
Discovering Functional Dependencies

through Hitting Set Enumeration

TOBIAS BLEIFUSS, Hasso Plattner Institute, University of Potsdam, Germany
THORSTEN PAPENBROCK, Philipps University of Marburg, Germany
THOMAS BLÄSIUS, Karlsruhe Institute of Technology, Germany
MARTIN SCHIRNECK, University of Vienna, Austria
FELIX NAUMANN, Hasso Plattner Institute, University of Potsdam, Germany

Functional dependencies (FDs) are among the most important integrity constraints in databases. They serve
to normalize datasets and thus resolve redundancies, they contribute to query optimization, and they are
frequently used to guide data cleaning efforts. Because the FDs of a particular dataset are usually unknown,
automatic profiling algorithms are needed to discover them. These algorithms havemade considerable advances
in the past few years, but they still require a significant amount of time and memory to process datasets of
practically relevant sizes.

We present FDhits, a novel FD discovery algorithm that finds all valid, minimal FDs in a given relational
dataset. FDhits is based on several discovery optimizations that include a hybrid validation approach, effective
hitting set enumeration techniques, one-pass candidate validations, and parallelization. Our experiments show
that FDhits, even without parallel execution, has a median speedup of 8.1 compared to state-of-the-art FD
discovery algorithms while using significantly less memory. This allows the discovery of all FDs even on
datasets that could not be processed by the current state-of-the-art.

CCS Concepts: • Information systems→ Information integration; • Theory of computation→ Data

structures and algorithms for data management.

Additional KeyWords and Phrases: data profiling; metadata; integrity constraints; data cleaning; normalization

ACM Reference Format:

Tobias Bleifuß, Thorsten Papenbrock, Thomas Bläsius, Martin Schirneck, and Felix Naumann. 2024. Discovering
Functional Dependencies through Hitting Set Enumeration. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 43
(February 2024), 24 pages. https://doi.org/10.1145/3639298

1 MODERN FD DISCOVERY

Data profiling is the process of improving the understandability and usability of datasets by auto-
matically capturing a variety of metadata that describes their structure and interrelationships [1].
This metadata is often expressed in terms of dependencies, and one of the most widely recognized
kinds of dependencies are functional dependencies (FDs). An FD 𝑆 → 𝐴 expresses a relation
between the attribute set 𝑆 and the attribute 𝐴: All record pairs that share the same values for all
𝑆 also need to hold the same value for 𝐴. If 𝑆 → 𝐴 is valid for 𝑆 but not for any subset of 𝑆 , then
it is a valid and minimal FD. Knowing the FDs of a dataset is particularly important for schema

Authors’ addresses: Tobias Bleifuß, tobias.bleifuss@hpi.de, Hasso Plattner Institute, University of Potsdam, Potsdam,
Germany; Thorsten Papenbrock, papenbrock@informatik.uni-marburg.de, Philipps University of Marburg, Marburg,
Germany; Thomas Bläsius, thomas.blaesius@kit.edu, Karlsruhe Institute of Technology, Karlsruhe, Germany; Martin
Schirneck, martin.schirneck@univie.ac.at, University of Vienna, Faculty of Computer Science, Vienna, Austria; Felix
Naumann, felix.naumann@hpi.de, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/2-ART43
https://doi.org/10.1145/3639298

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

https://doi.org/10.1145/3639298
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3639298

43:2 Tobias Bleifuß et al.

normalization [12, 13, 34], but FDs also support query optimization [22, 35], data integration [23, 28],
and data translation [8, 10] activities. Furthermore, when used as integrity constraints, FDs improve
data cleaning applications to detect and resolve data inconsistencies [9, 20, 25]. While for smaller
schemata and datasets, it might be viable to find (or specify) the dependencies manually, this quickly
becomes infeasible for larger schemata. Despite the size of complete metadata, i.e., dependency sets,
many use cases expect the dependencies to be complete to improve their impact [22] or utilization
efficiency [34]. For this reason, most use cases of FDs take the set of valid FDs as input, which
requires an efficient automatic discovery algorithm.

A field in which we generally still see a lot of leeway besides the already mentioned applications
of FDs is dynamic data. For example, Explain-Da-V is a recent system to explain changes between
dataset versions [37]. This system requires FDs between consecutive table versions, which rules
out incremental approaches. To make such systems scale beyond the relatively small data sets with
few versions used in their experiments, there is a need for faster FD discovery algorithms such as
the FDhits approach of this paper.
Both the search space of FD candidates and the potential number of valid, minimal FDs grow

exponentially with the number of attributes in a relational instance [15]; FD discovery is, in fact,
known to be not only NP- but also W[2]-complete with respect to the solution size [7]. However,
many real-world datasets are rather narrow and long, which is, they have only few attributes
but many records. Due to this shape and modern search and pruning techniques, the candidate
checking (together with necessary preprocessing) often dominates the overall runtime. An effective
FD discovery algorithm consequently needs to optimize for both dimensions.
In the past thirty years, various approaches have been developed to make the discovery of

functional dependencies more efficient. We discuss the most important ones in Section 3 and
provide an overview in Table 1. Traditionally, there are essentially two classes of algorithms: one
that is good at dealing with long, narrow datasets and one that is good at dealing with short, wide
datasets. The prior approach HyFD [33] bridges this gap with a hybrid approach that combines ideas
from both classes together with an efficient sampling phase. To date, HyFD is the most effective FD
discovery algorithm in related work and shall, therefore, serve as our baseline.
Despite many important advances in the field of FD profiling, the discovery of all minimal

FDs still takes a significant amount of resources when processing datasets of practically relevant
(multiple gigabyte) size: First, the profiling times of most algorithms are unnecessarily high, because
the algorithms perform expensive minimality pruning and redundant checks and/or comparisons.
This happens, for example, when a level-wise candidate search, that enumerates candidates from
small to large, misses pruning potential, the number of record comparisons is too high, and no
intermediate results are considered for candidate validations. Second, all known profiling solutions
consume a considerable amount of memory, because they require to keep either all or a large
portion of the validated FD candidates in main-memory for search space pruning. Due to the
exponential search space size, this often results in many millions or even billions of in-memory
candidates. Especially for datasets with large solution sizes, these approaches cause an extremely
high memory load. State-of-the-art answers to this memory issue propose to either give up the
completeness of the results, which is quite unsatisfactory, or swap memory to disk, impacting
runtime.

We propose the FD discovery algorithm FDhits, which improves the runtime performance and
memory consumption of the profiling process by modeling the FD discovery task as a hitting
set problem. Making use of established profiling strategies from HyFD [33] (hybrid sampling and
validation elements) and HPIValid [5] (search for unique column combinations via hitting set
enumeration), FDhits makes the following main contributions:

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

Discovering Functional Dependencies through Hitting Set Enumeration 43:3

(1) Efficient FD discovery: We integrate several optimizations for effective FD discovery, namely
hybrid validation, hitting set enumeration, one-pass candidate validations, and parallelization, into
a single profiling algorithm: FDhits.
(2) Hitting set enumeration: We apply and adapt the idea of hitting set enumeration under
incomplete information to the problem of functional dependency discovery.
(3) One-pass candidate validation:We develop a new enumeration scheme for FD candidates
that handles all dependent attributes jointly to save validation operations.
(4) Exhaustive evaluation:We evaluate FDhits and its optimizations in various experiments that
show significant improvements over related work for both runtime and memory requirement.

We first discuss the foundations of FD discovery in Section 2 and related work in Section 3. We
then review the HPIvalid algorithm in Section 4 to the extent necessary to describe our approach.
Section 5 presents our algorithm in its two variants FDhitssep and FDhitsjoint. Section 6 reports
on our extensive comparative evaluation and shows on average a many-fold superiority of our
approach in terms of runtime and memory consumption on more than 40 datasets. Finally, we
conclude in Section 7.

2 FOUNDATIONS OF FD DISCOVERY

Functional dependencies are defined on relational attributes and need to be validated against
concrete relational instances. Throughout the paper, we use the following notation:
• upper-case letters 𝐴, 𝐵,𝐶, 𝐷 for individual attributes;
• upper-case letters 𝑆,𝑇 ,𝑉 ,𝑊 ,𝑋,𝑌 for attribute sets;
• upper-case letter 𝑅 for a relational schema;
• lower-case letter 𝑟 for a relational instance;
• lower-case letter 𝑡 for tuples/records in such an instance.

For a record 𝑡 , we write 𝑡 [𝐴] or 𝑡 [𝑆] to denote the projection of 𝑡 on attribute𝐴 or set 𝑆 , respectively.
For any schema 𝑅, we denote the number of attributes as |𝑅 | and, for any relational instance 𝑟 , we
denote the number of records as |𝑟 |. With this notation, functional dependencies are defined as
follows.

Definition 2.1. Given a relational instance 𝑟 of schema 𝑅, an attribute set 𝑆 ⊆ 𝑅, and an attribute
𝐴 ∈ 𝑅, the functional dependency 𝑆 → 𝐴 is valid on 𝑟 , if and only if no two records 𝑡1, 𝑡2 ∈ 𝑟
exist, such that 𝑡1 [𝑆] = 𝑡2 [𝑆], but 𝑡1 [𝐴] ≠ 𝑡2 [𝐴].

A valid functional dependency 𝑆 → 𝐴 is minimal if there are no valid dependencies 𝑆 ′ → 𝐴

with 𝑆 ′ ⊊ 𝑆 . If the FD 𝑆 → 𝐴 is valid, so is every 𝑇 → 𝐴 with 𝑇 ⊇ 𝑆 . It thus suffices to discover the
minimal FDs. A functional dependency 𝑆 → 𝐴 is non-trivial if 𝐴 ∉ 𝑆 . Only non-trivial FDs need to
be discovered, trivial FDs are always valid. For an FD 𝑆 → 𝐴, we call 𝑆 the determinant attributes
and 𝐴 the dependent attribute. With this, we can define the problem of functional dependency
discovery. Given a relational instance 𝑟 , output all valid, minimal, and non-trivial FDs for 𝑟 exactly
once.
Most FD discovery algorithms, including our FDhits approach, model the search space of FD

candidates with either a single or multiple powerset lattice(s) of attribute sets. Figure 1 shows an
example of a model that represents the search space of each dependent attribute as a powerset lattice
of determinant attribute sets. In this way, every node represents an FD candidate and the edges
model specialization/generalization implications between the FD candidates. With an increasing
number of attributes, this search space (and the potential number of minimal FDs within it) grows
exponentially. The challenge of FD discovery is therefore to traverse this candidate space effectively
(not necessarily modeled as a lattice in other approaches) without materializing major parts of it

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

43:4 Tobias Bleifuß et al.

→D
→C

→B
→A

B→A C→A D→A

∅→A

BC→A BD→A CD→A

BCD→A

Minimal valid FD

Non-minimal valid FD

Maximal invalid FD

Non-maximal invalid FD

Fig. 1. The FD search space modeled as power set lattices.

and by maximizing the pruning of candidates. The next section gives an overview of how previous
works tackled this challenge.

3 RELATEDWORK

Because the field of research on functional dependency discovery is broad, we refer to Abedjan et
al. [1] for an in-depth overview of the many existing algorithms and discovery approaches. For a
systematic evaluation of the most popular FD discovery algorithms, we recommend [32]. In this
section, we focus on works that contributed important techniques to our algorithm. We provide a
summary of their most pertinent properties in Table 1.

Table 1. Comparison of related work approaches in four rated dimensions. The first two dimensions typically
correlate with the scalability in the number of attributes, and the last two dimensions with scalability in the
number of records.

TANE [21] FDEP [18] Dep-

Miner [24]

FastFDs [43] DFD [2] HyFD [33] FDhits (ours)

Active

search

space

−
Level-wise
traversal

+
Compact tree
representation

−
Level-wise
traversal

++
Depth-first
traversal

−−
Entire lattice

+
Compact tree
representation

++
Depth-first
traversal

Minimality

check

+
Apriori-gen

∼
Tree-based
lookup

+
Apriori-gen

−
Subset
checking

−
Subset
checking

∼
Tree-based
lookup

++
Critical edges
(MMCS)

Validation

speed /

Tuple

comparisons

++
Incremental
PLI-based
validation

−−
Compares all
tuple pairs

−
Avoids some
comparisons

−
Avoids some
comparisons

+
PLI-based
validation

++
Sample &
hash-based
validation

++
Sample &
incremental
PLI-based

Validation

memory

usage

−
Level-wise
PLIs

++
No validation

++
No validation

++
No validation

∼
LRU cache

+
On-demand
hash-based

+
Current path
of tree

TANE [21] is one of the first and most popular FD profiling algorithms. It traverses the search
space in an Apriori-style, bottom-up fashion [3], which increases the set of determinant attributes
incrementally. To make the search efficient, TANE relies on minimality and key pruning rules that
can rule out certain FD candidates before checking them. For the actual checking of FD candidates,
TANE introduces the concept of stripped partitions. As do many other FD discovery algorithms,
we refer to these partitions as position list indices (PLIs) and adopt the PLI-based validations from
TANE. Section 5.3 explains PLIs in detail and how they are implemented in FDhits. In comparison

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

Discovering Functional Dependencies through Hitting Set Enumeration 43:5

to our depth-first approach, TANE’s level-wise approach must hold large portions of the search
space in memory and scales poorly with the schema size.

The fdep algorithm [18] discovers FDs by mining all so-called difference sets and, then, systemat-
ically inferring all valid, minimal FDs from them. We also make use difference sets and give more
details in Section 4. The authors of fdep propose a novel data structure, the FD-tree, to store all
difference sets and, then, efficiently infer all valid FDs. The inference-based approach is especially
efficient for datasets with many attributes and only few records. However, its runtime suffers under
datasets with many records because it needs to compare all record pairs to calculate the difference
sets. In contrast, FDhits does not require a complete set of difference sets as input and uses a very
different inference approach, which at any time materializes only small parts of the search space.

Dep-Miner [24] deduces FDs based on the concept of agree sets, which are the counterparts of
difference sets. First, the algorithm calculates all agree sets based on PLIs. In subsequent stages, it
computes maximal agree sets, which indicate maximal invalid FDs, to, then, derive the valid FDs
from the agree set complements. In a last stage, the algorithm searches these complements in a
level-wise, bottom-up Apriori-style to generate all valid and minimal FDs. FastFDs [43] builds on
the ideas of Dep-Miner, but instead of the level-wise approach, it uses a depth-first search strategy
to find the minimal, valid FDs. The proposed depth-first search requires extensive subset checking
to ensure the minimality property of the discovered FDs, which FDhits overcomes by using a
different enumeration approach that relies on critical edges [29] improving efficiency. In contrast
to our algorithm, both Dep-Miner and FastFDs calculate the complete sets of agree or difference
sets, respectively, which does not scale well with the number of records.
The DFD [2] algorithm solves the FD discovery problem by splitting the search space in one

lattice per dependent attribute. On each of these lattices, DFD performs random-walks in a depth-
first approach. The advantage of this approach is that it can adapt well to datasets with either small
or large results. It can prune large parts of the search space whenever it finds valid or invalid FDs
instead of having to rely on a level-wise approach, which works only well either for small or large
results (depending on the search direction). Like other lattice-based approaches, the performance
of DFD still suffers when applied to wide datasets [32]. Our approach and DFD have in common
that they both perform depth-first search (depending on the variant on subspaces or on a joint
search space).
To unite the strengths of lattice-based and record comparison-based FD discovery algorithms,

HyFD [33] suggests a new sampling-based approach. It combines the two different strategies,
such that the result works well for wide and long datasets. HyFD starts by comparing a sample
of record pairs and calculating a set of FDs that are violated by those record pairs. The algorithm
then uses FD-Trees as suggested by Flach et al. [18] to induce all valid FDs that hold on the sample.
A validator component then checks whether these FDs hold on the complete dataset and outputs
those valid FDs. The validation proceeds level-wise through the candidate lattice, generating new
candidates similar to the FUN algorithm [30]. If the number of invalid FD candidates grows larger
than a certain threshold, HyFD returns to the sampling phase. For FDhits, we adopt the idea of
combining sampling and validation strategies, but introduce a new hybridization scheme and a
novel reasoning component (Section 5.2). The latter is based on hitting set enumeration, which
can be solved much more efficiently than FD-Tree-based inference. Both HyFD and our FDhits
propose strategies for parallelization. Meanwhile, a few adaptations of the HyFD algorithm have
been proposed, such as DHyFD [40], which contribute minor optimizations. In this study, we have
chosen to compare against the original algorithm, because the significance of our improvement
also clearly surpasses the improvements of all variants of HyFD.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

43:6 Tobias Bleifuß et al.

A closely related problem to FD discovery is the problem of finding unique column combinations
(UCCs). These are attribute sets whose projection yields unique records and, hence, are key candi-
dates. Every UCC functionally determines all other attributes in the dataset, which shows their
connection to the FD discovery problem. It is, therefore, not surprising that the algorithms for both
problems are similar and mutually inspiring. HPIValid [5] is the state-of-the-art UCC discovery
algorithm. It enumerates hitting sets with partial information without having to materialize the
result set. In this paper, we explore how these effective ideas can be transferred from UCC discovery
to the problem of FD discovery.
Related to our research, but also orthogonal in their primary goal, are distributed FD discovery

approaches. Tu and Huang present a distributed FD discovery algorithm that tries to minimize
communication cost [38]. Further, Zhu et al. propose SmartFD [44] and Wu and Mao propose
DistTFD [42], which are both distributed versions of HyFD on Apache Spark. For a more universal
contribution to the field of distributed FD discovery, Saxena et al. identified general FD profiling
primitives and introduced distributed implementations of these primitives for Apache Spark; with
these primitives, they distributed various FD discovery algorithms [36].

As an orthogonal line of research, there also exist FD discovery algorithms for relaxed functional
dependencies [11], such as approximate [6], conditional [17], or embedded functional dependen-
cies [39]. As relaxation strategies usually extend exact algorithms, extending our own approach is
left as promising future work, as discussed in Section 7.

4 HPIVALID IN A NUTSHELL

The overall structure of our FDhits algorithm for functional dependency discovery is based on the
HPIvalid algorithm [5] for unique column combinations. We first briefly explain the concepts of
HPIvalid that are necessary to understand our contribution.

Let 𝑟 be a relation with schema 𝑅. A set of attributes 𝑆 ⊆ 𝑅 is a unique column combination if, for
any two different tuples 𝑡1, 𝑡2 ∈ 𝑟 , there is an attribute 𝐵 ∈ 𝑆 such that 𝑡1 [𝐵] ≠ 𝑡2 [𝐵]. Intuitively,
it is enough to know the values in 𝑆 to distinguish all records. There is a well-known alternative
characterization of UCCs in terms of so-called hitting sets of a hypergraph, see [26]. A hypergraph
is a generalized graph in which edges can have more (or fewer) than 2 vertices. To connect this to
databases, we use the following definition.

Definition 4.1. Given two different records 𝑡1, 𝑡2 ∈ 𝑟 , their difference set is the set of all attributes
𝐴 ∈ 𝑅, with 𝑡1 [𝐴] ≠ 𝑡2 [𝐴].

We take the schema 𝑅 as the vertices of a hypergraph, and the difference sets for all pairs of
records as the (hyper-)edges D. The hypergraph is denotedH = (𝑅,D). With this setup, some set
𝑆 ⊆ 𝑅 of attributes is a unique column combination if and only if 𝑆 hits every hyperedge, i.e., if
𝑆 ∩ 𝐸 ≠ ∅ for every 𝐸 ∈ D. If so, 𝑆 is a hitting set ofH . Discovering all minimal unique column
combinations of 𝑟 is equivalent to enumerating all minimal hitting sets ofH .

Example. For the example dataset in Table 2, the set {Time, Course} is a unique column combination.
The only two records that have the same Time are 𝑡3 and 𝑡4. They can be distinguished by the attribute
Course since it hits their difference set {Room_Nr, Course, Lecturer}. Conversely, Time can also not be
omitted from the UCC as, for example, 𝑡1 and 𝑡3 have the same Course. The UCC is minimal.

The above observations lead to the following two-step algorithm for UCC discovery. First, create
the hypergraph of difference setsH = (𝑅,D). Second, enumerate all minimal hitting sets ofH .
However, both steps have a major caveat. Creating the hypergraph by computing the difference
set for every pair of tuples 𝑡1, 𝑡2 ∈ 𝑟 takes quadratic time in |𝑟 |, which is not acceptable for many
instances. Moreover, enumerating all minimal hitting sets of a hypergraph is a hard problem. In

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

Discovering Functional Dependencies through Hitting Set Enumeration 43:7

Table 2. Example dataset

Room_Nr Time Course Lecturer

𝑡1 101 Wed 10:00 am Programming Miako
𝑡2 101 Wed 02:00 pm Databases Daniel
𝑡3 102 Fri 02:00 pm Programming Miako
𝑡4 101 Fri 02:00 pm Databases Saurabh

principle, the output can have exponential size in the number of attributes. Moreover, even if the
output has reasonable size, it is a major open question whether the minimal hitting sets can be
enumerated in output-polynomial time.
HPIvalid resolves these issues as follows. For the second step of enumerating hitting sets, the

MMCS algorithm [29] is used. Though it has no theoretical performance guarantees, it is known to
perform well in practice if there are not too many minimal hitting sets [19]. MMCS is a tree search
that branches on the decision which edge to hit next and, after fixing the edge, tries out all possible
options. Its efficiency comes from cleverly choosing the branching edges and from pruning the
search space when it is safe to do so without loosing solutions. We describe MMCS in more detail
in Section 5.1.

The other issue of having too many tuples to compute the difference sets for every pair is resolved
as follows byHPIvalid. Not all difference sets are actually relevant. If we have two difference sets𝑋
and 𝑌 with 𝑋 ⊆ 𝑌 , then fulfilling the requirement of 𝑋 to select one attribute from 𝑋 automatically
fulfills the same requirement for 𝑌 . Thus, 𝑌 can be omitted from D. Also, if we find the same
difference set multiple times, it is clearly sufficient to keep only one copy. Thus, instead of the
hypergraph of difference sets, its minimization is computed, containing only those difference sets
that are not a subset of another. Whenever we speak of the hypergraphH of differences sets below,
we mean its minimization.

The main difficulty here is that we do not know a priori which pairs of tuples give the minimal
difference sets. Overcoming this is the core contribution of HPIvalid. It starts by randomly sampling
some difference sets, yielding a tentative hypergraphH ′. With this partial information, MMCS
is started to enumerate some minimal hitting sets. Whenever this search finds a hitting set 𝑆 of
H ′, there could be additional unseen difference sets that are not hit by 𝑆 . Thus, the candidate
solution 𝑆 has to be validated by checking in the database 𝑟 whether there are tuples that are
still not distinguishable with just attributes from 𝑆 . This can be done efficiently using position list
indices (PLIs), which are described in more detail in Section 5.3. The validation has two possible
outcomes, either 𝑆 is indeed a UCC, or there are clusters 𝑐 of tuples in the PLI such that any two
tuples 𝑡1, 𝑡2 ∈ 𝑐 coincide on 𝑆 . In the former case, HPIvalid can output 𝑆 (it is then known to not
only be a UCC but to also be minimal). In the latter case, the difference set of 𝑡1 and 𝑡2 is a new
hyperedge that was not previously present in the tentative hypergraphH ′. HPIvalid simply adds
the new difference set to the hypergraph and lets MMCS continue the enumeration where it left
off. It was shown in [5] that, despite starting with only partial informationH ′, MMCS does not
miss any minimal hitting set of the true hypergraphH .
In summary, HPIvalid consists of the following components.

Initial sampling. Sample pairs of tuples and compute their difference sets to form the initial
tentative hypergraphH ′.

Tree search. Enumerate the minimal hitting sets of the current tentative hypergraphH ′ using
the MMCS algorithm.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

43:8 Tobias Bleifuß et al.

reads

Input dataset

PLIs(1) Preprocessing
Difference

sets

uses

(2) Sampling

Candidate FD
AB→C

Done(3) Tree search

Invalid: PLI
Valid

(4) Validation

Lookup tables:
A: [0,1,1,‡,...]

B: ...

Column PLIs:
A: [[1,5,7], [2,3], ...]

B: ...

builds

uses
A B

Valid, minimal
FDs

outputs

run separately for each dependent attribute or handle jointly

Fig. 2. Overview of the general discovery process of FDhits.

Validation. Check whether a minimum hitting set 𝑆 ofH ′ is actually a UCC using PLIs. If not,
the PLIs provide clusters of tuples that coincide on 𝑆 .

Subsequent sampling. Sample additional pairs of tuples from within the clusters. The resulting
difference sets are guaranteed to not be hit by 𝑆 and thereby witness that 𝑆 is not a UCC.
They are added as new hyperedges to the tentative hypergraphH ′.

Hypergraph minimization. Whenever new hyperedges are added,H ′ is minimized, i.e., hyper-
edges that are supersets of smaller hyperedges are removed.

5 FUNCTIONAL DEPENDENCIES

The characterization of data dependencies via hitting sets extends also to functional dependencies,
see [27]. As before, let 𝑟 be a relation with schema 𝑅. Let 𝑆 ⊆ 𝑅 be a set of attributes and 𝐴 a single
attribute. Then, the functional dependency 𝑆 → 𝐴 is valid in 𝑟 if and only if any two tuples of 𝑟 that
differ in 𝐴 also differ in at least one of the attributes of 𝑆 . In this case, the attributes in 𝑆 may not
distinguish all record pairs, but knowing the values of 𝑡 [𝑆] also determines the value 𝑡 [𝐴]. In terms
of the hypergraphH = (𝑅,D) of difference sets, 𝑆 → 𝐴 being valid is equivalent to 𝑆 hitting every
hyperedge ofH that contains 𝐴. This motivates the definition of the subhypergraphH𝐴 = (𝑅,D𝐴)
induced by 𝐴 that contains all difference sets that include 𝐴, i.e., D𝐴 = {𝑒 ∈ D | 𝐴 ∈ 𝑒}. With
this, discovering all functional dependencies with dependent attribute 𝐴 side is equivalent to
enumerating all hitting sets ofH𝐴.

Example. In Table 2, there are three difference sets that contain Room_Nr. These difference sets
are {Room_Nr, Time} (from tuples 𝑡1 and 𝑡3), {Room_Nr, Course, Lecturer} (𝑡3, 𝑡4), and their superset
{Room_Nr, Time, Course, Lecturer} (𝑡2, 𝑡3). The combination {Time, Course} is a minimal hitting set
and therefore {Time, Course} → Room_Nr is a valid, minimal, and non-trivial functional dependency.

This relation to the hitting set problem allows us to enumerate FDs with an algorithm that has
a similar overall structure as HPIvalid. Our algorithm, which we call FDhits, is illustrated in
Figure 2. Although the structure is similar as for UCCs, the individual components need to be
adapted to the enumeration of FDs instead. In the following, we discuss how we do this for the
individual components. We start with the most interesting component, the tree search (3). For this,
we provide approaches for separate and joint handling of the dependent attributes in Section 5.1,
yielding two variants of our algorithm, FDhitssep and FDhitsjoint. Although the joint handling is
usually superior, it comes with the difficulty that minimizing the hypergraph of difference sets
is no longer feasible. We discuss this issue and a method for selecting one of the two variants in

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

Discovering Functional Dependencies through Hitting Set Enumeration 43:9

Section 5.2. Afterwards, we discuss the validation (4) and preprocessing (1) in Section 5.3, followed
by the sampling (2) in Section 5.4.

5.1 Tree search

The straightforward generalization of the ideas in HPIvalid [5] to FD discovery is to treat the
subhypergraphsH𝐴 = (𝑅,D𝐴) separately for each attribute𝐴 ∈ 𝑅. We use this idea in the FDhitssep
variant of our algorithm. It runs a tree search (using MMCS) for each possible dependent attribute
𝐴 with a tentative hypergraphH ′

𝐴
that only accounts for those difference sets containing 𝐴.

We observe in our experiments in Section 6 that already FDhitssep is more efficient than the
previous state of the art onmany datasets. However, since the subhypergraphs for different attributes
usually have a large overlap, treating them as independent is bound to re-do the same or very
similar computations multiple times, creating inefficiencies. One example for such duplicated work
are the validations for candidate FDs that are executed alongside the tree search, see Section 5.3.
We see in Section 6.5 that this makes up for a large portion of the computation time, especially for
long datasets. Thus, avoiding recomputations can improve performance.
Handling multiple dependent attributes together can create synergies also in the tree search

itself. As an illustration, consider the ideal case of two attributes 𝐴 and 𝐵 such that every difference
set that contains 𝐴 also contains 𝐵, which is equivalent to the FD 𝐵 → 𝐴 being valid. For their
induced subhypergraphs H𝐴 = (𝑅,D𝐴) and H𝐵 = (𝑅,D𝐵) this means D𝐴 ⊆ D𝐵 , whence any
hitting set 𝑆 ofH𝐵 is also a hitting set ofH𝐴. In this case, one can, in principle, first discover all
FDs with dependent attribute 𝐴, which only considers difference sets that are also relevant for 𝐵.
From there it remains to additionally cover the difference sets relevant for 𝐵 but not for 𝐴 to also
get the FDs with dependent attribute 𝐵.

Example. In Table 2, the difference sets containing Course areDCourse = {{Time, Course, Lecturer},
{Room_Nr, Course, Lecturer}} (ignoring the difference set containing all attributes). For Lecturer we
have DLecturer = DCourse ∪ {{Time, Lecturer}}, so DCourse ⊆ DLecturer. The minimal hitting
sets of the hypergraph HCourse are 𝑇1 = {Time, Room_Nr}, 𝑇2 = {Course}, and 𝑇3 = {Lecturer},
yielding the minimal FDs 𝑇1 → Course, 𝑇2 → Course,1 and 𝑇3 → Course. Regarding the FDs for the
dependent attribute Lecturer, 𝑇1 and 𝑇3 also hit the additional difference set {Time, Lecturer} of the
hypergraphHLecturer. Thus, 𝑇1 → Lecturer and 𝑇3 → Lecturer are also minimal FDs. For 𝑇2, Time
is added to also hit {Time, Lecturer}, yielding the additional FD {Course, Time} → Lecturer.

Of course, the above illustration is an idealized setting. Nevertheless, even if 𝐵 → 𝐴 is not valid
but 𝐴 and 𝐵 still share many difference sets, handling them together can speed up finding new
hitting sets for both hypergraphs simultaneously.

We therefore propose FDhitsjoint as our main algorithmic contribution in this work. It discovers
all functional dependencies in a single tree search. While this holds potential for performance
improvements over FDhitssep, the management of multiple dependent attributes also leads to new
difficulties. In order to describe our new search strategy and how to solve those difficulties, we
review the original approach of MMCS along the way.

Branching. MMCS is a search algorithm for hitting sets that branches on edges. That means, each
node of the search tree maintains a set of selected vertices 𝑆 ⊆ 𝑅. In each step, the algorithm picks
one edge 𝐸 ∈ D that is not yet hit by 𝑆 . As 𝐸 needs to be hit by any solution, the algorithm must
select at least one vertex from 𝐸. To not miss any solutions, the algorithm considers all options, i.e.,

1For the sake of this example, the trivial FDs {Course} → Course and {Lecturer} → Lecturer are still included. We
explain later how to avoid them in the tree search.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

43:10 Tobias Bleifuß et al.

Algorithm 1: The tree search of FDhitsjoint.

1 function treeSearch(𝑆 , 𝑉 ,𝑊):
⊲ Pruning

2 for (𝐶,𝐴) ∈ 𝑆 ×𝑊 do

3 if critical𝑆 (𝐶,𝐴) = ∅ then
4 𝑊 ←𝑊 \ {𝐴}

5 for 𝐵 ∈ 𝑉 do

6 if ∀𝐴 ∈𝑊 ∃𝐶 ∈ 𝑆 ∀𝐸 ∈ critical𝑆 (𝐶,𝐴) : 𝐵 ∈ 𝐸 then

7 𝑉 ← 𝑉 \ {𝐵}

8 if𝑊 = ∅ then
9 return

⊲ Validation at the leaves

10 if uncov(𝑆,𝑊) = ∅ ∧ validate(𝑆 →𝑊) then
11 output 𝑆 →𝑊

12 return

⊲ Branching

13 𝐸 ← edge in uncov(𝑆,𝑊) minimizing |𝐸 ∩𝑉 | + |𝑊 \ 𝐸 |
14 {𝐵1, . . . , 𝐵𝑘 } ← 𝐸 ∩𝑉
15 treeSearch(𝑆,𝑉 ,𝑊 \ 𝐸) ⊲ 𝜇0
16 for 𝑖 ∈ {1, . . . , 𝑘} do
17 treeSearch(𝑆 ∪ {𝐵𝑖 },𝑉 \ {𝐵1, . . . , 𝐵𝑖 },𝑊 ∩ 𝐸) ⊲ 𝜇𝑖

for each vertex in 𝐵 ∈ 𝐸 it creates a new branch from the current node that corresponds to adding
𝐵 to the selected vertices in 𝑆 .

Without some additional care, this may have the effect that the same hitting set is enumerated
twice: Some edge 𝐸 = {𝐵,𝐶} causes two branches, the first for 𝐵 and the second for 𝐶 . However, it
is possible that 𝐶 is later selected also in the first branch, and 𝐴 is selected in the second branch,
resulting in the same selected vertices. To prevent this, an additional set 𝑉 ⊆ 𝑅\𝑆 of candidate
vertices is maintained in each node of the search tree. The interpretation is that only vertices from
𝑉 are allowed to be added to the selection 𝑆 .

Our tree search in FDhitsjoint is based on MMCS and uses a similar branching. To handle
multiple dependent attributes simultaneously, we additionally maintain a third set𝑊 ⊆ 𝑅 of
possible dependent attributes. To properly describe the extended branching and to argue for its
correctness, we need to introduce a bit more notation. As before, letH = (𝑅,D) be the considered
hypergraph and for every 𝐴 ∈ 𝑅, let H𝐴 = (𝑅,D𝐴) be the subhypergraph induced by 𝐴. Let
𝜇 = (𝑆,𝑉 ,𝑊) be a node of the search tree with selected vertices 𝑆 , candidate vertices 𝑉 , and
possible dependent attributes𝑊 . For the subtree below 𝜇, the goal is to enumerate all FDs 𝑇 → 𝐴

with 𝐴 ∈𝑊 and 𝑆 ⊆ 𝑇 ⊆ 𝑆 ∪𝑉 . Equivalently, in terms of the hypergraph, the goal is to enumerate
for every 𝐴 ∈𝑊 all minimal hitting sets 𝑇 ofH𝐴 with 𝑆 ⊆ 𝑇 ⊆ 𝑆 ∪𝑉 . Starting the search in the
root (𝑆 = ∅,𝑉 = 𝑅,𝑊 = 𝑅) discovers all minimal FDs.

Algorithm 1 shows pseudocode for the tree search. A call to the function treeSearch(𝑆,𝑉 ,𝑊)
corresponds to the node (𝑆,𝑉 ,𝑊). Thus, the search is started by calling treeSearch(∅, 𝑅, 𝑅).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

Discovering Functional Dependencies through Hitting Set Enumeration 43:11

To define the branching as well as to discuss the base case, i.e., the leaves where we output the
solutions, let uncov(𝑆,𝑊) be the set of hyperedges ofH that contain a vertex from𝑊 but are not
yet hit by 𝑆 . If uncov(𝑆,𝑊) is empty for the node 𝜇 = (𝑆,𝑉 ,𝑊) (lines 10–12 in Algorithm 1), then
𝜇 is a leaf in that 𝑆 →𝑊 is a valid FD. In more detail, it is an FD candidate that is either output
after successful validation on the relational instance 𝑟 , or for which the subsequent sampling finds
a new difference set belonging to uncov(𝑆,𝑊). The FD might not be minimal, but checking for
minimality is not difficult. This will become clearer below when we discuss pruning.

Otherwise, uncov(𝑆,𝑊) is not empty, either because it was not empty to begin with or because
the validation procedure added a new difference set to it. Then we branch on an uncovered edge
(lines 13–17 in Algorithm 1). As a heuristic, we select some edge 𝐸 ∈ uncov(𝑆,𝑊) for which
|𝐸∩𝑉 | + |𝑊 \𝐸 | is minimum. Let 𝐸∩𝑉 = {𝐵1, . . . , 𝐵𝑘 } be the candidate vertices in 𝐸. We branch on 𝐸
by creating 𝑘 + 1 child nodes 𝜇0, . . . , 𝜇𝑘 . The child 𝜇0 = (𝑆,𝑉 ,𝑊 \𝐸) accounts for the fact that hitting
𝐸 is only relevant for dependent attributes that are also contained in 𝐸. Thus, for all dependent
attributes in𝑊 \𝐸, we do not have to hit 𝐸.

This is a new branching option that stems from handling multiple dependent attributes together.
For the dependent attributes in𝑊 ∩ 𝐸, we branch on which vertex from 𝐸 to add to the selected
vertices. This yields the children 𝜇1, . . . , 𝜇𝑘 with 𝜇𝑖 = (𝑆 ∪ {𝐵𝑖 },𝑉 \{𝐵1, . . . , 𝐵𝑖 },𝑊 ∩ 𝐸).

Example. Let us assume FDhitsjoint started to work on Table 2, so we have 𝑆 = ∅ and 𝑉 =𝑊 =

{Room_Nr, Time, Course, Lecturer}. Say the selected difference set stems from comparing 𝑡1 and 𝑡2, which
is 𝐸 = {Time, Course, Lecturer}. 𝐸 is ignored in child 𝜇0, the search continues with 𝑆 = ∅, a single
dependent attribute𝑊 = {Room_Nr} and candidate vertices 𝑉 = {Room_Nr, Time, Course, Lecturer}. In
the subtree rooted at 𝜇0, only FDs 𝑇 → Room_Nr are found, where 𝑇 can be any set of attributes. In the
child node 𝜇1 that hits edge 𝐸 via the attribute Time, we get 𝑆 = {Time} and𝑊 = {Course, Lecturer},
𝑉 is updated to {Room_Nr, Course, Lecturer}. The child nodes 𝜇2 and 𝜇3 for the attributes Course and
Lecturer are analogous.

Correctness of this branching follows from a simple inductive argument. The induction hypothesis
is the goal mentioned above, which is restated in the following lemma.

Lemma 5.1. In the subtree below a node 𝜇 = (𝑆,𝑉 ,𝑊), the tree search finds each minimal valid
functional dependencies 𝑇 → 𝐴 with 𝐴 ∈𝑊 and 𝑆 ⊆ 𝑇 ⊆ 𝑆 ∪𝑉 exactly once.

Proof. The base case is given by the leaves. If uncov(𝑆,𝑊) is empty, then 𝑆 is a hitting set for
H𝐴 for 𝐴 ∈𝑊 . Minimality is tested explicitly before any output, so those FDs 𝑆 → 𝐴 with 𝐴 ∈𝑊
that are indeed output are exactly the desired ones.

For the induction step, we assume that, after branching, the induction hypothesis holds for the
children 𝜇0, . . . , 𝜇𝑘 . Let𝑇 → 𝐴 with𝐴 ∈𝑊 and 𝑆 ⊆ 𝑇 ⊆ 𝑆 ∪𝑉 be one of the minimal FDs that needs
to be found below the subtree of 𝜇. If 𝐴 ∉ 𝐸, then 𝑇 → 𝐴 will be found below 𝜇0 = (𝑆,𝑉 ,𝑊 \𝐸) and
below none of the other 𝜇𝑖 . Otherwise, we have 𝐴 ∈𝑊 ∩ 𝐸. Recall that 𝐸 ∩𝑉 = {𝐵1, . . . , 𝐵𝑘 } are
the candidate vertices added to 𝑆 . Let 𝑖 be the smallest index such that 𝐵𝑖 ∈ 𝑇 . Then 𝑇 → 𝐴 will be
found in 𝜇𝑖 = (𝑆 ∪ {𝐵𝑖 },𝑉 \{𝐵1, . . . , 𝐵𝑖 },𝑊 ∩ 𝐸). Moreover, it will not be found below any other 𝜇 𝑗
with 𝑗 ≠ 𝑖 as for 𝑗 > 𝑖 , 𝐵𝑖 is explicitly excluded from the set of candidates 𝑉 , and for 𝑗 < 𝑖 , 𝐵 𝑗 ∈ 𝑇
and thus 𝑖 cannot be the smallest index such that 𝐵𝑖 ∈ 𝑇 . □

Pruning trivial and non-minimal FDs. As mentioned above, we find all minimal solutions at the
leaves of the search tree but some leaves might correspond to non-minimal solutions. Here we
describe how to recognize these cases. This also leads to a rule for early pruning of branches that
are guaranteed to not contain a solution. As for the branching, we first briefly describe how this is
done in MMCS, which directly applies to FDhitssep. Afterwards, we show how something similar
can be achieved for FDhitsjoint when simultaneously handling multiple dependent attributes.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

43:12 Tobias Bleifuß et al.

It is a well-known fact, see e.g. [4], that a hitting set 𝑇 is minimal if and only if each vertex
𝐶 ∈ 𝑇 has a critical edge (with respect to 𝑇) that contains 𝐶 but no other vertex from 𝑇 . If the set of
currently selected vertices 𝑆 already contains a vertex that has no critical edge (with respect to
𝑆), then 𝑆 cannot be extended to a minimal hitting set and thus the tree search can be pruned at
the current node. This observation can additionally be used to eliminate vertices from the set of
candidates 𝑉 . Specifically, a candidate vertex 𝐵 ∈ 𝑉 is a violator if adding 𝐵 to 𝑆 caused this type of
pruning. A violator can be safely removed from the set of candidates 𝑉 .

For jointly handling multiple dependent attributes in FDhitsjoint, more care must be taken when
pruning the search tree. In Algorithm 1, pruning happens in lines 2–9. Let 𝜇 = (𝑆,𝑉 ,𝑊) be the
current node and let 𝐴 ∈𝑊 be one of the dependent attributes. If a vertex from 𝑆 has no critical
edge in the subhypergraphH𝐴, then there is no minimal FD 𝑇 → 𝐴 with 𝑆 ⊆ 𝑇 . As there are other
dependent attributes, we cannot simply prune the search at 𝜇. However, we can safely remove 𝐴
from𝑊 without violating the property stated in Lemma 5.1. If𝑊 runs empty, we can prune the tree
at the current node (lines 8–9). To implement this, we maintain for every 𝐶 ∈ 𝑆 and every 𝐴 ∈𝑊
the set critical𝑆 (𝐶,𝐴) that contains the critical edges for𝐶 (with respect to 𝑆) in the subhypergraph
H𝐴. The above pruning then means that if critical𝑆 (𝐶,𝐴) is empty, then 𝐴 can be removed from
𝑊 (lines 2–4). Moreover, to adapt the concept of violators, we remove a candidate vertex 𝐵 ∈ 𝑉
from 𝑉 if adding 𝐵 to 𝑆 had the effect that every dependent attribute 𝐴 ∈𝑊 would be removed
from𝑊 due to the pruning described above. In terms of critical𝑆 (𝐶,𝐴), this is the case if for every
dependent attribute 𝐴 ∈𝑊 there is an already selected vertex 𝐶 ∈ 𝑆 such that all critical edges
critical𝑆 (𝐶,𝐴) of 𝐶 also contain 𝐵 (lines 8–9). This is correct as in this case there is no minimal
valid FD 𝑇 → 𝐴 with 𝑆 ∪ {𝐶} ⊆ 𝑇 and 𝐴 ∈𝑊 , i.e., the property stated in Lemma 5.1 remains true.

The result above also tells us how to avoid trivial FDs 𝑆 → 𝐴 with 𝐴 ∈ 𝑆 . While they are valid,
we do not need to discover them. By Lemma 5.1, it is enough to keep 𝑆 and𝑊 disjoint. When
creating the child node 𝜇𝑖 , in which attribute 𝐵𝑖 ∈ 𝐸 ∩𝑉 is added to 𝑆 , we remove 𝐵𝑖 from𝑊 in the
child (if previously present).

5.2 Minimization and strategy selection

Although FDhitsjoint is superior to FDhitssep in that it saves PLI intersections by validating FDs
candidates for different dependent attributes simultaneously, it has one major downside. Recall from
Section 4 that HPIvalid minimizes the hypergraph of difference sets, i.e., for two difference sets 𝑋
and 𝑌 with 𝑋 ⊆ 𝑌 , 𝑌 can be omitted from the hypergraph. This is still true for FDhitssep, as the
subset 𝑋 still poses a stronger requirement than 𝑌 (assuming both contain the current dependent
attribute 𝐴 and are thus relevant for 𝐴). When considering multiple dependent attributes, however,
the difference set 𝑌 can still be relevant for dependent attributes that are in 𝑌\𝑋 . As finding the
difference sets that are irrelevant for all dependent attributes is computationally too expensive,
FDhitsjoint lacks the minimization of the input hypergraph. This may result in the input for the
tree search of FDhitsjoint becoming substantially larger than that for FDhitssep, which slows down
the computation.

To mitigate this effect, we designed FDhits as a hybrid system that invokes either FDhitssep or
FDhitsjoint depending onwhich strategy likely performs best.We propose tomake this decision via a
simple, but effective heuristic. The initial sampling of record pairs is common to both variants. After
this phase, we compare the number of distinct difference sets in the initial tentative hypergraph, to
the number of record pairs sampled. We calculate #difference sets

#record pairs , which is the ratio of comparisons
that actually contributed a new edge. If the resulting hypergraph is large, i.e., this fraction is above
some threshold, we use FDhitssep; otherwise, we use FDhitsjoint. Our evaluation shows that a
threshold of 0.5 is a robust choice.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

Discovering Functional Dependencies through Hitting Set Enumeration 43:13

5.3 Preprocessing and validation

A common data structure used to represent the input data for UCC or FD discovery are so-called
Position List Indices (PLIs) (or partitions) [14] that can be used to check whether a functional
dependency is valid for a relational instance [21]. The main idea is as follows. The PLI 𝜋𝑆 for a
subset of attributes 𝑆 ⊆ 𝑅 partitions the database into clusters such that two records (represented
by their ID) are in the same cluster if and only if they agree on 𝑆 . To see how PLIs are a useful
concept for validating candidate solutions, note that 𝑆 is a UCC if and only if each cluster of 𝜋𝑆
contains only one record. Similarly, 𝑆 → 𝐴 is a functional dependency if and only if for each cluster
of 𝜋𝑆 , all records in this cluster coincide on 𝐴. For the validation of FDs, clusters of size one are not
relevant and can be removed. Such reduced lists are also called stripped partitions [21].

Example 5.2. In Table 2, the PLI 𝜋 {Lecturer} has the three clusters [1, 3], [2], and [4]. For the
candidate functional dependency {Lecturer} → Course, we can observe that 𝑡1 and 𝑡3 coincide on
Course. Thus, this is a valid FD. Moreover, {Lecturer} → Room_Nr is invalid as 𝑡1 and 𝑡3 have different
room numbers.

In contrast to previous works, FDhits can significantly shrink PLIs, by removing whole clusters
that are not relevant for the current dependent attribute 𝐴 in the case of FDhitssep or any of
the attributes in𝑊 for FDhitsjoint. A cluster is relevant for a dependent attribute 𝐴, if the tuples
contained in it do not coincide on 𝐴, which is a prerequisite for violating any FD 𝑆 → 𝐴. Because
of this pruning, every cluster in a PLI 𝜋𝑆 computed for the right-hand sides𝑊 must contain at least
one pair of tuples that violate 𝑆 → 𝐴 for at least one 𝐴 ∈𝑊 . Hence, if this PLI is not empty, at least
one of the current FD candidates is invalid. This optimization can lead to speed-ups of more than
an order of magnitude on some datasets, as we show in Section 6.5.
As PLIs are a common data structure in UCC or FD discovery, we now only briefly discuss

implementation details and refer to the literature for more elaborate descriptions [2, 21, 33]. In the
preprocessing, we compute the PLI for each individual attribute. To this end, FDhits reads the
input dataset record by record and, for each attribute, it constructs a hashmap that maps each value
to a list of record IDs that it appears in. The values of each completed hashmap represent the PLI
of the respective attribute; the hashmaps’ keys are dropped, because they are no longer needed,
and also singleton ID sets are stripped from the PLIs. This construction step takes linear time in
the input size |𝑟 | · |𝑅 |, if we assume expected constant access to the hashmaps.
The calculation of PLIs for larger attribute sets is performed through an operation called PLI

intersection (or partition refinement) [21]. Given the PLI 𝜋𝑆 for some attribute set 𝑆 ⊆ 𝑅 and an
attribute 𝐴 (𝐴 ∉ 𝑆), we want to efficiently compute 𝜋𝑆∪{𝐴} based on previously computed PLIs.
To support this operation, we need a lookup table (constructed together with the PLIs for single-
attributes) that maps for each attribute from the record IDs to the cluster containing the respective
record. The clusters are integer-encoded, with a special marker (†) for clusters of size 1 hat have
been stripped.

Example. The lookup table for Lecturer looks like this: [1, †, 1, †]. Assume that we want to intersect
𝜋 {Course} = [[1, 3] , [2, 4]] with Lecturer to get the PLI 𝜋 {Course,Lecturer} . The cluster [1, 3] stays
untouched, because both indices have the same value in the lookup table. The cluster [2, 4] turns into
two singleton clusters, which are removed (stripped). Hence, the result is 𝜋 {Course,Lecturer} = [[1, 3]].

5.4 Sampling of difference sets

For the sampling of difference sets, we follow the approach of HPIvalid [5] with some adjustments
that are necessary due to the differences between UCCs and FDs. Sampling is always done for a
given PLI 𝜋𝑆 where 𝑆 ⊆ 𝑅 is an attribute set. We sample uniformly at random among the pairs of

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

43:14 Tobias Bleifuß et al.

records that are in the same cluster of 𝜋𝑆 . This is repeated 𝑐𝜀𝑝 times where 𝑐𝑝 is the number of such
record pairs, which can be quadratic in the number of records. In our experiments, we show that
𝜀 = 0.3 is a good choice for the sampling exponent (which was also proven to be a good choice for
UCC discovery in HPIvalid).
The initial sampling is done once with the PLI 𝜋𝐴 for each attribute 𝐴 ∈ 𝑅. In the case of

FDhitssep, the tentative hypergraph that results from processing one dependent attribute is reused
for the remaining ones as well.

In the following description, we use the notation 𝑆 →𝑊 for a generalized functional dependency
that is valid if and only if all FDs 𝑆 → 𝐴 with 𝐴 ∈𝑊 are valid. The subsequent sampling happens
whenever the verification of a candidate solution 𝑆 →𝑊 fails. In this case, we sample with respect
to the PLI 𝜋𝑆 . Note that this samples difference sets that coincide on 𝑆 , thus yielding hyperedges
that are not yet hit by 𝑆 .

Example. In Example 5.2, we observe that {Lecturer} → Room_Nr is invalid as 𝑡1 and 𝑡3 are in the
same cluster [1, 3] but have different room numbers. Sampling in [1, 3] yields the difference set of 𝑡1 and
𝑡3, which is {Room_Nr, Time}. This difference set is a witness for the fact that {Lecturer} → Room_Nr is
no FD and it thus extends the current tentative hypergraph of difference sets.

For the subsequent sampling, this is, however, not the full story. For UCC discovery every
difference set sampled this way is not yet hit and thus yields new information. For the FD discovery,
this is not true. If 𝑆 →𝑊 is found to be invalid, we sample new difference sets not hit by 𝑆 . However,
they are not guaranteed to contain attributes from𝑊 , in which case they are not relevant for the
current dependent attribute. To ensure that we make progress, we first deterministically add one
new difference set that comes from a pair of records in one cluster of 𝜋𝑆 that differ in the dependent
attributes𝑊 . This is guaranteed to exist, as the validation would have been successful otherwise.
More specifically, because of the filtering explained in Section 5.3, the FD is valid if the PLI is empty.
If it is not empty, it is sufficient to inspect any of the clusters that it contains to find a violation.
The filtering is also helpful for the sampling in general, because it guarantees that every cluster
contains at least one tuple pair that yields new information.

6 EVALUATION

We evaluate the hybrid FDhits as well as its two variants FDhitssep and FDhitsjoint comparatively
demonstrating that all variants improve upon the state-of-the-art FD discovery algorithm HyFD
by large factors. We first present the setup and methodology before we report and analyze the
runtime and memory results on various datasets. To analyze FDhits’ runtime behavior on datasets
of increasing size, we then measure the FD discovery times while gradually scaling either the
number of records or the number of attributes in the input relation. Finally, we explore some special
properties of FDhits in a set of in-depth experiments.

6.1 Setup

We run all experiments on a Dell® R620 server with two Intel® Xeon® E5-2650 and 256GB of
DDR3-1600 RAM. The server runs Ubuntu 20.04.4 LTS, Rust 1.59 and OpenJDK 11.0.15. For our
competitor algorithms HyFD, FDEP and TANE, we use the Java-implementations of the Metanome
project [31]. We execute all algorithms with a heap limit of 128GB; for FDhits, we use a Rust-
implementation that was compiled with the lto flag in release mode. Our experiments use the
same datasets as the evaluation of HPIvalid [5]. For repeatability, we publicly provide both code
and datasets2.

2https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html

Discovering Functional Dependencies through Hitting Set Enumeration 43:15

24.4 24.2 24.5 24.0 28.5
93.2

21.4 19.7 18.8 18.8 26.9
68.4

FDHitssep FDHitsjoint

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0.01

1.00

100.00

Sampling factor ε

T
im

e
[s
ec
]

Fig. 3. Influence of the sampling factor 𝜀 on the runtime of both variants of FDhits. The thin lines represent
individual datasets, and the bold line is the average over all datasets.

For HyFD, we opted for the already well-optimized original implementation and granted it
additional benefits: To keep the differences between Java and Rust as small as possible, we proceed
similarly to the experiments of HPIvalid in the comparison with HyUCC [5]: We start the JVM
with the server flag and deduct the times spent at checkpoints from the runtimes. For runtime
measurements, we use the runtimes reported by the algorithm to exclude all startup times of
the Java virtual machines. For memory measurements, we report the peak memory usage as
returned by time -f’%M’. Ideally, we would have a native implementation of HyFD to compare
against. However, re-implementing the existing algorithm in Rust is difficult, and carries the risk
of implementation flaws. Although we consider several aspects by the measures described above,
other overheads such as object creation remain unconsidered, so the absolute numbers need to be
taken with a grain of salt. Because the differences in the comparative results of HyFD and FDhits
are so large, they are however far beyond what could be explained with programming language
and implementation differences.
In relational databases, NULL is a special value that represents missing or inapplicable values.

There are various ways to treat this value in FD discovery, each having a different influence on the
validity of FDs that contain NULL fields. We configured both algorithms to use NULL-equals-NULL
semantics, which is the most common default semantics for FD discovery [32]. For a broader
discussion on NULL semantics for FDs, we refer to [1] and [41].

6.2 Parameter choice

FDhits is largely parameter-free, but there is one parameter 𝜀 that determines the number of
samples per sampling phase, as described in Section 5.4. The larger this parameter is chosen, the
more time the algorithm spends in the sampling phase. Thereby, it has the chance to complete
the hypergraph faster, although it becomes more and more difficult to discover new edges, as the
input graph becomes increasingly complete. A more complete input graph leaves FDhits with
fewer invalid FDs to test and therefore less resampling phases, which potentially enables a faster
tree-search (because it needs to enumerate fewer candidates). However, a smaller value for 𝜀 greatly
reduces the number of record comparisons and, hence, allows searching for new edges in a much
more targeted way.
To find a robust sampling factor 𝜀, Figure 3 shows the influence of different settings on the

runtime of all datasets, as well as the average runtime over all datasets. Overall, the influence of 𝜀
is negligible on most datasets, if a rather small value is chosen. FDhitsjoint benefits a bit from a

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

43:16 Tobias Bleifuß et al.

Table 3. Performance results on various datasets for our FDhitssep and FDhitsjoint and the state-of-the-art
FD discovery algorithms TANE, FDEP, and HyFD. For each dataset/algorithm combination, we report the
average over 5 runs. TL denotes runs for which the algorithm did not finish within our 1h time limit, and ML
for which the memory limit of 128GB did not suffice. Best runtimes and those within a 5% range of them are
highlighted in bold. The runtimes of the variant that our heuristic chooses are underlined, and we report the
speedup of this variant over HyFD, on average the fastest competitor.

TANE FDEP HyFD FDhitssep FDhitsjoint
Dataset |𝑅 | |𝑟 | #FDs Time [s] Mem. Time [s] Mem. Time [s] Mem. Time [s] Mem. Time [s] Mem. Speedup

Iris 5 147 4 0.144 91.5MB 0.040 71.9MB 0.052 61.8MB 0.000 27.2MB 0.000 27.3MB 163.6
T-Bioc-Metadata 56 4 2575 0.161 99.5MB 0.041 68.2MB 0.064 62.5MB 0.007 27.3MB 0.001 27.3MB 56.6
Echocardiogram 13 132 527 0.209 100MB 0.069 80.4MB 0.095 68.2MB 0.003 27.3MB 0.002 27.3MB 55.7
T-Bioc-Measurementsorfacts 24 3.11 k 449 0.488 198MB 3.655 566MB 0.267 128MB 0.023 27.3MB 0.012 27.3MB 21.5
T-Bioc-Specimenunit-Mark 12 8.98 k 84 0.565 191MB 16.901 642MB 0.360 147MB 0.024 27.3MB 0.021 27.3MB 17.0
Hepatitis 20 155 8250 6.145 859MB 0.295 121MB 0.384 235MB 0.017 27.3MB 0.026 27.3MB 22.9
Nursery 9 13 k 1 1.452 426MB 26.578 640MB 0.357 124MB 0.036 27.3MB 0.032 27.3MB 11.1
Sg-Taxon-Name 3 106 k 2 0.577 258MB 738.985 2.36GB 0.592 309MB 0.050 27.3MB 0.050 27.3MB 11.8
T-Bioc-Multimediaobject 15 18.8 k 133 0.941 338MB 135.130 694MB 0.628 255MB 0.077 27.2MB 0.070 27.3MB 8.9
Chess 7 28.1 k 1 0.999 334MB 84.967 660MB 0.366 158MB 0.054 27.3MB 0.071 27.3MB 5.1
Amalgam1-Denormalized 87 50 450,020 32.719 2.17GB 1.605 335MB 0.950 436MB 0.982 27.3MB 0.172 27.2MB 5.5
Spstock 7 122 k 56 1.486 669MB 1871.975 2.5GB 1.405 607MB 0.299 27.3MB 0.221 27.3MB 6.4
T-Bioc-Gath-Agent 18 72.7 k 186 4.662 1.57GB 2604.715 885MB 1.479 613MB 0.271 34.9MB 0.244 34.8MB 6.1
Sg-Bioentry-Ref-Assoc 5 358 k 5 2.141 809MB TL - 2.526 647MB 0.328 46.1MB 0.269 46MB 9.4
T-Bioc-Unit 14 91.3 k 69 4.922 1.51GB 3412.231 878MB 1.478 612MB 0.284 46MB 0.273 46MB 5.4
T-Bioc-Id-Highertaxon 3 563 k 1 1.903 726MB TL - 2.366 627MB 0.356 43.8MB 0.289 45.8MB 8.2
T-Bioc-Preparation 21 81.8 k 363 2.645 924MB 3066.389 1.51GB 1.523 628MB 0.376 38.2MB 0.300 38.2MB 5.1
Hospital 15 115 k 83 54.188 21.6GB TL - 2.759 652MB 0.339 27.3MB 0.340 27.8MB 8.1
Sg-Bioentry 9 184 k 19 1.562 570MB TL - 1.720 613MB 0.341 68.2MB 0.343 68.2MB 5.0
T-Bioc-Gath-Namedareas 11 138 k 59 3.485 1.43GB TL - 2.738 649MB 0.441 46.3MB 0.384 46.3MB 7.1
Entytysrcgen 46 26.1 k 1454 - ML 1448.888 2.07GB 25.923 1.24GB 0.620 27.3MB 0.401 27.3MB 64.7
T-Bioc-Gath-Sitecoordinates 25 91.3 k 467 6.226 1.98GB TL - 2.072 648MB 0.556 43.9MB 0.402 43.9MB 5.2
Sg-Biosequence 6 184 k 9 2.235 783MB TL - 2.179 757MB 0.421 114MB 0.428 114MB 5.1
Sg-Reference 6 129 k 13 1.576 496MB 2237.348 2.38GB 1.380 585MB 0.500 105MB 0.501 105MB 2.8
Sg-Dbxref 4 618 k 4 1.746 823MB TL - 1.842 795MB 0.530 135MB 0.526 135MB 3.5
Sg-Seqfeature-Qual-Assoc 4 825 k 3 2.222 1.12GB TL - 2.600 1.04GB 0.533 97.8MB 0.548 97.8MB 4.7
Letter 17 18.7 k 61 234.215 55.8GB 138.529 761MB 2.315 593MB 0.133 27.3MB 0.618 27.3MB 17.4
T-Bioc-Gath 35 91 k 925 17.464 5.65GB TL - 4.413 1.15GB 1.154 47.2MB 0.643 47.1MB 6.9
Horse 29 300 128,727 TL - 6.659 394MB 4.888 1.52GB 0.290 27.3MB 0.657 27.3MB 16.8
T-Bioc-Id 38 91.8 k 972 43.765 13.6GB TL - 4.934 1.21GB 1.479 68MB 0.850 68.1MB 5.8
Sg-Seqfeature 6 1.02M 7 3.383 1.38GB TL - 4.636 1.36GB 1.063 182MB 0.917 182MB 5.1
Sg-Bioentry-Dbxref-Assoc 3 1.85M 2 4.026 1.55GB TL - 6.333 1.41GB 1.227 125MB 0.971 138MB 6.5
Sg-Bioentry-Qual-Assoc 4 1.82M 2 8.268 2.01GB TL - 7.460 1.32GB 1.090 137MB 1.145 167MB 6.5
Sg-Location 8 1.02M 11 4.918 1.53GB TL - 4.955 1.64GB 1.302 281MB 1.274 281MB 3.9
Plista 63 996 178,152 TL - 27.742 1.79GB 18.721 4.46GB 0.652 27.2MB 2.062 27.3MB 28.7
Flight 109 1 k 982,631 - ML 210.770 3.2GB 44.781 13.3GB 1.732 27.3MB 2.508 27.3MB 17.9
Tax 15 1M 263 1006.375 79.9GB TL - 58.741 2.54GB 8.931 190MB 7.374 218MB 8.0
Ditag-Feature 13 3.96M 58 1979.883 125GB TL - 623.954 8.81GB 25.270 1.19GB 19.294 1.19GB 32.3
Fd-Reduced-30 30 250 k 89,571 34.923 4.24GB TL - 289.790 8.63GB 104.308 139MB 19.889 139MB 14.6
Census 42 196 k 41,861 - ML TL - TL - 4.511 95.7MB 23.183 163MB >798
Struct-Sheet-Range 32 664 k 9150 - ML TL - 407.227 20.9GB 91.496 404MB 41.729 404MB 9.8
Pdbx-Poly-Seq-Scheme 13 17.3M 68 TL - TL - 262.810 21.4GB 74.853 3.44GB 58.350 3.44GB 4.5
Musicbrainz-Denormalized 100 79.6 k 1,678,277 TL - TL - TL - 51.690 85.1MB 82.428 260MB >69
Ncvoter 19 8.06M 822 TL - TL - 2459.640 24.5GB 159.354 3.56GB 156.788 3.56GB 15.7
Lineitem 16 6M 3984 TL - TL - 1965.967 25.1GB 499.043 1.7GB 416.412 1.72GB 4.7

slightly larger sample, but for both algorithm variants, the minimum average runtime was achieved
with a sampling factor 𝜀 of 0.3. One reason that FDhitssep benefits less from the larger sample
could be that the algorithm can carry over most edges from previous iterations, and therefore does
not discover as many new edges through sampling in later iterations. Hence, one could justify a
more conservative choice with a smaller 𝜀, but we chose 𝜀 = 0.3 for all our experiments.

6.3 Performance

Table 3 gives an overview of the results regarding runtime and memory requirements on various
datasets of the two algorithm variants in comparison to TANE, FDEP and HyFD. The table also
contains some metadata about the FDs, namely the size of the table, i.e., the number of records
|𝑟 | and attributes |𝑅 |, and the number of valid minimum FDs: #FDs. For each dataset and variant,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

Discovering Functional Dependencies through Hitting Set Enumeration 43:17

we repeated the experiments five times and report the average runtime and memory requirement.
Although all algorithms contain random elements, the variance between runs is quite small: Except
for a few datasets per algorithm, the relative standard variation (𝜎

𝜇
) of runtime and memory

consumption is well below 10%.
Comparing the two variants shows that FDhitsjoint is faster than FDhitssep on most datasets.

The difference is particularly large when PLI intersections account for a large part of the runtime,
which tends to be the case when datasets are quite long, i.e., have many records. Especially, the
measurements for the datasets struct_sheet_range, lineitem, and fd_reduced confirm this observation.
However, there are also datasets where FDhitsjoint is slower than FDhitssep. Two datasets in partic-
ular catch the eye here: census andmusicbrainz_denormalized. FDhitssep is faster for census, because
this dataset generates an exceptionally large number of hyperedges; because these hyperedges
can no longer be minimized in FDhitsjoint, managing the large graph becomes expensive. On
musicbrainz_denormalized, however, most time is still spent on the PLI intersections. Moreover,
with the heuristics we propose, it is possible to select the better variant in almost all cases. There
are only two datasets where there would still be potential for optimization through a better choice
of variant, namely chess and flight. But even for these two datasets, the price for the worse choice
is in the sub-second range.

The memory consumption is more or less the same for both FDhits variants on almost all datasets
with the exception of those two datasets, where FDhitsjoint performs worse, for which FDhitsjoint
also requires significantly more memory. Overall, the memory requirements of both FDhits variants
are very low compared to HyFD (and other FD algorithms), so that all tested datasets could be
handled easily on a modern laptop, which is, without the need of a high-performance server.

In the comparison against related work, we focus on HyFD as it is clearly superior on almost all
datasets in comparison to its competitors TANE and FDEP. In the median case, FDhitssep is 6.6 times
and FDhitsjoint is 7.4 times faster than HyFD. With the heuristic, FDhits has a median speedup of
8.1 over HyFD. There is a single dataset, amalgam1_denormalized, for which FDhitssep is slower
than HyFD, but FDhitsjoint is always faster than HyFD with the lowest speedup on SG_REFERENCE
with 1.76x. On the datasets census and musicbrainz_denormalized, HyFD was unable to complete
the discovery within the 1-hour time limit; given that both FDhits variants complete both datasets
in a few seconds, the speedups here are at least 798x and 70x for FDhitssep and 155x and 44x for
FDhitsjoint, respectively. Because of these outliers, the mean speedup is significantly larger than the
median speedup that we report above. In terms of memory requirements, FDhits uses on average
about one order of magnitude less memory. Especially for datasets with a high number of results,
such as plista and flight, HyFD uses up to 480x more memory. Due to the fact that FDhits performs
a depth-first search, it generally needs to keep only a very small portion of the search space in
memory at any time.
Both FDhitssep and HyFD can easily be parallelized: FDhitssep runs the discovery for each

dependent attribute individually and HyFD parallelizes the validation of FD candidates. To compare
the parallelization gains of both approaches, Table 4 lists the runtimes of parallel executions of
the two algorithms, which we denote as FDhitsparallel and HyFDparallel, respectively. We ran both
algorithms with 16 threads on our 16-core server. The speedup-factors for both algorithms over their
single-threaded versions are comparable both in absolute range (1.6x to 8.9x for FDhitsparallel and
1.0x to 10.1x for HyFDparallel) and w.r.t. the same datasets. The maximum speedup that HyFDparallel
can achieve is limited by the number of attributes and the time that is needed to process each
individual dependent attribute. The memory requirements for both algorithms increase in their
parallel versions, because they need to hold more datasets in memory (multiple trees and more
PLIs).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

43:18 Tobias Bleifuß et al.

Table 4. Results for parallel versions of FDhitssep (FDhitsparallel) and HyFDparallel

HyFDparallel FDhitsparallel
Dataset |𝑅 | |𝑟 | #FDs Time [s] Mem. Time [s] Mem. Speedup

Musicbrainz-Denormalized 100 79.6 k 1,678,277 2423.902 40.2GB 5.790 491MB 418.6
Ditag-Feature 13 3.96M 58 608.025 9.71GB 12.861 1.78GB 47.3
Struct-Sheet-Range 32 664 k 9150 65.869 44.6GB 14.427 1.08GB 4.6
Fd-Reduced-30 30 250 k 89,571 28.495 34.3GB 21.635 299MB 1.3
Pdbx-Poly-Seq-Scheme 13 17.3M 68 214.921 24.3GB 44.848 7.81GB 4.8
Ncvoter 19 8.06M 822 1516.107 51.7GB 51.960 7.67GB 29.2
Lineitem 16 6M 3984 512.368 41.1GB 98.327 6.57GB 5.2
ncvoter_allc 94 7.50M 1,197,767,282 - - 11,971.066 204.45GB -
pdb-atom-site 31 219M 9052 - - 2214.245 253.71GB -

To test the limits of FDhits, we ran the algorithm again on a more powerful server with 64 cores
and 512GB of RAM. On this machine, FDhitsparallel was able to find all 1,197,767,282 valid FDs of
the ncvoter_allc dataset, for which the full set of FDs was previously unknown, in 200 minutes.
Another even bigger dataset with more than 200 million rows is pdb-atom-site, which takes up more
than 40GB on disk as a CSV file. For this file, all 9052 FDs were enumerated in about 37 minutes.
Thus, and as the scalability experiments below show, the number of rows is usually not the limiting
factor, especially because the number of valid FDs is not overly dependent on the number of rows.
On the other hand, even supposedly small datasets, but with many columns, can quickly reach the
limits of the algorithm. For example, the uniprot dataset with only 539,166 rows, but 223 columns
can still not be fully processed even on our large server. The reason for this effect is the large
number of valid FDs, which is typical for a dataset with this many columns. The algorithm runs out
of memory after a few minutes, but at this point it has already enumerated more than a billion FDs.
The even smaller (31MB on disk) isolet dataset, which has only 1000 rows but 618 columns, exhibits
a similar behavior. In summary, datasets that generate very large results, which is commonly seen
for datasets with more than 200 columns, remain difficult for FD discovery. However, it also raises
the question whether a complete set of results for these datasets with billions of results is really
useful. In the following, for a deeper analysis of the limits, we take a closer look at the scaling
behavior in the two table dimensions.

6.4 Scaling behavior

Figure 4 shows the record scaling behavior on different datasets. Both variants of FDhits and
HyFD show linear growth with the number of records. In theory, however, both variants of FDhits
have at least a quadratic runtime behavior in the worst-case, because there can be datasets that
produce a quadratic number of (minimal) difference sets. The theoretical bounds for FDhitssep
are even higher (cubic in the number of records), because it employs minimality pruning which
iterates over all previously found difference sets and takes linear time. The size of the result sets
vary only slightly over the number of records, which is why the enumeration of the results takes
similar amounts of time for different subsets of records of the same dataset. For longer datasets,
however, both reading the input files and validating the individual results take more time. Because
lineitem and ncvoter both have only few results, the difference between FDhitssep and FDhitsjoint is
marginal (in the case of ncvoter, the two lines even overlap almost completely). However, compared
to HyFD, both show a much slower growth with an increasing number of records. On the third
dataset, which is fdreduced, the impact of the pruned candidate validations is particularly evident.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

Discovering Functional Dependencies through Hitting Set Enumeration 43:19

FDHitssep FDHitsjoint HyFD

0

10

20

30

T
im

e
[m

in
]

3400

3600

3800

4000

C
o
u
n
t

lineitem ncvoter fdreduced

0

1

2

3

4

0

10

20

30

40

65000
70000
75000
80000
85000
90000

600
650
700
750
800
850

2M 4M 6M 2M 4M 6M 8M 50
k

10
0k

15
0k

20
0k

25
0k

Number of tuples

2M 4M 6M 2M 4M 6M 8M 50
k

10
0k

15
0k

20
0k

25
0k

Number of tuples

Fig. 4. Record scaling experiment with runtime and result size on three datasets.

FDHitssep FDHitsjoint HyFD

0

20

40

60

T
im

e
[m

in
]

0
50M

100M
150M
200M
250M

C
o
u
n
t

isolet ncvoter allc uniprot

‡

‡

‡

‡

‡
‡

‡

‡
‡

0

20

40

60

0

20

40

60

0

10M

20M

30M

40M

0
100k
200k
300k
400k
500k

50 10
0

15
0

20
0 10 20 30 40 50 20 40 60

Number of columns

50 10
0

15
0

20
0 10 20 30 40 50 20 40 60

Number of columns

Fig. 5. Attribute scaling experiment with the runtime and result size on three datasets with a time limit of 60
minutes. The measurements annotated with ‡ are the last successful runs before the time limit occurred.

While the runtime of FDhitssep already grows substantially slower than that of HyFD, the impact
of the additional records is marginal for FDhitsjoint.
Figure 5 (top) shows the attribute scaling behavior of FDhits and HyFD on different datasets.

Overall, all algorithms can exhibit an exponential scaling behavior with the number of attributes
(depending on the dataset). This is not surprising, because the number of results can also grow
exponentially with the number of attributes (shown in the lower charts of Figure 5). While Table 3
shows that there are datasets for which the result size is relatively small in comparison to the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

43:20 Tobias Bleifuß et al.

0

50

100

150

200

250

0

5

10

15

20

25

0.00 0.25 0.50 0.75 1.00

Threshold

A
b
so
lu
te

sa
v
in
g
p
o
te
n
ti
a
l
[s
]

M
ea
n
rela

tiv
e

sav
in
g
p
o
ten

tia
l
[%

]

Fig. 6. Left saving potential after applying our heuristic with different thresholds.

number of columns, it remains an open question whether a hitting set-enumeration algorithm
exists with a runtime that is polynomial in the number of hitting sets [5, 16]. There is no known
runtime bound for MMCS that is sub-exponential [5], and FDhits inherits this property because it
uses MMCS for hitting set enumeration.

Because the behavior of the algorithms differs on the three datasets, we discuss them individually.
The isolet dataset has some uncommon characteristics: It consists mainly of numeric attributes, most
of which have four decimal places. Thus, small combinations of attributes are often sufficient to
determine most of the other attributes. In fact, for most attributes, more than half of all combinations
of three other attributes determine them (minimally). This, in turn, results in a large overlap
between the determinant attributes, which means that FDhitssep must perform many of the PLI
intersections multiple times. For this reason, FDhitssep shows the worst performance on this dataset.
For ncvoter_allc and uniprot, both variants of FDhits scale much further than HyFD before they
hit the time limit of 1 hour. While on ncvoter_allc the joint enumeration pays off and FDhitsjoint is
constantly faster, this is not the case for uniprot. However, in the last successful run of FDhitsjoint
on uniprot with 60 attributes, more than 54% of the record comparisons generated new difference
sets. Therefore, our heuristic switches to FDhitssep at this point.

6.5 Detailed analysis

Figure 6 shows how well our heuristic chooses between the two variants FDhitssep and FDhitsjoint.
On the Y-axis, the plot shows how much savings potential remains after applying the heuristic
through a better choice of strategy. We distinguish once between the absolute savings and the
relative savings per data set (in %) to give weight to both large and small data sets. It can be seen
that there is a relatively large area where the penalty for making a wrong decision is relatively
small. In the entire range between about 0.05 and 0.6, the heuristic comes very close to the absolute
minimum. We propose a default threshold of 0.5, because it performs very well in both relative and
absolute performance.
To further investigate the effects of large input graphs, we disabled minimization in FDhitssep.

This allows us to compare how this algorithm behaves on datasets with larger input graphs but
otherwise the same characteristics. We observed the largest changes in graph size on the Census
and Musicbrainz-Denormalized datasets, where the input graphs grew from about 2000 and 4500
edges, respectively, to over 300,000 edges. As a result, the algorithm takes about twice as long for
both datasets and thus only finishes after 9.5 and 161 seconds, respectively. These are also two
datasets for which FDhitsjoint, which has no minimization, takes particularly long in comparison,
once again showing that the criterion is useful.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

Discovering Functional Dependencies through Hitting Set Enumeration 43:21

We also examined how much additional work is generated by the validation of invalid FDs. With
the FDhitsjoint approach, the number of PLIs that need to be calculated can be even lower than the
number of valid FDs (because one PLI can be used to validate the same determinant attributes for
multiple dependent attributes). In fact, we observe this behavior on numerous datasets and the
minimum is at even only 3% of the result size. If the number of validations exceeds the number
of FDs, then this happens basically only on data sets with small result sets (<10), for which a few
additional FDs are checked. In FDhitssep, the number of validations cannot be less than the number
of valid FDs, but except for very small result sets, there are at most as many invalid FDs as there
are valid FDs that are checked.
To better understand under which circumstances FDhitsjoint can save particularly much time,

we inspected the tree sizes, the number PLI operations, and other dimensions to see how well
they correlate with the time savings. For many of the datasets, FDhitsjoint generated a smaller
tree than the sum of sizes of the individual trees of FDhitssep in the tree search. For example,
for Fd-Reduced-30, the individual trees have a total size of on average 97,743 nodes, while the
FDhitsjoint tree contains only 8170 nodes. A similar decrease is observable for T-Bioc-Gath, with
1088 nodes versus 163 nodes. This decrease is mostly because the tree can keep the dependent
attributes together for large parts of the tree. In fact, for both datasets, we observe that many nodes
contain more than 20 dependent attributes. This also saves on PLI intersections, because the same
operations can be used to validate many FDs.

Lineitem
Ncvoter

Musicbrainz-Denormalized
Pdbx-Poly-Seq-Scheme

Struct-Sheet-Range
Census

Fd-Reduced-30
Ditag-Feature

Tax
Flight
Plista

Sg-Location
Sg-Bioentry-Qual-Assoc

Sg-Bioentry-Dbxref-Assoc
Sg-Seqfeature

T-Bioc-Id
Horse

T-Bioc-Gath
Letter

Sg-Seqfeature-Qual-Assoc
Sg-Dbxref

Sg-Reference
Sg-Biosequence

T-Bioc-Gath-Sitecoordinates
Entytysrcgen

T-Bioc-Gath-Namedareas
Sg-Bioentry

Hospital
T-Bioc-Preparation

T-Bioc-Id-Highertaxon
T-Bioc-Unit

Sg-Bioentry-Ref-Assoc
T-Bioc-Gath-Agent

Spstock
Amalgam1-Denormalized

Chess
T-Bioc-Multimediaobject

Sg-Taxon-Name
Nursery

Hepatitis
T-Bioc-Specimenunit-Mark

T-Bioc-Measurementsorfacts
Echocardiogram
T-Bioc-Metadata

Iris

0 25 50 75 100

Share of Runtime [%]

D
a
ta
se
ts

Read Sample Search PLI Output

Fig. 7. Proportional runtime for the components of FDhitsjoint.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

43:22 Tobias Bleifuß et al.

But even though we already compute only the required PLIs, PLI intersections still take up a
large portion of the runtime for many datasets, as can be seen in Figure 7. In this figure, we measure
the relative runtimes of reading the dataset and constructing the index structures (Read), initial
and validation sampling (Sample), tree search (Search), PLI intersections (PLI), and outputting
the results (Output). Especially for long datasets (toward the bottom of the figure), these costs
dominate the overall runtime. At the same time, it can be seen that for some datasets the potential
for optimization is already quite exhausted. In cases where reading and output take up nearly the
entire time, there is nothing left to save. We therefore believe that further gains can only be made
by improving the validation (through better PLI intersection or entirely new methods).

Moreover, it is critical to filter out clusters in the PLIs that cannot contain violations of the current
FD candidate(s), as the following experiment shows: We disabled this filtering and compared the
runtimes for both variants of the algorithm. The impact varies depending on the dataset, but we
observed differences in one order of magnitude on two datasets. The Census dataset is processed
without filtering in about 65s by FDhitssep and 72s by FDhitsjoint, which is a slowdown of a factor
of 15 for FDhitssep and a factor of 3 for FDhitsjoint. However, the difference is even more extreme
withMusicbrainz-Denormalized. Here, the runtime for FDhitssep grows from 52s to over 38 minutes,
which corresponds to a factor of 44. The difference is not quite as extreme for the joint variant, but
that runtime also increases from 82s to 30 minutes, which corresponds to a factor of 22. On our
other evaluation datasets, the difference is not as severe, but a slowdown of about a factor 3-5x is
still observable.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we presented FDhits, a new FD discovery algorithm based on hitting set enumeration.
FDhits automatically chooses between two discovery variants, which are FDhitssep and FDhitsjoint.
Both variants outperform related work on most datasets by many factors regarding runtime and
required memory.
For future work, we investigate how FDhits can be extended to the discovery of partial FDs,

because real-world datasets often contain errors that invalidate genuine FDs. We are confident that
FDHits can be adapted for this purpose with the following main modifications: (i) The sampling
would need to track the number of violations, e.g., by introducing an edge weight; tracking evidence
record pairs could make sure to not count the same record pair twice. (ii) The validation would need
to check for 𝑛 violations instead of only one violation. (iii) The tree search would need to adapt
criticality checks and branching. While the first two modifications should be easy, but potentially
costly, the implementation of the third adaptation is less obvious.
We also suggest applying a similar approach to other dependencies, such as denial constraints,

whose validation is much costlier than the validation of UCCs or FDs; we might be able to reuse
previous validation results here.

REFERENCES

[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational data: a survey. VLDB Journal 24, 4
(2015), 557–581.

[2] Ziawasch Abedjan, Patrick Schulze, and Felix Naumann. 2014. DFD: Efficient Functional Dependency Discovery. In
Proceedings of the International Conference on Information and Knowledge Management (CIKM). 949–958.

[3] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining Association Rules in Large Databases.
In Proceedings of the International Conference on Very Large Databases (VLDB). 487–499.

[4] Claude Berge. 1989. Hypergraphs - Combinatorics of Finite Sets. North-Holland Mathematical Library, Vol. 45. North-
Holland Publishing Company, Amsterdam, Netherlands.

[5] Johann Birnick, Thomas Bläsius, Tobias Friedrich, Felix Naumann, Thorsten Papenbrock, and Martin Schirneck. 2020.
Hitting set enumeration with partial information for unique column combination discovery. PVLDB 13, 12 (2020),

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

Discovering Functional Dependencies through Hitting Set Enumeration 43:23

2270–2283.
[6] Tobias Bleifuß, Susanne Bülow, Johannes Frohnhofen, Julian Risch, GeorgWiese, Sebastian Kruse, Thorsten Papenbrock,

and Felix Naumann. 2016. Approximate discovery of functional dependencies for large datasets. In Proceedings of the
International Conference on Information and Knowledge Management (CIKM). 1803–1812.

[7] Thomas Bläsius, Tobias Friedrich, and Martin Schirneck. 2022. The Complexity of Dependency Detection and Discovery
in Relational Databases. Theoretical Computer Science 900 (2022), 79–96.

[8] Alex Bogatu, Norman W Paton, and Alvaro AA Fernandes. 2017. Towards automatic data format transformations:
Data wrangling at scale. In British International Conference on Databases. 36–48.

[9] Philip Bohannon, Wenfei Fan, and Floris Geerts. 2007. Conditional functional dependencies for data cleaning. In
Proceedings of the International Conference on Data Engineering (ICDE). 746–755.

[10] C. Robert Carlson, Adarsh K. Arora, and Miroslava Milosavljevic Carlson. 1982. The Application of Functional
Dependency Theory to Relational Databases. Computer Journal 25, 1 (1982), 68–73.

[11] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2020. Mining relaxed functional dependencies from
data. Data Mining and Knowledge Discovery 34, 2 (2020), 443–477.

[12] Edgar F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13, 6 (1970), 377–387.
[13] Edgar F Codd. 1972. Further normalization of the data base relational model. Data base systems 6 (1972), 33–64.
[14] Stavros S Cosmadakis, Paris C Kanellakis, and Nicolas Spyratos. 1986. Partition semantics for relations. J. Comput.

System Sci. 33, 2 (1986), 203–233.
[15] Scott Davies and Stuart Russell. 1994. NP-completeness of searches for smallest possible feature sets. In AAAI

Symposium on Intelligent Relevance. AAAI Press Menlo Park, 37–39.
[16] Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. 2008. Computational aspects of monotone dualization: A brief

survey. Discrete Applied Mathematics 156, 11 (2008), 2035–2049.
[17] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2011. Discovering Conditional Functional Dependencies.

IEEE Transactions on Knowledge and Data Engineering (TKDE) 23, 5 (2011), 683–698.
[18] Peter A Flach and Iztok Savnik. 1999. Database dependency discovery: a machine learning approach. AI Communications

12, 3 (1999), 139–160.
[19] Andrew Gainer-Dewar and Paola Vera-Licona. 2017. The Minimal Hitting Set Generation Problem: Algorithms and

Computation. SIAM Journal on Discrete Mathematics 31 (2017), 63–100.
[20] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2020. Cleaning data with llunatic. VLDB

Journal 29, 4 (2020), 867–892.
[21] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE: An efficient algorithm for discovering

functional and approximate dependencies. Comput. J. 42, 2 (1999), 100–111.
[22] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2022. Data dependencies for query optimization: a survey.

VLDB Journal 31, 1 (2022), 1–22.
[23] Oliver Lehmberg and Christian Bizer. 2017. Stitching web tables for improving matching quality. PVLDB 10, 11 (2017),

1502–1513.
[24] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. 2000. Efficient discovery of functional dependencies and Armstrong

relations. In Proceedings of the International Conference on Extending Database Technology (EDBT). 350–364.
[25] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error Correction via a Unified Context Represen-

tation and Transfer Learning. PVLDB 13, 12 (2020), 1948–1961.
[26] Heikki Mannila and Kari-Jouko Räihä. 1987. Dependency Inference. In Proceedings of the International Conference on

Very Large Databases (VLDB). 155–158.
[27] Heikki Mannila and Kari-Jouko Räihä. 1994. Algorithms for inferring functional dependencies from relations. Data &

Knowledge Engineering 12, 1 (1994), 83–99.
[28] Rene J. Miller, Mauricio A. Hernandez, Laura M. Haas, Ling-Ling Yan, Howard Ho, Ronald Fagin, and Lucian Popa.

2001. The Clio Project: Managing Heterogeneity. SIGMOD Record 30, 1 (2001), 78–83.
[29] Keisuke Murakami and Takeaki Uno. 2014. Efficient Algorithms for Dualizing Large-Scale Hypergraphs. Discrete

Applied Mathematics 170 (2014), 83–94.
[30] Noël Novelli and Rosine Cicchetti. 2001. FUN: An efficient algorithm for mining functional and embedded dependencies.

In Proceedings of the International Conference on Database Theory (ICDT). 189–203.
[31] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix Naumann. 2015. Data Profiling with

Metanome. PVLDB 8, 12 (2015), 1860–1871.
[32] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph, Martin Schönberg, Jakob

Zwiener, and Felix Naumann. 2015. Functional Dependency Discovery: An Experimental Evaluation of Seven Algo-
rithms. PVLDB 8, 10 (2015), 1082–1093.

[33] Thorsten Papenbrock and Felix Naumann. 2016. A Hybrid Approach to Functional Dependency Discovery. In
Proceedings of the International Conference on Management of Data (SIGMOD). 821–833.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

43:24 Tobias Bleifuß et al.

[34] Thorsten Papenbrock and Felix Naumann. 2017. Data-driven Schema Normalization. In Proceedings of the International
Conference on Extending Database Technology (EDBT), Vol. 17. 342–353.

[35] Glenn Norman Paulley. 2000. Exploiting Functional Dependence in Query Optimization. Technical Report. University of
Waterloo.

[36] Hemant Saxena, Lukasz Golab, and Ihab F. Ilyas. 2019. Distributed Implementations of Dependency Discovery
Algorithms. PVLDB 12, 11 (2019), 1624–1636.

[37] Roee Shraga and Renée J Miller. 2023. Explaining Dataset Changes for Semantic Data Versioning with Explain-Da-V.
Proceedings of the VLDB Endowment 16, 6 (2023), 1587–1600.

[38] S. Tu and M. Huang. 2016. Scalable Functional Dependencies Discovery from Big Data. In International Conference on
Multimedia Big Data (BigMM). 426–431.

[39] Ziheng Wei, Sven Hartmann, and Sebastian Link. 2021. Algorithms for the discovery of embedded functional depen-
dencies. VLDB Journal 30, 6 (2021), 1069–1093.

[40] Ziheng Wei and Sebastian Link. 2019. Discovery and ranking of functional dependencies. In Proceedings of the
International Conference on Data Engineering (ICDE). 1526–1537.

[41] Ziheng Wei and Sebastian Link. 2019. Embedded Functional Dependencies and Data-Completeness Tailored Database
Design. PVLDB 12, 11 (2019), 1458–1470.

[42] Wanqing Wu and Wenyu Mao. 2022. An Efficient and Scalable Algorithm to Mine Functional Dependencies from
Distributed Big Data. Sensors 22, 10 (2022), 3856.

[43] Catharine Wyss, Chris Giannella, and Edward Robertson. 2001. FastFDs: A heuristic-driven, depth-first algorithm
for mining functional dependencies from relation instances extended abstract. In Proceedings of the International
Conference of Data Warehousing and Knowledge Discovery (DaWaK). 101–110.

[44] Guanghui Zhu, Qian Wang, Qiwei Tang, Rong Gu, Chunfeng Yuan, and Yihua Huang. 2019. Efficient and Scalable
Functional Dependency Discovery on Distributed Data-Parallel Platforms. IEEE Transactions on Parallel and Distributed
Systems (TPDS) 30, 12 (2019), 2663–2676.

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 43. Publication date: February 2024.

	Abstract
	1 Modern FD Discovery
	2 Foundations of FD Discovery
	3 Related Work
	4 HPIvalid in a nutshell
	5 Functional Dependencies
	5.1 Tree search
	5.2 Minimization and strategy selection
	5.3 Preprocessing and validation
	5.4 Sampling of difference sets

	6 Evaluation
	6.1 Setup
	6.2 Parameter choice
	6.3 Performance
	6.4 Scaling behavior
	6.5 Detailed analysis

	7 Conclusions and Future Work
	References

