove this
accordingly, i.e., the results are plotted for φ = 0, 22 and 45◦.

For the lattice strain vs. sin2ψ distribution plotted in Figure 11 for the {211} ferrite
lattice planes a slightly oscillating curve is determined. Moreover, the slope increases with
increasing strain, as expected. The results of the EPSC modelling for the {211} ferrite lattice
planes show a slight non-linearity that becomes more pronounced with increasing plastic
deformation. In total, the overall agreement between the experiment and simulation is
rather good, while the deviations increase with increasing loads. Here, the curvature of
the distribution around sin2ψ = 0.5 observed for the neutron diffraction data cannot be
sufficiently well predicted by means of the applied EPSC model. The increasingly deviant
behaviour with increasing plastic deformation is due to the fact that the model obviously
does not describe the plasticity effect and the underlying deformation mechanisms suffi-
ciently well, as, for instance, the Hall–Petch effect to describe grain boundary hardening
is not yet included. Moreover, a further source of the deviations may be the chosen in-
put parameters, which are based on our search algorithm. Finally, the experimental data
has shown that, in the initial case, phase-specific residual stresses exist, which were not
considered in the EPSC modelling. Apart from these apparent insufficiencies, the model
predictions for the {211} ferrite lattice planes were rather good up to large strains, and
larger deviations occurred for the further lattice planes considered here.
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Figure 11. Chosen lattice strain distributions of the ferrite {211} lattice plane versus sin2ψ for various
macroscopic total strains. Data points from the neutron diffraction experiment and the EPSC model
for three different orientations φ (φ = 0, 22 and 45◦).

For the {200} lattice plane of the b.c.c ferrite phase, the corresponding results are pre-
sented in Figure 12. The lattice plane strain vs. sin2ψ distributions for the {200} lattice plane
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exhibit a strong curvature due to elastic and plastic anisotropy. Qualitatively, the associated
EPSC modelling predicts this curvature rather well. However, a detailed examination of
the values shows clear deviations. The larger deviation in contrast to the results for the
{211} lattice plane is due to the fact that the ferrite {200} lattice plane is much more sensitive
to plastic anisotropy [12,13,18,59].
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In Figure 13, the lattice strain vs. sin2ψ plots for the austenite {220} lattice plane are
presented. The results indicate that over a wide range there is a good agreement between
the numerical simulation and the experiment. Regardless of the rather high scatter of
the results, clear differences only occur in the vicinity of the load direction, i.e., close
to sin2ψ = 1.

For the load case ‘4% total strain’ a further EPSC simulation was performed by omitting
the crystallographic texture of the phases (designated as the ‘uniform texture’), with the
intention to illustrate the effect of texture on the results and to underline the requirement
to consider the phase-specific texture information in the EPSC model. Without texture
an almost linear path for lattice strain vs. sin2ψ was determined, which is far from the
experimentally determined values. Hence, only by adding the experimentally determined
phase-specific texture can the present curved distribution be approximated at all. However,
this statement should not obscure the fact that deviations between the experimentally
determined results and the data from EPSC modelling occur for the austenite phase.

Finally, the corresponding results for the austenite {311} lattice plane are presented
in Figure 14. The lattice strain vs. sin2ψ plots indicate that there is rather good agreement
between the experimental and simulated results. In general, the non-linearities of the
plotted sin2ψ distributions are rather moderate, which is expected since the {311} plane of
the f.c.c. lattice structures is considered, in the literature, e.g., [12,15], to be rather insensitive
to plastic anisotropy effects, which furthermore leads to the recommendation of using the
{311} plane of f.c.c. for residual stress measurements. This also applies to the {211} lattice
plane in the b.c.c. ferrite phase.
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Hence, based on the data presentation in Figures 11–14 it has been clearly demon-
strated that the possible anisotropy effects of the four lattice planes examined are easier
to identify in the sin2ψ plots, although the strain PF with its colour coding also contains
this information.

In summary, from Figures 11–14 it can be seen that the EPSC model described is
generally suitable for describing and predicting lattice strains for rather large elasto-plastic
deformations, up to 10% in case of textured duplex stainless steel, i.e., a two-phase mate-
rial with large amount of its second phase (around 50% austenite: 50% ferrite), when the
phase-specific texture (as an ODF) is used as input data for the model. A comparison of the
experimentally determined results and the results from the EPSC modelling generally show
good qualitative agreement. Upon closer inspection, the curvature of the distributions
becomes more pronounced with increasing plastic deformation, which is due to plastic
anisotropy (intergranular strains). Here, the model has obvious deficiencies in describing
the plastic anisotropy effect. But the deviating behaviour strongly depends on the {hkl}
lattice plane of interest. For the b.c.c. {211} lattice plane and f.c.c. {311} lattice plane, which
are both recommended for residual stress analysis using diffraction methods, their insen-
sitivity to intergranular strain effects was confirmed. Despite the discrepancies between
the simulation and experiment, the fully simulated strain PF was shown to be a viable tool
for assessing the influence of crystallographic textures and/or intergranular strains on the
results of an experimental residual stress analysis of real engineering components.

A further improvement of the predictive quality of the used EPSC model can certainly
be achieved by including a more comprehensive description of the plastic deformation
mechanisms. The model is limited to dislocation strengthening and, if applicable, twinning.
However, further strengthening mechanisms are not included so far. Including grain
boundary strengthening (Hall–Petch relation) is the subject of our current efforts.

At this point, it must be emphasized that the assessment of the predictive quality
of the model is only possible though a relatively large database of diffraction data in the
form of strain PFs. For neutronographic (residual) stress analysis, lattice strain is usually
analysed only in the assumed principal directions. This assumption can of course be wrong
and, furthermore, the knowledge about the previously shown non-linearities caused by
plastic anisotropy effects are not accessible, while considering anisotropy effects on the
basis of ODF data, for instance, through the application of the well-established ISODEC
software package, appears not sufficient. By these means, plastic anisotropy effects cannot
be considered or assessed. An improvement can be achieved through EPSC modelling
based on metal physical basics. However, the investigations have shown that thorough
material characterization is needed to provide meaningful input data. This is elaborate,
especially in the case of multiphase materials, and unfortunately this can also depend on
the respective material batch (e.g. on variations in phase-specific crystallographic texture
or phase- and lattice-plane-specific material values such as crss τ

p,α
x ).

6. Conclusions

In the present work, neutronographic diffraction strain analyses were carried out on
the duplex stainless steel X2CrNiMoN22-5-3, as a model material for multiphase materials
in which the second phase has a high volume fraction, up to large total strain of 10%. The
rod-shaped semi-finished product exhibits a rather pronounced phase-specific crystallo-
graphic texture due to the rolling process in both its austenite and ferrite phases. In an
interrupted test run, strain PFs were recorded for different total strains of 0.2, 1, 4 and
10%. From the strain PFs, lattice strain vs. sin2ψ distributions were derived for the ferrite
{211} and {200} lattice planes and for the austenite {220} and {311} lattice planes for the
assessment of the effect of plastic anisotropy (intergranular strains). These experimental
investigations were accompanied by an EPSC model, which was extended to represent
multiphase materials.

From these extensive and systematic investigations, the following conclusions can
be drawn:
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• The results show that, for the duplex stainless steel, plastic anisotropy effects can be
determined for its two phases, austenite and ferrite, which are triggered by existing
phase-specific crystallographic textures. As expected, these effects increase with
increasing degrees of deformation.

• Failure to take these effects into account sometimes leads to severely incorrect (residual)
stress evaluations.

• The lattice planes that are recommended in the literature for residual stress analyses
are also shown to be relatively insensitive to plastic anisotropy effects on the exist-
ing material state of the duplex stainless steel X2CrNiMoN22-5-3. The associated
lattice strain vs. sin2ψ distributions are still sufficiently linear even at high degrees
of deformation.

• The proposed EPSC model, in which the austenite and ferrite phases were coupled
accordingly to represent the material behaviour of the duplex stainless steel, appears
fundamentally suitable to describe the material’s {hkl}-specific deformation behaviour.

• However, at relatively high strain deformations of 10%, there are sometimes clear
deviations from the neutronographic results. An improvement is planned here by,
among other things, further expanding the model to include additional strengthening
mechanisms, such as grain boundary strengthening.
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63. Dakhlaoui, R.; Braham, C.; Baczmański, A. Mechanical properties of phases in austeno-ferritic duplex stainless steel—Surface
stresses studied by X-ray diffraction. Mater. Sci. Eng. A 2007, 444, 6–17. [CrossRef]

https://doi.org/10.1016/j.msea.2006.04.083
https://doi.org/10.4028/www.scientific.net/SSP.160.63
https://doi.org/10.1080/10238169608200065
https://doi.org/10.1107/S0021889807030269
https://doi.org/10.1177/0021998320920695
https://doi.org/10.1098/rspa.1957.0133
https://doi.org/10.1016/j.ijplas.2010.03.005
https://doi.org/10.1016/0956-7151(94)90191-0
https://doi.org/10.1016/j.ijplas.2007.07.017
https://doi.org/10.1016/j.actamat.2007.08.049
https://doi.org/10.1016/j.actamat.2008.08.030
https://doi.org/10.1016/j.actamat.2012.03.039
https://doi.org/10.1016/j.msea.2016.08.057
https://doi.org/10.1016/j.actamat.2016.02.065
https://doi.org/10.1016/j.actamat.2017.12.054
https://doi.org/10.4028/www.scientific.net/MSF.571-572.175
https://doi.org/10.5291/ILL-DATA.1-02-289
https://doi.org/10.1016/j.msea.2006.06.074


Crystals 2024, 14, 206 23 of 23

64. Behnken, H.; Hauk, V. Berechnung der röntgenographischen Spannungsfaktoren texturierter Werkstoffe-Vergleich mit experi-
mentellen Ergebnissen. Int. J. Mater. Res. 1991, 82, 154–158. [CrossRef]

65. Behnken, H. Mikrospannungen in Vielkristallinen und Heterogenen Werkstoffen; Shaker: Aachen, Germany, 2003; ISBN 3832213848.
66. Simon, N.; Schell, N.; Gibmeier, J. On the Oscillating Course of dhkl−sin2ψ Plots for Plastically Deformed, Cold-Rolled Ferritic

and Duplex Stainless Steel Sheets. Crystals 2023, 13, 419. [CrossRef]
67. Daymond, M.R. The determination of a continuum mechanics equivalent elastic strain from the analysis of multiple diffraction

peaks. J. Appl. Phys. 2004, 96, 4263–4272. [CrossRef]
68. Simon, N.; Krause, M.; Heinemann, P.; Erdle, H.; Böhlke, T.; Gibmeier, J. Phase-Specific Strain Hardening and Load Partitioning

of Cold Rolled Duplex Stainless Steel X2CrNiN23-4. Crystals 2020, 10, 976. [CrossRef]
69. Gnäupel-Herold, T. ISODEC: Software for calculating diffraction elastic constants. J. Appl. Crystallogr. 2012, 45, 573–574. [CrossRef]
70. Gnäupel-Herold, T. A software for diffraction stress factor calculations for textured materials. Powder Diffr. 2012, 27, 114–116.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1515/ijmr-1991-820213
https://doi.org/10.3390/cryst13030419
https://doi.org/10.1063/1.1794896
https://doi.org/10.3390/cryst10110976
https://doi.org/10.1107/S0021889812014252
https://doi.org/10.1017/S0885715612000267

	Introduction 
	Experiment 
	Elasto-Plastic Self-Consistent Model 
	Using the EPSC Model to Describe the Strain Pole Figure Experiment 
	Results and Discussion 
	Experimental Results 
	Validation of EPSC Modelling—Elastic Material Behaviour 
	Results of EPSC Modelling—Elasto-Plastic Material Behaviour 
	Comparison of Numerical and Experimental Results 

	Conclusions 
	References

