KIT | KIT-Bibliothek | Impressum | Datenschutz

ATLAS: An Approximate Time-Series LSTM Accelerator for Low-Power IoT Applications

Kreß, Fabian ORCID iD icon 1; Serdyuk, Alexey 1; Hiegle, Micha 2; Waldmann, Disnebio 2; Hotfilter, Tim ORCID iD icon 1; Hoefer, Julian ORCID iD icon 1; Hamann, Tim; Barth, Jens; Kämpf, Peter; Harbaum, Tanja ORCID iD icon 1; Becker, Jürgen 2
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Enabling the use of Deep Neural Networks (DNNs) for time-series-based applications on low-power devices such as wearables opens up a wide range of new features and services. However, inference requires an enormous amount of operations to be performed by the computing platform. In addition, Long Short-Term Memory (LSTM)-based networks require memory to store the internal cell state for future calculations. In this paper, we therefore propose a hardware/software co-design based low-power LSTM hardware accelerator architecture for Internet of Things (IoT) applications called ATLAS. The design is based on approximate computing techniques to reduce the power consumption and inference latency by achieving high accuracy. Exemplary, we investigate the impact of applying our proposed architecture to a DNN for handwriting recognition. Thereby, we can show that the accuracy decreases only slightly when the inference is executed on ATLAS. The low power consumption is achieved by a minimal design requiring 173 LUTs, 67 FFs, one DSP, and one BRAM on a Xilinx FPGA. As a result, ATLAS enables the efficient use of LSTM-based DNNs in IoT devices.


Originalveröffentlichung
DOI: 10.1109/DSD60849.2023.00084
Scopus
Zitationen: 3
Dimensions
Zitationen: 4
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 06.09.2023
Sprache Englisch
Identifikator ISBN: 979-8-3503-4419-6
KITopen-ID: 1000169589
Erschienen in 26th Euromicro Conference on Digital System Design (DSD 2023)
Veranstaltung 26th Euromicro Conference on Digital System Design (DSD 2023), Golem, Albanien, 06.09.2023 – 08.09.2023
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 569–576
Externe Relationen Siehe auch
Schlagwörter approximate computing, internet of things, wearable devices
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page