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A B S T R A C T   

In recent years, machine learning techniques have been increasingly tested and applied to physically collected 
data to optimize the processes. In this paper, machine learning is used to check travel survey data of the German 
Mobility Panel (MOP). In the MOP, verified and raw data have been available for several decades, on which 
algorithms can learn the practices of human checking routines. By using machine learning, the algorithm is 
expected to learn the checking patterns from the past and thus support the data checking of new datasets. To this 
aim, several algorithms are applied and tested. The presented model framework supports the identification of 
blatant deficits in the reports at the individual and trip levels. The neural network (NN) shows the most 
promising results as it decreases the number of data samples checked. The checking effort can be reduced by 20.4 
% at the individual trip level. This work shows that machine learning can support the data checking process in 
the MOP at various levels, thus leading to significant time reduction.   

1. Introduction 

The provision of truthful travel survey data is a high responsibility 
because decisions for future investments are made on it. Thus, the data 
quality and completeness require special attention (Hubrich et al., 
2018). When assessing data quality, a distinction must be made between 
sampling and non-sampling errors. Sampling errors occur when the 
sample itself is biased. However, such errors can be corrected by 
weighting the data and are not the focus of the following study. Non- 
sampling errors include all problems that are not directly related to 
the sampling but endanger the data quality (Aschauer et al., 2018; 
Bonnel et al., 2015; Hubrich et al., 2018). Ensuring data quality is, 
however, however always time-consuming and, therefore, costly. 

In the German Mobility Panel (MOP), a Germany-wide national 
household travel survey (NHTS), around 3,800 people are surveyed 
annually about their everyday travel (Ecke et al., 2021). For this pur-
pose, participants keep a so-called trip diary for one week to report all 
their trips. In the 1990s, a methodology for data validation was devel-
oped and has been consistently applied to manually check for non- 
sampling errors and identify individuals with glaring reporting de-
ficiencies. The methodology has been continuously developed further. 
Besides various algorithm-based checks, the data assessment of non- 

sampling errors has also been done by trained staff. Through the 
continuous application of the checking routines in all years of data 
collection, the data was made available to planners with consistent data 
quality. Comprehensive data documentation of the checking process is 
available, which allows in-depth insights into the checking process of 
the data. However, with approximately 70,000 trips per survey wave, 
this process is very time-consuming and thus costly, as the trained staff 
must check every person and trip. 

In light of the above, machine learning techniques seem promising 
support for the data checking and dropout identification process for the 
MOP data. The previously checked data can be seen as large labelled 
datasets, which can serve as a basis for supervised learning techniques. 
The machine learning algorithm is expected to learn the checking pat-
terns from the past to support data preparation and checking in newly 
collected datasets. Therefore, this paper will address the questions to 
what extent and how successfully machine learning can support the data 
preparation and checking process of the MOP. 

The paper is structured as follows: First, a literature review draws a 
picture of the data checking processes of travel survey data and to what 
extent machine learning is already used for data validation. Second, the 
data used as well as the past data checking process are described. Third, 
machine learning techniques are applied, tested and evaluated at 
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different steps during the data checking processes of the MOP. Next, the 
limitations of the presented methods are described. Last, the impact of 
using machine learning is investigated and discussed. This study ends 
with a conclusion and an outlook for further research. 

2. Background 

In this section, we provide an overview of data validation of travel 
survey data in the literature, introduce the MOP survey design and 
describe the data assessment methods of the MOP data in the last 
decades. 

2.1. Literature 

Machine learning is receiving increasing attention in the trans-
portation sector. For example, methods such as the neural network (NN) 
are used to predict usage frequencies and vehicle preferences (Hu et al., 
2022). Machine learning is, for example, also used for the prediction of 
shared-car use. A study by Wang et al. found that carsharing operators 
accurately predict the station-level shared-car use and optimally identify 
the best locations for stations, thus maintaining the operational effi-
ciency of carsharing programs (Wang et al., 2021). In particular, mobile 
device location data provide a comprehensive database to answer 
questions about individual travel. By using machine learning, this data 
can now be efficiently analyzed to better predict and model population 
inflow, for example (Hu and Xiong, 2023). 

With the increasing number of machine learning applications 
whenever data is analyzed, the question arises if machine learning can 
also help to check survey data. When it comes to studies that apply 
machine learning in the context of travel survey data, two main appli-
cations can be identified: transport mode recognition (e.g., Feng and 
Timmermans, 2013; Wang et al., 2018; Zhou et al., 2016) and trip 
purpose identification (e.g., Meng et al., 2017; Montini et al., 2014). All 
these studies have in common that they are based on automatically 
collected data, e.g. GPS trajectories, and not revealed preference data or 
other types of survey data. Furthermore, the literature highlights the 
general challenge of using such data for prediction due to complex 
nonlinear temporal dynamics in the travel of individuals as they show 
high-dimensional and non-negligible impacts from various external 
factors (Hu and Xiong, 2023). 

Von Behren et al. (2020) apply machine learning to panel survey 
data on everyday travel to segment people based on visualization of 
weekly travel. The application does not focus on data checking but on 
the segmentation of homogenous groups, which is also essential for 
understanding travel behavior. However, these studies generally focus 
on generating and understanding travel data and less on applying ma-
chine learning techniques to check and assess data quality. 

Depending on the data collection methodology, the effort to check 
the data and ensure high data quality varies. For example, during online 
surveys, the provided data can be checked in real-time and warnings can 
be issued to the participants if data is likely to be wrong or missing 
(Aschauer et al., 2021). The NHTS in the U.S. uses this method to sup-
port participants while reporting and thus to achieve higher data quality 
(NHTS, 2018). Surveys using paper and pencil as data collection 
methods do not allow for real-time assessment and are costly as errors 
must be identified after data collection (Couper, 2011). 

When working with NHTS data, it is challenging to evaluate partic-
ipants who do not report any trips, either out of lack of motivation 
(dropout) or because no trips were made (immobile). It becomes even 
more complicated if only some trips are not reported because these 
‘abnormal’ could probably reflect authentic travel patterns and cannot 
be directly adapted in the dataset. The phenomenon of item- 
nonresponse is examined by Aschauer et al. (2021). By contacting the 
participants promptly after the first data check, follow-up data 
completion and validation were possible. It was found that trips were 
mainly underreported on days when many trips were made. Similar 

results were found by Wittwer and Hubrich (2015). The decreasing 
motivation of participants is even more critical in longitudinal surveys, 
in which participants are asked to report several times and/or over a 
more extended period. Some participants start motivated at the begin-
ning of the survey and lose motivation, and the data gets biased or 
erroneous over the reporting period (Chlond et al., 2013; Wirtz et al., 
2013). Kitamura and Bovy (1987) found that participants who reported 
accurately in the first wave of a survey were also likely to do so in the 
second wave. However, identifying unplanned dropouts is challenging 
and has been investigated by De Haas et al. (2022) and Kuhnimhof et al. 
(2006). Madre et al. (2007) and Armoogum (2014) suggest that many 
participants are unplanned dropouts in travel surveys. 

In summary, numerous studies use ML for predictions in the trans-
portation sector. However, the areas of application are limited to tech-
nically collected data. According to the authors’ research, data checking 
of travel behavior data captured with surveys does not exist so far. The 
reasons are mainly the lack of ground truth data and the high variability 
of individual travel behavior. A research gap is identified regarding the 
lack of experience with ML in revealed preference data checking. In the 
following, the case study investigates how to automate the checking 
process of travel survey data, exemplarily tested on the MOP. 

2.2. German Mobility Panel 

The German Mobility Panel (MOP) is an annual NHTS. Since 1994, it 
has been carried out on behalf of and funded by the German Federal 
Ministry for Digital and Transport. The market research firm KANTAR is 
responsible for the fieldwork (i.e., recruitment and data collection) and 
the Institute for Transport Studies of the Karlsruhe Institute of Tech-
nology (KIT) is in charge of the survey’s design and scientific supervision 
(Ecke et al., 2021; Jödden and Führer, 2021). The data collection takes 
place in the fall. Participants are asked to fill in a trip diary over seven 
consecutive days. The trip diary provides information about all trips 
during this week (distances, means of transport, trip purposes and de-
parture and arrival times). Participants also indicated irregularities, for 
example, whether they were ill or on vacation. Furthermore, socio-
demographic information about the participants and households is 
asked for. 

The annual sample size is 1,500–1,800 households with 2,600–3,100 
persons aged ten years and older. The MOP is designed as a rotating 
panel. Participants are asked to report their travel behavior in three 
consecutive years. A new cohort of first-year reporters replaces a portion 
of the sample that retires every year after three years of reporting. Every 
year, the data is stored in three datasets: household, person, and trip 
dataset. All datasets can be linked via key variables. More information 
can be found on the project website (Ecke et al., 2022). 

This paper uses five years of data (2015–2019) with three datasets 
per year (household, persons, trips). The sample size of each dataset is 
displayed in Table 1 (individuals can report in up to three years). 

2.3. Data checking process of the last decades 

Data checks are carried out within the data assessment to ensure high 
and consistent data quality. The three-step assessment aims to identify 
people with blatant deficits in their reports (dropouts), and to detect 
non-sampling errors (e.g. missing values). The procedures have been 

Table 1 
Sample size of the MOP surveys 2015–2019.  

Survey year Persons Households Trips 

2015 3,774 1,843 64,418 
2016 3,643 1,776 67,065 
2017 3,867 1,881 71,977 
2018 3,835 1,868 73,041 
2019 3,872 1,864 72,216  
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used since the start of the survey in 1994. 
Dropout identification occurs for the first time during the pre-checks 

so that the relevant participants are removed from the datasets. The data 
checks are divided into preliminary checks and individual checks. The 
preliminary checks examine the personal data based on predefined 
rules. In addition, another search for dropouts occurs during the sepa-
rate checking of the trips. In this step, persons are also removed if the 
data are incomplete and unusable for further analyses. In the individual 
checks, the daily travel and activities of the persons are checked over 
one week. Software is used for this purpose, described in the next sec-
tion. Due to the annual implementation and the almost unchanged 
survey design, the data structure has been nearly unchanged over the 
last decades. The documentation of the data checking process (checking 
rule set) and the checked data itself over the past decades make it 
possible to provide a database on which an artificial intelligence-based 
algorithm can be trained to learn the data assessment from historical 
data and apply it to new data. 

2.3.1. Graphical diagnosis of individual travel behavior (GraDiV) 
Since the start of the MOP, the so-called GraDiV software is used for 

the trip data checking. GraDiV is used for the individual checks of each 
participant (e.g., check for completeness, identification of not completed 
trip chains etc.), which is described in detail in Ecke et al. (2024). Re-
sults based on the data checked with GraDiV are presented in (Ecke 
et al., 2021; Jödden and Führer, 2021). In the tool, the activity and trip 
schedule of the week are visualized and thus allow to see implausibility 
in the data reported directly. The checking processes of the past years 
are documented. The data obtained (raw data and the data after data 
checking with GraDiV) is suitable as training data that allows algorithms 
to learn the nuanced human judgment of the data checking process. 

3. Methodology 

In this paper, applications of machine learning methods for data 
checking are evaluated and their functionality is tested. Based on the 
manual data assessment of the past (GraDiV), it is investigated to what 
extent the nuanced human judgment can be learned and applied by al-
gorithms at different data levels (here: individual and trip level). The 
basic idea is that algorithms learn from a training dataset which is based 
on manually checked data of the past and is then applied to a new raw 
dataset. In this process, it is first tested whether unplanned dropouts can 
be identified in the data by machine learning methods, i.e. to what 
extent these “bad risks” in the data can be detected. For this, we apply 
several different machine learning methods (neural network, decision 
tree, random forest and support vector machine). Furthermore, it is also 

tested whether incorrect trip data can be identified by machine learning 
methods and whether these can be corrected automatically. 

3.1. General concept 

For this work, a three-stage framework was developed based on the 
stages of the (manual) checking process from the past. This enables 
comparing both processes (manual vs. machine learning) at all levels. 
Fig. 1 shows the stages for which machine-learning approaches are 
implemented and further tested. The first step is to look for dropouts 
during the pre-checks (1). For this purpose, only participants who have 
reported no or only a few trips are relevant. Identified dropouts 
(including their reported trips, if existent) are removed from the person 
dataset. Then, as part of the individual checks (2), all remaining par-
ticipants are considered. 

As a third step, the individual trips of the trip dataset are checked for 
implausibilities during the individual checks (3). Trips that may need to 
be manually checked afterward are marked as such. The model imple-
mentations, data preparation, and model performance are presented in 
section 3.3. 

All models designed in this work are implemented using the Python 
3.8.0 release. For data preparation, the libraries Pandas and NumPy are 
used. Machine learning and deep learning is performed using Tensor-
Flow, Keras, Scikit-Learn and TensorBoard. 

3.2. Model framework for dropout identification in pre- and individual 
checks 

This section highlights the applicability of machine learning to 
support the identification of dropouts. Identifying dropouts as early as 
possible in the preliminary checks is desirable, as this means that in-
dividual’s reporting data will only go through a few steps of the checking 
process. As a result, less time and effort are spent on less meaningful 
data. Remaining participants are again screened for possible report 
dropout during the individual checks. It is investigated how the algo-
rithms distinguishes dropouts (participants who drop out of the survey 
prematurely) from participants with major deficits in reporting quality 
and from participants with justified deviations from expected behavior 
(e.g., due to illness). In the pre-checks and the individual checks, the 
goal is to detect faulty persons (dropouts). The algorithms do not correct 
or supplement data. 

3.2.1. Model implementation and data preparation 
The data preparation for dropout identification during the pre- 

checks ((1) Fig. 1) and individual checks ((2) Fig. 1) is similar. The 

Fig. 1. Connection of the application of the models for dropout identification and individual trip checks.  
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sociodemographic data of the participants and aggregations regarding 
their reporting behavior serve as the data basis. In the individual checks, 
however, the individual trips made by each person are also taken into 
account. Neural Networks (NN) are implemented for both pre-checks 
and individual checks for the identification of dropouts. We use NNs 
because there is comparatively little systematic knowledge in the data-
sets and a large amount of imprecise information that needs to be pro-
cessed, and NNs can handle this better than other algorithms (Dreyfus, 
2005). 

First, it must be ensured that the input layer dimension has the 
appropriate number of input features. The input layer of the NN for 
dropout identification during pretesting receives nine features (age, 
presence of a mobility impairment, occupation, household type, number 
of days reported, number of trips reported, number of days with sick-
ness, number of vacation days, and number of days reporting abnor-
malities such as a business trip, see Appendix, Table 5). The features are 
taken directly from the person and trip datasets. Including the dummy 
variables created by One Hot Encoding, these nine features are repre-
sented by 20 input columns. For the individual checks, the dimension of 
the input layer is 25 because reported trips (five columns) are considered 
in addition to sociodemographic data. A fully connected network 
structure with four layers is used in both NNs, i.e.; there are two hidden 
layers. The two NNs (for the pre-checks and for the individual checks) 
are each trained using both single datasets from 2015 to 2019 and ag-
gregations of datasets from several years. 

Regarding the question which data should be used to train the final 
model, there is a particular trade-off to consider: Datasets from as many 
years as possible should be used so that the model can learn with many 
data points. However, the NN will become confused if many data points 
are added that do not reveal a clear pattern. In addition, the consistency 
and comparability of the results increase if the dropout identification 
during the pre-checks and during the individual checks are based on the 
same years. 

Only individuals who reported no or few trips within the one-week 
reporting period and their household members are considered in the 
pre-checks by the algorithm. However, a small number of reported trips 
alone is not sufficient as a characteristic for dropout identification. For 
example, the individual could be an older person who is being cared for 
by another household member because they may be mobility-impaired 
themselves. In this case, the person should be considered in later ana-
lyses and thus not identified as a dropout. 

It is essential to note the distribution of the labels. The confusion 
matrix is presented in the Appendix (Fig. 3). It can be seen that 72.22 % 
of the data points are correctly positively classified and 21.3 % are 
correctly negatively classified. In this case study, the non-dropouts are 
the “abnormal” class whose detection needs to be optimized. This is 
because those labeled as dropouts are removed directly from the person 
dataset. In addition, their trips are deleted from the dataset for the in-
dividual checks of the trips as it is not recommendable to keep bad 
training data for the sake of quantity. However, since each participant’s 
trip diary has a high value for the survey, unjustified deletion of a par-
ticipant’s data should be avoided. In this case, it is worse to label a 
person as a dropout who is not, than not to label a person as a dropout 
who could be a dropout. If the latter case occurs, there is still the pos-
sibility to identify this dropout during the individual checks. Generally, 
it is a trade-off between data quality and quantity. Before applying the 
model, the categorical features such as the presence of a mobility 
constraint, occupation, and household type are each One Hot Encoded. 
In addition, the dropout class is weighted more heavily during the pre- 
check. It aims to make the model also represent the underrepresented 
class well. Thus, the weights for the non-dropouts and the dropout class 
are 0.62 and 2.57 for the pre-check and 0.51 and 24.25 during the in-
dividual check. 

For the dropout identification during the individual checks, the re-
ported trips are considered in addition to the sociodemographic data. 
Seven features are constructed for dropout identification during the 

individual checks, each indicating the number of reported trips per 
reporting day (one per day; see Appendix, Table 6). The features are 
designed based on the assumption that dropouts initially report regu-
larly but that the number of reported trips per day decreases as the 
reporting week progresses. 

Six features are considered: mobility restriction, occupation, house-
hold type, number of days reported, number of trips reported, and the 
number of days on which abnormalities are reported. In combination, 
the reconsideration of these features leads to new patterns. 

However, the decoding of the labels differs from the process used 
during the pre-checking: In this step of dropout identification, all 
possible dropouts must be detected. Therefore, in this case the class of 
dropouts is given the label 1 and their recall, i.e. the percentage of 
detected dropouts with respect to the number of actual dropouts, has to 
be maximized since no non-dropout should be mistakenly removed from 
the dataset. Subsequently, the categorical features are also One Hot 
Encoded. 

The training/test ratio of the model is 80/20, while binary_crossen-
tropy is used as a loss function. We use three hidden layers and 100 
neurons per hidden layer to control the learning process. The learning 
rate is 0.001, and the batch size is 100. 

3.3. Model framework for individual trip checks 

The following framework is designed to check the trip diaries. The 
goal is to classify the trips into two classes: The class of correctly re-
ported trips (Ok) and the class of trips that might need further checking 
(P). Trips of class P are forwarded for further manual checks because it 
was found that it is not possible to fully automate the checking process 
with the given methods. 

3.3.1. Model implementation and data preparation 
In the first step, labels for the individual trip data are created by 

comparing the raw trip data with the data after the manual checks by the 
staff. The labels are defined by identifying how the trip was changed 
during the manual checks. The checking rules are listed in the GraDiV 
manual. 

First, a general binary label determines whether a trip’s purpose, 
distance, mode, or start or end time was changed. This label does not yet 
contain any information about which variable was adjusted. Therefore, 
a binary label is added for whether this characteristic was manually 
changed for each trip characteristic. It is also labeled whether a trip is 
deleted or added. 

Features are selected based on their importance to the performance 
of the model based on the VIANN method described by Kralj Novak et al. 
(2019). An alternative choice of determining feature importance would 
be SHAP (Lundberg and Lee, 2017). However, the results of the VIANN 
method are further used and presented in the Appendix (Fig. 4). In this 
method, the variance of the weights is measured to obtain the relative 
variable importance for NNs. During the training phase, the weights of 
an NN are changed until the model reaches its final state. While testing 
the model, it was found that not all the features are necessary for the 
model’s performance, so we could eliminate them and use only the 
relevant features. The features and their importance are described in 
more detail in the Appendix. After several trainings it becomes clear that 
the features startzeit, endzeit, x_dauer and x_geschwindigkeit have only a 
small importance for the NN despite the continuous values. In addition, 
the features x_zweck_w + 1, x_hh_gleiche_angabe und x_vm1_w + 1 are of 
very little importance. As a result, these features are not used to train the 
final model, as they unnecessarily add complexity and thus degrade the 
model’s performance. 

The categorical features are One Hot Encoded to ensure that the 
models consider the relevant features. It is important to optimize the 
classification of the trips to support the processor in the individual 
checks as effectively as possible. For this purpose, the performance of 
five models is compared. The dimension of the input layer is equal to the 
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number of features after decoding and is thus 92. The batch size is 400, 
the number of training epochs is 8, and the optimizer Adam is used. With 
more epochs, an overfitting effect occur, i.e., the model memorizes the 
training examples instead of recognizing generalized patterns. As a 
result, the NN cannot classify new, unknown examples well. We did not 
consider employing techniques to mitigate overfitting, such as incor-
porating dropout layers, early stopping, or skip connections, because the 
presented work is a case study. However, this might be future work. 

The weights of the classes vary depending on the dataset and on how 
frequently each class occurs in a given dataset. The aggregated dataset 
from 2015, 2016, 2018, and 2019 is used to train the final model. The 
weights for training are 0.54 for the Ok class of trips that do not need to 
be checked and 6.93 for the P class of trips that may need to be checked. 
In the aggregate dataset, nearly 13 times as many Ok class trips occur as 
P class trips. The weights for the two classes apply to the trained models 
and are initialized randomly. 

Furthermore, the performance of the four models NN, Decision Tree, 
Random Forest and SVM is considered. All models are each trained with 
the datasets of the individual years and aggregated datasets from several 
years. The performance measures are based on an average of 20 training 
repetitions to ensure replicability. 

4. Results 

4.1. Performance of the NN for the individual checks 

Table 2 summarizes performance measures to evaluate the NN for 
dropout identification during the pre-checks. The results are based on an 
average of 20 replicates, ensuring the approximate results’ approximate 
replicability. When comparing the performance of the models between 
the different years, it is clear that the model has a challenging time 
seeing a pattern in the 2015 dataset. Based on the 2015 data, the model 
has a recall of only 0.54 for the non-dropout class. In subsequent years, 
the recall is always at least 0.73; in 2016, 2017, and 2019, it is 0.86 or 
higher. 

The performance of dropout identification during the individual 
checks in 2016 is comparatively weak, with a recall of 0.76 (Table 3). 
Accordingly, only the datasets from 2017 to 2019 should be used for 
training the final model. However, the final model based on the aggre-
gated datasets should deliberately not be allowed to assign a data point 
to a specific year. Otherwise, the NN would recognize a different pattern 
for each year and not learn holistically with all data points. 

The NN based on 2017, 2018 and 2019 data detects 88 % of non- 
dropouts. The precision is 0.94. It means that most of our dataset is 
unproblematic for further use and does not need to be checked in more 
detail. The dropout recall is 0.76, so 76 % of dropouts are also detected 
as such and removed from the person dataset. In addition, the trips of the 
dropouts are removed from the trip dataset. For 2017, 2018 and 2019, 
approximately 130 participants were identified as dropouts during the 
pre-checks and removed (Table 2). 

The performance for the aggregated dataset from 2017, 2018, and 
2019 is also shown in Table 2. It is based on the personal data mentioned 
in Table 1. 

The recall of 0.88 means that 88 % of non-dropouts are identified. At 
the same time, 94 % of non-dropouts are not dropouts. Furthermore, 76 
% of the dropouts are identified. Thus, the model classifies 404 out of 
539 individuals as non-dropouts and 135 individuals as dropouts. 

Table 3 summarizes the NN’s dropout identification results during 
the individual checks ((2), Fig. 1). Again, the results are based on 20 
repetitions. While the recall for the class of dropouts in 2015 and 2016 is 
only 0.78 and 0.76, respectively, it is at least 0.85 in 2017, 2018, and 
2019. Thus, the final model will also be trained with the aggregated 
datasets from these three years. The recall for the model trained with the 
aggregated datasets from 2017, 2018, and 2019 is 0.91, and the preci-
sion is 0.22. Thus, 91 % of the actual 196 dropouts are detected by the 
NN. In total, 718 participants are labeled as potential dropouts for this 
purpose. 8,789 participants are classified as non-dropouts. However, the 
precision of this model is poor (Table 3). This is due to the problem of 
label imbalance, which is common in travel survey data. The imbalance 
of the sample results mainly from the fact that there are still many more 
people in the MOP who report well and completely. 

When looking at the label frequencies, it becomes clear that dropouts 
are rarely identified during the individual checks. For example 2019, out 
of 3,152 participants for whom the individual trip checks were per-
formed, only 86 participants were classified as dropouts. This results in a 
very unbalanced class frequency, so the dropouts class must be weighted 
nearly 50 times as heavily as the class of non-dropouts. As a result, the 
model must learn the patterns of a dropout from very few data points. 
This is also evident from the low precision of 0.21 for 2019: the model 
must classify many individuals as dropouts to include the few actual 
dropouts. 

4.2. Performance of the models for the trip checking 

An overview of the performance of each model – NN, Decision Tree, 
Random Forest and SVM – is summarized in Table 4. The analysis is 
based on the trip data displayed in Table 1. The training/test ratio is 
again 80/20 and the binary_crossentropy is used as loss function. One 
focus in comparing the models is on the recall of class P. Recall is more 
important than precision when the cost of acting is low, but the op-
portunity cost of skipping an example is high. In this case, the cost of 
action represents the time the agent spends. However, the opportunity 
cost of classifying a class P data point incorrectly is that the data point is 
not checked. This in turn leads to lower data quality. 

In this context, all trips that may need to be edited must also be 
labeled as such so that the trained staff consider them during the manual 
case-by-case checking afterward. Thus, it is less bad if a trip is incor-
rectly assigned to class P than if it is incorrectly assigned to class Ok. 
Accuracy, as a measure of the proportion of correctly classified data 
points out of the total number of data points, is also an indicator of 

Table 2 
Performance metrics of the NN for dropout identification during pre-checks (1) based on 20 training repetitions.  

Year Class Accuracy Recall Precision Predicted class frequency True class frequency 

2015 Dropout 0.61  0.62  0.55 72 43 
No dropout  0.54  0.78 66 95 

2016 Dropout 0.74  0.69  0.88 26 54 
No dropout  0.92  0.68 118 81 

2017 Dropout 0.77  0.55  0.52 40 43 
No dropout  0.86  0.84 137 134 

2018 Dropout 0.71  0.73  0.46 73 44 
No dropout  0.73  0.90 117 146 

2019 Dropout 0.82  0.75  0.37 33 18 
No dropout  0.87  0.95 139 154 

2017 
2018 
2019 

Dropout 0.84  0.76  0.62 135 105 
No dropout  0.88  0.94 404 434  
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performance as an overarching metric. However, it should not be 
weighted too heavily due to the imbalance of class frequencies. 

All four models can only classify the trips from 2017 very poorly. 
This can be seen in Table 4 by the low recall of class P for all four models. 
A more detailed examination of the dataset reveals this: Unlike in 2015, 
2016, 2018, and 2019, the edited trips for 2017 cannot be assigned to 
the unedited trips. Therefore, the final model is trained with an aggre-
gated dataset from 2015, 2016, 2018, 2019. 

When examining the recall of class P, it is found that the NN classifies 
the trips best, closely followed by the SVM. The largest difference in the 
performance of the NN and SVM is in 2018, with the NN achieving a 
recall of 0.84 and the SVM achieving a recall of 0.77 this year, which is 7 
% lower than the NN. This year’s large difference in performance sug-
gests that learning from the 2018 training data would require parameter 
adjustment in the SVM. However, the SVM can reproduce the aggre-
gated data of 2015, 2016, 2018, and 2019 very well, with a class P recall 
of 0.79. 

The Decision Tree and Random Forest have a lower performance 
than the NNs and SVM, even though their precision is sometimes higher 
than the precision of the NNs. In some cases, only about 50 % of the trips 
to be checked are classified correctly. Thus, they are not suitable for 
practical use. In 2017, the class P of the Decision Tree and the Random 
Forest recall exceeded the NN and the SVM recall. However, since the 
trips often do not have correct labels this year, this shows this classifi-
cation’s randomness. 

Thus, the NN performs the best. The model trained with aggregate 
trip data from 2015, 2016, 2018, and 2019 achieves a class P recall of 
0.82 and a precision of 0.33, meaning that 82 % of the trips to be 
checked are classified as belonging to class P. This is the best perfor-
mance for the SVM. Of the data points assigned as class P, 33 % actually 

belong to this class. About 2/3 of the trips assigned to class P are 
incorrect in this class. This is subordinate in that it is more important to 
capture as many trips of class P as possible than to reduce the number of 
trips in class P. It is better one trip too many is checked by the editors 
than that a trip that should be checked for plausibility is not checked. 

It is noticeable that through the NN, the trips from 2015, 2016, and 
2018 can be better classified with a recall of class P above 0.84 each than 
in 2019 with a recall of 0.77. While many loop trips (e.g. walking the 
dog) are identified in 2015 and 2016, this is much less often the case in 
2018 and 2019. This is because, since 2018, Kantar (fieldwork agency) 
has often identified these through comments made by participants on 
their reported trips. However, the percentage of trips that need to be 
inserted, merged, or deleted is much higher in 2018 and 2019, at 1.2 % 
and 1.39 %, respectively, than in 2015 and 2016, at 0.53 % and 0.31 %, 
respectively. Because inserting, merging, and deleting trips is chal-
lenging for the model to learn than identifying, for example, circular 
trips, the NN’s performance decreased slightly in 2019. 

4.3. Effort reduction in terms of trips and participants to be checked 

The reduction in effort in absolute terms for the number of trips to be 
checked is the added value of this study for further use. It is shown in 
Fig. 2 and refers to the aggregated data for 2015, 2016, 2018 and 2019. 
Of the 274,273 total trips, 49,253 are assigned to class P and must be 
checked manually. The exact number of trips may differ slightly 
depending on the training run of the model and the random split into 
training and test data. Thus, the staff must check only 17.7 % of the trips. 

In addition, the trips can be distinguished in terms of the check’s 
difficulty. If only the start or end time has to be changed, this is relatively 
easy for the staff to recognize. This is the case for 7,547 of the 49,253 

Table 3 
NN performance metrics for dropout identification during individual checks (2) based on 20 training repetitions.  

Year Class Accuracy Recall Precision Predicted class frequency True class frequency 

2015 Dropout 0.94  0.78 0.35 151 68 
No dropout  0.96 0.99 2,601 2,684 

2016 Dropout 0.91  0.76 0.26 260 89 
No dropout  0.91 0.99 2,679 2,849 

2017 Dropout 0.94  0.85 0.25 204 60 
No dropout  0.94 1 2,939 3,083 

2018 Dropout 0.87  0.86 0.11 390 50 
No dropout  0.88 1 2,736 3,076 

2019 Dropout 0.92  0.95 0.21 389 86 
No dropout  0.93 1 2,849 3,152 

2017 
2018 
2019 

Dropout 0.93  0.91 0.22 718 196 
No dropout  0.93 1 8,789 9,311  

Table 4 
Comparison of individual trip checking models using Accuracy, Recall, and Precision performance metrics based on 20 training repetitions; OK = no further trip 
checking needed, P = Trips that may need to be further checked.    

NN Decision tree Random Forest SVM 

Year Class Accuracy Recall Precision Accuracy Recall Precision Accuracy Recall Precision Accuracy Recall Precision 

2015 Ok 0.89  0.90  0.98 0.92  0.95  0.97 0.93  0.95  0.97 0.86  0.98  0.87 
P  0.86  0.45  0.72  0.56  0.73  0.60  0.83  0.38 

2016 Ok 0.89  0.90  0.99 0.94  0.96  0.98 0.94  0.97  0.97 0.87  0.87  0.99 
P  0.88  0.42  0.71  0.57  0.68  0.64  0.87  0.35 

2017 Ok 0.81  0.87  0.92 0.77  0.81  0.93 0.75  0.78  0.93 0.80  0.85  0.92 
P  0.35  0.29  0.48  0.23  0.48  0.20  0.34  0.22 

2018 Ok 0.87  0.88  0.90 0.92  0.94  0.98 0.93  0.96  0.97 0.87  0.87  0.98 
P  0.84  0.29  0.58  0.37  0.56  0.46  0.77  0.28 

2019 Ok 0.84  0.84  0.98 0.89  0.92  0.96 0.90  0.94  0.96 0.83  0.84  0.98 
P  0.77  0.27  0.50  0.29  0.47  0.36  0.72  0.22 

2015 
2016 
2018 
2019 

Ok 0.87  0.87  0.98 0.90  0.93  0.97 0.91  0.94  0.97 0.85  0.85  0.98 
P  0.82  0.33  0.66  0.41  0.65  0.44  0.79  0.29  
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trips. If the trip purpose, the transport mode, or the distance of a trip 
needs to be changed, it may be necessary to also look at a participant’s 
trip history. Furthermore, it makes the validation more time-consuming 
for the staff. This is the case for 8,753 trips. This step is also needed if the 
trip is incorrectly assigned to class P. This is the case for 32,953 trips. 
After all, this is the only way to verify if the trip purpose, distance and 
means of transport are plausible. 

Accordingly, it is important to consider the reduction in the number 
of trips and examine the number of persons to be checked. The reduction 
in effort for this is summarized in Fig. 2. The 49,253 trips to be checked 
come from 9,462 different persons. Since there were 11,886 participants 
in 2015, 2016, 2018, and 2019, the effort reduction here is only 20.4 %. 
That means that 79.9 % of the participants still have to be checked. 
However, for 1,966 of the 9,462 participants, only one trip’s start or end 
time has to be checked. Thus, only 6,454 participants need to be checked 
for their trip history to determine whether the trip purpose, the distance, 
or the transport mode needs to be adjusted or if no change is necessary. 
This reduces by 36.9 % the number of participants for whom the com-
plete trip history must be considered time-consuming. 

5. Discussion and conclusion 

Machine learning has met with varying degrees of success in dropout 
identification and individual trip checks. It was shown that machine 
learning can achieve a more efficient performance compared to manual 
checks. However, no model that allows fully automated data checks 
without human assistance could be found and implemented. The models 
presented can only provide a recommendation for action, which can 
significantly reduce the workload when considered as a whole. In the 
following, we look at where using machine learning models could be 
beneficial. 

5.1. Dropout identification during pre- and individual checks 

For some participants, it is unclear if they may have stopped 
reporting. Such ‘abnormal’ persons could report authentic travel pat-
terns without being directly removed from the datasets. Therefore, these 
’abnormals’ must be given special attention. This means the classifica-
tion into dropouts and non-dropouts cannot be made unambiguously, 
even by the trained staff. However, the performance of the NN can be 
seen as very positive. Since the NN can fully take over the process of 
dropout identification during the pre-checks, a fully automated solution 
approach can be presented. Furthermore, the NN can enable a consistent 
classification. Normally, borderline cases are always assigned to the 
same class by the trained staff. The application of an NN for dropout 
identification during pre-screening is thus possible since the staff’s de-
cisions regarding the classification can be learned effectively. 

For dropout identification during individual checks, it is essential to 
identify all possible dropouts so that the staff is aware of them during 

editing. With a recall of 0.91 for the class of dropouts based on the 2017, 
2018 and 2019 data, NN works well. However, the precision is relatively 
low at 0.22. This is also evident in the absolute numbers of the classes. 
Within three years, there were 196 actual dropouts. However, 718 in-
dividuals received the label that they might be dropouts (Table 3). This 
means that the model has to classify many participants as dropouts to 
identify the few actual dropouts. With 9,311 participants who are not 
dropouts, there are only 196 dropouts (unbalanced classes). This leaves 
the model with few data points to learn a pattern for dropouts. 

For the individuals who are misclassified, it can be assumed that the 
classification of these individuals is not entirely clear. Even for the 
trained staff, which form the learning basis for the classification, it is not 
entirely clear in some cases which participant has stopped reporting or 
whether the few or unreported trips correspond to the participant’s 
actual travel behavior. 

Using the NN leads to a significant reduction in the effort since 
instead of the original 9,507 persons within three reporting years, only 
718 would have to be considered. However, even without using the NN, 
it is obvious that some of the 9,507 persons are not dropouts. This can be 
seen from many reported trips spread throughout the week. Based on the 
data, it is not quantifiable how much effort can be saved in absolute 
terms due to missing information in the data and data privacy reasons. In 
any case, using the NN can serve as decision support. 

5.2. Individual trip checks 

The application of machine learning results in a binary classification. 
One class is for trips that do not need to be edited because they were 
correctly reported. The second class is for trips that may need further 
editing and should be checked accordingly by trained staff. The classi-
fication is constructed to reduce the workload for the trained staff. In-
dependent editing by the model is impossible because single edits occur 
only rarely, so the model cannot learn this. 

We applied four different machine learning models. A comparison of 
the models shows that the NN is the most effective model compared to a 
Decision Tree, Random Forest, and SVM. The application of the NN leads 
to a considerable reduction in the number of trips to be checked. 

5.3. General conclusion on the research framework 

This paper investigates the applicability of machine learning for 
checking the quality of participant responses and their reported trips in 
the MOP. Due to the long history of the MOP and many years of manual 
data checking by trained staff, data is provided to support the model’s 
training. With the implementation of the new approach to check trips 
and participants using machine learning techniques, the checking effort, 
which in the end still has to be taken over by trained staff, can be 
reduced. The presented approach follows the maxim that as much as 
necessary but as little as possible is changed in the data. However, the 

Fig. 2. Effort reduction in terms of persons and trips to be checked for 2015, 2016, 2018, and 2019 (aggregated).  
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model performance is comparatively poor, so it must be emphasized that 
the trade-off between precision and the number of cases to be checked 
by staff must always be considered when implementing such an 
approach. In the future, techniques to mitigate overfitting, such as 
incorporating dropout layers, early stopping, or skip connections, can be 
integrated to improve the models. 

In the field of survey research, such approaches to data checking as 
presented in this paper are still in the early stages of research, especially 
in survey methodology and social science. The literature review shows 
that such approaches have been used primarily with technically 
collected data. Since it was shown in this study that machine learning 
can help to eliminate the need to individually verify one in five in-
dividuals, it is expected that this methodology promises significant time 

and personnel savings and cost savings. The presented methods have a 
great potential to make research processes cost-effective in the future 
because a large part of the costs in the data processing process are 
related to data checking. 

5.4. Shortcomings 

Although our study was able to show that the data validation of trips 
can be taken over by machine learning, our study has shortcomings: 
Because the MOP has a consistent framework in terms of, e.g., survey 
method and questionnaire design for years, we use data from the past as 
ground truth data to learn. Suppose new modes of transportation (e.g., e- 
scooters) are steadily becoming more popular and used. In that case, 
they are underrepresented in the data, or the algorithm does not know 
how to handle them. The reasons for this are the small number of cases 
and the low variance. This is dangerous for the outcomes because the 
goal is not to create “perfect” trip diaries but to guarantee content 
consistency and completeness. As discussed in Aschauer et al. (2018), 
the general question of survey data bias is used as “ground truth” data 
for comparison. 

5.5. Outlook 

This work presents new approaches to checking travel survey data of 
the MOP, in which data at the individual level (sociodemographic 
characteristics of a person and trips made) were checked. The main 
advantage of this work is that already checked data from the past is 
available to let an algorithm learn checking routines of the past, thus 
replicating the approach of trained staff. 

In response to how machine learning approaches can help check trip 
data from the MOP, several validation and measures were identified and 
elaborated, which are also found in the training data. It was shown that 
the presented approach can reduce but not completely replace the 
checking processes by the trained staff in terms of effort. This is because 
of the lack of information and the high inter- and intrapersonal variance, 
e.g., in movement patterns over a week. 

In this exploratory study, the algorithms were applied to the MOP 
data only. The question arises to what extent the presented algorithms 
will apply to other studies in the future. In assessing the extent to which 
the algorithms are transferable, it must be considered that conditioning 
effects may occur in the MOP data (e.g., omission/summation of very 
short trips). Since the response burden in the MOP is comparatively high 
compared to cross-sectional surveys, it cannot be quantified how these 
method artifacts affect the algorithms and if the algorithms can be 
applied on other survey data. Another issue to be considered for trans-
ferability is the ground truth data. This study used data from previous 
years of the MOP to check the new dataset. For German studies, a 
validation based on these data might be possible. However, it needs to be 
checked whether the MOP data can be used as ground truth data for 
surveys from other countries or if additional data are available for 
learning so that effects resulting from method artifacts can be mini-
mized. Furthermore, it is important to note that, to the authors’ 
knowledge, there is no worldwide standard for data preparation of 
NHTS. This means that data management may differ from survey to 
survey. For example, in the MOP, excluding individuals from the dataset 
is allowed. If the framework were to be applied to another dataset, it 
would have to be checked whether all three steps presented are neces-
sary for the study or only individual steps (e.g., trip validation) should 
be adopted. However, the presented framework is designed so that 
single modules can be extracted and used as a single module. In 
conclusion, it should be emphasized that the applicability and trans-
ferability to other studies is limited. Basically, this work can be seen as a 
succesfull feasibility study that can be used as a stimulus to use Machine 
Learning applications for data checking in other contexts. 

The results presented in this paper help improve and harmonize data 
checking in the MOP and provide insights into the limitations of the 

Fig. 3. Confusion matrix for dropout identification during pre-check.  

Fig. 4. Feature importance of all features for the NN  
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methods presented. Overall, it can be concluded that machine learning 
methods can offer support for checking travel behavior data. 
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Appendix   

Table 5 
Overview of the features for training the dropout identification during the pre-check.  

Feature Value Characteristics 

Age Stetig {1,2,…, 97}  

Mobility restriction categorical yes 
no  

Job categorical Unemployed 
In education 
In vocational training 
Retired 
Not employed, housewife 
Part-time employed 
Fully employed  

Householdtype categorical Household with children under 18 
Household without children, 3 and more adults 
Small household with employed persons 
(1–2 persons)  

Number of reported days continuous {1, 2,…, 7}  

Number of reported trips continuous {1, 2,…, 51}  

Number of days with illness continuous {1, 2,…, 7}  

Number of days on vacation continuous {1, 2,…, 7}  

Number of days on which abnormalities were reported continuous {1, 2,…, 7}   

Table 6 
Overview of the features used to train the final model for the individual trip checks.  

Feature Description Construction Characteristics 

distance Reported distance of the trip – (0, 1000]  

Trip purpose Reported purpose of the trip – Way to work 
Official/business route 
Way to the educational 
institution 
errand, shopping 

(continued on next page) 
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Table 6 (continued ) 

Feature Description Construction Characteristics 

Leisure route 
Service route 
Home 
Other 
Way to out of home 
Way to 2nd residence 
Other private errand 
Loop trip  

x_erster_letzter_weg Classification, which is the trip of the day Check whether the trip took place directly before or after a day change First trip 
Last trip 
In between  

x_zweck_w-1 Purpose of the trip before on the same day Consideration of the day changes and the trip sequence see feature trip 
purpose  

x_vm1 Determination of the main means of 
transport used to travel the trip 

Based on the mode of transport ranking: airplane > long-distance public 
transport > local public transport > MIV driver > MIV passenger >
bicycle/pedelec > foot. 
The mode of transportation used with the highest rank is determined to be 
the primary mode of transportation. 

On foot 
Normal bike, electric 
bike& pedelec 
Moped, motorcycle 
Car as driver 
Car as passenger 
City bus, regional bus 
Long-distance bus, 
coach 
streetcar, light rail, 
subway 
suburban train, 
regional train 
Long-distance train 
Airplane 
Other 
Ship 
Truck 
Horse, carriage 
Motorhome  

x_vm2 Determination of a second main means of 
transport by which the trip was travelled 

Cf. x_vm1 for the case when more than one means of transport was used 
for the trip 

See x_vm1  

x_vm1_w + 1 Main means of transport of the way 
afterwards on the same day 

x_vm1 is taken over from the trip afterwards, if it took place on the same 
day 

see x_vm1  

x_start_ok_boolean Rule-based guess whether the start time 
was specified correctly 

Verify that the trip should not start, for example, before the trip has 
previously ended 

Yes 
No  

x_ende_ok_boolean Rule-based guess whether the end time was 
specified correctly 

Checking possible cases. For example, whether there is at least one minute 
difference between the end time of the trip and the start time of the 
following trip or whether the end time of the last trip is after the end of the 
last reporting day. 

Yes 
No  

x_aehnlich_vm1_boolean Verify that similar trips are reported by a 
person using the same primary mode of 
transportation 

First, similar trips must be identified within the person’s trip history. 
Then, it is checked whether the reported main modes of transport match. 

Yes 
No  

x_rundweg_boolean Checking whether it could be a loop trip Certain means of transport, such as “on foot” or “inline skating”, in 
conjunction with corresponding successive trip purposes, such as “leisure 
trip” or “other private errand”, indicate a circular route. 

Yes 
No  

x_loeschen_boolean Rule-based check whether the trip should 
be deleted 

If, for example, leisure trips are combined into a loop trip, business trips 
and trips to work are linked or intermodal trips can be combined, 
individual trips must be deleted. 

Yes 
No  

x_distanz_nach_hause_boolean Checking the distance of the trip back home The distance of the trip home should be in a certain range around the 
distance how far the person has gone from home before. 

Yes 
No  
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