
International Journal of Data Science and Analytics
https://doi.org/10.1007/s41060-024-00527-8

REGULAR PAPER

Alternative feature selection with user control

Jakob Bach1 · Klemens Böhm1

Received: 26 September 2023 / Accepted: 19 February 2024
© The Author(s) 2024

Abstract
Feature selection is popular for obtaining small, interpretable, yet highly accurate prediction models. Conventional feature-
selection methods typically yield one feature set only, which does not suffice in certain scenarios. For example, users might
be interested in finding alternative feature sets with similar prediction quality, offering different explanations of the data. In
this article, we introduce alternative feature selection and formalize it as an optimization problem. In particular, we define
alternatives via constraints and enable users to control the number and dissimilarity of alternatives. Next, we analyze the
complexity of this optimization problem and showNP-hardness. Further, we discuss how to integrate conventional feature-
selection methods as objectives. Finally, we evaluate alternative feature selection in comprehensive experiments with 30
datasets representing binary-classification problems. We observe that alternative feature sets may indeed have high prediction
quality, and we analyze factors influencing this outcome.

Keywords Feature selection · Alternatives · Constraints · Mixed-integer programming · Explainability · Interpretability ·
XAI

1 Introduction

Motivation
Feature-selection methods are ubiquitous for a variety of
reasons. By reducing the dimensionality of datasets, they
lower the computational cost and the memory requirements
of prediction models. Prediction models also tend to gener-
alize better without irrelevant and spurious predictors. While
somemodel types can implicitly select relevant features, oth-
ers cannot. In addition, simpler prediction models improve
interpretability [42].

Most conventional feature-selection methods return one
feature set only [6]. These methods optimize a criterion of
feature-set quality, e.g., prediction performance. However,
besides the optimal feature set, there might be other, dif-
ferently composed feature sets with similar quality. Such
alternative feature sets are interesting for users, e.g., to obtain
several diverse explanations. Alternative explanations can

B Jakob Bach
jakob.bach@kit.edu

Klemens Böhm
klemens.boehm@kit.edu

1 Department of Informatics, Karlsruhe Institute of Technology
(KIT), Am Fasanengarten 5, 76131 Karlsruhe,
Baden-Württemberg, Germany

provide additional insights into predictions, enable users to
develop and test different hypotheses, appeal to different
kinds of users, and foster trust in the predictions [34, 78].

For example, in a dataset describing physical experiments,
feature selection may help to discover relationships between
physical quantities. In particular, highly predictive feature
sets indicate which input quantities are strongly related to the
output quantity. Domain experts may use these feature sets to
formulate hypotheses on physical laws. However, if multiple
alternative sets of similar quality exist, further analyses and
experiments may be necessary to reveal the true underlying
physical mechanism. Only knowing one predictive feature
set and using it as the only explanation is misleading in such
a situation.
Problem statement
This article1 addresses the problem of alternative feature
selection, which we informally define as follows: Findmulti-
ple, sufficiently different feature sets that optimize feature-set
quality. We provide formal definitions in Sect. 3.2. This
problem entails an interesting trade-off: Depending on how
different the alternatives should be, one may have to com-
promise on quality. In particular, a stronger dissimilarity
requirement may require selecting more low-quality features

1 This article is a polished and shortened version of a preprint available
on arXiv [3]. Experimental results are the same.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-024-00527-8&domain=pdf

International Journal of Data Science and Analytics

in the alternatives. Users should be able to control the dis-
similarity and hence this trade-off.
Related work
In the field of feature selection, only a few methods yield
multiple, diverse feature sets [6]. In particular, there are
techniques for ensemble feature selection [69, 71] and sta-
tistically equivalent feature subsets [39]. These approaches
do not guarantee the diversity of the feature sets, nor do they
let users control diversity. Obtaining multiple, diverse solu-
tions also is an objective in other fields, e.g., for clustering [4,
29, 51], subgroup discovery [76], subspace search [74], and
explainable AI [1, 33, 68]. These approaches are not directly
applicable or easily adaptable to feature selection, and most
of them provide limited or no user control over alternatives,
as we will elaborate in Sect. 6.
Contributions
Our contribution is fourfold.

(1) We formalize alternative feature selection as an optimiza-
tion problem. In particular, we define alternatives via
constraints on feature sets. This approach is orthogonal
to the feature-selection method itself. As a wide vari-
ety of such methods exists [10, 42], users can choose
a method according to their needs/preferences. This
approach also allows integrating other constraints on fea-
ture sets, e.g., to capture domain knowledge [2, 21].
Finally, this approach gives users control over the search
for alternatives with two parameters, i.e., the number of
alternatives and a dissimilarity threshold.

(2) We analyze the computational complexity of this prob-
lem. We show NP-hardness, for a simple notion of
feature-set quality already. On the other hand, the run-
time is polynomial if the sizes of the feature sets and the
number of alternatives are fixed.

(3) We study how to solve this optimization problem. Specif-
ically, we describe how to integrate conventional feature-
selection methods into the objective function. The result-
ing optimization problems are either white-box, which
one can tackle with an integer-programming optimizer,
or black-box, for which we propose a constraint-aware
heuristic search procedure.

(4) We evaluate alternative feature selection with compre-
hensive experiments. We use 30 datasets representing
binary-classification problems from the Penn Machine
Learning Benchmarks (PMLB) [60, 67] and five feature-
selection methods. We focus on the feature-set quality of
alternatives relative to the user parameters. We publish
all our code2 and experimental data3 online.

Experimental results

2 https://github.com/Jakob-Bach/Alternative-Feature-Selection.
3 https://doi.org/10.35097/1975.

We observe that several factors influence the quality of alter-
natives, namely the dataset, the feature-selection method, the
notion of feature-set quality, and user parameters controlling
the search for alternatives. We have come up with several
observations and recommendations, such as: (a) Quality-
wise, the prediction performance of feature sets may not
correlate with the quality assigned by feature-selectionmeth-
ods. In particular, seemingly bad alternatives regarding the
latter might still be good regarding the former. (b) As feature-
set quality tends to decrease with an increasing number
of alternatives and with an increasing dissimilarity thresh-
old, these parameters let users indeed control the trade-off
between the diversity of feature sets and their quality. If the
parameter values are too strict, no valid alternatives might
even exist. (c) Computationally, a sequential search for alter-
natives has turned out to be significantly faster than searching
formultiple alternatives simultaneouslywhile yielding a sim-
ilar quality.
Outline
Section2 introduces notation and fundamentals. Section3
describes and analyzes alternative feature selection. Sec-
tion4 outlines our experimental design. Section5 presents
the experimental results. Section6 reviews relatedwork. Sec-
tion7 concludes. Appendix A contains technical details and
some of the proofs.

2 Fundamentals

In this section, we introduce basic notation (Sect. 2.1) and
review different methods to measure the quality of feature
sets (Sect. 2.2).

2.1 Notation

X ∈ R
m×n is a dataset represented as a matrix. Each row is a

data object, and each column is a feature. F̃ = { f1, . . . , fn} is
the set of feature names. We assume that categorical features
have been encoded numerically, e.g., via one-hot encoding.
X · j ∈ R

m denotes the vector representation of the j-th fea-
ture. y ∈ Ym represents the prediction target with domain Y ,
e.g., Y = {0, 1} for binary classification or Y = R for regres-
sion. Feature selection makes a binary decision s j ∈ {0, 1}
for each feature, i.e., either selects it or not. The vector
s ∈ {0, 1}n combines all these selection decisions and yields
the selected feature set Fs = { f j | s j = 1} ⊆ F̃ . To simplify
notation, we drop the subscript s in definitions where we do
not explicitly refer to the value of s but only the set F . The
function Q(s, X , y) denotes the feature-set quality, which,
without loss of generality, should be maximized.

123

https://github.com/Jakob-Bach/Alternative-Feature-Selection
https://doi.org/10.35097/1975

International Journal of Data Science and Analytics

2.2 Measuring feature (set) quality

There are different ways to evaluate feature-set quality
Q(s, X , y). We only give a short overview here; see [10,
42, 59] for comprehensive studies and surveys of feature
selection. Also, note that we assume a supervised feature-
selection scenario, i.e., feature-set quality depending on a
prediction target y. In principle, our definitions of alternatives
also apply to an unsupervised scenario. Since the prediction
target only appears in the function Q(s, X , y), one could
replaceQ(s, X , y)withQ(s, X), i.e., an unsupervised notion
of quality.

A conventional categorization of feature-selection meth-
ods distinguishes between filter, wrapper, and embedded
methods [24]. Filter methods evaluate feature-set quality
without prediction models. Univariate filters assess each
feature independently, e.g., using the correlation of the fea-
ture with the prediction target. Multivariate filters, like CFS
[25, 26], FCBF [81], and mRMR [63], assess feature sets
as a whole, also considering interactions like redundancies
between features.Wrapper methods [35] search over feature
setswith a black-boxoptimization strategy, e.g., genetic algo-
rithms, and assess feature-set quality with prediction models
trained on candidate feature sets. Embedded methods train
prediction models with built-in feature selection, e.g., deci-
sion trees [7] or random forests [8]. Thus, the criterion for
feature-set quality is model-specific.

Besides conventional feature selection, post hoc feature
importancemethods play amajor role in the field ofmachine-
learning interpretability [9, 48]. Thesemethods assess feature
importance after training a prediction model and can be
instance-specific, like LIME [65] or SHAP [44], or describe
the entire dataset, like permutation importance [8] or SAGE
[12].

3 Alternative feature selection

In this section, we introduce and analyze alternative feature
selection. First, we define the overall structure of the opti-
mization problem, i.e., objective and constraints (Sect. 3.1).
Second, we formalize the notion of alternatives via con-
straints (Sect. 3.2). Third, we discuss different objective
functions corresponding to different feature-set quality mea-
sures from Sect. 2.2. In particular, we describe how to solve
the resulting optimization problem (Sect. 3.3). Fourth, we
analyze the computational complexity of the optimization
problem (Sect. 3.4).

3.1 Optimization problem

Alternative feature selection has two goals. First, the quality
of alternatives should be high. Second, alternative feature sets

should differ from each other, i.e., contain different features.
There are differentways to combine twogoals in an optimiza-
tion problem: First, one can consider both goals as objectives
in a multi-objective problem. Second, one can treat one goal
as the objective and enforce the other with constraints. Third,
one can define constraints for both goals, searching for fea-
sible solutions instead of optimizing. We stick to the second
formulation and maximize feature-set quality subject to fea-
ture sets being alternative. This formulation allows us to keep
the original objective function of feature selection. Thus,
users do not need to specify a threshold on feature-set quality
but control how alternative the feature sets must be instead.
We obtain the following optimization problem (Eq.1) to find
a single alternative feature set Fs :

max
s

Q(s, X , y)

subject to: Fs being alternative
(1)

In the following, we discuss different objective functions
Q(s, X , y) and suitable constraints for being alternative.
Additionally,many feature-selectionmethods limit the feature-
set size |Fs | to a user-definedvalue k ∈ N, which adds further,
simple constraints.

3.2 Constraints—defining alternatives

We now formalize alternative feature sets via constraints,
considering single (Sect. 3.2.1) and multiple alternatives
(Sect. 3.2.2). All our definitions are independent of the
feature-selection method.

3.2.1 Single alternative

We consider a feature set an alternative to another set if
it differs sufficiently. We express this notion with a set-
dissimilarity measure [11, 15]. These measures typically
quantify how strongly two sets F ′, F ′′ overlap and relate this
to their sizes. For instance, a well-known set-dissimilarity
measure is the Jaccard distance, which is defined as follows
(Eq.2) for the feature sets F ′ and F ′′:

dJacc(F
′, F ′′) = 1 − |F ′ ∩ F ′′|

|F ′ ∪ F ′′|
= 1 − |F ′ ∩ F ′′|

|F ′| + |F ′′| − |F ′ ∩ F ′′|
(2)

In this article, we use a dissimilarity measure based on the
Dice coefficient, as defined by Eq. (3):

dDice(F
′, F ′′) = 1 − 2 · |F ′ ∩ F ′′|

|F ′| + |F ′′| (3)

123

International Journal of Data Science and Analytics

Other measures are also possible. Our definitions of alterna-
tives only assume non-negativity, i.e., d(F ′, F ′′) ≥ 0, and
symmetry, i.e., d(F ′, F ′′) = d(F ′′, F ′). We define single
alternatives as follows:

Definition 1 (Single alternative) Given a symmetric, non-
negative set-dissimilarity measure d(·) and a dissimilarity
threshold τ ∈ R≥0, a feature set F ′ is an alternative to a
feature set F ′′ (and vice versa) if d(F ′, F ′′) ≥ τ .

The threshold τ controls how dissimilar alternative feature
sets should be. The larger τ , themore feature-set qualitymay
drop. However, depending on the dataset, the same value
of τ may have a stronger or weaker effect on feature-set
quality. For example, certain datasetsmay encompass numer-
ous features with similar levels of utility, thereby allowing
for numerous alternatives of comparable quality. In contrast,
predictions on other datasets may hinge on a few key fea-
tures. Further, only users can decidewhich drop in feature-set
quality is acceptable as a trade-off for obtaining alternatives.
Thus, we leave τ as a user parameter. For normalized dis-
similarity measures as in Eqs. 2 and 3, the interpretation of τ

is user-friendly: Setting τ = 0 allows identical alternatives,
while τ = 1 forbids any overlap. Users can also experi-
ment with various values, such as performing a binary search
across the range of τ .

When implementing Definition 1, the following proposi-
tion gives way to using a broad range of solvers to tackle the
related optimization problem:

Proposition 1 (Linearity of constraints) Using the Dice dis-
similarity (Eq.3), one can express alternative feature sets
(Definition 1) with 0–1 integer linear constraints.

Proof We re-arrange terms in theDice dissimilarity (Eq. 3) to
get rid of the quotient of feature-set sizes, obtaining Eq. (4):

dDice(F
′, F ′′) ≥ τ

⇔ |F ′ ∩ F ′′| ≤ 1 − τ

2
· (|F ′| + |F ′′|) (4)

Next, we express set sizes in terms of the feature-selection
vector s, obtaining Eq. (5):

|Fs | =
n∑

j=1

s j

|Fs′ ∩ Fs′′ | =
n∑

j=1

s′
j · s′′

j

(5)

Finally, we replace each product s′
j · s′′

j with an auxiliary
variable t j , bound by additional constraints, to linearize it

[49], obtaining Eq. (6):

t j ≤ s′
j

t j ≤ s′′
j

1 + t j ≥ s′
j + s′′

j

t j ∈ {0, 1}

(6)

Only sums of variables and products with constants remain,
so the constraints are linear. Further, if one feature set is
known, i.e., either s′ or s′′ is fixed to particular values, Eq. (5)
already is linear without Eq. (6).
�

As an alternative formulation, one could also encode the 0–1
integer linear constraints into propositional logic (SAT) [75].

If the set sizes |F ′| and |F ′′| are constant, e.g., user-
defined, Eq. (4) implies that the threshold τ exhibits a
linear relationship with the maximum number of overlap-
ping features |F ′ ∩ F ′′|. This correspondence simplifies the
interpretation of τ and encourages us to utilize the Dice
dissimilarity in the subsequent steps. On the contrary, the
Jaccard distance exhibits a nonlinear relationship between
τ and the overlap size. This insight arises from rearranging
Eq. (2) in conjunction with Definition 1, obtaining Eq. (7):

dJacc(F
′, F ′′) = 1 − |F ′ ∩ F ′′|

|F ′| + |F ′′| − |F ′ ∩ F ′′| ≥ τ

⇔ |F ′ ∩ F ′′| ≤ 1 − τ

2 − τ
· (|F ′| + |F ′′|)

(7)

Further, if |F ′| = |F ′′|, Eq. (4) implies that parameter τ rep-
resents the share of features in one set that must not be a
member of the other one, and vice versa, as expressed by
Eq. (8):

dDice(F
′, F ′′) ≥ τ

⇔ |F ′ ∩ F ′′| ≤ (1 − τ) · |F ′|
= (1 − τ) · |F ′′|

(8)

This correspondence further eases interpretability. In partic-
ular, if users are uncertain how to choose τ , and if |F ′| is
reasonably small, users can try out all values of τ ∈ {i/|F ′|}
with i ∈ {1, . . . , |F ′|}. These |F ′| unique values of τ suf-
fice to produce all possible distinct solutions that one could
obtain with an arbitrary τ ∈ (0, 1].

3.2.2 Multiple alternatives

One can search for multiple alternatives either sequentially
or simultaneously. The number of alternatives a ∈ N0 is a
parameter for the users. The overall number of feature sets
is a + 1 since we deem one feature set the ‘original’ one.

123

International Journal of Data Science and Analytics

Table 1 Size of the optimization
problem by search method, for
a alternatives (a + 1 feature sets
overall) and n features

Sequential search Simultaneous search
Alternative i Summed

Decision variables s n (a + 1) · n (a + 1) · n
Linearization variables t 0 0 a·(a+1)·n

2

Alternative constraints i a·(a+1)
2

a·(a+1)
2

Linearization constraints 0 0 3·a·(a+1)·n
2

Table 1 compares the sizes of the optimization problems for
these two search methods.
Sequential alternatives
With sequential search, users obtain alternatives iteratively,
with one alternative per iteration. Thus, users canmonitor the
quality of alternatives and end the search after each iteration.
This option frees users from setting the parameter a a priori.
Each feature set has to be an alternative to all previously
found ones, which are contained within the set F:

Definition 2 (Sequential alternative) A feature set F ′′ is an
alternative to a set of feature sets F (and vice versa) if F ′′ is
a single alternative (Definition 1) to each F ′ ∈ F.

Adapting Eq. (1) to Definition 2, we obtain the following
optimization problem (Eq.9) for each iteration of the search:

max
s

Q(s, X , y)

subject to: ∀F ′ ∈ F : d(Fs, F
′) ≥ τ

(9)

The objective function remains the same as for a single alter-
native, i.e., optimizes only one feature set Fs per iteration.
In particular, with F = ∅ in the first iteration, we optimize
for the ‘original’ feature set, which is the same as in conven-
tional feature selection without constraints for alternatives.
Thus, the number of variables in each optimization is inde-
pendent of the number of alternatives a, and no linearization
variables (Eq. 6) are required. Each alternative only adds one
new constraint to the problem. Thus, we expect the runtime
of sequential search to scale well with the number of alter-
natives. Additional runtime improvements can be achieved
if the optimizer retains a state between iterations and can
warm-start.
Simultaneous alternatives
Through simultaneous search, users can acquire multiple
alternatives simultaneously, whose number a must be set
beforehand. Once more, we employ pairwise dissimilarity
constraints for these alternatives:

Definition 3 (Simultaneous alternatives) A set of feature
sets F contains simultaneous alternatives if each feature
set F ′ ∈ F is a single alternative (Definition 1) to each other
set F ′′ ∈ F, F ′ �= F ′′.

Adapting Eq. (1) to Definition 3, we obtain the following
optimization problem (Eq.10):

max
s(0),...,s(a)

agg
i∈{0,...,a}

Q(s(i), X , y)

subject to: ∀i1, i2 ∈ {0, . . . , a}, i1 �= i2 :
d(Fs(i1) , Fs(i2)) ≥ τ

(10)

In contrast to the sequential case (Eq.9), the problem requires
a modified objective function and a + 1 instead of one deci-
sion vector s. The operator agg(·) defines how to aggregate
the qualities of the feature sets. In our experiments, we con-
sider the sum as well as the minimum to instantiate agg(·),
which we refer to as sum-aggregation and min-aggregation.
The latter explicitly fosters balanced feature-set qualities.
Appendix 1 discusses these two aggregation operators and
additional ideas for balancing qualities in detail.

In terms of runtime, we anticipate simultaneous search to
scale worse with the number of alternatives a than sequen-
tial search. This is because simultaneous search addresses
a single large optimization problem, as opposed to sev-
eral smaller ones. The number of decision variables grows
linearly with a, while the number of constraints increases
quadratically. Further, auxiliary variables are necessary to
obtain linear constraints (Eq.6).

Quality-wise, simultaneous search may benefit from opti-
mizing once rather than greedily. Furthermore, the quality
may be distributed more evenly across the alternatives com-
pared to sequential search. However, a drawback is that there
are no intermediate steps where users can interrupt the search
after assessing the current feature-set quality.

3.3 Objective functions—finding alternatives

In this section, we delve into the process of identify-
ing alternative feature sets. Specifically, we describe how
to solve the optimization problem introduced in Sect. 3.1
for the different categories of feature-set quality mea-
sures featured in Sect. 2.2. We distinguish between white
box (Sect. 3.3.1), black box (Sect. 3.3.2), and embedding
(Sect. 3.3.3) approaches.

123

International Journal of Data Science and Analytics

3.3.1 White-box optimization

If the feature-set quality function Q(s, X , y) is sufficiently
simple, one can find alternatives with a solver for white-box
optimization problems. We already showed that our notion
of alternative feature sets can be expressed as 0–1 integer lin-
ear constraints (Proposition 1). We now discuss four popular
feature-selection methods with objectives that admit formu-
lating a 0–1 integer linear problem. We evaluate all four
methods in our experiments later.
Univariate filter feature selection
For univariate filter methods, the objective function is linear
by default since the quality of a feature set is the sum of the
qualities of the individual features, as defined by Eq. (11):

Quni(s, X , y) =
n∑

j=1

q(X · j , y) · s j (11)

Here, q(·) is a bivariate dependency measure to quantify the
relationship between each feature and the prediction target,
e.g., mutual information [37] or the absolute value of Pearson
correlation.

For this objective, Appendix A.2 specifies the complete
optimization problem, including the constraints for alterna-
tives we already introduced in Sect. 3.2.
Post hoc feature importance
One can also insert post hoc feature-importance scores as
univariate feature qualities q(X · j , y) into Eq. (11). However,
such post hoc importance scores typically evaluate the quality
of each feature in the presence of other features. For exam-
ple, a featuremay only be important in subsets where another
feature is present, due to feature interaction, but unimportant
otherwise, and a post hoc importancemethod like SHAP [44]
may reflect both these aspects. In contrast, Eq. (11) implicitly
assumes feature independence and cannot adapt importance
scores depending on whether other features are selected.
Thus, treating pre-computed post hoc importance scores as
univariate feature qualities in the optimization objective can
serve as a heuristic but may not faithfully represent the actual
feature qualities in a particular selected set.
FCBF
The Fast Correlation-Based Filter (FCBF) [81] is amultivari-
ate filter method based on the notion of predominance: The
correlation of each selected feature with the prediction target
must exceed a user-defined threshold andmust also be higher
than the correlation of each other selected feature with the
given one.While FCBF originally employs a heuristic search
to identify predominant features, we propose a formulation
as a constrained optimization problem (Eq.12) to allow a
white-box optimization for alternatives:

max
s

QFCBF(s, X , y) =
n∑

j=1

q(X · j , y) · s j

subject to: ∀ j1, j2 ∈ {1, . . . , n}, j1 �= j2,

q(X · j1 , y) ≤ q(X · j2 , X · j1) :
s j1 + s j2 ≤ 1 (12)

We drop the original FCBF’s threshold on feature-target cor-
relation and maximize the latter instead, as in the univariate-
filter case. Further, we keep the constraints of FCBF on
feature–feature correlation. Specifically, we prohibit the con-
current selection of two features if their correlation is at least
as high as the correlation of either feature with the target
variable. Since the condition q(X · j1 , y) ≤ q(X · j2 , X · j1) in
Eq. (12) does not depend on the decision variables s, one can
pre-compute whether it holds before formulating the opti-
mization problemand add the corresponding linear constraint
s j1 + s j2 ≤ 1 only for feature pairs where it is needed.
mRMR
The multivariate filter method Minimal Redundancy Maxi-
mum Relevance (mRMR) [63] combines two criteria, rele-
vance and redundancy. Relevance is the dependency between
selected features and the prediction target, as for univariate
filter methods. Redundancy, in turn, quantifies the depen-
dency between selected features. Both terms are averaged
over the selected features. The objective is to maximize the
difference between relevance and redundancy, as defined by
Eq. (13):

max
s

QmRMR(s, X , y) =
∑n

j=1 q(X · j , y) · s j∑n
j=1 s j

−
∑n

j1=1
∑n

j2=1 q(X · j1 , X · j2) · s j1 · s j2
(
∑n

j=1 s j)
2

(13)

If one knows the feature-set size
∑n

j=1 s j to be a constant k,
the denominators of both fractions are constant, so the objec-
tive leads to a quadratic-programming problem [55, 66]. If
one additionally replaces each product terms s j1 · s j2 accord-
ing to Eq. (6), the problem becomes linear. However, there is
a more efficient linearization [56, 57], which we use in our
experiments, displayed in Eq. (14):

max
s

QmRMR(s, X , y) =
∑n

j=1 q(X · j , y) · s j
k

−
∑n

j=1 z j

k · (k − 1)

s.t.: ∀ j1 : A j1 =
∑

j2 �= j1

q(X · j1 , X · j2) · s j2

∀ j : z j ≥ M · (s j − 1) + A j

∀ j : z j ∈ R≥0

with: j, j1, j2 ∈ {1, . . . , n} (14)

123

International Journal of Data Science and Analytics

Here, A j1 is the sum of all redundancy terms related to the
feature with index j1, i.e., the summed dependency value
between this feature and all other selected features. Thus,
one can use one real-valued auxiliary variable z j for each
feature instead of one new binary variable for each pair of
features. Since redundancy should beminimized, z j assumes
the value of A j with equality if the feature with index j is
selected (s j = 1) and is zero otherwise (s j = 0). To this end,
M is a large positive value that deactivates the constraint
z j ≥ A j if s j = 0.

Since Eq. (14) assumes the feature-set size k ∈ N to be
user-defined before optimization, it requires fewer auxiliary
variables and constraints than the more general formulation
in [56, 57]. Additionally, in accordancewith [55], we assign a
value of zero to the self-redundancy terms q(X · j , X · j), effec-
tively excluding them from the objective function. Thus, the
redundancy term uses k · (k − 1) instead of k2 for averaging.

3.3.2 Black-box optimization

Overview of approaches
If feature-set quality does not have an expression suitable
for white-box optimization, one has to treat it as a black-
box function when searching for alternatives. This situation
applies to wrapper feature-selection methods, which use pre-
diction models to assess feature-set quality. There are several
ways to consider the constraints for alternatives in such sce-
narios: First, one can enumerate and evaluate all feature sets
satisfying the constraints, which is inefficient. Second, one
can sample from the space of valid feature sets. However,
uniform sampling from a constrained space is a computa-
tionally hard problem, possibly harder than determining if
a valid solution exists or not [17]. Third, one can formu-
late a multi-objective problem to avoid hard constraints on
alternatives. However, as explained in Sect. 3.1, we decided
to pursue a single-objective formulation with constraints.
Fourth, one can push constraints into a search heuristic; this
is what we describe next. One idea is to prevent the heuristic
from producing invalid feature sets or tomake this less likely,
e.g., by adding a penalty to the objective function. Another
idea is to ‘repair’ invalid feature sets in the search, e.g., by
replacing them with the most similar feature sets satisfying
the constraints. Such solver-assisted approaches are popular
for finding valid software configurations [22, 28, 79]. In our
experiments, we also employ a repair-based approach, which
we describe in the following.
Greedy Wrapper
We propose a novel greedy hill-climbing procedure, dis-
played in Algorithm 1. Unlike standard hill climbing for
feature selection [35], our procedure observes constraints.
First, the algorithm uses a solver to find one solution that
is alternative enough, given the current constraints (Line 1).
Thus, it has a valid starting point and can always return a solu-

Algorithm 1: Greedy Wrapper for alternative feature
selection.
Input: Dataset X with n features,

Prediction target y,
Feature-set quality function Q(·),
Constraints for alternatives Cons,
Maximum number of iterations max_i ters

Output: Set of feature-selection decision vectors
S = {s(0), . . . , s(a)}

1 S ← Solve(Cons) // Initial alternatives
2 i ters ← 1 // Number of iterations = solver
calls

3 if S = ∅ then return ∅; // No valid alternatives
exist

4 j1 ← 1 // Indices of features to be swapped
5 j2 ← j1 + 1
6 while i ters < max_iters and j1 < n do
7 S′ ← Solve(Cons ∪ {¬s(i)

j1
,¬s(i)

j2
| i ∈ {0, . . . , a}})

// Try swap
8 i ters ← i ters + 1
9 if S′ �= ∅ and Q(S′, X , y) > Q(S, X , y) then // Swap

if improved
10 S ← S′
11 j1 ← 1 // Reset swap-feature indices
12 j2 ← j1 + 1

13 else if j2 < n then // Try next swap; advance
one index

14 j2 ← j2 + 1

15 else // Try next swap; advance both indices
16 j1 ← j1 + 1
17 j2 ← j1 + 1

18 return S

tion unless there are no valid solutions at all. Next, it tries
‘swapping’ two features, i.e., selecting the features if they
were deselected or deselecting them if they were selected
(Line 7). For simultaneous search, we swap the affected
two features in each alternative feature set. This swap might
violate cardinality constraints as well as constraints for alter-
natives. Thus, the algorithm calls the solver again to find one
solution S′ containing this swap and satisfying the other con-
straints. If such a solution S′ exists and its quality Q(S′, X , y)
is higher than the one of the current solution, the algorithm
proceeds with the new solution, attempting again to swap the
first and second features (Lines 10–12). Otherwise, it tries to
swap the next pair of features (Lines 13–17). Specifically, we
assess only one solution per swap before proceeding instead
of exhaustively enumerating and evaluating all valid solu-
tions involving the swap.

The algorithm terminates if no swap leads to an improve-
ment or a fixed number of iterations max_i ters is reached
(Line 6). Due to its heuristic nature, the algorithm might get
stuck in local optima rather than yielding the global optimum.
In particular, max_i ters only is an upper bound on the iter-
ation count since the algorithm can stop earlier. We define

123

International Journal of Data Science and Analytics

the iteration count as the number of invocations of the solver,
i.e., attempts to generate valid alternatives. This number also
bounds the number of prediction models trained. However,
we only train a model for valid solutions (Line 9), and not
all solver calls may yield one.

3.3.3 Embedding alternatives

If feature selection is embedded into a predictionmodel, there
is no general approach for finding alternative feature sets.
Instead, one would need to embed the search for alternatives
into model training as well. Thus, we leave the formulation
of specific approaches open for future work. For instance,
one could prevent decision trees from splitting on a feature
if the resulting feature set is too similar to a given feature
set. As another example, there are various formal encodings
of prediction models, e.g., as SAT formulas [54, 70, 82]. In
such representations, one might directly add the constraints
for alternatives and employ a solver for ‘training’.

3.4 Computational complexity

In this section, we discuss the time complexity of alter-
native feature selection. We are interested in scalability
regarding the number of features n ∈ N, also taking the
feature-set size k ∈ N and the number of alternatives a ∈
N0 into account. Section3.4.1 examines exhaustive search,
which works for arbitrary feature-selection methods, while
Sect. 3.4.2 analyzes the optimization problemwith univariate
feature qualities (Eq.11).

3.4.1 Exhaustive search for arbitrary feature-selection
methods

An exhaustive search over all possible feature sets is a simple
but inefficient approach to finding alternatives. This proce-
dure provides an upper bound for the time complexity of the
optimization problem.
Sequential search
Even without considering alternatives, the search space of
feature selection grows exponentially with n. In particular,
there are 2n − 1 non-empty feature sets of arbitrary size and(n
k

) = n!
k!·(n−k)! ≤ nk sets of a fixed size k. These numbers

also hold for sequential search (Eq.9), which optimizes alter-
natives one at a time. For each feature set, one must evaluate
the objective and check the constraints. The cost of the former
depends on the feature-selection method but should usually
be polynomial in n. The latter entails a cost of O(a · n) for
each new alternative and O(a2 · n) for the whole sequential
search with a alternatives. In particular, constraint checking
involves iterating over all existing feature sets and features to
compute the dissimilarity between sets (Eq.A4).With O(nk)

feature sets as solution candidates, we obtain the following
proposition:

Proposition 2 (Complexity of exhaustive sequential search)
Exhaustive sequential search for a ∈ N alternative feature
sets of size k from n features has a time complexity of O(a2 ·
nk+1) without the cost of evaluating the objective function.

This complexity is polynomial in n if k is a small constant
independent of n, i.e., k ∈ O(1), and if a is at most poly-
nomial in n, i.e., a ∈ O(nc), c ∈ O(1). The assumption
k ∈ O(1) makes sense for feature selection, where one
typically wants to obtain small feature sets from a high-
dimensional dataset. However, the exponent k might still
render an exhaustive search practically infeasible. In terms of
parameterized complexity, the problem resides in class XP
since the complexity term has the form O(f (k) · ng(k))
[14] if a is constant, having the parameter k and functions
f (k) = 1, g(k) = k + 1.
Simultaneous search
Simultaneous search enlarges the search space by optimiz-
ing a+1 feature sets at once (Eq.10), having O((nk)a+1) =
O(nk·(a+1)) solution candidates. Thus, the following propo-
sition holds:

Proposition 3 (Complexity of exhaustive simultaneous search)
Exhaustive simultaneous search for a ∈ N alternative fea-
ture sets of size k from n features has a time complexity
of O(a2 ·nk·(a+1)+1)without the cost of evaluating the objec-
tive function.

The scalability with respect to n is less favorable compared
to sequential search, as the number of alternatives a now
appears in the exponent. Further, Proposition 3 assumes
that the constraints do not use linearization variables (Eqs. 6
and A5), which would enlarge the search space even further.
Finally, the complexity remains polynomial in n if a and k
are small and independent from n, i.e., a · k ∈ O(1):

Proposition 4 (Parameterized complexity of simultaneous
search) Simultaneous search for a ∈ N alternative feature
sets of size k from n features resides in the parameterized
complexity class XP for the parameter a · k.

3.4.2 Univariate feature qualities

While the assumption a · k ∈ O(1) ensures polynomial run-
time regarding n for arbitrary feature-selection methods, the
optimization problem can still be hard without this assump-
tion. In the following, we derive complexity results for
univariate feature qualities (Eq. 11). This feature-selection
method arguably has the simplest objective function, where
the quality of a feature set is equal to the sumof the individual
qualities of its constituent features. This simplicity eases the
transformation from and to well-knownNP-hard problems.

123

International Journal of Data Science and Analytics

In the following complexity analyses, we assume the fea-
ture qualities q(X · j , y) are given. In particular, one can
pre-compute these qualities before searching alternatives and
treat them as constants in the optimization problem. The
complexity of this computation depends on the particular
feature-quality measure and the number of data objects m.
However, the number of features n should only affect the
complexity linearly due to the univariate setting.

We have previously observed that our optimization prob-
lem with univariate feature qualities can be formulated as an
integer-linear program (Sect. 3.3.1). While Integer pro-

gramming isNP-complete in general [20, 32], our problem
is a special case of it and could therefore have lower com-
plexity.
Min-aggregation
We start with two assumptions, both of which we will drop
later: First, we use a dissimilarity threshold of τ = 1, i.e.,
zero overlap of feature sets. Second, all features must be part
of one set. We call the combination of these assumptions,
which implies n = (a + 1) · k, a complete partitioning.
This scenario differs from a · k � n, which we assumed
in Sect. 3.4.1, where runtime was polynomial in n.

The currently assumed scenario is a variant of an existing
problem known as Multi- Way Number Partitioning

[40] or Multiprocessor Scheduling [20] in literature:
Partition a set of n integers into a fixed number of subsets
such that all subset sums are as equal as possible [36]. A
typical application is assigning tasks with different lengths
to a fixed number of processors, aiming to balance the load.
In our scenario, the tasks correspond to features, the task
lengths to univariate feature qualities, and the processors
to feature sets. Maximizing the minimum sum is one of
several possible objectives in the literature [36, 40]. This
objective corresponds to simultaneous search (Eq. 10) with
min-aggregation (Eq.A2) in our scenario. SinceMultipro-

cessor Scheduling is NP-complete, even for just two
partitions [20], we obtain the following result:

Proposition 5 (Complexity of simultaneous searchwithmin-
aggregation, complete partitioning, andunconstrained feature-
set size) Assuming univariate feature qualities (Eq.11), a
dissimilarity threshold τ = 1, and unconstrained feature-set
sizes, and all n features have to be selected, simultaneous
search for alternative feature sets with min-aggregation is
NP-complete.

Dropping several assumptions fromProposition5,wedirectly
obtain the following, more general proposition:

Proposition 6 (Complexity of simultaneous searchwithmin-
aggregation) Simultaneous search for alternative feature sets
with min-aggregation is NP-hard.

While Proposition 5 allows arbitrary set sizes, the hard-
ness result remains valid for fixed or bounded set sizes k,

known as Balanced Number Partitioning [46, 84] or
K- Partitioning [27, 41] problem in the literature:

Proposition 7 (Complexity of simultaneous searchwithmin-
aggregation, complete partitioning, and constrained feature-
set size) Assuming univariate feature qualities (Eq.11), a
dissimilarity threshold τ = 1, desired feature-set size k,
and all n features have to be selected, simultaneous search
for alternative feature sets with min-aggregation is NP-
complete.

We now allow that some features may not be part of any
feature set while we keep the assumption of zero feature-set
overlap. The problem of finding such an incomplete parti-
tioning still is NP-complete in general:

Proposition 8 (Complexity of simultaneous searchwithmin-
aggregation, incomplete partitioning, and constrained feature-
set size) Assuming univariate feature qualities (Eq.11), a
dissimilarity threshold τ = 1, desired feature-set size k,
and not all n features have to be selected, simultaneous
search for alternative feature sets with min-aggregation is
NP-complete.

See Appendix A.3 for the proof of this proposition and of the
ones that follow.

Next, we also allow τ < 1, i.e., feature-set overlap, and
obtain another NP-hardness result:

Proposition 9 (Complexity of simultaneous searchwithmin-
aggregation, τ < 1, and constrained feature-set size)
Assuming univariate feature qualities (Eq.11), a dissim-
ilarity threshold τ < 1, and desired feature-set size k,
simultaneous search for alternative feature sets with min-
aggregation is NP-hard.

Sum-aggregation
In contrast to the previous hardness results, sum-aggregation
(Eq.A1) admits polynomial-time algorithms for τ = 1:

Proposition 10 (Complexity of searchwith sum-aggregation
and τ = 1) Assuming univariate feature qualities (Eq.11)
and adissimilarity threshold τ = 1, the search for alternative
feature sets with sum-aggregation has a time complexity of
O(n) for a complete partitioningof n features and O(n·log n)

for an incomplete partitioning.

This result applies to both sequential and simultaneous
search, whether using complete or incomplete partitioning,
for any arbitrary number a of alternatives, and even when
feature sets vary in size k. The primary reason for achieving
polynomial runtime is that sum-aggregation does not neces-
sitate balancing the feature sets’ qualities. Thus, τ = 1 allows
many solutions with the same objective value. While at least
one of these solutions also optimizes the objective with min-
aggregation, most do not. Hence, it is not a contradiction that
optimizing with min-aggregation is considerably harder.

123

International Journal of Data Science and Analytics

4 Experimental design

In this section, we describe our experimental design. We
provide a concise overview of its components and objec-
tives in Sect. 4.1 before delving into a detailed explanation
of its components. In particular, we describe evaluation met-
rics (Sect. 4.2), methods (Sect. 4.3), datasets (Sect. 4.4), and
implementation (Sect. 4.5).

4.1 Overview

We conduct experiments with 30 datasets representing
binary-classification problems. As evaluation metrics, we
take into account feature-set quality and runtime. We com-
pare five feature-selection methods, each representing dis-
tinct concepts of feature-set quality. Furthermore, we train
predictionmodels using the resultant feature sets and analyze
their prediction performance. In our pursuit of alternatives,
we explore both simultaneous and sequential search meth-
ods. We systematically vary the number of alternatives a and
the dissimilarity threshold τ .

4.2 Evaluationmetrics

Our evaluation focuses on the trade-off between feature-set
quality and obtaining alternatives. In addition, we evaluate
the runtime of the search for alternatives.
Feature-set quality
We use two metrics for feature-set quality. First, we evaluate
the objective functions Q(s, X , y) of the feature-selection
methods and report their objective value. Second, we train
prediction models with the feature sets found. We report
prediction performance in terms of Matthews correlation
coefficient (MCC) [45], which is insensitive to imbalanced
prediction targets, reaches 1 for perfect predictions, and is 0
for random guessing.

To analyze how well feature selection and predictions
generalize, we conduct a stratified fivefold cross-validation.
Model training and the search for alternatives only have
access to the training data. However, we also use the test
data to evaluate the quality of each feature set found with the
training data. For the test-set objective value, we initialize
the objective function with feature qualities computed on the
test set but insert the feature selection from the training set.
For the test-set prediction performance, we predict on the test
set but use a prediction model trained with these features on
the training set.
Runtime
Regarding runtime, we first analyze the optimization time.
For white-box feature-selection methods, this corresponds
to the summed runtime of all solver calls. We exclude the
time for feature-quality computations that one can reuse for
multiple solver calls. For Greedy Wrapper, we measure the

runtime of the entire black-box optimization procedure with
multiple solver calls and model trainings. As a second met-
ric, we examine the optimization status, which can take four
values. If the solver finished before reaching its timeout, it
either found an optimal solution or proved the problem infea-
sible, i.e., no solution exists. If the solver reached its timeout,
it either found a feasible solution whose optimality is unclear
or no valid solution (yet), so the problem is not solved.

4.3 Methods

4.3.1 Prediction

As prediction models, we use decision trees [7] since these
models allow learning complex, nonlinear dependencies.
Preliminary experiments with random forests [8] and a k-
nearest neighbors classifier yielded similar insights.We leave
the hyperparameters of the trees at their defaults, except for
using information gain instead of Gini impurity as the split
criterion, to be consistent with our filter feature-selection
methods. The trees may only use features from the alter-
natives, which allows to assess the quality of alternatives.

4.3.2 Feature selection (objective functions)

Wechoose fivewell-known feature-selectionmethods to pro-
vide objective functions for optimization. They cover the
different feature-selection categories from Sect. 2.2 except
embedded, as explained in Sect. 3.3.3. However, we use fea-
ture importance from an embedded method, i.e., decision
trees, as post hoc importance scores.

One method (Greedy Wrapper) requires black-box opti-
mization, while the other four methods have white-box
objectives. With each feature-selection method, we select
k ∈ {5, 10} features, yielding small feature sets. We enforce
the desired k with an additional constraint in the optimiza-
tion, using the feature-set-size expression from Eq. (5).
Filter feature selection
As filter methods, we use the univariateMI (Eq. 11), the mul-
tivariateFCBF (Eq. 12), and themultivariatemRMR (Eq. 13).
In all three methods, mutual information [37] serves as the
dependency measure q(·). Since mutual information has no
fixed upper bound, we normalize its values per dataset and
cross-validation fold to improve the comparability of feature-
set quality. For FCBF and MI, we normalize the individual
features’ qualities such that selecting all features yields a
quality of 1 and selecting no feature yields a quality of 0.
For mRMR, we min-max-normalize all mutual-information
values to [0, 1], so the overall objective is in [−1, 1].
Wrapper feature selection
As a wrapper method, we employ our hill-climbing pro-
cedure Greedy Wrapper (Algorithm 1) with max_i ters =
1000. To evaluate feature-set quality within the wrapper, we

123

International Journal of Data Science and Analytics

use the MCC score of a decision tree on a 20% validation
split of the data.
Post hoc feature importance
As a post hoc importancemeasure calledModelGain, we use
importance scores from scikit-learn’s decision trees. There,
importance quantifies a feature’s contribution toward opti-
mizing the split criterion of the tree, for which we choose
information gain. These importances are normalized to sum
up to 1 by default. We plug these importances into Eq. (11),
i.e., treat them like univariate filter scores. The interpreta-
tion is different, though, since the scores originate from trees
trained with all features rather than assessing features in iso-
lation.

4.3.3 Alternatives (constraints)

Optimization
We address the optimization problem of alternative feature
selection with a solver. Thus, when we speak of sequential
search and simultaneous search in the evaluation, we refer
to the following solver-based optimization procedures rather
than the optimization problems in general: For the fourwhite-
box feature-selection methods, we use the solver to exactly
solve the underlying optimization problems. Thus, given suf-
ficient solving time, these alternatives are globally optimal.
With Greedy Wrapper as the feature-selection method, the
search procedure (Algorithm 1) is heuristic and might not
cover the entire search space. There, the solver only assists
in finding valid solutions but does not optimize.
Competitors
Other approaches are possible to tackle the sequential and
simultaneous optimization problem for alternative feature
selection. E.g., heuristic approaches may speed up the opti-
mization for the white-box feature-selection methods but are
out of the scope of the current article. Another source for
competitors could be relatedwork. However, as we discuss in
Sect. 6, approaches from related work pursue different objec-
tive functions, operate with different notions of alternatives,
and may only work for particular feature-selection methods.
All these points prevent a meaningful comparison of these
approaches to ours. E.g., a feature set considered alternative
in related work might violate our constraints for alternatives.
Further, within our search approaches, we can still put the
feature-set quality into perspective by comparing alternatives
to each other. In particular, the quality of the ‘original’ feature
set, i.e., obtained by running the feature-selection methods
without constraints for alternatives, serves as a natural refer-
ence point.
Search parametrization
We analyze sequential (Eq. 9) and simultaneous (Eq. 10)
search for alternatives. For the latter, we employ sum-
aggregation (Eq.A1) and min-aggregation (Eq.A2) in the
objective. In figures and tables, we use the abbreviations

seq., sim. (sum), and sim. (min) to denote these search meth-
ods.

We vary the parameters of the search systematically: We
evaluate a ∈ {1, . . . , 10} alternatives for sequential search
and a ∈ {1, . . . , 5} for simultaneous search due to the higher
runtime of the latter. For the dissimilarity threshold τ , we
analyze all possible sizes of the feature-set overlap in the
Dice dissimilarity (Eqs. 3 and 8). Thus, for k = 5, we
consider τ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, corresponding to an
overlap of four to zero features. For k = 10, we consider
τ ∈ {0.1, 0.2, . . . , 1.0}. We exclude τ = 0, which would
allow returning duplicate feature sets.
Timeout
We employ a solver timeout to make a large-scale evaluation
feasible and to account for the high variance of solver run-
time. In particular, we grant each solver call 60 s multiplied
by the number of feature sets sought. Thus, sequential search
conducts multiple solver calls with 60s timeout each, while
simultaneous search conducts one solver call with propor-
tionally more time, e.g., 300 s for five feature sets (i.e., four
alternatives). The summed timeout for a fixed number of
alternatives is the same for both search methods. For 84% of
the feature sets in our evaluation, the solver finished before
the timeout.

4.4 Datasets

Selection criteria
We use a variety of datasets from the Penn Machine Learn-
ing Benchmarks (PMLB) [60, 67]. To harmonize evaluation,
we only consider binary classification, though alternative
feature selection works for regression and multi-class prob-
lems as well. We exclude datasets containing fewer than 100
data objects since they might incur a high uncertainty when
assessing feature-set quality. Otherwise, the number of data
objects should not systematically impact feature-set qual-
ity and is unimportant for our evaluation. We also exclude
datasets with fewer than 15 features to leave room for alter-
natives. Next, we exclude one dataset with 1000 features,
which would dominate the overall runtime of the exper-
iments. Finally, we manually exclude datasets that seem
duplicated or modified versions of other datasets from the
benchmark.

30 datasets with 106 to 9822 data objects and 15 to 168
features remain. The datasets do not contain any missing val-
ues. Categorical features have an ordinal encoding by default.
Table 2 provides an overview of the datasets used.
Feature correlation
Table 2 also displays the datasets’ average feature correla-
tion. In particular, we compute Spearman’s rank correlation
between each pair of features and take the absolute values to
evaluate the strength of dependencies rather than their sign.
For the datasets in our study, the average feature correlations

123

International Journal of Data Science and Analytics

Table 2 Datasets from PMLB used in our experiments. m denotes the number of data objects and n the number of features

Dataset m n Mean corr.

backache 180 32 0.10

chess 3196 36 0.08

churn 5000 20 0.04

clean1 476 168 0.25

clean2 6598 168 0.25

coil2000 9822 85 0.07

credit_a 690 15 0.12

credit_g 1000 20 0.07

dis 3772 29 0.08

GAMETES_Epistasis_2_Way_20atts_0.1H_EDM_1_1 1600 20 0.02

GAMETES_Epistasis_2_Way_20atts_0.4H_EDM_1_1 1600 20 0.02

GAMETES_Epistasis_3_Way_20atts_0.2H_EDM_1_1 1600 20 0.02

GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_50_EDM_2_001 1600 20 0.02

GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_75_EDM_2_001 1600 20 0.02

hepatitis 155 19 0.15

Hill_Valley_with_noise 1212 100 1.00

horse_colic 368 22 0.16

house_votes_84 435 16 0.30

hypothyroid 3163 25 0.15

ionosphere 351 34 0.25

molecular_biology_promoters 106 57 0.08

mushroom 8124 22 0.18

ring 7400 20 0.02

sonar 208 60 0.21

spambase 4601 57 0.14

spect 267 22 0.20

spectf 349 44 0.19

tokyo1 959 44 0.44

twonorm 7400 20 0.17

wdbc 569 30 0.42

Mean corr. is the average of absolute values of all pairwise Spearman’s rank correlations between features

Fig. 1 Standard deviation of feature-set quality within search runs over the number of alternatives a, by searchmethod for alternatives and evaluation
metric. Results withMI as feature-selection method and k = 5. Y-axes are truncated to improve readability

123

International Journal of Data Science and Analytics

are often weak, mostly below 0.3. Generally, correlated fea-
tures indicate that alternative feature setsmay exist.However,
there are two caveats. First, rank correlation only captures
certain types of dependencies, while our feature-selection
criteria and prediction models are more general. Second, for
optimal alternatives, the dependency between highly pre-
dictive features is crucial, while the dependency between
unimportant features matters less. However, the table only
shows the mean over all feature pairs.

4.5 Implementation and execution

We implemented our experimental pipeline in Python 3.8,
using scikit-learn [62] for machine learning and the solver
SCIP [5] via the package OR-Tools [64] for optimiza-
tion. A requirements file in our code specifies the versions
of all packages. The experimental pipeline parallelizes
over datasets, cross-validation folds, and feature-selection
methods, while solver calls and model training are single-
threaded. We ran the pipeline on a server with 128 GB RAM
and an AMD EPYC 7551 CPU, having 32 physical cores and
a base clock of 2.0 GHz. The parallelized pipeline run took
255h, i.e., about 10.6 days.

5 Evaluation

In this section, we evaluate our experiments. In particular,
we discuss the parametrization for searching alternatives:
the search method (Sect. 5.1) and the two user parameters
(Sect. 5.2), i.e., the number of alternatives a and dissimilar-
ity threshold τ .

5.1 Searchmethods for alternatives

Variance in feature-set quality
As expected, the search method influences how much the
training-set objective value Q varies among alternatives
within each search run. Figure1a visualizes this observation
for MI, though it applies to all other white-box feature-
selection methods as well. Each box in the figure shows how
the variance within individual search runs for alternatives is
distributed over other experimental settings, e.g., datasets and
cross-validation folds. In particular, the quality of multiple
alternatives from the same search run varies less for simul-
taneous than sequential search and less for min-aggregation
than sum-aggregation. However, this difference in variance
largely disappears on the test set, for the objective value
(Fig. 1b) as well as prediction performance. This effect might
result from overfitting: Even with similar training-set qual-
ity, some alternativesmaygeneralize better than others. Thus,
the variance in test feature-set quality caused by overfitting

could alleviate the effect on variance caused by the search
method.
Average value of feature-set quality
While obtaining quality-homogeneous alternatives can be
one goal of simultaneous search, the main selling point
would be obtaining alternatives of higher average quality
than sequential search. However, this potential advantage
rarely materialized in our experiments. In particular, Fig. 2a
compares the distribution of the mean training-set objec-
tive in search runs for MI as the feature-selection method.
We observe that all three search methods yield similar dis-
tributions of training-set objective values. This observation
holds for feature-set quality on the test set (Fig. 2b) as well.
Further, the other four feature-selection methods besidesMI
also do not show a general quality advantage of simultane-
ous search. Finally, depending on the concrete experimental
setting, either sequential or simultaneous search can yield
significantly higher quality than the other search method,
even if the overall mean difference is close to zero.
Optimization status
One reason why simultaneous search fails to consistently
beat the quality of sequential search is that search results may
be suboptimal. For Greedy Wrapper, the search is heuristic
per se and does not cover the entire search space. For all
feature-selection methods, the solver can time out. In partic-
ular, the corresponding solver status feasible occurs more
often for simultaneous than sequential search, as Table 3
shows. Such timeout-affected simultaneous solutions can be
worse than optimal sequential solutions. The optimization
status not solved, i.e., not finding a feasible solution without
proving infeasibility, did not occur in the displayed results.
The feature-selection method mRMR is especially prone to
suboptimal solutions, likely because it has a more complex
objective thanMI andModel Gain. In contrast, FCBF often
results in infeasible optimization problems since its con-
straints preventing the selection of redundant features might
prevent finding any valid feature set of size k.

Further, the fraction of timeouts strongly depends on the
number of alternatives a. E.g., for simultaneous search with
k = 5 and sum-aggregation, roughly 8% of the white-
box searches timed out for one alternative but 20% for
three alternatives and 30% for five alternatives. While we
grant simultaneous searches proportionally more time to
obtain more feature sets, the runtime increases clearly super-
proportionally, as we analyze next.
Optimization time
The optimization time also favors sequential search. As
Table 4 shows, the mean optimization time of sequential
search is lower for all five feature-selection methods, partly
by orders of magnitude. Further, FCBF,MI, andModel Gain
experience a dramatic increase in optimization time with
parameter a. E.g., for simultaneous search with k = 5 and
sum-aggregation,MI has a mean optimization time of 0.03 s

123

International Journal of Data Science and Analytics

Fig. 2 Mean of feature-set quality within search runs over the number of alternatives a, by search method for alternatives and evaluation metric.
Results withMI as feature-selection method and k = 5

Table 3 Frequency of
optimization statuses (Sect. 4.2)
by feature-selection method and
search method for alternatives

Feature selection Search Optimization status

Infeasible (%) Feasible (%) Optimal (%)

FCBF seq. 74.51 0.00 25.49

FCBF sim. (min) 73.07 1.73 25.20

FCBF sim. (sum) 73.07 2.19 24.75

MI seq. 4.93 0.00 95.07

MI sim. (min) 4.67 9.60 85.73

MI sim. (sum) 4.67 3.17 92.16

Model Gain seq. 1.97 0.00 98.03

Model Gain sim. (min) 4.67 5.55 89.79

Model Gain sim. (sum) 4.67 1.92 93.41

mRMR seq. 4.88 9.63 85.49

mRMR sim. (min) 4.67 49.04 46.29

mRMR sim. (sum) 4.67 67.39 27.95

Results with k = 5, a ∈ {1, 2, 3, 4, 5}, and excludingGreedy Wrapper, which uses the solver for satisfiability
checking rather than optimizing. Each row adds up to 100%

Table 4 Mean optimization time by feature-selection method and
search method for alternatives

Feature selection Optimization time

Seq (s) Sim. (min) (s) Sim. (sum) (s)

FCBF 0.22 11.91 13.09

Greedy Wrapper 54.23 61.10 63.45

MI 0.03 48.25 25.39

Model Gain 0.03 30.91 19.98

mRMR 34.12 157.87 189.76

Results with k = 5 and a ∈ {1, 2, 3, 4, 5}

for a = 1, 0.09 s for a = 2, 0.31 s for a = 3, 3.84 s for a = 4,
and 122.69 s for a = 5. In contrast, the runtime increase
is considerably less for sequential search, which shows an
approximately linear trend with the number of alternatives.

Another interesting question is how the runtime relates
to n, the number of features in the dataset. Our experi-
mental data show a positive correlation, as we expected.

However, the observed trend is very noisy, particularly for
simultaneous search. E.g., runtimes vary considerably even
for a fixed n, and some higher-dimensional datasets even
show lower average runtimes than lower-dimensional ones.
This result indicates that other factors than n influence run-
time. Besides factors related to the datasets and experimental
design, the heuristics used by the solver may also cause the
runtime to fluctuate considerably.

Based on all results described in this section, we focus on
sequential search in the following, and we also recommend it
to users. In particular, it was significantly faster than simul-
taneous search while yielding similar feature-set quality.

5.2 User parameters a and �

Feature-set quality
One would expect a decrease in feature-set quality with an
increasing number of alternatives a and dissimilarity thresh-
old τ , giving users control over alternatives. In particular,

123

International Journal of Data Science and Analytics

Fig. 3 Mean of feature-set quality, max-normalized per search run for alternatives, over the number of alternatives and dissimilarity threshold τ ,
by evaluation metric. Results from sequential search with MI as feature-selection method and k = 10

higher values of the two user parameters introduce more
(for a) and stronger (for τ) constraints to the optimization
problem. Figure3 shows this decreasing quality trend for
MI-based feature selection. Since feature-set quality varies
significantly among datasets, we display it normalized to
[0, 1] within each search run for alternatives: We shift the
range of all evaluation metrics to [0, 1] and max-normalize
feature-set quality for each search of alternatives, i.e., the
highest feature-set quality in the search run is set to 1, and
the other qualities are scaled accordingly.

As visible in Fig. 3, there might be multiple alternatives
of similar quality, particularly for low values of τ . Further,
the objective value decreases most from the original, uncon-
strained feature set, i.e., the zeroth alternative in the figures,
to the first alternative, but the decrease is less beyond. Note
that Fig. 3 averages the normalized feature-set quality over
datasets with different dimensionality. In our experiments,

datasets with more features n tend to experience a smaller
decrease in quality over a and τ . As higher-dimensional
datasets offer more options for alternatives, this observation
makes sense. However, this effect is not guaranteed since
datasets with many features could also contain many useless
features instead of interesting alternatives.

The overall decrease in quality is slightly less pronounced
for the test-set objective value (Fig. 3c) than for the training-
set one (Fig. 3a) since overfitting might occur. In particular,
the original feature set can even have lower test-set quality
than the subsequent alternatives. The change in feature-set
quality becomes even less clear when using the alternative
feature sets to train prediction models, i.e., decision trees.
As Fig. 3e shows, the prediction performance varies little
over the number of alternatives and the dissimilarity thresh-
old τ . In particular, the optimization objective Q may only
partially indicate actual prediction performance since the

123

International Journal of Data Science and Analytics

Fig. 4 Fraction of optimization runs yielding a valid feature set over
the number of alternatives and dissimilarity threshold τ . Results from
sequential search withMI as feature-selection method and k = 10

former may use a simplified feature-set quality criterion.
Indeed, the overall correlation between optimization objec-
tive Q and prediction MCC is only weak to moderate in our
experiments. Among the feature-selectionmethods, this cor-
relation is highest for Greedy Wrapper but also not perfect
there. In particular, the search procedure of Greedy Wrapper
evaluates feature sets with a validation split of the training
set. MCC on this holdout set may not perfectly correspond
to MCC on the test set, which is not used in the search.
Optimization status
Increasing a and τ does not only affect quality but can also
render the optimization problem infeasible, i.e., no valid
alternative might exist. Figure4 visualizes how the percent-
age of valid feature sets develops over a and τ in our
experiments. In our prior analysis of feature-set quality, we
excluded infeasible feature sets. For comparison, Figs. 3b, d,
f show the same data as Fig. 3a, c, e but with the quality of
infeasible feature sets set to zero, i.e., the theoretical mini-
mum quality after we shifted the value ranges of evaluation
metrics. In these three figures, the decrease in feature-set
quality is noticeably stronger for all evaluation metrics. In
particular, test-set prediction performance, which is rela-
tively stable when excluding infeasible feature sets (Fig. 3e),
also decreases now (Fig. 3f).

In contrast, if only considering valid feature sets, themean
quality may even increase over the number of alternatives,
as visible in Fig. 3a and Fig. 3c for τ = 1.0. This counter-
intuitive phenomenon can occur because some datasets run
out of valid feature sets sooner than others, so the average
quality may be determined for different sets of datasets at
each number of alternatives.
Influence of feature-selection method
While we discussed MI before, the decrease in the objec-
tive value over parameter a occurs for all feature-selection
methods in our experiments, as Fig. 5a shows. However,
the strength of the decrease varies considerably among the
feature-selection methods. For example, Greedy Wrapper
and mRMR show the least effect of a. The effect of τ also
depends on the feature-selection method, as Fig. 5b shows.
Again, MI and Model Gain, which both use the simple uni-

variate objective (Eq.11), show a stronger trend thanGreedy
Wrapper and mRMR. The fifth feature-selection method,
FCBF, also exhibits a clear quality decrease over a and τ ,
mainly due to ahigh rate of infeasible feature sets rather than a
quality decrease of the found feature sets. Ultimately, choos-
ing a particular feature-selection method depends on the use
case. Thereby, users should be aware that effects regarding
alternative feature sets may depend on this choice.

6 Related work

In this section, we review related work from the field of fea-
ture selection and other areas relevant to this article. To our
knowledge, searching for optimal alternative feature sets in
the sense of this article is novel. However, there is literature
on optimal alternatives outside the field of feature selection.
Additionally, there has been research focused on discovering
multiple diverse feature sets.
Feature selection
Most feature-selection methods yield one solution [6],
though there are some exceptions [16, 52, 72], e.g., fostering
diversity within wrapper methods. Ensemble feature selec-
tion [69, 71] combines feature-selection results obtained by
different feature-selectionmethods or on different samples of
the data. There, diversity can be an auxiliary goal to improve
prediction performance [23, 43, 80]. In addition, the notion
of feature-set diversity differs from ours. In particular, these
approaches give users less control over alternatives, e.g., do
not enforce alternatives with hard constraints.

Approaches for statistically equivalent feature sets [6, 39]
use statistical tests to determine feature sets that are equiva-
lent for predictions. In contrast, we do not require equivalent
quality but allow users to control the number and dissimilar-
ity of alternatives directly.

There also is work on constraints for feature selec-
tion, e.g., for feature cost [61], feature groups [83], or
domain knowledge [2, 21]. Such constraints do not explicitly
target alternatives but could be integrated into our integer-
programming formulation as well.
Subgroup discovery
Diversity also is an issue in subgroup set discovery, which
searches for interesting regions in the data space instead of
selecting features as a whole. [76] presents six strategies to
facilitate subgroup diversity. Two are directly transferable to
feature selection, but the criteria for being alternative are dif-
ferent from ours. In particular, one strategy prunes similar
subgroups with exactly the same quality as previous solu-
tions. The other one limits the number of subgroups a feature
may occur in but does not constrain the overlap of subgroups
per se.

123

International Journal of Data Science and Analytics

Fig. 5 Mean of training-set objective value, max-normalized per search run for alternatives, by feature-selection method and evaluation metric.
Infeasible feature sets assigned a quality of 0. Results from sequential search with k = 10

Clustering
Finding alternative solutions has been addressed extensively
in the field of clustering. [4] gives a taxonomy and describes
algorithms for alternative clustering. Our problem definition
is different in several respects. The notion of dissimilarity
differs since we strive for differently composed feature sets,
while alternative clustering targets different assignments of
data objects to clusters. Next, using constraints is only one
approach to obtain alternative clusterings. Finally, we opti-
mize feature-set quality in a supervised prediction scenario
while clustering is unsupervised.
Subspace search
Finding several useful feature sets also is part of subspace
clustering [29, 51] and subspace search [19, 58, 74]. These
approaches strive to improve data-mining algorithms by
using subspaces, i.e., feature sets, and not all features. Some
approaches explicitly try to remove redundancy between sub-
spaces [51, 58] or increase subspace diversity [19, 74]. See
[29] for an overview. Alternative feature selection is different
in at least one of the following aspects: First, the objective
function, i.e., the notion of quality, differs. Second, defini-
tions of subspace redundancy may hinge on feature values
instead of binary selection decisions. Third, users typically
do not have any control over the dissimilarity. At best, there
is a regularization parameter rather than a hard threshold.
Explainable artificial intelligence (XAI)
In XAI, alternative explanations might provide additional
insights, allow to test different hypotheses, and foster trust
in the predictions [34, 78]. In contrast, obtaining signifi-
cantly different explanations for a prediction might raise
doubts regarding their meaningfulness [30]. Diversity is a
criterion studied for various explainers, e.g., for counterfac-
tuals [13, 31, 47, 50, 68, 77], criticisms [33], or semifactual
explanations [1]. There are several approaches to foster diver-
sity, e.g., ensembling explanations [73], consideringmultiple

local minima [77], using a search algorithm that maintains
diversity [13], extending the optimization objective [1, 33,
50], or introducing constraints [31, 47, 68]. The last option
is similar to the way we enforce alternatives. Of all these
approaches, only [1, 47, 50] introduce parameters to control
the diversity of solutions; only [47] offers a user-friendly dis-
similarity threshold in [0, 1], while the other two approaches
regularize the objective. Further, all the previously men-
tioned XAI techniques provide local explanations, i.e., aim
at prediction outcomes for individual data objects rather than
optimizing the global prediction quality of feature sets.
Rashomon sets
A Rashomon set is a set of prediction models that reach
a certain, e.g., close-to-optimal, prediction performance
[18]. Despite similar performance, these models may still
assign different feature importance scores, leading to dif-
ferent explanations [38]. Thus, Rashomon sets may yield
partial information about alternative feature sets. However,
approaches for Rashomon sets do not explicitly search for
alternative feature sets as a whole, i.e., feature sets satisfying
a dissimilarity threshold relative to other sets. Instead, these
approaches focus on the range of each feature’s importance
over prediction models. Further, our notion of alternatives
is not bound to model-based feature importance but encom-
passes a broader range of feature-selection methods. Finally,
we use importance scores from onemodel instead ofmultiple
models to find importance-based alternatives.

7 Conclusions and future work

Conclusions
Our article has studied alternative feature selection, the prob-
lem of identifying diverse feature sets that simultaneously
maintain high quality. We formalized alternative feature

123

International Journal of Data Science and Analytics

selection as an optimization problem, using constraints that
are independent of the chosen feature-selection method.
These constraints can be combined with other constraints
on feature sets and offer users control over diversity via two
parameters: the number of alternatives and a dissimilarity
threshold. We analyzed the computational complexity of this
optimization problem, showing itsNP-hardness. Addition-
ally, we discussed the integration of various categories of
feature-selection methods. Finally, we assessed the effec-
tiveness of alternative feature selection using 30 datasets
representing binary-classification problems.
Future work
In the current article, we conducted a broad quantitative
evaluation of alternative feature selection on datasets from
various domains. Practitioners can employ alternative fea-
ture selection in domain-specific case studies and evaluate the
alternative feature sets qualitatively, thereby assessing their
usefulness for interpretability. Within alternative feature
selection, opportunities exist to modify the formulation of
the optimization problem, such as by incorporating soft con-
straints or adopting a multi-objective optimization approach
instead of employing hard constraints. Furthermore, one can
integrate additional feature-selectionmethods into the search
for alternatives, including embedded methods. Finally, there
is potential for enhancing the efficiency of the search for
alternatives, particularly in the case of simultaneous search,
by developing heuristics instead of seeking exact solutions
to the optimization problem.

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was supported by the Ministry of Science, Research
and the Arts Baden-Württemberg, project Algorithm Engineering for
the Scalability Challenge (AESC).

Availability of data and materials All experimental data are available
online at https://doi.org/10.35097/1975.

Code Availability The code is available online at https://github.com/
Jakob-Bach/Alternative-Feature-Selection.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Appendix

In this section, we provide technical details and proofs. Sec-
tion1 discusses aggregation operators for the objective of
simultaneous search (Eq. 10). Section A.2 contains com-
plete definitions of the alternative-feature-selection problem
(Sect. 3.2) for the univariate objective (Eq.11). Sect. A.3 sup-
plies proofs for the complexity analysis (Sect. 3.4).

A.1 Aggregation operators for simultaneous search

In this section, we discuss operators to aggregate the feature-
set quality of multiple alternatives in the objective of simul-
taneous search (Eq.10).
Sum-aggregation
The arguably simplest way to aggregate the qualities of
multiple feature sets is to sum them up, which we call sum-
aggregation, as defined by Eq. (A1):

max
s(0),...,s(a)

a∑

i=0

Q(s(i), X , y) (A1)

While this objective fosters a high average quality of feature
sets, it does not guarantee that the alternatives have similar
quality:

Example 1 (Sum-aggregation) Consider n = 6 features with
univariate feature qualities (Eq.11) q = (9, 8, 7, 3, 2, 1),
feature-set size k = 3, number of alternatives a = 2, and
dissimilarity threshold τ = 0.5, which permits an overlap of
one feature between sets here. Sequential search yields the
selection s(0) = (1, 1, 1, 0, 0, 0), s(1) = (1, 0, 0, 1, 1, 0),
and s(2) = (0, 1, 0, 1, 0, 1), with a summed quality of
24 + 14 + 12 = 50. One possible simultaneous-search
solution consists of the feature sets s(0) = (1, 1, 0, 1, 0, 0),
s(1) = (1, 0, 1, 0, 1, 0), and s(2) = (0, 1, 1, 0, 0, 1), with
a summed quality of 20 + 18 + 16 = 54. Another possi-
ble simultaneous-search solution is s(0) = (1, 1, 0, 0, 0, 1),
s(1) = (1, 0, 1, 0, 1, 0), and s(2) = (0, 1, 1, 1, 0, 0), with a
summed quality of 18 + 18 + 18 = 54.

This example allows several insights. First, sequential search
yields worse quality than simultaneous search here, i.e., 50
vs. 54. Second, the feature-set qualities of the sequential
solution, i.e., 24, 14, and 12, differ significantly. Third, simul-
taneous search can yieldmultiple solutionswhose feature-set
quality is differently balanced. Here, the feature-set qual-
ities in the second simultaneous-search solution, i.e., 18,
18, and 18, are more balanced than in the first, i.e., 20, 18,
and 16. However, both solutions are equally optimal for sum-
aggregation.
Min-aggregation
To actively foster balanced feature-set qualities in simulta-
neous search, we propose min-aggregation in the objective,

123

https://doi.org/10.35097/1975
https://github.com/Jakob-Bach/Alternative-Feature-Selection
https://github.com/Jakob-Bach/Alternative-Feature-Selection
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

International Journal of Data Science and Analytics

as defined by Eq. (A2):

max
s(0),...,s(a)

min
i∈{0,...,a} Q(s(i), X , y) (A2)

In the terminology of social choice theory, this objective uses
an egalitarian rule instead of a utilitarian one [53]. In par-
ticular, min-aggregation maximizes the quality of the worst
selected alternative. Thereby, it incentivizes all alternatives
to have high quality and implicitly balances their quality.

Note that optimizing the objective with either sum-
aggregation or min-aggregation does not necessarily opti-
mize the other. We already showed a solution optimizing
sum-aggregation but not min-aggregation (Example 1). In
the following, we demonstrate the other direction:

Example 2 (Min-aggregation) Consider n = 6 features with
univariate feature qualities (Eq.11) q = (11, 10, 6, 5, 4, 1),
feature-set size k = 3, number of alternatives a = 1, and
dissimilarity threshold τ = 0.5, which permits an overlap of
one feature between sets here. One solution optimizing the
objectivewithmin-aggregation is s(0) = (1, 1, 0, 0, 1, 0) and
s(1) = (1, 0, 1, 1, 0, 0), with a summed quality of 25+22 =
47. Another solution is s(0) = (1, 1, 0, 0, 0, 1) and s(1) =
(1, 0, 1, 1, 0, 0), with a summed quality of 22 + 22 = 44.

While both solutions have the same minimum feature-
set quality, only the first solution optimizes the objective
with sum-aggregation. In particular,min-aggregationpermits
reducing the quality of feature sets as long as it remains above
the minimum of all sets.

From the technical perspective, Eq. (A2) has the disad-
vantage of being nonlinear regarding the decision variables
s(0), . . . , s(a). However, we can linearize it with one con-
straint per feature set and an auxiliary variable Qmin, as
shown in Eq. (A3):

max
s(0),...,s(a)

Qmin

s.t.: ∀i ∈ {0, . . . , a} : Qmin ≤ Q(s(i), X , y)

Qmin ∈ R

(A3)

As we maximize Qmin, this variable will implicitly assume
the actual minimum value of Q(s(i), X , y) with equality
since the solution would not be optimal otherwise. This situ-
ation relieves us from introducing further auxiliary variables
that are usually necessarywhen linearizingmaximumormin-
imum expressions [49].
Further approaches for balancing quality
Min-aggregation provides no control or guarantee of how
much the feature-set qualities will actually differ between
alternatives since it only incentivizes high quality for all
sets. One can alleviate this issue by adapting the objec-
tive or constraints. First, related work on Multi- Way

Number Partitioning (Sect. 3.4.2) also uses other objec-
tives for balancing [36, 40]. E.g., one could minimize the
difference betweenmaximumandminimumfeature-set qual-
ity. Second, one could use sum-aggregation but constrain
the minimum or maximum quality of sets, or the differ-
ence between the qualities. However, such constraint-based
approaches introduce one or several parameters bounding
feature-set quality, which are difficult to determine a priori.
Third, one could treat balancing qualities as another objec-
tive besides maximizing the summed quality. One can then
optimize two objectives simultaneously, filtering results for
Pareto-optimal solutions or optimizing a weighted combi-
nation of the two objectives. In both cases, users may need
to define an acceptable trade-off between the objectives. It
is an open question if a solution always exists that jointly
optimizes min- and sum-aggregation. If yes, then optimiz-
ing a weighted combination of the two objectives would
also optimize each of them on its own, assuming positive
weights.

A.2 Complete specifications of the optimization
problem for the univariate objective

In this section, we provide complete specifications of
the alternative-feature-selection problem for sequential and
simultaneous search. In particular, we combine all relevant
definitions and equations fromSect. 3.Weuse the objective of
univariate filter feature selection (Eq.11). The corresponding
feature qualities q(·) are constants in the optimization prob-
lem. Further, we use the Dice dissimilarity (Eqs. 3 and 8)
to measure feature-set dissimilarity for alternatives. The dis-
similarity threshold τ ∈ [0, 1] is a user-defined constant.
Finally, we assume fixed, user-defined feature-set sizes k ∈
N.
Sequential alternatives
Inthe sequential case, only one feature set Fs is vari-
able in the optimization problem, while the existing fea-
ture sets Fs̄ ∈ F with their selection vectors s̄ are
constants. We obtain the following optimization problem
(Eq.A4):

max
s

Quni(s, X , y) =
n∑

j=1

q(X · j , y) · s j

s.t.: ∀Fs̄ ∈ F :
n∑

j=1

s j · s̄ j ≤ (1 − τ) · k

n∑

j=1

s j = k

s ∈ {0, 1}n

(A4)

123

International Journal of Data Science and Analytics

Simultaneous alternatives
In the simultaneous case, all feature sets are variable. a ∈ N0

denotes the number of alternatives, which corresponds to
the number of feature sets minus one. Next, we introduce
auxiliary variables to linearize products between variables
(Eq.6). Finally, we use sum-aggregation (Eq.A1) over the
alternatives in the objective here. We obtain the following
optimization problem (Eq.A5):

max
s(0),...,s(a)

∑

i

Quni(s
(i), X , y)

=
∑

i

∑

j

q(X · j , y) · s(i)
j

s.t.: ∀i1 ∀i2 :
∑

j

t (i1,i2)j ≤ (1 − τ) · k

∀i1 ∀i2 ∀ j : t (i1,i2)j ≤ s(i1)
j

∀i1 ∀i2 ∀ j : t (i1,i2)j ≤ s(i2)
j

∀i1 ∀i2 ∀ j : 1 + t (i1,i2)j ≥ s(i1)
j + s(i2)

j

∀i :
∑

j

s(i)
j = k

∀i : s(i) ∈ {0, 1}n
∀i1 ∀i2 : t (i1,i2) ∈ {0, 1}n

with: i ∈ {0, . . . , a}
i1 ∈ {1, . . . , a}
i2 ∈ {0, . . . , i1 − 1}
j ∈ {1, . . . , n} (A5)

A.3 Complexity proofs

In this section, we provide proofs for propositions from
Sect. 3.4.

Proof of Proposition 8 Let an arbitrary problem instance I of
the complete-partitioning problem be given and the feature-
set size k be fixed. We add one feature f ′ to I and keep a, k,
and τ as before, obtaining an instance I ′ of the incomplete-
partitioning problem since one feature will not be selected.
We choose the quality q ′ of f ′ to be lower than the quality
of all other features in I . Since the univariate objective with
min-aggregation is monotonically increasing in the selected
feature qualities, selecting feature f ′ in a solution of I ′ does
not have any benefit since f ′ would replace a feature with
higher quality. If f ′ is not selected, then this solution of I ′
also solves I . However, if the qualities of the resulting alter-
natives are not equal, f ′ might be chosen in a set that does
not have the minimum quality of all sets since only the latter
determines the overall objective value (Example 2). In that
case, we replace f ′ with the remaining feature that was not
selected instead; the objective value remains the same, and

the solution becomes valid for I . Thus, in any case, we can
easily transform a solution for I ′ to a solution for I .

This argument shows that an algorithm for incomplete par-
titioning can solve arbitrary complete-partitioning problem
instances with negligible computational overhead. Thus, a
polynomial-time algorithm for incomplete partitioning could
also solve complete partitioning polynomially. However, the
latter problem type is NP-complete (Proposition 7), so
incomplete partitioning has to be NP-hard. Since checking
a solution for incomplete partitioning needs only polynomial
time, we obtain membership in NP and thereby NP-
completeness.
�
Proof of Proposition 9 Let an arbitrary problem instance I of
the complete-partitioning problem be given and the feature-
set size k be fixed. We create a new problem instance I ′ by
adding a new feature f ′ and increasing the feature-set size to
k′ = k+1. Further, we set τ ′ = (k′−1)/k′, thereby allowing
an overlap of at most one feature between feature sets. Also,
we choose f ′ to have a considerably higher quality q ′ than
all other features. The goal is to force the selection of f ′ in
all feature sets such that any other solution would be worse,
no matter which other features are selected. One possible
choice is q ′ = ∑n

j=1 q j + ε, with ε ∈ R>0 being a small
positive number, or, if the qualities are integers, ε = 1. This
quality q ′ of f ′ is higher than of any feature set not containing
it. Thus, a solution for I ′ contains f ′ in each feature set while
the remaining features are part of exactly one feature set.
Hence, we remove f ′ to get feature sets of size k = k′ − 1
that constitute an optimal solution for the original problem
instance I .

This transformation shows how an algorithm for prob-
lem instances with τ < 1 can help solve arbitrary problem
instances with τ = 1. Given the NP-completeness of the
latter problem, we obtain NP-hardness of the former.
�

Adding the proposed f ′ with a high quality q ′ enlarges
the size of the problem instance. However, the transforma-
tion from I to I ′ still runs in polynomial time and increases
the input size by at most a fixed factor. In particular, encoding
a problem instance involves n feature qualities and the values
of a, k, and τ . Assuming the feature qualities in I have an
average encoding size of c ∈ R, the overall quality encoding
has the size c · n. As q ′ roughly equals the sum of all feature
qualities, its encoding size is upper-bounded by c · n if we
disregard ε. The change of k and τ is negligible for the encod-
ing size of the problem instance overall. In consequence, the
input size of I ′ is at most roughly double the size of I . If we
explicitly stored all the constraints instead of only the rele-
vant parameters, we would obtain a similar result: Besides
adding q ′ to the objective, all constraints would accommo-
date one new feature, independent of its quality, increasing
their encoding size from O(n) to O(n + 1), i.e., less than
double.

123

International Journal of Data Science and Analytics

One can extend the reduction above from τ ′ = (k′ −1)/k′
to all other τ > 0. In particular, for a fixed feature set-size k,
there is only a finite number of τ values leading to different
set overlaps, i.e., τ = {0, 1/k, . . . , (k−1)/k, 1}. The highest
overlap except τ = 0 requires creating an instance I ′ with
τ ′ = 1/k from an instance with τ = 1. For this purpose,
k2 − k features need to be added since τ ′ = k/k′ = k/(k +
k2 − k) = 1/k. I.e., k out of k′ = k2 features need to form
a complete partitioning, while the remaining k2 − k features
occur in each feature set andwill be removed after solving I ′.
The maximum number of features to be added is polynomial
in k and thereby also polynomial in n.

Proof of Proposition 10 For a complete partitioning, we must
use each of the n features exactly once. How we distribute
the features among sets does not change the objective value,
which is the sumof all n qualities in any case.We only need to
ensure that each feature set satisfies cardinality constraints if
the latter exist. Thus, ‘searching’ for alternatives amounts to
iterating over the features once to assign them to the feature
sets. Hence, the time complexity is O(n).

For an incomplete partitioning, we use the monotonic-
ity of the univariate objective with sum-aggregation: This
objective cannot decrease when selecting features of higher
quality. Thus, we order the features decreasingly by their
individual quality. Next, we pick features without replace-
ment until we have the desired number of alternatives with
the desired feature-set sizes. Again, assigning features to sets
does not matter for the objective value. Due to the quality-
based sorting, the time complexity is O(n · log n). If only a
small fraction of features is used, one might slightly improve
complexity by iteratively picking the maximum instead of
sorting all qualities.
�

References

1. Artelt, A., Hammer, B.: “Even if ...”—diverse semifactual expla-
nations of reject (2022). arXiv:2207.01898 [cs.LG]

2. Bach, J., Zoller, K., Trittenbach, H., et al.: An empirical evalua-
tion of constrained feature selection. SN Comput. Sci. 3(6) (2022).
https://doi.org/10.1007/s42979-022-01338-z

3. Bach, J.: Finding optimal diverse feature sets with alternative fea-
ture selection (2023). arXiv:2307.11607v1 [cs.LG]

4. Bailey, J.: Alternative clustering analysis: a review. In: Data Clus-
tering: Algorithms and Applications, 1st edn. CRC Press, chap 21,
pp. 535–550 (2014) https://doi.org/10.1201/9781315373515

5. Bestuzheva, K., Besançon, M., Chen, W.K., et al.: The SCIP Opti-
mization Suite 8.0. Tech. rep., Zuse Institute Berlin, Germany
(2021) http://nbn-resolving.de/urn:nbn:de:0297-zib-85309

6. Borboudakis, G., Tsamardinos, I.: Extending greedy feature selec-
tion algorithms to multiple solutions. Data Min. Knowl. Disc.
35(4), 1393–1434 (2021). https://doi.org/10.1007/s10618-020-
00731-7

7. Breiman, L., Friedman, J.H., Olshen, R.A., et al.: Classification
and Regression Trees, 1st edn. Wadsworth (1984). https://doi.org/
10.1201/9781315139470

8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).
https://doi.org/10.1023/A:1010933404324

9. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning
interpretability: a survey on methods and metrics. Electronics 8(8)
(2019). https://doi.org/10.3390/electronics8080832

10. Chandrashekar, G., Sahin, F.: A survey on feature selection meth-
ods. Comput. Electr. Eng. 40(1), 16–28 (2014). https://doi.org/10.
1016/j.compeleceng.2013.11.024

11. Choi, S.S., Cha, S.H., Tappert, C.C.: A survey of binary similarity
and distance measures. J. Syst. Cybern. Inf. 8(1), 43–48 (2010)

12. Covert, I., Lundberg, S.M., Lee, S.I.: Understanding global feature
contributions with additive importance measures. In: Proceedings
of NeurIPS, pp. 17212–17223 (2020), https://proceedings.neurips.
cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.
pdf

13. Dandl, S., Molnar, C., Binder, M., et al.: Multi-objective counter-
factual explanations. In: Proceedings of PPSN, pp. 448–469 (2020)
https://doi.org/10.1007/978-3-030-58112-1_31

14. Downey, R.G., Fellows, M.R., Stege, U.: Parameterized complex-
ity: a framework for systematically confronting computational
intractability. In: Contemporary Trends in Discrete Mathematics:
From DIMACS and DIMATIA to the Future, pp. 49–99 (1997)
https://doi.org/10.1090/dimacs/049/04

15. Egghe, L.: New relations between similarity measures for vectors
based on vector norms. J. Am. Soc. Inf. Sci. Technol. 60(2), 232–
239 (2009). https://doi.org/10.1002/asi.20949

16. Emmanouilidis, C., Hunter, A., MacIntyre, J., et al.: Selecting
features in neurofuzzy modelling by multiobjective genetic algo-
rithms. In: Proceedings of ICANN, pp. 749–754 (1999) https://doi.
org/10.1049/cp:19991201

17. Ermon, S., Gomes, C., Selman, B.: Uniform solution sampling
using a constraint solver as an oracle. In: Proceedings of UAI, pp.
255–264 (2012) https://www.auai.org/uai2012/papers/160.pdf

18. Fisher, A., Rudin, C., Dominici, F.: Allmodels arewrong, butmany
are useful: learning a variable’s importance by studying an entire
class of prediction models simultaneously. J. Mach. Learn. Res.
20(177), 1–81 (2019)

19. Fouché, E., Kalinke, F., Böhm,K.: Efficient subspace search in data
streams. Inf. Syst. 97 (2021). https://doi.org/10.1016/j.is.2020.
101705

20. Garey, M.R., Johnson, D.S.: Computers and Intractibility: A Guide
to the Theory of NP-Completeness, 24th edn. W. H. Freeman and
Company (2003) https://www.worldcat.org/title/440655898

21. Groves, W.C.: Toward automating and systematizing the use of
domain knowledge in feature selection. Ph.D. thesis, University of
Minnesota (2015) https://hdl.handle.net/11299/175444

22. Guo, J., Shi, K.: To preserve or not to preserve invalid solutions in
search-based software engineering: a case study in software prod-
uct lines. In: Proceedings of ICSE, pp. 1027–1038 (2018) https://
doi.org/10.1145/3180155.3180163

23. Guru, D.S., Suhil, M., Raju, L.N., et al.: An alternative framework
for univariate filter based feature selection for text categorization.
Pattern Recognit. Lett. 103, 23–31 (2018). https://doi.org/10.1016/
j.patrec.2017.12.025

24. Guyon, I., Elisseeff, A.: An introduction to variable and feature
selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

25. Hall, M.A.: Correlation-based feature selection for machine
learning. Ph.D. thesis, University of Waikato, Hamilton, New
Zealand (1999). https://www.cs.waikato.ac.nz/~ml/publications/
1999/99MH-Thesis.pdf

26. Hall, M.A.: Correlation-based feature selection of discrete and
numeric class machine learning. Tech. rep., University of Waikato,
Hamilton, NewZealand (2000). https://hdl.handle.net/10289/1024

27. He, Y., Tan, Z., Zhu, J., et al.: k-partitioning problems for maxi-
mizing theminimum load. Comput.Math. Appl. 46(10–11), 1671–
1681 (2003). https://doi.org/10.1016/S0898-1221(03)90201-X

123

http://arxiv.org/abs/2207.01898
https://doi.org/10.1007/s42979-022-01338-z
http://arxiv.org/abs/2307.11607v1
https://doi.org/10.1201/9781315373515
http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
https://doi.org/10.1007/s10618-020-00731-7
https://doi.org/10.1007/s10618-020-00731-7
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/electronics8080832
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://proceedings.neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf
https://doi.org/10.1007/978-3-030-58112-1_31
https://doi.org/10.1090/dimacs/049/04
https://doi.org/10.1002/asi.20949
https://doi.org/10.1049/cp:19991201
https://doi.org/10.1049/cp:19991201
https://www.auai.org/uai2012/papers/160.pdf
https://doi.org/10.1016/j.is.2020.101705
https://doi.org/10.1016/j.is.2020.101705
https://www.worldcat.org/title/440655898
https://hdl.handle.net/11299/175444
https://doi.org/10.1145/3180155.3180163
https://doi.org/10.1145/3180155.3180163
https://doi.org/10.1016/j.patrec.2017.12.025
https://doi.org/10.1016/j.patrec.2017.12.025
https://www.cs.waikato.ac.nz/~ml/publications/1999/99MH-Thesis.pdf
https://www.cs.waikato.ac.nz/~ml/publications/1999/99MH-Thesis.pdf
https://hdl.handle.net/10289/1024
https://doi.org/10.1016/S0898-1221(03)90201-X

International Journal of Data Science and Analytics

28. Henard, C., Papadakis, M., Harman, M., et al.: Combining multi-
objective search and constraint solving for configuring large
software product lines. In: Proceedings of ICSE, pp. 517–528
(2015). https://doi.org/10.1109/ICSE.2015.69

29. Hu, J., Pei, J.: Subspace multi-clustering: a review. Knowl. Inf.
Syst. 56(2), 257–284 (2018). https://doi.org/10.1007/s10115-017-
1110-9

30. Jain, S., Wallace, B.C.: Attention is not explanation. In: Proceed-
ings of NAACL-HLT, pp. 3543–3556 (2019). https://doi.org/10.
18653/v1/N19-1357

31. Karimi, A.H., Barthe, G., Balle, B., et al.: Model-agnostic counter-
factual explanations for consequential decisions. In: Proceedings
of AISTATS, pp. 895–905 (2020). https://proceedings.mlr.press/
v108/karimi20a.html

32. Karp, R.M.: Reducibility among combinatorial problems. In: Com-
plexity of Computer Computations. Plenum Press, pp. 85–103
(1972). https://doi.org/10.1007/978-1-4684-2001-2_9

33. Kim, B., Khanna, R., Koyejo, O.: Examples are not enough,
learn to criticize! criticism for interpretability. In: Proceedings
of NIPS (2016). https://proceedings.neurips.cc/paper/2016/file/
5680522b8e2bb01943234bce7bf84534-Paper.pdf

34. Kim, M.Y., Atakishiyev, S., Babiker, H.K.B., et al.: A multi-
component framework for the analysis and design of explainable
artificial intelligence. Mach. Learn. Knowl. Extract. 3(4), 900–921
(2021). https://doi.org/10.3390/make3040045

35. Kohavi,R., John,G.H.:Wrappers for feature subset selection.Artif.
Intell. 97(1–2), 273–324 (1997). https://doi.org/10.1016/S0004-
3702(97)00043-X

36. Korf, R.E.: Objective functions for multi-way number partition-
ing. In: Proceedings of SoCS, pp. 71–72 (2010). https://doi.org/
10.1609/socs.v1i1.18172

37. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual
information. Phys. Rev. E 69(6) (2004). https://doi.org/10.1103/
PhysRevE.69.066138

38. Laberge, G., Pequignot, Y., Khomh, F., et al.: Partial order in
chaos: consensus on feature attributions in the rashomon set (2023).
arXiv:2110.13369v2 [cs.LG]

39. Lagani, V., Athineou, G., Farcomeni, A., et al.: Feature selection
with the R packageMXM:Discovering statistically equivalent fea-
ture subsets. J. Stat. Softw. 80(7), 1–25 (2017). https://doi.org/10.
18637/jss.v080.i07

40. Lawrinenko, A.: Identical parallel machine scheduling problems:
structural patterns, bounding techniques and solution procedures.
Ph.D. thesis, Friedrich-Schiller-Universität Jena (2017), https://
nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20170427-0956483

41. Lawrinenko, A., Schwerdfeger, S., Walter, R.: Reduction criteria,
upper bounds, and a dynamic programming based heuristic for
the max-min ki -partitioning problem. J. Heuristics 24, 173–203
(2018). https://doi.org/10.1007/s10732-017-9362-9

42. Li, J., Cheng, K.,Wang, S., et al.: Feature selection: a data perspec-
tive. ACM Comput. Surv. 50(6) (2017). https://doi.org/10.1145/
3136625

43. Liu, K., Tian, J.: Subspace learning with an archive-based genetic
algorithm. In: Proceedings of IEEM, pp. 181–188 (2018). https://
doi.org/10.1007/978-981-13-3402-3_20

44. Lundberg, S.M., Lee, S.I.: A unified approach to inter-
preting model predictions. In: Proceedings of NIPS
(2017) https://proceedings.neurips.cc/paper/2017/file/
8a20a8621978632d76c43dfd28b67767-Paper.pdf

45. Matthews, B.W.: Comparison of the predicted and observed sec-
ondary structure of T4 phage lysozyme. Biochim. Biophys. Acta
- Protein Struct. 405(2), 442–451 (1975). https://doi.org/10.1016/
0005-2795(75)90109-9

46. Michiels, W., Aarts, E., Korst, J., et al.: Computer-assisted proof
of performance ratios for the differencing method. Discrete Optim.
9(1), 1–16 (2012). https://doi.org/10.1016/j.disopt.2011.10.001

47. Mohammadi, K., Karimi, A.H., Barthe, G., et al.: Scaling guar-
antees for nearest counterfactual explanations. In: Proceedings
of AIES, pp. 177–187 (2021). https://doi.org/10.1145/3461702.
3462514

48. Molnar, C., Casalicchio, G., Bischl, B.: Interpretable machine
learning: a brief history, state-of-the-art and challenges. In: Pro-
ceedings of XKDD, pp. 417–431 (2020). https://doi.org/10.1007/
978-3-030-65965-3_28

49. MOSEK, A.P.S.: MOSEK modeling cookbook : Mixed integer
optimzation (2022). https://docs.mosek.com/modeling-cookbook/
mio.html. Accessed 18 Oct 2022

50. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning
classifiers through diverse counterfactual explanations. In: Pro-
ceedings of FAT*, pp. 607–617 (2020). https://doi.org/10.1145/
3351095.3372850

51. Müller, E., Assent, I., Günnemann, S., et al.: Relevant subspace
clustering: mining the most interesting non-redundant concepts in
high dimensional data. In: Proceedings of ICDM, pp. 377–386
(2009). https://doi.org/10.1109/ICDM.2009.10

52. Müller, I.M.: Feature selection for energy system modeling: iden-
tification of relevant time series information. Energy AI 4 (2021).
https://doi.org/10.1016/j.egyai.2021.100057

53. Myerson, R.B.: Utilitarianism, egalitarianism, and the timing effect
in social choice problems. Econometrica 49(4), 883–897 (1981).
https://doi.org/10.2307/1912508

54. Narodytska, N., Ignatiev, A., Pereira, F., et al.: Learning optimal
decision trees with SAT. In: Proceedings of IJCAI, pp. 1362–1368
(2018). https://doi.org/10.24963/ijcai.2018/189

55. Nguyen, X.V., Chan, J., Romano, S., et al.: Effective global
approaches for mutual information based feature selection. In: Pro-
ceedings of KDD, pp. 512–521 (2014). https://doi.org/10.1145/
2623330.2623611

56. Nguyen, H., Franke, K., Petrović, S.: Optimizing a class of feature
selection measures. In: Proceedings of DISCML (2009). https://
www.researchgate.net/publication/231175763

57. Nguyen, H.T., Franke, K., Petrović, S.: Towards a generic feature-
selectionmeasure for intrusion detection. In: Proceedings of ICPR,
pp. 1529–1532 (2010). https://doi.org/10.1109/ICPR.2010.378

58. Nguyen, H.V., Müller, E., Böhm, K.: 4S: Scalable subspace search
scheme overcoming traditional a priori processing. In: Proceedings
of Big Data, pp. 359–367 (2013). https://doi.org/10.1109/BigData.
2013.6691596

59. Njoku, U.F., Abelló, A., Bilalli, B., et al.: Wrapper methods for
multi-objective feature selection. In: Proceedings of EDBT, pp.
697–709 (2023). https://doi.org/10.48786/edbt.2023.58

60. Olson, R.S., La Cava, W., Orzechowski, P., et al.: PMLB: a large
benchmark suite for machine learning evaluation and compari-
son. Biodata Min. 10 (2017). https://doi.org/10.1186/s13040-017-
0154-4

61. Paclík, P., Duin, R.P.W., van Kempen, G.M.P., et al.: On feature
selection with measurement cost and grouped features. In: Pro-
ceedings of SSPR /SPR, pp. 461–469 (2002). https://doi.org/10.
1007/3-540-70659-3_48

62. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn:
machine learning in Python. J. Mach. Learn. Res. 12(85), 2825–
2830 (2011)

63. Peng, H., Long, F., Ding, C.: Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–
1238 (2005). https://doi.org/10.1109/TPAMI.2005.159

64. Perron, L., Furnon, V.: OR-Tools (2022). https://developers.
google.com/optimization/. Accessed 18 Oct 2022

65. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?
Explaining the predictions of any classifier. In: Proceedings of
KDD, pp. 1135–1144 (2016). https://doi.org/10.1145/2939672.
2939778

123

https://doi.org/10.1109/ICSE.2015.69
https://doi.org/10.1007/s10115-017-1110-9
https://doi.org/10.1007/s10115-017-1110-9
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://proceedings.mlr.press/v108/karimi20a.html
https://proceedings.mlr.press/v108/karimi20a.html
https://doi.org/10.1007/978-1-4684-2001-2_9
https://proceedings.neurips.cc/paper/2016/file/5680522b8e2bb01943234bce7bf84534-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/5680522b8e2bb01943234bce7bf84534-Paper.pdf
https://doi.org/10.3390/make3040045
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1609/socs.v1i1.18172
https://doi.org/10.1609/socs.v1i1.18172
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
http://arxiv.org/abs/2110.13369v2
https://doi.org/10.18637/jss.v080.i07
https://doi.org/10.18637/jss.v080.i07
https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20170427-0956483
https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20170427-0956483
https://doi.org/10.1007/s10732-017-9362-9
https://doi.org/10.1145/3136625
https://doi.org/10.1145/3136625
https://doi.org/10.1007/978-981-13-3402-3_20
https://doi.org/10.1007/978-981-13-3402-3_20
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/j.disopt.2011.10.001
https://doi.org/10.1145/3461702.3462514
https://doi.org/10.1145/3461702.3462514
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://docs.mosek.com/modeling-cookbook/mio.html
https://docs.mosek.com/modeling-cookbook/mio.html
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1109/ICDM.2009.10
https://doi.org/10.1016/j.egyai.2021.100057
https://doi.org/10.2307/1912508
https://doi.org/10.24963/ijcai.2018/189
https://doi.org/10.1145/2623330.2623611
https://doi.org/10.1145/2623330.2623611
https://www.researchgate.net/publication/231175763
https://www.researchgate.net/publication/231175763
https://doi.org/10.1109/ICPR.2010.378
https://doi.org/10.1109/BigData.2013.6691596
https://doi.org/10.1109/BigData.2013.6691596
https://doi.org/10.48786/edbt.2023.58
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1007/3-540-70659-3_48
https://doi.org/10.1007/3-540-70659-3_48
https://doi.org/10.1109/TPAMI.2005.159
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778

International Journal of Data Science and Analytics

66. Rodriguez-Lujan, I., Huerta, R., Elkan, C., et al.: Quadratic
programming feature selection. J.Mach. Learn. Res. 11(49), 1491–
1516 (2010)

67. Romano, J.D., Le, T.T., La Cava, W., et al.: PMLB v1.0: an open
source dataset collection for benchmarkingmachine learningmeth-
ods (2021). arXiv:2012.00058v3 [cs.LG]

68. Russell, C.: Efficient search for diverse coherent explanations. In:
Proceedings of FAT*, pp. 20–28 (2019). https://doi.org/10.1145/
3287560.3287569

69. Saeys, Y., Abeel, T., Peer, Y.V.D.: Robust feature selection using
ensemble feature selection techniques. In: Proceedings of ECML
PKDD, pp. 313–325 (2008). https://doi.org/10.1007/978-3-540-
87481-2_21

70. Schidler, A., Szeider, S.: SAT-based decision tree learning for large
data sets. In: Proceedings of AAAI, pp. 3904–3912 (2021). https://
doi.org/10.1609/aaai.v35i5.16509

71. Seijo-Pardo, B., Porto-Díaz, I., Bolón-Canedo, V., et al.: Ensem-
ble feature selection: homogeneous and heterogeneous approaches.
Knowl-Based Syst. 118, 124–139 (2017). https://doi.org/10.1016/
j.knosys.2016.11.017

72. Siddiqi, U.F., Sait, S.M., Kaynak, O.: Genetic algorithm for the
mutual information-based feature selection in univariate time series
data. IEEE Access 8, 9597–9609 (2020). https://doi.org/10.1109/
ACCESS.2020.2964803

73. Silva, W., Fernandes, K., Cardoso, J.S.: How to produce comple-
mentary explanations using an ensemble model. In: Proceedings
of IJCNN (2019). https://doi.org/10.1109/IJCNN.2019.8852409

74. Trittenbach, H., Böhm, K.: Dimension-based subspace search for
outlier detection. Int. J.Data Sci.Anal.7(2), 87–101 (2019). https://
doi.org/10.1007/s41060-018-0137-7

75. Ulrich-Oltean, F., Nightingale, P., Walker, J.A.: Selecting SAT
encodings for pseudo-boolean and linear integer constraints. In:
Proceedings ofCP, pp. 38:1–38:17 (2022). https://doi.org/10.4230/
LIPIcs.CP.2022.38

76. van Leeuwen, M., Knobbe, A.: Diverse subgroup set discovery.
Data Min. Knowl. Discov. 25(2), 208–242 (2012). https://doi.org/
10.1007/s10618-012-0273-y

77. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explana-
tions without opening the black box: automated decisions and the
GDPR. Harv. J. Law Technol. 31(2), 841–887 (2017)

78. Wang,D.,Yang,Q.,Abdul,A., et al.: Designing theory-driven user-
centric explainable AI. In: Proceedings of CHI (2019). https://doi.
org/10.1145/3290605.3300831

79. White, J., Benavides, D., Schmidt, D.C., et al.: Automated diag-
nosis of feature model configurations. J. Syst. Softw. 83(7),
1094–1107 (2010). https://doi.org/10.1016/j.jss.2010.02.017

80. Woznica, A., Nguyen, P., Kalousis, A.: Model mining for robust
feature selection. In: Proceedings of KDD, pp. 913–921 (2012).
https://doi.org/10.1145/2339530.2339674

81. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast
correlation-basedfilter solution. In: Proceedings of ICML, pp. 856–
863 (2003). https://aaai.org/Papers/ICML/2003/ICML03-111.pdf

82. Yu, J., Ignatiev, A., Stuckey, P.J., et al.: Learning optimal decision
sets and lists with SAT. J. Artif. Intell. Res. 72, 1251–1279 (2021).
https://doi.org/10.1613/jair.1.12719

83. Yuan,M.,Lin,Y.:Model selection and estimation in regressionwith
grouped variables. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 68(1),
49–67 (2006). https://doi.org/10.1111/j.1467-9868.2005.00532.x

84. Zhang, J., Mouratidis, K., Pang, H.: Heuristic algorithms for bal-
anced multi-way number partitioning. In: Proceedings of IJCAI,
pp. 693–698, (2011). https://doi.org/10.5591/978-1-57735-516-8/
IJCAI11-122

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2012.00058v3
https://doi.org/10.1145/3287560.3287569
https://doi.org/10.1145/3287560.3287569
https://doi.org/10.1007/978-3-540-87481-2_21
https://doi.org/10.1007/978-3-540-87481-2_21
https://doi.org/10.1609/aaai.v35i5.16509
https://doi.org/10.1609/aaai.v35i5.16509
https://doi.org/10.1016/j.knosys.2016.11.017
https://doi.org/10.1016/j.knosys.2016.11.017
https://doi.org/10.1109/ACCESS.2020.2964803
https://doi.org/10.1109/ACCESS.2020.2964803
https://doi.org/10.1109/IJCNN.2019.8852409
https://doi.org/10.1007/s41060-018-0137-7
https://doi.org/10.1007/s41060-018-0137-7
https://doi.org/10.4230/LIPIcs.CP.2022.38
https://doi.org/10.4230/LIPIcs.CP.2022.38
https://doi.org/10.1007/s10618-012-0273-y
https://doi.org/10.1007/s10618-012-0273-y
https://doi.org/10.1145/3290605.3300831
https://doi.org/10.1145/3290605.3300831
https://doi.org/10.1016/j.jss.2010.02.017
https://doi.org/10.1145/2339530.2339674
https://aaai.org/Papers/ICML/2003/ICML03-111.pdf
https://doi.org/10.1613/jair.1.12719
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-122
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-122

	Alternative feature selection with user control
	Abstract
	1 Introduction
	2 Fundamentals
	2.1 Notation
	2.2 Measuring feature (set) quality

	3 Alternative feature selection
	3.1 Optimization problem
	3.2 Constraints—defining alternatives
	3.2.1 Single alternative
	3.2.2 Multiple alternatives

	3.3 Objective functions—finding alternatives
	3.3.1 White-box optimization
	3.3.2 Black-box optimization
	3.3.3 Embedding alternatives

	3.4 Computational complexity
	3.4.1 Exhaustive search for arbitrary feature-selection methods
	3.4.2 Univariate feature qualities

	4 Experimental design
	4.1 Overview
	4.2 Evaluation metrics
	4.3 Methods
	4.3.1 Prediction
	4.3.2 Feature selection (objective functions)
	4.3.3 Alternatives (constraints)

	4.4 Datasets
	4.5 Implementation and execution

	5 Evaluation
	5.1 Search methods for alternatives
	5.2 User parameters

	6 Related work
	7 Conclusions and future work
	Appendix A: Appendix
	A.1 Aggregation operators for simultaneous search
	A.2 Complete specifications of the optimization problem for the univariate objective
	A.3 Complexity proofs

	References

