Impacts beyond experimentation – Conceptualising emergent impacts from long-term real-world laboratory processes

Real-world laboratories are settings for joint experimentation on sustainability challenges, through the transdisciplinary collaboration of diverse actor groups. By approaching a real-world laboratory from three perspectives, this paper uncovers the emergent impacts of a long-term collaborative process.

Keywords
emergent impact, process design, real-world laboratory, transdisciplinary sustainability research, transformative research

Real-world laboratories (RwLs) are widely recognised and established as settings for collaborative and transdisciplinary research (Bergmann et al. 2021, Kanning et al. 2021, Parodi et al. 2021, Schäpke et al. 2018, Schneidewind et al. 2018). They are characterised by their orientation towards sustainability, and their long-term, transdisciplinary mode of collaboration, which provides a setting for the exploration of sustainability transformations through experimentation (Schäpke et al. 2018, McCrory et al. 2020). As settings in which different actors from science and society come together to collaborate, RwLs have been associated with a variety of benefits (Kok et al. 2023, Pärli et al. 2022). However, we view the discussion around the impacts of such research projects as being centred around the idea of an impact resulting directly from an intervention – as in the case of real-world experiments. While this perspective may be appropriate for real-world experiments, where the goal is to find causal links between interventions or sustainability solutions and outcomes, it is not necessarily suitable for assessing the impact of RwLs.

Although there is a body of research into approaches for assessing the impacts of real-world experiments (e.g., Luederitz et al. 2017, Williams and Robinson 2020), the impacts generated as part of the collaborative RwL processes have not been studied in the same way.

In an attempt to fill this research gap, we suggest a revised approach for assessing RwL impacts based on our experiences in designing and participating in an eight-year RwL process in the city of Lüneburg. This approach is intended to complement the prevalent framing and understanding of impact, and to high-
light its specific meaning in the context of long-term collaborative RwL processes. We start with the observation that the joint process of operating an RwL comprises many different iterative design features, such as activities, events, features, and actions, all of which follow their own purpose and achieve their own outcomes. Going beyond this, however, we are suggesting that the greater impact that these collaborative processes (and all their elements) make is better understood when approached as emergent; namely as an impact achieved through the combination and interplay of many individual design features and actions.

We aim to address the following research question: what impacts emerge from RwL processes? To investigate this question, we present the case of the RwL Zukunftsstadt Lüneburg 2030+, an RwL established in the city of Lüneburg by members of Leuphana University Lüneburg, the local city administration, and actors from civil society. The RwL was initiated in 2015, as part of the Zukunftsstadt funding programme of the German Federal Ministry of Education and Research (BMBF), and was developed over three project phases: 1. a joint sustainability vision; and 3. the experimentation in an RwL setting.

We approach the lab process from three perspectives: 1. the lab as a space for learning and education; 2. the lab as a space for new governance structures; and 3. the lab as a public actor for sustainability, all of which we investigate as dimensions of potential impact. Through our approach, we identify and describe impacts that the joint work of the RwL has created in the Lüneburg context. We offer a novel perspective that complements the theoretical understandings to approach these impacts (figure 1, p. 20). First, we adopt the understanding of transdisciplinary research impacts by Schäfer et al. (2021), as well as the proposed benefits of RwLs as discussed in the recent literature (McCrorry et al. 2020, Schäpke et al. 2018, Singer-Brodowski et al. 2018). Further, we adopt the analytical understanding by Wiek et al. (2014a). This approach recognises collaborative processes as drivers of impacts and aims to attribute these impacts to the participatory events of a given process. Integrating these understandings enables us to conceptualise the impacts that have emerged over the course of the long-term RwL process Zukunftsstadt Lüneburg 2030+.

In our case study, we present exemplary lab features as identified by the research team through joint reflection, building on the experiences from the research process, as well as synthesising available case data from the project documentation and communications throughout. To focus our investigation on the lab process, we disambiguate the lab process and the experiment following the approaches of Kampfmann et al. (2022) and Bernert et al. (2023): they view “experiments” as processes closely linked to the concept realisation of interventions, whereas “lab” describes the broader collaborative process that forms the conceptual context within which experiments are conducted.
Societal impacts of transdisciplinary research: Three analytical perspectives for investigating real-world lab processes

Previous analytical papers on RwLs have focused on aspects such as the role of structuration (Schneidewind et al. 2018) or success factors (Bergmann et al. 2021), but they have not attempted to evaluate the impacts generated by operating a lab. Therefore, we base our understanding of such impacts, and their appraisal, on a number of approaches that have been put forward in the context of transdisciplinary and transformative research (e.g., Lux et al. 2019, Schäfer et al. 2021). Schäfer et al. (2021) systematise categories for approaching the societal effects of transdisciplinary research that can be differentiated as first, second, and third order effects depending on how closely the observed effects may be linked to the project under investigation. From this set of categories, eight are particularly suitable for assessing the impacts of the RwL itself (as opposed to the experiment level). Summarising these categories into three analytical perspectives enables us to describe the impacts of the Zukunftsstadt Lüneburg 2030+ RwL (table 1, p. 19).

As shown (table 1), the impacts of transdisciplinary research identified by Schäfer et al. (2021) are matched with literature on the proposed benefits and qualities of RwLs to form the three perspectives on which we base our investigation. These benefits cover the notion that RwLs are spaces that facilitate different types of learning, which might “profit from a differentiated educational perspective for their methodological development, by systematically including learning as a characteristic of their design” (Singer-Brodowski et al. 2018). Moreover, RwLs create contexts in which governance arrangements (in the sense of inter-institutional collaborations between state and non-state actors) are established (Marquardt 2019) to foster societal problem-solving (Wolfram et al. 2019). By institutionalising transdisciplinary research in local contexts, the actors within RwLs may also represent diverse roles associated with this mode of research (Wittmayer and Schäpke 2014, Hilger et al. 2021).

Table 1 summarises our identification of the three analytical perspectives that stem from the impact categories by Schäfer et al. (2021) and the proposed benefits of RwLs. We focus our investigation of the Zukunftsstadt Lüneburg 2030+ RwL process through the lens of these perspectives. In the following case study section (box 1, p. 21), we identify three exemplary process features for each of the perspectives. These features are then used as a reference for the emergent impacts that we conceptualise in each of the three perspectives.

Case study: Uncovering emergent impacts through three perspectives

In the following sections, we approach the Zukunftsstadt Lüneburg 2030+ RwL process through the three perspectives as outlined above. We briefly introduce these perspectives, drawing on the RwL literature, and the impact categories suggested by Schäfer et al. (2021). We then reconstruct the process by presenting exemplary design elements. From these design elements and their individual contributions, we then abstract and conceptualise the related emergent impacts.

Perspective 1: Educational features of the lab process

The RwL process of Zukunftsstadt Lüneburg 2030+ is characterised by the close connection of activities in the lab with teaching and learning at the local university. This aspect was central throughout the three project phases, and it unfolded in diverse ways, as demonstrated by the inclusion of many educational features throughout the lab’s process. We present and describe three such features in the table below (table 2, p. 21).

Emergent impact 1: The real-world lab as a novel space for transdisciplinary and transformative education and learning. The experiences undergone in the Zukunftsstadt Lüneburg 2030+ RwL address several levels of learning within RwLs, as conceptualised by Singer-Brodowski et al. (2018). The long process (over many years) leading to the creation of the Zukunftsstadt Lüneburg 2030+ RwL opened up a window of opportunity for the development of students’ individual competences (i.e., system and anticipatory thinking), which was strongly fostered through ex-
Lüneburg is a medium-sized town of about 80,000 residents, located within the Hamburg metropolitan area. The *Zukunftstadt Lüneburg 2030*+ RwL was established as a result of a long-standing and continuously evolving collaboration between actors from the city administration, the civil society, and the university (Bernert et al. 2016). Due to the logic of its public funding line, the RwL consisted of three subsequent phases: 1. from 2015 to 2016, a large-scale visioning process for a sustainable city in the year 2030 and beyond; 2. from 2017 to 2018, the participatory and transdisciplinary development of 17 sustainability solution strategies; 3. from 2019 to 2023, the realization of 15 real-world experiments building on the solution strategies. As of 2019, the process was closely linked to, and officially intertwined with, the formation of a city-wide integrated development concept (ISEK), initiated by the city council of Lüneburg (Hansestadt Lüneburg 2019).

Despite its inherently open and evolving character, the *Zukunftstadt Lüneburg 2030*+ RwL was designed along general principles, including a strong sustainability orientation due to the framing of the project as a local implementation and interpretation of the Sustainable Development Goals. The establishment of a steering group, tasked with democratically making all the basic project decisions, was a key feature of the overall project design. The steering group consisted of members from the city administration, the university, and the civil society.

The collaborative process of *Zukunftstadt Lüneburg 2030*+ in all three project phases combined open work phases in different group constellations (e.g., sharing visions for the future in student-stakeholder teams), as well as work steered and conducted by the project team (e.g., to integrate interim results). Each phase ended with a large-scale participatory event (the so-called *Zukunftstadt-Tag*). Students from the local university were closely involved in all the stages, and they contributed their own perspectives from their studies in different areas. In parallel to the project, a case study office was installed to support the students’ research and the teaching endeavours (Kirst et al. forthcoming).

The 15 real-world experiments conducted in the third phase were designed to address a variety of sustainability issues in the city, such as sustainable logistics and mobility in the local economy, youth participation for sustainability, supporting biodiversity efforts of civil society initiatives, or the sustainable design of public spaces.

Christ et al. (2024, in this issue) present an evaluation of another long-term urban RwL in Flensburg, Germany.

TABLE 2: Exemplary educational design features of the real-world lab (RwL) process for *Zukunftstadt Lüneburg 2030*+.

<table>
<thead>
<tr>
<th>DESIGN FEATURES</th>
<th>DESCRIPTION</th>
<th>DIRECT OUTCOMES</th>
<th>LITERATURE*</th>
</tr>
</thead>
</table>
| higher education teaching continuously embedded in the project | ■ continuous student involvement based on inter- and transdisciplinary study model
■ experience-based teaching alongside real-world developments in the RwL (e.g., co-developing sustainability visions; supporting the realisation of experiments) | ■ >1500 students of all levels were involved in project-related teaching
■ many results are documented in a case study database | Barth et al. 2017, Weiser et al. 2023 |
| development of new teaching formats relating to the RwL | ■ lab as context for the development of new teaching formats, in established curricula and new learning modules (e.g., the *Transformative Innovation Lab*) | ■ new teaching models and seminar designs deeply involving students in lab and experiments
■ principles for the design of transformative teaching | Bernert et al. 2022, Wanner et al. 2021, 2020 |
| capacity-building around sustainability as a reoccurring lab activity | ■ capacity-building for sustainability among the core project members and with external actors and visitors
■ continuous reflection of sustainability understandings in context of current developments in Lüneburg (e.g., COVID-19 pandemic)
■ regular visits from researchers (e.g., tdAcademy; PostDoc Academy, international consortia) as capacity-building formats and to support reflexivity within the project team | ■ capacity-building with three cohorts of 20 participants each in the Postdoc Academy
■ adaptable teaching materials as introductions to the RwL approach within the project | Postdoc Academy for Transformational Leadership* |

*A Further readings and project-related sources related to the design feature.
B www.bosch-stiftung.de/en/project/postdoc-academy-transformational-leadership*
volved, while the students’ activities also helped to support and advance the RwL itself. At times, these activities developed their very own dynamic that contributed to social learning processes far beyond the classroom. In this way, the RwL established a space for fostering transformative transdisciplinary learning and further developing teaching approaches.

Perspective 2: Design features fostering collaborative governance

The RwL process of Zukunftsstadt Lüneburg 2030+ is characterised by close collaboration between members of the city administration, the civil society, and the university. This aspect was central throughout the three project phases and unfolded in diverse ways (table 3). Together, these developments have created an emergent impact that can be conceptualised as establishing the Zukunftsstadt Lüneburg 2030+ RwL as a novel institutionalised form of collaborative governance (for sustainability) in its surrounding local context.

Emergent impact 2: The real-world lab as a driver of novel structures for collaborative governance

While the collaboration between the civil society, the city administration, and the university has a long-standing history in the city of Lüneburg, the RwL process of the Zukunftsstadt Lüneburg 2030+ has institutionalised and deepened this mode of joint collaborative governance. The RwL has helped to establish both formal and informal networks between state and non-state actors, as well as fostering political plans and structural changes. Zukunftsstadt Lüneburg 2030+ can be seen as a context in which urban stakeholders could expand their capacities for advocating for urban sustainable development in the future. Through their engagement in the RwL process, members of Lüneburg’s city administration were able to gain experience in the fields of inclusive, multiform, urban governance, as well as creating visions for the future and experimenting with sustainability solutions. Both are crucial components of the urban transformative capacity framework (Wolfram et al. 2019, Castán Broto et al. 2019). The Zukunftsstadt Lüneburg 2030+ RwL created impact through forming, as well as consolidating, urban transformative capacity, which in turn led to the creation of informal networks, influenced political agendas, and altered the formal structures for fostering sustainability and citizen engagement.

Perspective 3: Design features for public interaction

The RwL process of Zukunftsstadt Lüneburg 2030+ is characterised by the close involvement of Lüneburg residents throughout the three project phases. This involvement was enabled through many design features, which unfolded in a variety of ways. These are presented in this section (table 4, p. 23). Together, these developments created impacts that can be conceptualised as establishing the Zukunftsstadt Lüneburg 2030+ RwL as a novel boundary actor for sustainability in its local context.

Emergent impact 3: The real-world lab as a boundary actor for sustainability

Due to its implementation of diverse activities with a strong focus on public involvement in the context of sustainability questions, we argue that the RwL gained the role of a public boundary actor for sustainability during the project. As a boundary actor, the lab was able to foster active networking among local actors and support numerous sustainability-oriented initiatives by civil society actors, as well as local businesses. By facilitating (and occasionally mediating) the public exchange on sustainability issues, the lab acted as a hub to connect actors with administrative representatives, researchers, and other actors and initiatives. Complementing the efforts of a diverse landscape of sustainability initiatives, the lab institutionalised many of the roles attributed to transdisciplinary researchers (Wittmayer and Schäpe 2014, Hilger et al. 2021).

TABLE 3: Exemplary design features of the Zukunftsstadt Lüneburg 2030+ real-world lab (RwL) process fostering collaborative governance.

<table>
<thead>
<tr>
<th>DESIGN FEATURES</th>
<th>DESCRIPTION</th>
<th>DIRECT OUTCOMES</th>
<th>LITERATURE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>joint leadership of the RwL process</td>
<td>the RwL process is carried out by the city administration, the university, and local civil society</td>
<td>decisions on structural changes in the city administration were discursively linked to the RwL process</td>
<td>Purschwitz 2023</td>
</tr>
</tbody>
</table>
| biannual advisory board meetings | ■ the RwL board consisted of members of political parties on the city council, interest groups, and university representatives
■ RwL experiments and further work were discussed at meetings | transdisciplinary working approach and group composition were transferred to a novel project focusing on a resilient city centre | Hansestadt Lüneburg 2021 |
| connected to the Integrated Urban Development Process (ISEK) | Rwl and ISEK processes were intentionally linked to each other (e.g., represented in one brand) | ■ learning from evaluations of the events held during the RwL process
■ ISEK events were located in isolated city districts to gather the opinions of residents from those areas | Hansestadt Lüneburg 2019 |

*Further readings and project-related sources related to the design feature.
Towards an understanding of emergent impacts of real-world labs

In our case study, we identified several impacts of a long-term RwL process. By reflecting on the eight-year process of the Zukunftsstadt Lüneburg 2030+ project, we uncovered and conceptualised the impacts in three dimensions.

1 Emergence as an inherent quality of the impacts of collaborative processes. The impacts we identified, while not accidental, were not planned for at the beginning of the process and were not achieved due to a specific experiment or intervention. Instead, they emerged from a continuous, collaborative process between the city administration, the civil society, and Leuphana University Lüneburg. All of these participants brought their interests, motivations, and capacities to the process of jointly operating a lab that aimed to contribute to a local sustainability transformation. As we have illustrated in our case study, the process of operating a lab comprises many diverse and small-scale design elements that together build the long-term complex process that is Zukunftsstadt Lüneburg 2030+.

However, approaching these single design elements from a cause-and-effect perspective would not enable a reflection of these larger impacts that are, in our view, crucial for answering the question: “Why use RwLs?” We are aware that the conceptual impact understanding we offer may not meet the desire to quantify the impacts of RwL research. Explicitly recognising emergent impacts may, however, serve to complement such a perspective, providing a space to reflect upon “success” (in the sense of local contributions and transformative change enabled through its operation) and the transferability of process features. Furthermore, the recognition of RwL impacts beyond the experiment supports their further development as institutions that are not just experimental extensions of transdisciplinarity, or spaces for innovation testing (Parodi 2019).

2 Using an emergent impact understanding in RwL design. Future labs may use descriptions of emergent impacts from other labs, not to rebuild the exact same process, but to formulate more differentiated understandings of desired impacts. This could support a deeper shared understanding of the interests, perspectives, and capacities present among actors in the lab to develop a more future-oriented guiding perspective. Thus, while the impacts at the lab level may remain difficult to grasp from a cause-and-effect perspective, the practice of describing and conceptualising these impacts may make them more tangible. This could serve to better align certain design choices with, on the one hand, day-to-day realities (e.g., semester planning, “Vereinsarbeit” or voluntary work, the daily tasks of a city administration) and, on the other hand, with the overall objectives of the RwL.

TABLE 4: Exemplary design features of the Zukunftsstadt Lüneburg 2030+ real-world lab (RwL) process for public interaction.

<table>
<thead>
<tr>
<th>DESIGN FEATURES</th>
<th>DESCRIPTION</th>
<th>DIRECT OUTCOMES</th>
<th>LITERATURE¹</th>
</tr>
</thead>
</table>
| large-scale public events | • large public events (e.g., Zukunftsstadttage) during all project phases to educate about the project and invite actors to participate
• during the COVID pandemic, Zukunftsstadtmagazine: broadcast events involving experts and local representatives discussing sustainability in Lüneburg and beyond | • different event formats have reached up to 2,000 people
• the opening day of the third phase was attended by 300 to 400 people | Zukunftsstadt-magazine available on www.youtube.com/@Leuphana |
| RwL as a service agency | • both steering committee and lab activities were designed to be open to citizens and actors interested in collaborations
• RwL promoted direct connections with local actors and occupied a central position between the actor groups, the city administration, and the university
• realisation of this role was supported through formats such as open-office days | • support for new alliances and initiatives (e.g., Tauschregal, setting up open exchange shelves for unused goods)
• recognition of Zukunftsstadt as a strong local actor | internal meeting minutes |
| continuous information about the project’s sustainability activities and cooperation with other actors | • regular information through newsletters and monthly pages in the local newspaper, Landeszeitung, to report on project activities and sustainability initiatives in Lüneburg
• creation of the shared brand Lüneburg. Die Zukunftsstadt. for the RwL and ISEK process
• social media presence on Instagram to inform about the project’s progress and activities in Lüneburg | • continuous information of general public about sustainability activities using diverse channels of communication (e.g., newspaper with a circulation of over 20,000, Instagram page with over 1,500 followers) | Purschwitz 2023 |

¹ Further readings and project-related sources related to the design feature.
While the impacts that have emerged from the Zukunftsstadt Lüneburg 2030+ case are strongly intertwined with the local context, we argue that the dimensions in which these impacts lie – labs as spaces of transformative learning, labs as collaborative governance arrangements, and labs as boundary actors – are also relevant for better understanding the value and contribution of RwL processes in other contexts. Moreover, by presenting the design features in addition to the emergent impacts, we have also aimed to provide insights regarding the “knowledge how” (Caniglia et al. 2020).

Developing new methods for impact assessment. The methods for capturing and conceptualising emergent impacts of RwLs need to be further refined and integrated with similar approaches (Marg et al. 2019, Schäfer et al. 2021). Our tentative analysis has integrated different theoretical considerations to identify impacts by adopting three perspectives. This should be further explored in close cooperation with other RwLs to identify further emergent impacts. Future research could also focus on adequate approaches for the creation of stronger evidence bases for such impacts. However, we are convinced that one strength of our tentative analysis lies in the recognition of the crucial design features of RwL research.

With our contribution to the debate around the impacts of RwL research, we hope to highlight the value of engaging with the emergent impacts of RwLs. We look forward to future developments in this field and to the creation of effective tools for capturing and further conceptualising these impacts.

Acknowledgement: We thank all the people who have been involved for many years in jointly shaping and carrying out collaborative real-world lab work in and around Lüneburg. We especially thank our colleague Antje Seidel for her contribution to the development of this article and collaborative work in recent years within the Zukunftsstadt Lüneburg 2030+ project. Furthermore, we would like to thank the two anonymous reviewers for their time and effort in reviewing the manuscript. We sincerely appreciate their comments, which have helped us to improve this article.

Funding: German Federal Ministry of Education and Research (BMBF), funder id: 10.13039/501100002347 (grant no: 13ZS0058B).

Competing interests: The authors declare no competing interests.

Author contribution: PB, AW, TK: research design, original draft of the manuscript; PB, AW, TK, DL: final manuscript.

References

und “Nachhaltige Transformation urbaner Räume“. Wirkungskategorien, Projektprofile und Handreichung zur Selbstdrehflexion.
https://doi.org/10.1007/s10668-022-02659-y.

Philip Bernert
Since 2023 research associate at the Research Institute for Sustainability (RIFS), Potsdam, DE, working on transdisciplinary and transformative sustainability research with focus on impact and evaluation. Previously research associate at Leuphana University Lüneburg, DE, in the real-world lab projects GLOCULL and Zukunftsfokus Lüneburg 2030+. Research interests: transdisciplinary sustainability research, transdisciplinary real-world laboratories.

Annika Weiser
Since 2023 scientific coordinator of the research group Designing Real-World Laboratory Research at the Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe, DE. Previously research associate at Leuphana University Lüneburg, DE, involved in transdisciplinary sustainability research, “doing real-world labs”, and implementing higher education for sustainable development. Research interests: transdisciplinary sustainability research, real-world labs, transdisciplinary learning.

Teresa Kampfmann
Studies in urban and regional development. PhD student at the School of Sustainability at Leuphana University Lüneburg, DE. Several years of work in the Zukunftsfokus Lüneburg 2030+–RWL. Research interests: real-world labs, urban governance, critical geography.

Daniel J. Lang
Since 2022, professor at the Karlsruhe Institute of Technology (KIT), DE, and head of the research group Designing Real-World Laboratory Research at the Institute for Technology Assessment and Systems Analysis (ITAS). Previously, professor for Transdisciplinary Sustainability Research at Leuphana University Lüneburg, DE. Founding member of the Society for Transdisciplinary and Participatory Research. Member of the GAIA Board of Directors.