KIT | KIT-Bibliothek | Impressum | Datenschutz

DUDES: Deep Uncertainty Distillation using Ensembles for Semantic Segmentation

Landgraf, Steven ORCID iD icon 1; Wursthorn, Kira 1; Hillemann, Markus ORCID iD icon 1; Ulrich, Markus ORCID iD icon 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

The intersection of deep learning and photogrammetry unveils a critical need for balancing the power of deep neural networks with interpretability and trustworthiness, especially for safety-critical application like autonomous driving, medical imaging, or machine vision tasks with high demands on reliability. Quantifying the predictive uncertainty is a promising endeavour to open up the use of deep neural networks for such applications. Unfortunately, most current available methods are computationally expensive. In this work, we present a novel approach for efficient and reliable uncertainty estimation for semantic segmentation, which we call Deep Uncertainty Distillation using Ensembles for Segmentation (DUDES).
DUDES applies student-teacher distillation with a Deep Ensemble to accurately approximate predictive uncertainties with a single forward pass while maintaining simplicity and adaptability. Experimentally, DUDES accurately captures predictive uncertainties without sacrificing performance on the segmentation task and indicates impressive capabilities of highlighting wrongly classified pixels and out-of-domain samples through high uncertainties on the Cityscapes and Pascal VOC 2012 dataset. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000169586
Veröffentlicht am 26.03.2024
Originalveröffentlichung
DOI: 10.1007/s41064-024-00280-4
Scopus
Zitationen: 2
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2024
Sprache Englisch
Identifikator ISSN: 2512-2789, 2512-2819
KITopen-ID: 1000169586
Erschienen in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science
Verlag E Schweizerbart Science Publishers
Band 92
Heft 2
Seiten 101–114
Vorab online veröffentlicht am 25.03.2024
Schlagwörter Deep Learning, Semantic Segmentation, Uncertainty Quantification, Deep Ensemble, Knowledge Distillation
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page