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Abstract

Natural hazards present a significant risk to road infrastructure, which constitutes a fun-
damental component of the transportation infrastructure. Especially during emergency
situations, society heavily relies on the functionality of its road infrastructure to facilitate
evacuation and access to emergency facilities. Several existing studies conduct road net-
work accessibility analysis during natural hazards. However, the transferability is often
not given, as these studies rely on specified data curated by the authors oftentimes in
commercial, non-freely accessible transport modelling software. These data are avail-
able for selected case studies only, specific hazard types only or specific road network
types.Therefore, there remains a gap for a complete comprehensive framework, which
is complete from the acquisition of openly accessible data about hazard impacts to road
network analysis and is designed to be easily applicable for any hazard and road network
type. In this thesis, a versatile, generic framework designed to analyze accessibility within
road networks during natural hazard scenarios is introduced and applied to various case
study hazards.

The first module of the framework focuses on assessing the impact of natural hazards.
It relies on openly and cost-effective accessible geoinformation data, provided by high-
resolution Remote Sensing (RS) data and citizen science through Volunteered Geographic
Information (VGI) data, often in near real-time. The determination of natural hazards’
impacts on road infrastructure are separated into two major impact investigations, hazard
impact zone estimation and direct road impact extraction. The results indicate that VGI
and RS data are valuable data sources for hazard impact zone estimation. Furthermore,
using VGI text information, impacted roads can be identified. The combination of RS
and VGI data enhances the accuracy and availability of hazard impact determination in
near-real time.

The second module conducts road network analysis based on freely available Open Street
Map (OSM) data, differentiating between intact and degraded road networks. The de-
graded road network is constructed using the directly impacted roads and the hazard
impact zones determined in the first module. Four accessibility measures are calculated,
including two well-established road network analysis measures, betweenness centrality
and closeness centrality, an adapted free-flow assumption index, and a novel alternative
routing assumption measure that considers congestion scenarios. The results indicate
that a network accessibility based on the openly accessible network data (OSM) and the
hazard impact information based on openly accessible geoinformation data (VGI and RS)
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is feasible. Furthermore, all investigated accessibility measures are valuable for network
analysis and complement each other focusing on different network attributes.

This thesis showcases various exemplary applications for different hazard types like floods
and wildfires in a variety of regions like the United States of America (US) and France for
the components of the framework. This demonstrates its versatility and effectiveness in
diverse environmental contexts. The complete framework composed of all components
is applied on a case study hazard of the Bobcat wildfire in the US to demonstrate their
transferability. In conclusion, this study successfully addresses the challenges of developing
a generic, complete framework from hazard impact determination to road network analysis
independently of scale and characteristics of hazards and road network types.
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Kurzfassung

Naturgefahren können ein erhebliches Risiko für Straßennetze darstellen, die ein wichtiger
Bestandteil der Verkehrsinfrastruktur sind. Vor allem in Notsituationen ist die Gesellschaft
in hohem Maße auf die Funktionsfähigkeit der Straßeninfrastruktur angewiesen, um
Evakuierungen und den Zugang zu Notfalleinrichtungen zu gewährleisten. In einigen
Studien wird die Erreichbarkeit des Straßennetzes während Naturgefahren analysiert. Die
Übertragbarkeit auf andere Gegebenheiten ist jedoch oft nicht möglich, da sich die Studien
auf Daten stützen, die nur für bestimmte Arten von Gefahren oder bestimmte Straßennetzte
(z. B. nur städtische Netze) verfügbar sind. Daher besteht nach wie vor eine Lücke für
ein komplettes generisches Rahmenkonzept, das den Einfluss von Naturgefahren auf die
Straßeninfrastruktur abschätzen und bewerten kann. Dieser Ansatz muss so konzipiert
sein, dass er für jede Art von Naturgefahr und jeden Straßennetzwerktyp anwendbar
ist. In dieser Arbeit wird ein generisches Konzept zur Analyse der Erreichbarkeit von
Straßennetzen bei Naturkatastrophen vorgestellt.

Das erste Modul des Ansatzes konzentriert sich auf die Auswirkungen von Naturgefahren.
Es stützt sich auf offen und kostengünstig zugängliche Geoinformationsdaten, die nahezu in
Echtzeit verfügbar sind. Diese sind durch hochauflösende Fernerkundungs (RS)-Daten und
Citizen Science-Daten, die durch Volunteered Geographic Information (VGI)-Daten bereit-
gestellt werden. Die Abschätzung der Auswirkungen von Naturgefahren auf die Straßenin-
frastruktur wird in zwei Untersuchungen unterteilt: die Abschätzung der Gefahrenzonen
und die Analyse der direkten Auswirkungen auf Straßen. Die Ergebnisse zeigen, dass
die RS- und VGI-Daten für die Abschätzung der Gefahrenzonen verwendbar sind. Außer-
dem sind die VGI-Textinformationen für die Identifizierung, der von der Naturgefahren
betroffenen Straßen, verwendbar. Die Kombination von RS- und VGI-Daten verbessert die
Genauigkeit und Verfügbarkeit der Gefahrenanalyse.

Das zweite Modul führt eine Straßennetzwerkanalyse auf der Grundlage frei verfügbarer
Open Street Map (OSM)-Daten durch. Dabei wird zwischen intakten und beschädigten
Straßennetzen unterschieden. Das von der Naturgefahr betroffene Straßennetz wird
dabei aus dem intakten Netz konstruiert, indem Straßen entfernt werden, die im ersten
Modul als beeinträchtigt oder möglicherweise beeinträchtigt identifiziert worden sind. Es
werden vier Erreichbarkeitsmaße verwendet, darunter zwei bewährte Netzanalysemaße,
die Betweenness Centrality und die Closeness Centrality, ein angepasster Index unter
der Annahme freien Verkehrsflusses und ein neu eingeführtes Maß unter der Annahme
von Stauszenarien und einer alternativen Streckenführung. Die Ergebnisse zeigen, dass
eine Erreichbarkeitsanalyse auf der Grundlage von offen zugänglichen Straßennetzdaten
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(OSM) und der Information über Gefahrenauswirkungen auf der Grundlage von offen
zugänglichen Geoinformationsdaten (VGI und RS) machbar ist. Darüber hinaus sind alle
untersuchten Zugänglichkeitsmaße für die Netzanalyse wertvoll.

In dieser Arbeit werden verschiedene Anwendungen, anhand von Beispielen, für unter-
schiedliche Arten von Gefahren, wie Überschwemmungen und Waldbrände, in mehreren
Regionen, wie den USA und Frankreich, für die Teile des Konzepts vorgestellt. Dies dient
dazu die Vielseitigkeit und Wirksamkeit in verschiedenen Bereichen zu demonstrieren.Das
Gesamtkonzept mit all seinen Modulen und Komponenten wird auf die Fallstudie des
Bobcat-Waldbrandes in den USA angewendet, um die Übertragbarkeit aller Komponen-
ten zu zeigen. Insgesamt konnte diese Studie mit der Entwicklung eines generischen,
modularen Gesamtkonzeptes von der Abschätzung der Gefahrenauswirkungen bis hin zur
Straßennetzanalyse erfolgreich zur Risikofolgenabschätzung von Naturgefahren für die
Straßeninfrastruktur beitragen.
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Introduction 1
This chapter includes elements from

[1] J. Florath, J. Chanussot, and S. Keller. “Road Accessibility during Natural Hazards
Based on Volunteered Geographic Information Data and Network Analysis”. In: ISPRS
International Journal of Geo-Information 13.4 (2024), p. 107

marked with a green line.

1.1 Motivation

Recently, there has been an increase in the frequency and intensity of hydrological and
meteorological natural hazard events [2]. Their numbers have tripled worldwide in the
period from 2005 to 2014 in comparison to the period from 1975 to 1984 [3] based
on the Emergency Events Database (EM-DAT [4]) data. Such natural hazards pose a
significant risk to the physical and socio-economic well-being of humans, as well as to
natural ecosystems [5, 6]. Critical infrastructures, which comprise multi-level technical
and organizational structures necessary to maintain social functions, are also at risk from
natural hazards [7]. Their failure can have severe consequences for human life. The road
infrastructure is one of the most crucial parts of the transportation network and is frequently
damaged during natural hazards (e.g., [8, 9]). This damage has various impacts, including
restricted access to emergency facilities, delayed emergency management response, but
also preventing evacuations.

Considering the increasing frequency and intensity of natural hazards and their substantial
impact on critical infrastructures, particularly the road network, many previous studies
employed detailed road network analysis in natural hazard contexts (e.g., [8, 9, 10,
11]). However, these studies usually concentrate on a single case study hazard in a single
location and have limited applicability to other contexts. As it is especially difficult to access
complex degraded road datasets after a natural hazard, proposed advanced models or
simulations are often not transferable. Consequently, there is a lack of a generic framework
that can tackle the challenge of restricted global data availability and directly analyze the
impact of natural hazards on critical road infrastructure. To deal with this identified gap,
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a generic framework which is complete from the impacted road data analysis during the
hazard to the network analysis is introduced.

In such a framework, the effects of the natural hazard on the road infrastructure need to
be investigated first (e.g., [12, 13]). Initially, the geolocation and extent of the hazard in
question need to be determined. Subsequently, the evaluation of the operationality and
functionality of road infrastructure during a natural hazard can be conducted. Valuable
information regarding potential impacts on roads can be gathered by considering natural
hazard impact areas. When these hazard areas overlap with the road network, it suggests
that the roads are likely to be affected in some way and might suffer at least implicit
impacts. Once the impact of the hazard on the road infrastructure is elaborated, the
road accessibility and therefore its functionality can be assessed with a road network
analysis. A road network analysis can be carried out before and during/after a hazard to
estimate the hazard impact on it as a change in accessibility of the respective road network.
The construction of a generic framework, applicable to a variety of hazards in different
scenarios, is facilitated by the use of only freely and openly available geoinformation
data [14, 15, 16] for both hazard impact analysis and network analysis.

1.2 Main Objective and Research Goals

A complete framework from the impacted road data extraction during the hazard to the
network analysis is constructed. In a first step, the assessment of natural hazards’ locations
and impacts is necessary. Estimating hazard locations for various hazards in different
scenarios benefits from the analysis of geoinformation data that play a crucial role for the
development of spatial models and risk assessments. A complete concept that accumulates
the information gain from various geoinformation data for the determination of natural
hazards’ impacts has not been developed yet. Various geoinformation data can be used for
natural hazard analysis [17, 18]. RS imagery and VGI data are oftentimes open, free data
with global coverage [19, 20, 21].

Although there exist many data sources in the VGI category, this work focuses on Twitter
(now X) data, as it proves to be a valuable source of real-time information (e.g., [22, 23,
24]). RS imagery can provide high spatial resolution data for detailed hazard mapping,
while VGI data contributes real-time, on-the-ground insights on the hazard location.
Furthermore, VGI text information can be used to extract road specific information, which
can help to analyze impacts on critical road infrastructure directly [1, 25]. However,
disadvantages of both data sources like limited temporal resolution in RS imagery and
lack of VGI data validation could limit their suitability for one or the other hazard scenario
and need to be carefully investigated [26, 27]. Therefore, techniques are required that
improve the information extraction for hazards from both data sources for hazard impact
determination purposes. Only few studies combine the use of different geoinformation
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data (e.g., [28, 29, 30]) for natural hazard analysis. Employing such data to evaluate the
influence of hazard impacts on the road network, as a basis for a road network analysis, is
still missing.

The assessment of critical road infrastructure during natural hazards is an interdisciplinary
research domain including various methodologies (e.g., [31, 32, 33]), traffic models
(e.g., [34]), and advanced simulations (e.g., [35]). Most approaches concentrate on
specific case studies (e.g., [36, 37]), often in exclusively urban or rural contexts and
frequently lacking broad applicability. Moreover, many previously reported approaches
lack transferability and universal usability. Additionally, the advantages of the availability
of global data has been often overlooked. Consequently, there remains a gap for a generic
framework that comprises the extraction of hazard-related road information to analyze
the immediate impacts on road infrastructure. To overcome the mentioned gaps, the main
objective of this thesis is to develop a generic, multiscale framework to assess critical
road infrastructure in a natural hazard context using various freely and openly available
geoinformation data sources.

Two consecutive major research goals are identified on the basis of the above-identified
gaps to develop a complete framework for hazard impact assessment on road networks:

Goal I: Natural Hazard Impact Determination with Multi-Source Geoinformation Data.

Goal II: Road Network Accessibility Assessment during Natural Hazards.

The developed framework comprises two independent modules (Module I and Module II),
each addressing one of these specific research goal. The generic framework should be
suitable to assess the hazard’s impact on road networks for various hazard scenarios.
However, this framework is designed with a specific focus on wildfire hazards as a selected
overall application scenario. The decision to prioritize fire hazards within this framework
is based on these hazards’ potential to cause severe impacts on road infrastructure [38].
Furthermore, wildfire hazards are rarely analysed in related studies as a majority of inves-
tigations are centered around the impacts of flooding (e.g., [39]), landslides (e.g., [10]),
earthquakes (e.g., [40]), or tropical cyclones (TCs) (e.g., [41]). In addition, the need to
focus on one single hazard in depth is necessary as a variety of data and methods exist for
hazard impact analysis and not all can be investigated for all hazards in the scope of this
work. However, to illustrate the adaptability of the framework’s developed components,
specific application scenarios of TC and flood hazards are also examined.

1.2 Main Objective and Research Goals 3



1.3 Thesis Contributions and Outline

This dissertation is structured into six chapters. Figure 1.1 illustrates an overview of the
structure.

Chapter 2 introduces the heterogeneous geoinformation data, that will be used as data
sources for different approaches to achieve the two major research objectives of this thesis.
Geoinformation data for the location and extent estimation of natural hazards vary much
and are often neither accurately mapped nor available in near-real time [42, 26]. However,
to implement a system that could be used for first responders or government officials to
evaluate the situation, the near-real time information of the hazard is necessary to conduct
a proper network analysis. RS and VGI data are selected as a valuable source for the task.
Furthermore, this chapter introduces the hazards that are used throughout the thesis as
application scenarios for developed methodologies. Various hazard scenarios are selected
to demonstrate the complexities and necessities for the development of suitable frameworks
to achieve the task of assessment of natural hazards’ impacts on road infrastructure with
multi-source geoinformation data.

Chapter 3 - Module I focuses on the first research goal; the natural hazard impact deter-
mination with multi-source geoinformation data. The determination of natural hazards’
impacts on road infrastructure can be separated into two major impact investigations,
hazard impact zone and direct impact extraction. The combination of hazard impact zones
and directly extractable road impacts defines the total impact of the hazard on the road net-
work. By identifying areas where hazard impact zones overlap with roadways, planners can
anticipate the potential for direct and indirect impacts on the road infrastructure (e.g., [12,
10, 39]). For instance, a wildfire’s proximity to roads might lead to road closures due to fire
blocking the road directly or due to fallen trees or visibility issues indirectly. Furthermore,
the direct effects of known hazard-induced road degradation can be evaluated (e.g., [40]).
Accordingly, this section is split in three subsections: Frameworks for the natural hazard
impact zone estimation with RS data (1) and VGI (2) data are developed. Furthermore, a
road impact extraction framework from VGI data (3) is developed. Module I’s established
hazard impact knowledge serves as the basis for the subsequent module.

Chapter 4 - Module II addresses the second research goal by focusing on road network
accessibility assessment during natural hazards’ impacts on road infrastructure. Thereby,
this module builds upon Module I and its extracted hazard impact (zones) by overlaying
them with the road network to be investigated. During this process, roads of the network
that intersect with the hazard impact zone are categorized as degraded. Road sections
lying within the hazard impact zone may be indirectly affected by the hazard, directly
affected at a later time, or directly affected even though information about direct impact
is not available. Furthermore, roads in the network that experience direct impacts as
extracted in Module I are categorized as degraded, too. This resulting degraded road
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network then becomes the basis for conducting a network accessibility analysis on the
intact and degraded road network. The change in network accessibility by the hazard’s
influence is evaluated.

In Chapter 5 the developed methodology comprising of Module I and Module II for the
assessment of natural hazards’ impacts on road infrastructure is applied exemplary for the
scenario of the Bobcat wildfire hazard. This application demonstrates the adequacy of the
two combined modules as a complete and generic framework to assess natural hazards’
impacts on road infrastructure. Furthermore, this demonstration also provides valuable
insights into potential practical implementation of this framework.

The final section, Chapter 6, provides a comprehensive summary and conclusions of the
entire dissertation together with an outlook for future improvements.

Chapter 1
Introduction and Research Goals

(I)
Hazard Impact Determination

(II)
Network Accessibility Analysis

M
o

d
u

le
 I

Chapter 4
Road Network Accessibility Analysis during Natural Hazards

M
o

d
u

le
 I

I

Chapter 5
Complete Framework: Application to Bobcat Wildfire

Chapter 6
Synopsis and Outlook

Chapter 3
Natural Hazard Impact Determination with Geoinformation Data

Chapter 2
Introducing Heterogeneous Geoinformation Data 

 and the Natural Hazard Scenario Selection

Figure 1.1.: Structure of this thesis.
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Introducing Heterogeneous
Geoinformation Data and the
Natural Hazard Scenario
Selection

2

This chapter includes elements from

[14] J. Florath and S. Keller. “Supervised Machine Learning Approaches on Multi-
spectral Remote Sensing Data for a Combined Detection of Fire and Burned Area”. In:
Remote Sensing 14.3 (2022), p. 657

marked with a blue line. This chapter also includes elements from

[43] J. Florath, J. Chanussot, and S. Keller. “Utilizing Volunteered Geographic Infor-
mation for Real-Time Analysis of Fire Hazards: Investigating the Potential of Twitter
Data in Assessing the Impacted Areas”. In: Fire 7.1 (2023), p. 6

marked with an orange line. This chapter also includes elements from

[44] J. Florath, J. Chanussot, and S. Keller. “Rapid natural hazard extent estimation
from twitter data: investigation for hurricane impact areas”. In: Natural Hazards
(2024), pp. 1–22

marked with a purple line. This chapter also includes elements from

[1] J. Florath, J. Chanussot, and S. Keller. “Road Accessibility during Natural Hazards
Based on Volunteered Geographic Information Data and Network Analysis”. In: ISPRS
International Journal of Geo-Information 13.4 (2024), p. 107

marked with a green line.

This chapter serves as an introduction to geoinformation data, which provide the basis for
the subsequent investigations. It introduces heterogeneous geoinformation data that can
be used as data sources for the different approaches to achieve the two major research
objectives of this thesis. Furthermore, this chapter introduces the hazards that are used
throughout the thesis as application scenarios for the developed methodologies.
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2.1 Introducing Geoinformation Data

Geoinformation data capture information with spatial references about geographical
phenomena. By integrating multiple data sources, existing information gaps in one data
source can be filled by others. Examples of geoinformation data are satellite images,
GPS, and cadastral data that can be employed in various applications like geostatistical
modeling, spatial pattern recognition or event prediction. A variety of geoinformation
sensors like RS sensors, aircraft surveys, cameras, Global Positioning System (GPS) and
ground surveys exist.

For the framework to conduct hazard impact analysis on road infrastructure, the use of
freely and openly available geoinformation data sources is necessary. Therefore, the choice
of suitable data that guarantee the transferability of the framework is a crucial component.
Geoinformation data provide the spatial context that is crucial for understanding natural
hazards. Furthermore, geoinformation data have several benefits for analyzing road
network accessibility [14, 15, 16]. Suitable geoinformation data should provide the
following benefits for the analysis of the impacts of natural hazards on the road network:

1. Universal Applicability: The data should be applicable globally. They should be
available preferably for any region worldwide and different types of geographical
settings.

2. Scalability: The data should be usable on any scale, e.g., whether investigating
city-level or regional areas.

3. Temporal Dynamics: The data should capture temporal changes in the respective
investigated regions to allow the analysis of development of hazards over time.

Due to these advantages of appropriate geoinformation data the framework can be devel-
oped based on these data. Therefore, in the following, geoinformation data suitable for
natural hazard area estimation and network accessibility assessment are reviewed. These
are RS and VGI data for natural hazard impact determination (Section 2.1.1) and OSM
data for network accessibility assessment (Section 2.1.2).
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2.1.1 Geoinformation Data for Natural Hazard Impact Determination

Two important geoinformation datasets that provide valuable insights into spatial natural
hazard characteristics are RS and VGI. Note, that the focus lies on satellite RS in the
following. Compared to other sources of geoinformation data, RS imagery and VGI data
have several advantages:

1. Spatial Coverage: Both data sources provide wide spatial coverage compared to
other geoinformation data like, e.g., GPS measurements. RS sensors can capture
large spatial areas that they overpass. VGI data are mostly available worldwide.

2. Temporal Resolution: Both data sources have comparatively high temporal resolu-
tions. RS data are updated during each satellite’s overpass time mostly every few
days. VGI data are updated whenever information is posted by a user in real-time.

3. Accessibility and Cost: RS data can be obtained online from the satellite providers
and some type of data are freely accessible. VGI data are easily accessible through
Application Programming Interfaces (APIs) and usually free of charge.

Therefore, these freely and openly available data sources can be easily used for spatial anal-
ysis workflows that need to guarantee transferability and generic applicability on different
hazards and study regions. Figure 2.1 summarizes the advantages and disadvantages of
using the two different sources VGI and RS for natural hazard analysis. On the one hand,
RS technology enables detailed mapping of natural hazards with high resolutions, making
it possible to detect even small variations in the environment. This level of detail is crucial
for understanding hazards like wildfires, floods, and landslides. Furthermore, RS offers the
main advantage of objectivity. The data are collected systematically, ensuring the reliability
of information at a large geographic scale.

On the other hand, VGI data rely on citizen knowledge that can provide detailed, real-
time information. VGI can contribute data on critical factors such as the status of local
infrastructure. These localized data provide insights that may not be available through
traditional data sources. The integration of the two datasets offers unique advantages
and has the potential to improve the accuracy of geospatial hazard analyses. While RS
data provide complete, objective data on a large scale, VGI data offer localized, real-time
insights. Consequently, these data are used for the near-real-time natural hazard impact
determination framework in this work. In the following, studies using these suitable
geoinformation data for the natural hazard impact determination are presented. A variety
of hazards are covered to demonstrate the usability of these data for any hazards. These
types of RS and VGI data can be replaced as necessary in the framework to adapt it to
various hazards and therefore guarantee its transferability.
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Aspect RS VGI

Data Accessibility  Frequently openly 

accessible 

 Frequently openly 

accessible
Data Availability  Depends on sensor 

capabilities and orbit

 Collection by 

crowdsourcing 

 Depends on user 

participation
Data Consistency  Repeated coverage, 

sensor capabilities

 Large variations

Timeliness  Limited to satellite 

revisit time

 Real-time updates and 

quick responses
Information Gain  Mostly spatial 

information

 Spatial, sentimental, 

trend, etc information
Spatial Resolution  High for some sensors

 Low for some sensors

 Data sparse in remote 

areas

 Data dense in urban 

areas
Reliability  Sensors calibrated & 

validated with 

groundtruth

 Lack of data

 Potential for 

misinformation
Atmospheric 

Interference

 Some sensors affected 

by atm. conditions

 Lesser susceptibility to 

weather conditions

Advantages Disadvantages

Figure 2.1.: Overview of the advantages (+) and disadvantages (-) of Volunteered Geographic
Information (VGI) data and remote sensing (RS) data by relevant aspects for spatial
analysis of natural hazards.

Remote Sensing Data

Remote sensors monitor the Earth’s surface, capturing various information about, e.g., its
vegetation, land cover, topography, or climate. RS data have become a valuable source of
information for analyzing and assessing various natural hazards [45]. The related work
is structured into two parts: a short overview of studies using RS data for the mapping,
damage assessment and/or prediction of various natural hazards other than the ones
employed in this work, and a more detailed examination of studies specifically focused on
flood, TC and wildfire analysis. These studies are organized according to the instruments
used for recording reflection in different band lengths within different sections of the
electromagnetic spectrum. Bands in certain electromagnetic spectrum sections were used
in the analysis of the respective studies, while other bands provided by the same mission
instrument were not used in some cases. This overlap may lead to sensors, e.g., the
Moderate Resolution Imaging Spectroradiometer (MODIS), being named in the Thermal
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and Optical categories in this overview. Table 2.1 summarizes the satellite sensors and
exemplary studies and their employed satellite data for the respective natural hazards.

RS can be effectively used for mapping and monitoring landslides. Various RS tech-
niques provide valuable information for landslide analysis. Commonly used approaches
include: optical sensors to detect changes in land cover [46, 47], Synthetic Aperture Radar
(SAR) [48, 49, 50] and Interferometric Synthetic Aperture Radar (InSAR) sensors to detect
ground surface displacement [51, 52, 53], and the combination of these [54].

RS data are used to assess earthquake-induced damage in affected regions. These data
sources help in identifying collapsed buildings, infrastructure damage, and changes in land
cover that occurred due to seismic events. RS contributes to earthquake research using
the following sensors: optical sensors for damage assessment [18, 55], InSAR sensors
to generate displacement maps [56, 57, 58], thermal [59, 60], and gravity sensors [61,
62].

Various RS sensors can be employed for volcano monitoring, including thermal sensors
measuring emmitted heat [63, 64], gas sensors for sulfur dioxide and carbon dioxide
measurement [65, 66, 67], SAR [68] and InSAR sensors for ground deformation measure-
ment [69, 70], and optical sensors to map lava flows [71], or combinations of these [72,
73, 74].

RS data play a crucial role in analyzing drought conditions and their impacts on affected
regions. RS technology contributes to drought research through various sensors, including
optical sensors for vegetation health assessment [75, 76], SAR sensors to monitor soil
moisture [77], thermal sensors for detecting temperature variations [78], meteorological
sensors for assessing climatic conditions [79], and combinations of these [80, 81].

RS data are used for flood mapping and monitoring. By analyzing the changes in water
extent, RS helps in understanding flood dynamics and estimating flood extent. Various RS
sensors can be employed for flood mapping, including optical, SAR and thermal sensors,
or combinations of these. Optical data have been used mostly in older studies [82, 83].
Recently, Sentinel-1 SAR [84, 15] data allowing the detection of floodwaters regardless of
cloud cover and combinations of Sentinel-1 SAR data and Sentinel-2 optical data have been
used extensively [85, 86]. Furthermore, thermal sensors measure the emitted infrared
radiation, which can be used to identify temperature differences and anomalies associated
with flooding [87, 88].

Satellite data are used to track and monitor TCs. Data obtained by the following sensors
can be used for mapping TCs: SAR, atmosphere sensors, thermal, and optical sensors,
and combinations of these. SAR sensors can penetrate cloud cover and provide detailed
imaging of cyclones. SAR images are particularly useful for wind structure and intensity
analysis of TCs [89, 90]. Weather satellites monitor the Earth’s atmosphere and their data
are used in the prediction of TCs in addition with other data [91, 92, 93]. Thermal sensors
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measure the difference of microwave emissions from the Earth’s surface before and after
the occurrence of TCs. Change observations in microwave emissions allow the detection
of cyclones and their characteristics [94]. Optical sensor imagery can be used for the
detection of TCs. Furthermore, optical images acquired after the passing of TCs enable the
analysis of their impacts on the ground [95, 96, 97]. Combinations of different sensors
have been used for impact analysis [98].

Fire detection and monitoring can be conducted with satellite-based RS data, including
thermal imagery or optical sensors. Currently, existing studies cover either the topic of
active fire detection or burned area mapping. Therefore, the related work is structured in
two parts: an overview of studies dealing with active fire detection and studies dealing
with burned area mapping. While thermal data are an obvious choice for fire detection, it
is not helpful for burned areas after cooling down. Thermal sensors measure the emitted
radiation, which can be used to identify temperature differences and anomalies associated
with wildfires (e.g., [99, 100]). To evaluate data acquired from thermal sensors with
regard to fire detection, two main approaches are applied: contextual algorithms and the
use of thresholds for thermal data [101, 102, 103]. Optical sensors can help identify fire
areas by analyzing changes, e.g., in vegetation reflectance patterns. Optical data have
been used mostly to exploit the higher resolution compared to thermal data (e.g., [104,
105]). For mapping burned areas, an even wider variety of different data are used. Several
types of RS data can be used for mapping burned areas, these are: SAR, thermal, optical,
and combinations of these. SAR is particularly useful in burned area mapping as it can
penetrate smoke emitted by fires and clouds [106]. Thermal sensors can detect thermal
radiation still emitted by recently burned areas [107]. Optical sensors can also detect post-
fire changes in vegetation cover [108, 109]. Combinations of different sensors have been
also used for burned area analysis [110]. When focusing on methodological approaches
for detecting burned areas based on optical satellite data, a variety of different approaches
exist (see, for example, most recently [111, 112, 108, 109]). Very few studies focus on
the detection of active fires and burned areas in one go using the same sensor data and
detection technique. Barducci et al. [113] rely on the spectral reflectance in the bands
of the Multispectral Infrared and Visible Imaging Spectrometer for the detection of active
fires and burned areas. Cicala et al. [114] use several indices for both fire and burned area
detection.

Overall, satellite RS data are highly suitable for studying and monitoring a variety of
natural hazards. The combination of wide area coverage and oftentimes cost-effective data
usage makes RS a good tool for natural hazard analysis. Especially in areas that would be
dangerous to access otherwise during a hazard, RS data play a crucial role. Finally, the
timely and high-resolution insights gained from RS data can be used widely in a natural
hazard context.
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Table 2.1.: Overview of the related work concerning natural hazard investigations with satellite
remote sensing (RS) sensors.

Hazard Sensor Satellite Data and Exemplary Studies

Landslides SAR
Sentinel (S)-1 [48, 49], European Remote Sens-
ing Satellite (ERS) [50]

InSAR S-1 [51, 52], ERS [53]

Optical

Satellite Pour l’Observation de la Terre (SPOT)-
5 [46], Landsat, SPOT 1-5, Advanced Space-
borne Thermal Emission and Reflection Radiome-
ter (ASTER), Indian Remote Sensing (IRS)-1C
LISS III & RapidEye [47]

Combination
ERS1/2 & ENVISAT & Shuttle Radar Topography
Mission (SRTM) [54]

Earthquakes Optical QuickBird [18], WorldView-3 [55]

InSAR
S-1 [56, 57], ERS, ENVISAT, RADARSAT-2
(RSAT2) & S-1 [58]

Thermal
Global Change Observation Mission (GCOM)-
W1 [59], Moderate-resolution Imaging Spectro-
radiometer (MODIS) [60]

Gravity Field
Gravity Recovery And Climate Experiment
(GRACE) [61, 62]

Volcanos Gas/Atmosphere S-5 Precursor [65], Aura [66, 67]

Thermal
Terra/MODIS, Aqua/MODIS, Terra/ASTER &
Landsat Thermal Infrared (TIR) [63],
MODIS [64]

SAR RSAT2 [68]

InSAR
S-1 [69], COSMO-SkyMed, TerraSAR-X &
S-1 [70]

Optical
Landsat 1, Landsat 4, Landsat 5, Landsat 7,
ASTER & Landsat 8 [71]

Combination

S-1/2 [72], MODIS, Spinning Enhanced Visible
and InfraRed Imager (SEVIRI), Visible Infrared
Imaging Radiometer Suite (VIIRS)&
S-1 [73], Pleiades satellite, TerraSAR-X,
TanDEM-X, MODIS, S-2 & Landsat 8 [74]

Droughts Optical MODIS [75], Landsat [76]

Continued on Next Page

2.1 Introducing Geoinformation Data 13



Table 2.1 Continued from Previous Page

Hazard Sensor Satellite Data and Exemplary Studies

Droughts SAR S-1 [77]

Thermal

Geostationary Operational Environmental Satel-
lite (GOES), Landsat 5& 7, MODIS, Advanced
Very High Resolution Radiometer (AVHRR) &
ASTER [78]

Meteorological
Tropical Rainfall Measuring Mission
(TRMM) [79]

Combination S-1, S-2 & Landsat 8 [80], GOES & MODIS [81]

Floods Optical Landsat [82], MODIS [83]

SAR S-1 [84, 15]

Thermal

Suomi-National Polar-orbiting Partnership
(NPP), VIIRS & GOES-R Advanced Baseline
Imager (ABI) [88], Scanning Multichannel
Microwave Radiometer (SMMR) [87]

Combination S-1 & 2 [85, 86]

Cyclones SAR RSAT2 [89], RSAT2 & S-1 [90]

Weather/Atmosphere

KALPANA-I [91], COSMIC, Meteorological Oper-
ational Satellite (MetOp), FengYun (FY)-3 [92],
Aqua, MetOp-A/ -B/ -C, Suomi NPP &
National Oceanic and Atmospheric Administra-
tion (NOAA)-20 [93]

Thermal FY-4B [94]

Optical
Landsat 8 & S-2 [95], Landsat [96],
Landsat 7 [97]

Combination S-1/2 [98]

Wildfires Thermal
ASTER [99], VIIRS [100], MODIS [115, 116,
107]

Optical
Landsat [104, 105], ASTER [117], S-2 [108,
109], Landsat [118], Landsat/S [114]

SAR
RSAT2 [106], Envisat [119], S-1 [120], PAL-
SAR [121]

Combination
MODIS & Landsat [110], Multispectral Infrared
and Visible Imaging Spectrometer (MIVIS) [113]
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Volunteered Geographic Information Data

VGI data consist of various georeferenced data voluntarily contributed by non-expert
individuals. Non-experts can contribute intentionally or passively to the creation of the
geoinformation data. VGI data have been used for a variety of tasks like environmental
monitoring [122], disaster response [123], urban planning [124], transportation man-
agement [125], and social studies [126]. Furthermore, the integration with traditional
geoinformation data can enable additional advantages for near-real-time analyses. In
natural hazard assessments, VGI data can greatly contribute with its on-site observations
and local knowledge information. Among others, Social Media Data (SMD) data and OSM
data are combined under the VGI concept.

This section focuses on SMD data, while OSM data are reviewed in Section 2.1.2. Social
media platforms, such as Twitter (now X), Facebook, and Instagram, provide user-generated
content that includes, e.g., geotagged posts, photos, and videos. However, the reliability of
VGI data remains a critical concern, as it is generated by non-experts and can be subject
to various biases and limitations. Studies have explored this reliability issue, primarily
for Twitter data, revealing both accurate real-time updates during large-scale events and
inaccuracies for less prominent events [127, 128, 129, 23]. Sociodemographic biases of
Twitter users can skew interpretations, and efforts to understand and adjust for these
biases have been made [126, 130]. Geospatial factors like population density impact tweet
distribution patterns [131, 132], while detailed sociodemographic factors (as investigated
by Adnan et al. [126]) might not be crucial for hazard-related spatial analysis. To enhance
reliability, e.g., credible accounts with metadata should be considered, re-tweets avoided,
and government agency accounts should be accorded a higher level of trustworthiness.

In this section, previously published studies using SMD for natural hazard impact deter-
mination are reviewed. Mainly, the focus is placed on the use of Twitter data as it has
proven a valuable source of real-time information and insights (e.g., [22, 23, 24]). OSM
data which can be used for network accessibility analysis are reviewed in Section 2.1.2.
The related work is structured into two major parts: first, the extraction of locations from
Twitter data, which only then classifies Twitter data as VGI data, and an overview of studies
dealing with the analysis of natural hazards from VGI data.

In order to use Twitter data as VGI data, the extraction of the locations of tweets is
necessary. Geolocation accuracy of tweet points is vital for spatial hazard analysis. A
variety of techniques is used for location extraction from Twitter data. The choice of these
extraction techniques mainly determines the accuracy of locations. Four main categories
for location extraction can be constituted:

• Inference from the user location [133, 134]: These approaches make use of the
assumptions that a user’s location is strongly related to their social network location.
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• Location extraction from the posted text [135, 136, 137]: These studies extract
names of places from the text of the messages. This task is well-known as Named
Entity Recognition (NER) as a sub-category of Natural Language Processing (NLP).
Few studies [138] also use pattern recognition with Regular Expressions (RegEx) for
specific location name extraction. In a final step, the extracted names of places are
geocoded by geoparsing.

• Direct location extraction: Locations can be directly extracted from metadata ob-
tained with the text data when accessing VGI, e.g., via an API. Twitter, for example,
delivers a Java Script Object Notation file that provides the coordinates or a place
field, with information where the tweets were created [23]. However, the user can
voluntarily fill these fields, so the information is rarely available. Studies suggest
that coordinates are given in about 0.2 % to 1.5 % of posted tweets, while the place is
given in about 2 % of the tweets [139, 140].

• Combinations of all of the above: Some studies use a combined methodology of the
possibilities mentioned above for geolocation extraction [141, 142].

The use of VGI data, and Twitter data more specifically, in a natural hazard context can be
categorized into three major topics: event detection, information retrieval for a specific
event and spatial analysis for approximate hazard location estimation.

A brief overview of studies concerning event detection and information retrieval is provided,
while a comprehensive analysis is conducted for spatial analysis derived from VGI. Table 2.2
summarizes exemplary studies for different hazards and different applications. One main
application of geolocated VGI data is detecting so-called events. An ’event’ hereby refers to
an incident that engages a lot of VGI data creation in a given location at a specific time. The
common idea of these studies is that an unusually high number of tweets in an area might
be a sign for the happening of a natural hazard event. Event detection has been carried
out mostly for floods [143, 144, 123], landslides [145, 122], earthquakes [146, 147] and
fires [148, 149] using VGI data, mostly Twitter data. Some studies investigate VGI data for
event detection in general or for multiple hazards [150, 151, 152, 153, 20, 154]. Another
main application of VGI data in a natural hazard context is information extraction from VGI.
Information extraction mainly relies on text classification via NLP of the VGI data to extract
valuable event-related information. Furthermore, also VGI images associated with text can
be evaluated for valuable information. Many studies pursue this approach for damage or
hazard severity analysis [21, 155, 156] or information categorization [24]. Information
extraction has been carried out for many different hazards, like floods [157, 156, 158, 159,
160], tsunamis [161], earthquakes [162, 163], TCs [164, 165] and fires [166, 167, 168,
169]. Some studies investigate VGI data for information retrieval for multiple hazards [170,
171, 24, 172, 173].

Spatial analyses for more precise natural hazard extent estimation have not been applied
frequently. However, a wide variety of methodological approaches exists for spatial analysis
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Table 2.2.: Overview of the related work concerning the use of Volunteered Geographic Information
(VGI) and Twitter data during natural hazard scenarios. The following abbreviation is
used: TC - tropical cyclone.

Topic Hazard Exemplary Studies

Event Detection Flood [143, 144, 123]
Landslide [145, 122]
Earthquake [146, 147]
Fire [148, 149]
Various [150, 151, 152, 153, 20, 154]

Information Retrieval Flood [157, 156, 158, 159, 160]
Tsunami [161]
Earthquake [162, 163]
TC [164, 165]
Fire [166, 167, 168, 169]
Various [170, 171, 24, 172, 173]

Spatial Analysis Flood [132, 158, 174, 175]
Rainstorm [21]
TC [131, 176]
Fire [22, 177, 178]

of VGI data (see Table 2.2). Some studies rely on kernel density estimation for hurricane
and fire hazards [131, 22, 176, 178]. Furthermore, Voronoi tesselation has been applied
to a rainstorm hazard [21]. A third approach is a triangulation for a fire hazard [177].
In this approach, VGI images are also used, enhancing the triangulation results as the
shooting angles can be included. De Albuquerque et al. [158] use a generalized additive
model to provide evidence for the association between the relevance of VGI data and
the proximity to and the severity of flood events. Ponukumati et al. [132] conduct a
Twitter based flood inventory, whose accuracy is quantified through a hit ratio compared
to inventories conducted from different data sources. The values 0.86, 0.94, and 0.84
were obtained for the three events, suggesting that the Twitter-based inventory is highly
accurate. The crisis mapping service invented by Middleton et al. [174] applies a standard
hierarchical clustering algorithm to compute clusters of hazard related tweets from the
location geometry. The flood area results correspond well with expert post-event assessed
hazard area. Alyaqout et al. [175] investigate flood depth based on VGI information.

Overall, VGI data in the form of SMD data provide real-time, geotagged, on site information
during hazard events, which make them very valuable for hazard analysis. The spatial
and temporal structure of these data allow for mapping and tracking of evolving hazard
situations. However, although the data have mostly been used for event detection and
information retrieval before, they also shows a great potential for spatial analyses of
natural hazards. SMD offer invaluable insights that complement traditional data sources
and offer the possibility to improve disaster response strategies.
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Combination of RS and VGI Data

The combined use of RS and VGI data has emerged as a powerful approach for geospatial
analysis. Studies on the integration of RS and VGI for the spatial analysis of natural
hazards are reviewed in the following.

Table 2.3 summarizes the satellite sensors used in approaches combined with VGI and
exemplary studies for the respective natural hazards. Jongman et al. [26] compare flood
areas identified from RS data with those based on Twitter activity, noting Type II Errors
in RS (missed floods) and Type I Errors in Twitter data (false positives). Sadiq et al. [28]
combine S-1 RS data and VGI data for flood hazards, finding confirmatory, complementary,
and novel signals when comparing both sources. Cervone et al. [179] use VGI to task RS
data collection in a flood case study. Similarly, Andreadis et al. [30] use Twitter data to
detect earthquake locations and to task RS data collection. Mast et al. [29] discuss the
correlation between online attention (VGI) and physical impact of floods (RS) in general.
Wang et al. [16] demonstrate that the addition of real-time Twitter information to satellite
images after a flood helps to assess water retreat. Integrating social media data and satellite
imagery promises higher potential to identify ashfall following volcanic eruptions [27].
Bischke et al. [180] present a system for the contextual enrichment of satellite images with
VGI information for wildfires. Boulton et al. [181] show that social media activity about
wildfires is both temporally and spatially correlated with wildfire events.

Table 2.3.: Overview of the related work concerning the use of Volunteered Geographic Information
(VGI) data in combination with remote sensing (RS) data during natural hazard
scenarios.

Hazard Satellite Data and Exemplary Studies

Flood

Global Flood Detection System (GFDS) [26],S-
1 [28], WorldView2 & Landsat 8 [179],
Global Flood Monitoring (GFM) [29], Earth Ob-
serving (EO)-1 & Landsat 8 [16]

Earthquakes S-1 [30]

Volcanoes Duwata-2 [27]

Fire Landsat 8 [180], MODIS [181]

In conclusion, several studies combine VGI information with other information sources
like RS data for natural hazard analysis. The combination of RS and VGI has proved to
be meaningful primarily in the context of spatial analysis of hazards. Furthermore, the
integration also improves the findings made by one data source through adding further
information. However, the integration of RS and VGI has mostly been used only for the
mutual evaluation of these datasets not for actively using the combination of both for
higher accuracy spatial analyses.
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2.1.2 Geoinformation Data for Network Accessibility Assessment

Network data are required for the network accessibility assessment of degraded road
networks during natural hazards. OSM data are a good source of geoinformation data for
network accessibility assessment due to their crowd-sourced nature and comprehensive
coverage. OSM data provide detailed and up-to-date information about roads, trans-
portation networks, and points of interest. This makes them highly useful for analyzing
transportation infrastructure and assessing accessibility to various locations.

Open Street Map Data

In this thesis, OSM are used for road network analysis. The OSM project is widely
recognized as the most popular and prominent VGI mapping initiative [182]. Launched
in 2004, its primary objective is to generate and offer freely accessible geographic data.
For a road network accessibility analysis, road networks of OSM data are employed. OSM
street networks are represented as graphs, which are mathematical representations of
networks [183]. In general, a graph, denoted as G, comprises a collection of nodes,
represented by the set N, connected by edges, represented by the set E. In a street network,
intersections and dead-ends are depicted as nodes, whereas the street segments connecting
them are represented by edges. An edge establishes a connection between two nodes or,
in the case of self-loops, within a single node. In a directed graph, each edge indicates a
specific direction, pointing from one node to another. In a street network, directed edges
represent the driving direction. Furthermore, street network graphs allow for parallel
edges representing several lanes or of one lane [31].

Connected graph models favorably without errors in the data are necessary for correct road
network analysis. In contrary to most authoritative road data, OSM data do not contain
road names in full detail. On the other hand, many additional tags are available for each
road segment, adding attributes like travel speed or maximum number of lanes to the
edges [12]. OSMnx [184] is a python package that allows users to retrieve geospatial
data from OSM. These data are subjected to a cleaning process, followed by the creation
of graph-theoretic models [185]. OSMnx retrieves speed limits from OSM data where
available and allows to impute missing speed data (e.g., using default speeds based on the
functional class of the road). Furthermore, it allows to calculate travel times, respectively,
for all edges.
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2.1.3 Synthesis on RS and VGI Data and Integration in Framework

The use of geoinformation data (compare Section 2.1), and within this category, the use of
RS and VGI (compare Section 2.1.1 and Section 2.1.2) data, provide several benefits for
the development of a complete and generic framework for the analysis of road network
accessibility under the influence of natural hazards’ impacts.

Firstly, RS and VGI data in the form of SMD present effective data sources for the spatial
analysis of natural hazards separately. While RS data provide complete, objective data on a
large scale, VGI data offer localized, real-time insights. The combination of the two datasets
offers unique advantages through the balancing of negative and positive characteristics of
each data source. This combination has the potential to improve the accuracy of geospatial
hazard analyses. Secondly, OSM data, which offer detailed insights in road networks
on a global scale, are highly valuable for network accessibility assessments. As they are
continually updated and include useful attribute information, e.g., on road types, they
provide a highly dynamic and up-to-date data source.

By combining the strengths of RS and VGI, a complete and detailed understanding of the
hazards’ impacts and their influence on road infrastructure can be obtained. Furthermore,
these data provide specific advantages compared to other geoinformation data. In contrast,
e.g., examining the impact of natural hazards on the road network by directly studying
the road network and its properties [186, 187] like traffic flow has several disadvantages.
These disadvantages include its complexity, often only punctual data collection, accessi-
bility restrictions, and costs. Moreover, meteorological data that comply mostly with the
requirements of spatial coverage, temporal resolution, and open accessibility, are also less
valuable for hazard impact estimation and conducting network analysis based on them.
Meteorological data, like precipitation and wind speed data, are valuable for the prediction
of locations at risk and possible hazard extents (e.g., [188, 189]). However, they are less
suitable for the retrospective precise estimation of the actual hazard extent. RS and VGIs’
open and easy accessibility enhance their suitability for actual hazard estimation. Overall,
these data provide an alternative and potentially more comprehensive way to analyze the
post-hazard impacted extent. Their scalable spatial coverage and high temporal resolution
ensure the use in a generic, multi-scale framework at different levels of investigation area
sizes. However, challenges related to data quality, integration, and interpretation must be
carefully considered.

20 Chapter 2 Introducing Heterogeneous Geoinformation Data and the Natural Haz-
ard Scenario Selection



2.2 Natural Hazard Scenario Selection

In this section, an overview of the selected natural hazard scenarios for the development
of a suitable framework to achieve the task of assessment of natural hazards’ impacts
on road infrastructure with multi-source geoinformation data is given. Flood, wildfire,
and TC hazard scenarios are used during the development of different components of the
framework. The framework is designed with an emphasis on wildfire hazards, due to the
need of focusing on one single hazard in depth. However, by adopting the approaches, this
research intends to offer a generic framework that can be transferred to other hazard types.
In total, eleven application scenarios are selected, which are used for the development of
methodologies over the course of this thesis.

These hazards have been selected for the following reasons:

1. Relevance: All selected hazard events were relevant events in their respective regions,
influencing the society. Therefore, these hazards would have been important to
be analysed at that time to improve the management of hazard impacts on road
infrastructure.

2. Timeliness: All hazards occurred between 2017 and 2023. The choice of recent
hazards ensures that the selected hazards correspond to the actual state of road
infrastructure data and general hazard management practices.

3. Diversity (Hazards): The use of a variety of hazard types ensures that the developed
methodology is robust and adaptable. Each hazard type has different characteristics
and poses different challenges that need to be accounted for.

4. Diversity (Regions): The hazards are chosen in a diverse range of regions and
therefore landscapes, e.g., densely forested areas, mountainous terrain, grasslands
and Maquis shrubland, and urban areas. This choice allows the development of
methodologies that are independent of these diversities.

5. Data Availability: The necessary data need to be available openly and freely for the
respective scenarios. Selected types of RS data which are available globally and freely,
a high amount of available VGI data, and a well-documented OSM road network in
the regions ensure the coverage of the respective events.

6. Hazard Information Accuracy: Information about the occurrence and approximate
location of the hazards should be available for the scenarios to perform data crawling.
Additionally, preliminary information about the hazard location are necessary to be
used as reference data for some methodologies.

7. Road Infrastructure Exposure: Regions where road infrastructure is at risk of hazard
impacts need to be selected to assess the impact on road network accessibility to
improve hazard management.
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8. Transferability: The methodologies developed for the selected scenarios should be
transferable to other scenarios. To ensure this transferability, scenarios covering a
wide spectrum of hazards and regions are selected.

These selection criteria ensure that the methodology developed in this thesis can effectively
address the challenges posed by natural hazards on road infrastructure in diverse settings.
Figure 2.2 visualizes all locations of the selected scenarios that are used throughout this
thesis, numbered in the order they appear in. Hazards are referred to with their names, if
given, or their occurrence location as the name in the absence of a universally recognized
proper name for the hazard, marked in bold in the following text. The selected hazards
are: wildfires in California (I), wildfires in south-east Australia (II), a wildfire in central
Spain (III), Camp wildfire (IV) in California (CA), wildfires in Landiras (V) and Var
(VI), France, TCs Ida (VII) and Irma (VIII), US, a flood in the San Francisco Bay Area
(IX) and a subset of this flooded region, Oakland (X), CA, and the Bobcat (XI) fire, CA.
Short explanations of the selection criteria for these hazards for the specific methodology
development are provided in the respective sections (Section 3.1.2, Section 3.2.2, Sec-
tion 3.3.2, Section 4.2, Section 5.1).

VII

VIV
IV III

II

I VIII
IX/X

XI

Figure 2.2.: Overview of cases study hazard locations in this thesis (I-XI). California (I), south-
east Australia (II) and central Spain (III) fires, Camp (IV), Landiras (V) and Var
(VI) fires, Ida (VII) and Irma (VIII) tropical cyclones, San Francisco Bay Area (IX)
flood with subset of Oakland (X) and Bobcat (XI) fire. Data basis: © 2018 Global
Administrative Areas Database (GADM). World Map Projection: Times; California
Projection: World Geodetic System 1984 (WGS84).
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In Module I - Natural Hazard Impact Determination with Geoinformation Data the first part
of the framework for the assessment of natural hazards’ impacts on road infrastructure is
developed. When assessing the impact of hazards on road networks, a nuanced approach
is used to differentiate between two primary types of possible impacts: affected areas and
direct impacts on roads.

• Affected Areas: Affected areas, in the following called impact zones, describe the
spatial region influenced by a hazard. The specific impact of the hazard on the road
network is not yet determined here, but subsequent analysis can estimate it. The use
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of affected areas is based on the idea that the area has been exposed to the hazard,
and further assessment will reveal the actual impacts on road infrastructure.

• Direct Road Impacts: Direct road impacts refers to the immediate consequences
of a hazard’s impacts on the specified object of the road infrastructure. Instead of
relying only on the hazard’s spatial extent, this approach analyzes how the hazard
directly affects road conditions. This assessment includes any factors that directly
obstruct or compromise road usability. By detecting where the hazard directly affects
roads, road network impacts can be determined.

While direct road impact evaluations provide a more certain assessment of immediate
hazard consequences, affected areas estimation offers a broader view on the potential
indirect consequences that might occur within this area. Both are critical for effective
hazard management. In hazard scenarios, complete information on direct road impacts
may not be immediately available during and shortly after the hazard [190]. Citizens and
road agencies can only evaluate and report on small parts of the entire road network and
give information about specified road segments [191]. Although data may be incomplete,
predicting the impact zone of a hazard helps to understand the possible influence on
the road network in a next step (Module 2, see Chapter 4). Figure 3.1 displays the
steps developed in Module I to determine the natural hazard’s influence using various
geoinformation data. In addition to the impact zone, information about direct impacts on
roads can be extracted from VGI data (Section 3.3). This chapter focuses solely on the
extraction of possible hazard location and influences. Their specific impact on the road
network is investigated and discussed in Chapter 4.
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Figure 3.1.: Visualization of Module I, the natural hazard impact determination with geoinforma-
tion data. The Module I is subdivided into natural hazard impact zone estimation
with remote sensing (RS) data (Section 3.1) and Volunteered Geographic Information
(VGI) data (Section 3.2), and direct road impact extraction with VGI (Section 3.3).
The results of this module are used as input for the consecutive Module II.
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3.1 Natural Hazard Impact Zone Estimation with Remote
Sensing Data

The estimation of natural hazard areas using RS data enables the rapid and accurate
determination of hazard impact zones. However, it is important to recognize that each
hazard type presents unique challenges and characteristics that affect the methodology
for the impact area estimation. The distinct characteristics of hazards need specialized
approaches using RS data to estimate the impact area (compare Section 2.1.1). Among
natural hazards, wildfires emerge as a particular center of interest in disaster risk manage-
ment due to their dynamic and rapidly changing behavior. Wildfires pose a specific set of
challenges that require a specialized approach using RS data. Additionally, large-scale bush
fires tend to occur more frequently in recent years [192]. In the following, the wildfire
area estimation with RS data is investigated, serving as basis for its subsequent application
in the analysis of hazard impacts on road networks.

3.1.1 Introduction

Detecting active fires quickly and on a larger scale is a critical task in the context of natural
hazard analysis. Although burned area detection is not directly linked to immediate life-
saving activities, mapping such burned areas supports a long-term evaluation of ecological
and economic damages [193, 194]. Burned areas often remain impassable for traffic
or rescue vehicles [195] and threaten inhabitants several days after the actual fire has
passed.

Most studies do not consider the distinction between burned areas and areas covered with
active bush fires but focus on the detection and mapping of either one of them ([110, 196]
burned area, [105, 99] active fire). In some studies, areas with active fires and burned
areas are declared as one single class compared to the class Unburned [197, 198].

In contrast, importance to this distinction between burned areas and areas covered with
actual fires is attached here. The main reason for this clear distinction is that either
of the characteristics poses different challenges concerning risk management or rescue
mission planning. In addition, when investigating the accessibility of road networks during
and after bush fires, the information if an area is burned or contains fires constitutes an
essential factor. While roads within a fire area are impassable, roads within a burned area
might be usable to a certain degree. A Burned area is referred to as an area that happens
to be a place of a bush fire a short time ago. A short time ago means, in this context,
several days after the firstly detected fire ended and its influence on the landscape is still
apparent [199]. An area with Fire means a burning fire is present, which can be either the
main fire front or even a small area of smoldering brushwood [99].
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The detection of fire and burned area can be achieved with remote sensing data, as an
increasing availability of these data can be observed in recent years. Many different ap-
proaches are already applied for either active fire detection (mostly rule-based approaches)
or burned area mapping (data-driven or rule-based approaches). In this study, the focus
will be on investigating and evaluating several different Machine Learning (ML) approaches
for a combined fire and burned area detection. The task of detecting active fires and burned
areas based on ML approaches with remote sensing data includes several challenges. In
the following, the main challenges that are addressed are briefly described.

• Combined Detection of Active Fire and Burned Area: A combined data-driven approach
for the detection of active fires and burned areas is focused on. In existing studies,
different approaches are used for the two sub-tasks [114], if a distinction is performed
between burned area and active fire. A methodology to detect active fires and burned
areas in one go using the same ML approach for both sub-tasks is developed.

• Configuration of Generic Concept: The concept is set up to enable a generic detection
of fire areas and burned areas. Thus, fire and burned area incidents worldwide on
an appropriate scale can be distinguished with the given methodological approach
independently of prior or detailed knowledge of the appearance of either class in the
investigated region. This novel workflow enables facile detection of both relevant
areas in one go.

• Selection of Appropriate ML Approaches: Many ML approaches would be eligible to
carry out the task of fire and burned area detection. The applicability of several
ML approaches is evaluated and the best-performing for a possible application is
selected.

• Generation of Reference Data: Reference data are required for the training and testing
steps of ML approaches. Since appropriate reference data are not available neither
for active fires nor for burned areas, large-scale reference data are generated. This
generation is also set up as a generic concept that can be used for reference data
manufacturing in any fire and burned area detection application worldwide.

• Detection in High Spatial Resolution: For subsequent risk analysis, fire and burned
area detection needs to be possible with very high accuracy, requiring a high spatial
resolution of the chosen satellite data. A high spatial resolution enables significantly
enhanced accuracy in predicting fires and assessing their impact on structures such
as roads within these smaller dimensions.

To solve a combined active fire and burned area detection, the objective is to choose one
sensor, from which data to implement both tasks using one selected approach can be
derived. Though thermal data are well suited and state-of-the-art for fire detection [100,
115], thermal remote sensing cannot be considered for the task, as the spatial resolution
is relatively low [200]. Additionally, thermal data can only be used for burned areas
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estimation via active fire investigations [201] and is therefore not best suited for the task.
Higher spatial resolution data are provided by optical sensors like the Landsat or Sentinel-2
sensor, which are suitable for active fire detection [104, 105]. Burned area detection is
also possible with optical data [110, 193]. Therefore, the decision was made to use the
Sentinel-2 sensor’s data, which provides a spatial resolution of 10 m in several bands [114]
for the combined burned area and fire detection task.

In contrast to the presented fire detection approaches (Section 2.1.1), indices are used in a
first step [114] and then work with supervised approaches to improve the correctness of
fire area detection and achieve a trustworthy fire map to be further used in applications.
Supervised approaches have also been applied in burned area detection and achieve good
results [197, 109]. Therefore, the use of similar approaches will be emphasized in this
study. Since the revised studies involve the application of many different supervised
approaches, several different ones will be tested instead of focusing on a single one.

Figure 3.2 shows our applied combined classification framework of fire and burned areas
structured into different levels. First, the data are described in the dataset level covering
the exemplary employed study regions CA (I), south-east (SE) Australia (II) and central
Spain (III) as described in Section 2.2 and the extracted input datasets (Section 3.1.2).
The generated reference data are described next in the feature level in Figure 3.2. Note
that we refer to the combination of input features and desired output data as a datapoint.
Furthermore, in the data level, the generated datasets are processed and splitted, which is
necessary for the ML models’ training and evaluation. Finally, selected ML models, their
optimization, and the model evaluation metrics are presented in Section 3.1.3. These parts
are included in the model level of the classification framework.

3.1.2 Data

Selected Application Scenarios For fire mapping, the selection of the study area has
to meet two main criteria. First, the study area should include regions characterized by big
fires in the last years. Second, a variety of landscape characteristics should be part of these
selected regions. Fires that occur in diverse vegetation types show different characteristics.
Therefore, significant fires in three different regions and countries are utilized: CA in the
US, the SE of Australia (including the States of Victoria, Australian Capital Territory, and
New South Wales), and the central region of Spain. In total, four areas in CA (I), five
areas in SE Australia (II), and one in central Spain (III), mainly containing different
land cover classes, are used in the RS approach. Figure 3.3 visualizes the locations of the
fires. Specific information regarding these fire hazards is not provided, as these application
scenarios serve as an observational benchmark for the proposed framework. In addition,
the development of the approach does not depend on local fire characteristics but on the
sheer data volume.
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Figure 3.2.: Visualization of the combined classification framework of fires and burned areas
divided into the dataset level, the data level, the feature level, and the model level.
Orange: Components associated with the reference data generation phase within the
framework. The following abbreviations are used: SE - Southeast; C - central; ML -
Machine Learning. Reprinted from [14].

Datasets We employ optical remote sensing data in the form of Sentinel-2 data. The
information in the Sentinel-2 bands is the main feature used for the classification of the
fire classes. We use Sentinel-2 data to benefit from the high resolution of 10 m, given for
at least 4 of its 13 spectral bands. The selected scenes are made available on the satellite
mission’s download platform (Copernicus Open Access Hub) and via a Python API, called
Sentinel API. Newer Sentinel-2 products are provided in Level-2A Bottom-Of-Atmosphere
directly. The different bands have different spatial resolution of 10 m, 20 m, and 60 m. In
Level-2A products, the cirrus Band 10 is omitted, as it does not contain surface information,
so in summary, 12 spectral bands are used in this study. All bands are resampled to a 10 m
resolution.

A land cover product is also acquired from an API. The land cover product is used as an
additional input feature since different underlying land cover classes change the spectral
reflectance of the classes of Fire, Burned, and Unburned.
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Figure 3.3.: Overview of cases study hazard locations and respective hazard types: California (I),
south-east Australia (II), central Spain (III). Data basis: © 2018 GADM. Projection:
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For example, a burned forest has a different spectral signature than a burned grassland.
Thus, the ML approaches can learn during the training that several different burned land
cover classes still correspond to the class Burned despite their spectral differences. The
worldwide-available product Copernicus Global Land Cover Layers collection 3 with a
100m resolution is used [202]. The product is assessed via the GoogleEarthEngine Python
API [203] and provides several bands of which the discrete classification is used, which
includes 23 primary classes. The land cover classes are defined according to the CORINE
(Coordination of Information on the Environment) Land Cover class definition. They are
consistent over the entire globe. The product is derived from the PROBA-V 100 m time
series. The land cover data are interpolated to a 10 m resolution by Nearest-Neighbour
interpolation to retain discrete class values. Thus, its resolution corresponds with the
resolution per pixel of the Sentinel-2 data. From the combination of the above input
features, we obtain 13 input features in sum, containing 12 Sentinel-2 bands ignoring the
band number 10 and one land cover feature for each selected Sentinel-2 pixel.

Fire perimeter data are used, which is acquired from national agencies. These data are
only used to generate the reference showing unburned and burned area, which is necessary
for training and testing of a model. Fire data are not available in a generalized database.
Therefore, the data have been acquired for every region of interest from the responsible
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governmental agency, e.g., CalFire (California, US) or data.gov.au (Australia). These data
are provided in vector files, showing the extent of a fire (burned) area. For example, CalFire
provides a multi-agency statewide database of fire history [204]. For each fire perimeter,
metadata such as the fire name, id, size, objective are included by the responsible authority.
Such data have been used as reference data in various studies (e.g., [205]). The vector
data vary, depending on which agency they are provided by, concerning the temporal
resolution and availability. For example, some vector files capture the outermost extent of
accumulated burned area for a one-time step, and current data are available every couple
of hours (e.g., three hours for data.gov.au). Other vector files capture the extent of one
fire event that might have occurred for several days in a row, but data are only available
once.

3.1.3 Methodology

In the following, three vital, methodological steps within the framework of supervised
Fire and Burned classification are described. These are reference data generation, dataset
preparation and the introduction of the applied ML models.

Reference Data Generation For the specific classification, no benchmark dataset is
available in the required resolution (high spatial resolution of 10 m of Sentinel-2 data)
for the target classes of Fire, Burned, and Unburned. Therefore, a respective dataset
with all datapoints containing single pixels of the Sentinel-2/ land cover image with 13
input features (attributes) and the corresponding labels of the target class is created. In
the following, we summarize the steps to generate the reference data (labels), before
describing it in detail below. Figure 3.4 shows the steps 1 to 4.

Bureau of Land Management, Esri, HERE, Garmin, USGS, NGA, EPA, USDA, NPSBureau of Land Management, Esri, HERE, Garmin, USGS, NGA, EPA, USDA, NPSBureau of Land Management, Esri, HERE, Garmin, USGS, NGA, EPA, USDA, NPS

Spectral Index Fire vector file Fire vector file

Label: Burned
Buffer

FireInvestigated Area
Bounding Box 

Label: Fire Label: Burned

Burned
Unburned

Non-classified

Label: Unburned/
Non-classified

Selection:
Bounding Box

Label: UnburnedFire Boundary vector file

Figure 3.4.: Visualization of Steps 1 to 4 of the reference generation. Basemap: ESRI ArcGIS Pro.
Projection: WGS84. Reprinted from [14].
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1. Select a specific region of interest inside the study region by applying a bounding
box, for which information on burned and unburned areas provided by authoritative
data are available.

2. Detect an active fire area based on spectral indices. The detected pixels are labeled
as Fire.

3. Detect a burned area based on the national agencies’ fire vector file data. The
detected pixels are labeled as Burned.

4. Finally, label the rest (neither fire nor burned) of the pixels within the bounding box
as Unburned or Non-classified.

First, Step 1 requires the available and downloaded OSM data, providing information
about fire areas or burned areas. Then, according to its size and the date of fire appearance,
a specific fire site is chosen within the study regions from the OSM data. Simultaneously,
we obtain the corresponding Sentinel-2 data of the selected region of interest several days
after the set fire start date, providing reference data for burned areas. We also examine
if actual fires are present in the available Sentinel-2 images, providing reference data for
currently burning areas. For visual fire detection, false-color images of the Near InfraRed
(NIR) (Band 8a) and Short-Wavelength InfraRed (SWIR) (Band 11 and Band 12) bands are
most helpful. Thus, fires are well-detectable in the first days after the fire incident started.
Concluding Step 1, we rely on areas that are detected as fire or burned areas visually and
use these areas for further processing. We define a specific bounding box within this region
of interest in Step 1. The corresponding Sentinel-2 image and OSM data are subsetted to
the extent of this bounding box. All datapoints, respectively pixels, within this bounding
box are labeled in the following steps.

For an automatic active fire detection in Step 2, several indices can be applied according
to other studies (e.g., [201, 206, 108, 207]). In pre-studies, we have evaluated most of
the proposed indices to select the most appropriate index for our task, the fire detection
with Sentinel-2 data. We rely on the so-called active fire detection (AFD) index 3 (HAFD3),
according to Cicala et al. [114]. This index is regarded as most beneficial for the detection
of highly energetic fires. At the same time, it is also useful for rather blazing, glowing, and
therefore less energetic fires. It is calculated as follows:

HAFD3 =
B12

B8A
+

B12

B11
+ α

B8A

B11
(3.1)

where 0 ≤ α < 1 and B for Band. The indexing is applied for all pixels inside the bounding
box created in Step 1. We subsequently apply thresholding. If the pixels’ values are higher
than the experimentally derived threshold of 5, we label these pixels as Fire. The rest of
the pixels inside the bounding box remains unlabeled in this step.
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In Step 3, we select the pixels, which cover the burned area. Therefore, we refer to the
OSM data vector files as a reference for burned areas. To ensure that the pixels of the Fire
and Burned/Unburned areas are not blended accidentally, we set a buffer zone around the
vector file. The buffer size depends on the actual size of the OSM data vector file for the
fire in question. About 100 m to 300 m buffer size is usually applied. Pixels within the OSM
area but outside the buffer are then labeled as Burned areas. They are also reviewed, not
to be accidentally labeled as Fire by comparison with fire labels of Step 2.

Finally, in the last step, we need to label the remaining pixels inside the bounding box area
that have not been labeled yet. A pixel was already labeled as Fire if it is classified as fire
by the AFD-3 index according to Step 2. A pixel was already labeled as Burned if it is
located within the OSM boundary, not classified as fire and not located within the buffer
zone according to Step 3. The label Non-classified is provided for pixels located within the
buffer and not labeled as fire. For these pixels we can not be sure to which class they truly
correspond from the references that are available to us. We discard these pixels to obtain
only pure datapoints as input for our models. Eventually, we label pixels outside the OSM
boundary and outside the buffer as Unburned.

For classification improvement and generalization purposes, we include pixels of the
Unburned classes which cover water and settlement areas. These particular pixels are
characterized by spectral differences and occur only in a reduced number. The main reason
is that fires and burned areas appear primarily in forested regions in which these two land
cover classes are relatively rare.

In sum, the reference data generation is conducted in a semi-automated manner. The
extensive process for reference data generation, ensures the high reliability. However, the
accuracy of the generated reference data can only be evaluated visually.

Dataset Preparation The above reference data generation is conducted for all datasets
of the three application scenario regions CA (I), SE Australia (II), and central Spain (III).
Then, a dataset for the training process is created, combining all data from the selected
areas of the two application scenario regions CA (I) and SE Australia (II). This results
in a combined dataset of nine fire hazards (four areas in CA, five areas in SE Australia).
The datasets exhibits between-class imbalances for the target classes of Fire, Burned, and
Unburned areas. Fire pixels are fewer, as fires do not burn continuously for long periods
but have very limited periods of active burning depending on, e.g., the fuel source. Only in
a relatively small area for a short period of time, during which a fire is actively burning,
pixels for the label Fire can be captured. On the contrary, burned areas persist until
local vegetation regrow. This leads to an underrepresentation of the Fire class. This class
imbalance might impact results, particularly for the Fire class, which is essential for fire
management and prediction. Furthermore, an imbalance within land cover classes within
the three target classes is noted, affecting classification performance.
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The dataset preparation process involves several steps (see Figure 3.5). First, the dataset is
split into three equal subsets, denoted as Subset 1, Subset 2, and Subset 3 to reduce
computational time, especially during ML training. This split is conducted randomly
but guided to ensure that every subset consists of approximately the same number of
datapoints per land cover class. This process is essential since some land cover classes
are lowly represented. We then randomly split each subset dataset into three sets with
a ratio of 60 : 20 : 20 (see Figure 3.5). Standard ML guidelines are followed with the
chosen split ratio (see e.g. Kattenborn et al. [208]), and the randomized split guarantees an
independent distribution of the subsets. Next, we apply a selected undersampling approach.
Undersampling approaches are efficient to deal with in-between class imbalance [209].
We select an informed undersampling approach concerning the land cover classes. An
undersampled training dataset of each original training subset is created by randomly
undersampling only datapoints of majority land cover classes inside the majority targets,
unburned and burned classes. We refer to these three under sampled training subsets as
Uset 1 to 3. These subsets are used as training datasets for the ML models.

The evaluation process involves multiple tests, depicted in the following, for the case when
trained on the train split of Uset 1, including:

1. Internal validation using the train split of Uset 1,
2. Test I using the test split of the respective subset, Uset 1,
3. Test II using the other two subsets (Uset 2 and Uset 3) as test data,
4. Test III using data from an unseen region in central Spain (III).

The detailed process is depicted in Figure 3.5. This comprehensive evaluation ensures
robust model assessment. Additionally, data preprocessing such as feature scaling is
performed for certain classification approaches.

ML Models As mentioned in Section 2.1.1, several supervised learning approaches
exist using Sentinel-2 input data to predict classes such as Fire, Unburned, or Burned
successfully. These approaches comprise, for example, tree-based models, Support Vec-
tor Machines (SVM), or deep learning such as Convolutional Neural Networks (CNNs).
However, the objective of this study is to evaluate the classification performances of such
ML approaches to predict all of the three defined classes in one pass. Therefore, we
select shallow learning approaches such as an Extremely Randomized Tree (ET) [210],
an AdaBoost [211], a Gradient Boosting (GradientBoost) [212], a Multi-Layer Perceptron
(MLP) [213], a supervised Self-Organizing Map (SOM) [214, 215, 216, 217], and an SVM
with bagging [218]. Besides, we rely on a one-dimensional (1D) CNN, which is similar to
the approach of Riese et al. [219]. The selected ML approaches have been chosen since
their robustness and strong classification abilities have been proven in similar classification
tasks and pre-studies (see [220, 109, 221]). Table A.1 in Appendix A.1 summarizes all
applied ML models with their respective hyperparameter settings. Note that we only apply
scaling as preprocessing for the deep learning approaches and the BaggingSVM.
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ET, AdaBoost, and GradientBoost are applied as tree-based classification models and are
associated with decision trees. Generally, they include a root and a leave node. Root and
leave nodes are then linked by branches. During the training of decison trees, the data of
the respective dataset are split at every branch. With these splits, subsets are generated,
which highly correlate to the 13 input features. For example, RF is defined by an optimum
split, while ET relies on a random split, which reduces variance, according to Geurts et al.
[210]. Details on the structure and set-up of the models are presented in the corresponding
studies [210, 211, 212].

For the underlying classification task, we rely on the supervised classification SOM in-
troduced by Riese et al. [215]. In sum, the supervised classification SOM contains an
unsupervised and a supervised SOM. The unsupervised SOM part selects the best matching
unit for each datapoint. Selecting the datapoints is implemented randomly. Then, the
learning rate, neighborhood function, neighborhood distance weight matrix, and class-
change probability matrix are calculated. In contrast, the supervised SOM connects the
selected best matching unit to a specific class. The SOM weight matrix is modified, and
the process is repeated until the maximum number of iterations is reached. The Python
implementation can be found by Riese [222].

Another ML approach included in the model level is the SVM. We propose an SVM
ensembles approach with bagging. In this specific case, each SVM is trained independently
with randomly chosen training datapoints. Finally, these SVMs are aggregated into a
collective SVMbagging [218]. This proposition is advantageous since the standard SVM
storing the kernel matrix requires memory, which scales quadratically with the number of
datapoints. So far, except for the classification SOM, the ML models are implemented with
the Python package scikit-learn [223].

As an Artificial Neural Network (ANN) approach, we use an MLP. The MLP consists of a
simple architecture with one input, at least one hidden, and one output layer [224]. Each
node, except the input node, is a neuron that uses a nonlinear activation function. Back-
propagation is applied for training. We use the standard scikit-learn [223]-implemented
MLP architecture with the hidden layer sizes of 5 and 2. The input layer consists of 13
neurons representing our 13 input features.

Since CNNs have achieved good classification and regression results on remote sensing
images and spectral data [225, 226], we also apply a CNN architecture. More precisely,
we employ a 1D-CNN since the generated reference datapoints are extracted point-wise.
A standard two dimensional CNN, therefore, is not applicable. The idea to deal with
point-wise reference data with the help of a 1D-CNN is adapted from Riese et al. [219].
Generally, a 1D-CNN is resilient against any noise occurring in the Sentinel-2 data. Based
on a 1D-CNN’s deep layers, several features are created out of the 13 input features. The
architecture is similar to the one implemented in Riese et al. [219]. However, it is adapted
during the training process and optimized for the task.
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Figure 3.6.: Flowchart of the one-dimensional (1D) Convolutional Neural Network (CNN) archi-
tecture for the 13 input features during the training process. The network includes
convolutional (CONV) and fully-connected (FC) layers. At the end of the network, a
softmax function is applied. Adapted from [14].

Figure 3.6 shows the implemented 1D-CNN architecture. The architecture comprises two
convolutional layers followed by a max-pooling layer. Two fully-connected layers, each
with 100 neurons, are then employed. Softmax activation function is used for the last
layer while Rectified Linear Unit is used for the other layers. The Adam optimizer is
adopted. Hyperparameters of the CNN are optimized through a Hyperband tuner [227], a
rapid variant of random search. It offers adaptive resource allocation and early stopping.
The 1D-CNN is trained five times, and the optimal model is determined based on the
highest validation accuracy across these runs. The results from these runs are averaged for
assessment.

For the evaluation of the models’ classification performances and the comparison of the
different results, we rely on several metrics. Concerning the reference data, the prediction
for a datapoint is either true positive, true negative, false positive, or false negative. The
applied metrics are implemented in the scikit-learn [223] package. Besides, we have to
consider that metrics are applied which can cope with an imbalance multiclass-classification
problem. For example, the Balanced Accuracy (BA) defines such a metric suitable for
imbalanced datasets. Overall Accuracy (OA), Cohen’s κ coefficient, precision, Average
Accuracy (AA) and F1 score are additional metrics that are usually applied in classification
problems.
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3.1.4 Results

In this section, the results for the estimation of natural hazard impact zones using RS data
are presented. Table 3.1 shows the prediction scores of the applied ML models on the
selected Subset 2. In this case, the models have been trained on Uset 3. All selected ML
models achieve very high prediction scores. 1D-CNN and ET show the best classification
results with an OA above 97 %. The supervised classification SOM produces the least
accurate results with an OA of 87 %, followed by AdaBoost with 91 %. When considering
Cohen’s κ, all models’ values range from 73 % to 94 %, with a slightly stronger differing
value of 63 % for the SOM approach. With 83 % to 97 % for all models, the precision is
similar to the models’ OA values and the F1 scores. The AA score also ranges in similar
values of 80 % to 97 % for all models. All models achieve high BA values (85 % to 98 %),
especially ET and 1D-CNN outperform the other models with 98 %. The ET achieves the
best accuracies in the metrics OA to precision, while the CNN achieves best results in
AA and BA. The class-wise performance of ML models is evaluated using test Subset 2,
while the models were trained on Uset 3 (see Figure A.1 in Appendix A.2). The models
exhibit strong discrimination among the three target classes, especially for the Fire class,
achieving a BA score between 95-99%. The SOM’s classification performance is slightly
lower, with its lowest performance in classifying the Burned and Unburned classes. Notably,
the 1D-CNN excels in classifying the Unburned class, with a score of 98.31%.

Table 3.1.: Classification metrics in % of all machine learning (ML) models trained on the Uset 3.
The models’ prediction is performed on Subset 2 and compared to the reference data.
The one-dimensional Convolutional Neural Network (1D-CNN) scores are calculated as
average of five runs. The following abbreviations are used: OA - Overall Accuracy; Prec
- Precision; AA: Average Accuracy; BA - Balanced Accuracy). Reprinted from [14].

Model OA κ F1 Prec AA BA

AdaBoost 91.2 73.6 86.8 86.8 86.9 86.9
BaggingSVM 93.7 81.1 90.5 90.6 90.5 91.8
ET 97.9 93.6 96.8 96.8 96.3 97.5
GradientBoost 95.3 86.2 93.0 93.1 93.0 94.7
MLP 96.1 88.4 94.2 94.2 94.2 94.9
SOM 86.9 63.0 81.0 82.8 80.3 85.3
1D-CNN 97.6 92.9 96.4 96.5 96.4 97.7

Performances on Different Subsets Since different subsets are used for ML model
training, optimization, and evaluation, the models’ classification results can be compared
on the different subsets (Table 3.2). Four models with low computational costs, trained on
various Uset subsets, are evaluated on the remaining Subsets, respectively. The models
demonstrate consistent and satisfactory classification results across the Subsets. The
ET model excels, showing minimal deviation (up to 0.9%) between training Usets and
evaluating Subsets. AdaBoost has a slightly larger deviation (1.3%), but yielding the
lowest AA score.
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Table 3.2.: Classification results of the four selected models on different training and test data
subsets. The values represent the Average Acuracy (AA) in %. Reprinted from [14].

Model Training Uset 1 Uset 2 Uset 3

Test Subset 2 Subset 3 Subset 1 Subset 3 Subset 1 Subset 2

AdaBoost 85.6 85.6 86.5 86.5 86.9 86.9
ET 96.6 96.6 97.5 96.7 97.5 96.7
GradientBoost 93.0 93.0 93.1 93.1 93.0 93.0
MLP 94.0 94.0 94.0 94.0 94.1 94.2
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Figure 3.7.: Exemplary feature importances for Extremely Randomized Tree (ET) (top) and Gradi-
ent Boosting (GradientBoost) (bottom). Reprinted from [14].

Feature Importance Figure 3.7 shows the feature importance of two ensemble ap-
proaches, ET and GradientBoost, exemplary. As for ET, the Sentinel-2 Band 12 is the
most important feature, followed by Band 8A and Band 8. The additional land cover
feature is the fifth important one in this case. The other remaining Sentinel-2 features are
medium important. For GradientBoost, the feature importance is more clearly ranked. The
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Sentinel-2 Bands 12 and 8a are the most important ones, followed by Band 1, covering the
SWIR region and the land cover information.

Application The top-performing classification models, ET and 1D-CNN, are tested on
an independent dataset, a regional area in central Spain (III). 1D-CNN outperforms ET
across all metrics, achieving an overall accuracy of 99.8%. ET scores 99.6% (Table 3.3).
Visualized results of both models accurately display burned areas within defined bound-
aries, although 1D-CNN’s mapping accuracy is higher (Figure 3.8). Additionally, both
models correctly classify Fire areas, although they slightly overestimate Fire class presence
compared to the reference data.

Table 3.3.: Classification metrics of Extremely Randomized Tree (ET)and the one-dimensional
Convolutional Neural Network (1D-CNN) for comparison on the independent regional
dataset of central Spain (III) in %. Reprinted from [14].

Model OA κ F1 Prec AA BA

ET 99.6 79.1 93.7 94.3 93.4 82.3
1D-CNN 99.8 83.2 95.0 95.4 94.9 91.0

Figure 3.8.: Visualization of the classification results of the Extremely Randomized Tree (ET) (top
left) and the one-dimensional Convolutional Neural Network (1D-CNN) (top right)
and reference data (bottom) on the independent test region in central Spain (III).
Projection: Transverse Mercator. Reprinted from [14].
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3.1.5 Discussion

Supervised ML models require precise reference data for fire and burned area detection us-
ing Sentinel-2 data for training and testing. These are obtained through a semi-automated
process involving carefully selected national agencies vector data and Sentinel-2 data. The
accuracy of the classification results is tied to the quality of the employed reference data.
In our visual evaluation concerning the study’s generated reference data, we find that the
used reference data are feasible for the underlying classification task. Overall, we notice
that some supervised ML models classify the three classes Fire, Unburned, and Burned
better than other models. Although all models achieve high OA scores with more than
87 %, few models are outstanding with an OA score above 97 %, such as ET and 1D-CNN
referring to Table 3.1. ET represents a shallow learning ensemble approach, and 1D-CNN is
a deep learning approach. When selecting the appropriate ML model, we suggest applying
shallow learning approaches such as ET since they require less computation time and are
relatively simple to train.

Concerning the various input features, the spectral information of the Sentinel-2 data
combined with information about the underlying land cover represents the basis for the
detection of fires and burned areas. For example, the spectral features are the most impor-
tant for fire detection, while the land cover information indicates the distinction between
burned and unburned areas. In conclusion, especially apparent in the GradientBoost, the
SWIR bands and the land cover are the main important features. These features are also
used for the active fire index calculation and generally for fire and burned area detection
(e.g., [114]). We can conclude that the applied input features are sufficient to solve the
underlying classification task with supervised ML models.

The results demonstrate that the classification of fires and burned/unburned areas can be
performed well by all applied models. However, ET and 1D-CNN perform better overall
and in class-wise evaluation than all other models. It is further demonstrated that good
results can be achieved for the underrepresented Fire class applying undersampling. This
class is slightly overestimated. However, overestimating this class is preferred considering
the potential dangers that could arise if this class would be underestimated in wildfire
management.

As the number of datapoints per class is comparatively balanced due to undersampling,
balanced accuracy scores are high. Models achieve high and similar classification results
across different training and test subsets. This confirms that there are sufficient datapoints
in each subset to solve the classification task. Furthermore, the choice of subsets is less
relevant than the selection of an appropriate ML model. The ET and 1D-CNN models,
evaluated on an independent dataset of a wildfire in Spain, show strong classification per-
formance, particularly the 1D-CNN. Small misclassifications based on unkown underlying
land cover classes occur in both models. The 1D-CNN generates a much smoother result
due to its low-level feature derivation.
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When evaluating the models’ performances on the entirely independent test dataset (Test
III), we have to consider the different metrics in addition to the OA. According to the OA
scores, both models perform well, but the scores of the additional metrics decrease. The
comparatively low BA score indicates, for example, that the lower number of datapoints in
the Fire class affects the models’ performances. This becomes apparent especially on an
independent dataset with land cover varying compared to the training dataset.

Therefore, the developed approach is applicable for a generic combined fire and burned
area detection compared to existing approaches that aim either at fire detection (e.g., [228,
117]) or burned area detection (e.g., [109]). Additionally, the developed approach is based
on high-resolution remote sensing data of 10 m compared to existing approaches based on
low-resolution remote sensing data like the Moderate-resolution Imaging Spectroradiome-
ter data (e.g., [116, 229]).

3.1.6 Conclusion and Integration in Framework

Overall Conclusion In this study, a combined fire and burned area detection approach
using supervised ML models and Sentinel-2 satellite images is proposed, developed and
implemented. The approach highly benefits from Sentinel-2’s high spatial resolution
and own suitable reference data generated using authoritative data. Undersampling is
applied to enhance the classification of the Fire class. Tested models, especially 1D-CNN
and ET, achieve excellent classification results. The models’ generalization capabilities
are demonstrated and found to be good on an independent dataset. Our presented
methodological approach can be considered a first approach towards a combined detection
of fires and burned areas.

Limitations and Outlook The approach could be further enhanced by considering
reference data validated on the ground, additional training datapoints, and oversam-
pling instead of undersampling. Furthermore, cloud coverage and non-commercial, high-
resolution satellites’ overpass time not always allow natural hazard area estimation with
remote sensing data in (near) real-time. Therefore, the integration with VGI data can be
valuable.

Framework Integration Beyond its immediate focus on wildfire hazards, our devel-
oped methodology carries implications for the impact area estimation for natural hazards
in general. Characteristics between different hazards vary a lot and need to be investigated
with various remote sensors (compare Section 2.1.1). However, methodologies using RS
data in general are a suitable tool for natural hazard impact area estimation. The developed
integration of machine learning models and reference data generation, as presented for
wildfire hazards, can serve as a solid basis for methodologies adapted to other hazard types
like floods, landslides, and earthquakes. It highlights the relevance of integrating RS data
into the larger context of natural hazard management. Overall, the approach demonstrates
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that natural hazard area estimation with RS data is accurate and valuable. The hazard
impact zone from RS data represents areas where impacts of hazards on road network
could be occurring. Spatial alignment of the extracted hazard zone with the road network
can be used for the estimation of the impacts on roads in a next step, described in detail in
Section 4.3.2.

3.2 Natural Hazard Impact Zone Estimation with
Volunteered Geographic Information Data

VGI data offer valuable real-time insights into hazards, which can be used for natural
hazard impact estimation. VGI data, can be viewed as data to bridge the gap in information
until RS data becomes available for natural hazard analysis. On the other hand, VGI
provides additional information compared to RS data, such as more specific information
available in the texts. Moreover, VGI can highlight areas affected by natural hazards where
humans are predominantly impacted. These area information can be more valuable for
rescue services than simply identifying the location of the hazard. Therefore, it can also be
a complementary source of information compared to RS data.

Furthermore, VGI can provide valuable benefits for the accurate mapping of certain hazard
extents that can not, or only insufficiently, be mapped from RS data, due to, e.g., cloud
cover or infrequent overpass times of satellites. However, the unique characteristics of each
type of natural hazard pose distinct challenges. Therefore, different hazard types need
specified methodologies for accurate area estimation from VGI, similarly to the accurate
estimation from RS data (compare Section 3.1). Once again, the investigation focuses on
wildfire area estimation using VGI data. Additionally, the focus lies also on TC impact area
estimation, as TCs are complex natural hazards that involve rapidly changing conditions.
Moreover, RS for TC analysis might be often hindered by cloud cover. Thus, it does not
allow impact estimation during or shortly after the hazard, but rather damage assessment
after the hazard (compare Section 2.1.1).

This section explores the possibilities for the application of VGI data for the estimation
of the impact zones of natural hazards. The objective is to estimate the areas most likely
being affected from the hazard based on the VGI data and therefore most likely impacting
underling road network.
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3.2.1 Introduction

This section evaluates the utility of VGI in the form of tweets for spatial analysis of
natural hazards in the absence of, or in addition to, RS data. The lack of RS data can
occur from either the temporal unavailability of such data due to satellite overpass times
or because the hazard’s characteristics make it impossible to detect through RS data
(compare Section 2.1.1). Though many data sources exist in the category of VGI data,
we focus on Twitter (now X) data. So-called tweets that often provide georeferenced,
concise messages are a valuable source for information extraction (e.g., [22, 23, 24]).
To investigate whether or not VGI data can be a relevant information source for natural
hazard estimation, we apply spatial analysis techniques. We evaluate the contributions
and limitations of such data source to estimate the impact zone of a natural hazard from
the given VGI data. Most realized studies do not consider using VGI data for spatial
analysis like natural hazard estimation (compare Section 2.1.1). The main reason for
this clear distinction is that analyzing these data in a spatial context can yield precise
information about natural hazard extents. In contrast, detecting the occurrence of such
(event detection) or general information extraction from the text (information retrieval)
only yields approximate hazard locations.

The task of spatial analysis of natural hazards includes two major aspects that we address:

• Spatial Hazard Estimation (Impact Zone Estimation): First, we investigate whether or
not and in which accuracy range we can estimate a natural hazard impact zone from
Twitter data. The employment of VGI data includes several challenges as location
accuracy and location correlation. Furthermore, the availability of VGI data and
their location is heavily dependent on other factors, e.g., population density. We,
therefore, investigate and evaluate the influence of such factors on the feasibility of
our spatial analysis approach.

• Temporal Hazard Estimation (Development Estimation): Secondly, the temporal aspect
plays a role in several natural hazard scenarios. For example, TCs are very agile
natural hazards with a fast movement rate compared to hazards with lower degrees
of temporal development like floods or wildfires. In such a scenario, it is of particular
interest to estimate the development of the natural hazard for a prospective time
step. Information already available from earlier time steps is used. We analyze the
feasibility of TC track estimation in an application scenario including a temporal com-
ponent. Fortunately, Twitter data include the posting time, which can be evaluated
for the task.

Different approaches are eligible to solve the task of VGI data spatial analysis for natural
hazard estimation. The choice of spatial analysis technique is based on the hazard type
and its characteristics. Two natural hazard types are investigated representatively. These
are wildfire hazards and TC hazards.

3.2 Natural Hazard Impact Zone Estimation with Volunteered Geographic
Information Data
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First, the development of a methodology to estimate natural hazard impact areas of hazards
with low degrees of temporal development like wildfires, in the following called stationary,
is being emphasized. The section addresses the challenges of VGI data usage for natural
hazard estimation through two major approaches:

1. estimating an approximate barycenter location of the hazard through factor weighting
of tweet locations, and

2. estimating the approximate hazard location and the human-affected hazard location
through combining several different methods that scan text for helpful information.

Supplementary data, e.g., population density information, from various open-source data
providers, e.g, the worldpop organisation, are integrated to account for the influences of
sociodemographic and geographical factors on tweet occurrence. Figure 3.9 shows our
applied framework structured into different levels. First, the data are described in the
dataset level covering the exemplary employed study regions Camp (IV), Landiras (V) and
Var (VI) fires as described in Section 2.2 and the extracted input datasets (Section 3.2.2).
On the data level, the generated datasets are pre-processed. The generated dataset is
described next, including the extracted contextual information. Finally, methods for the
approximate barycenter estimation and approximate hazard location estimation are stated
in Section 3.2.3 as included in the method level of the framework.

RS Data Supplementary
Data

Dataset 
Preprocessing

Approximate 
Location

Evaluation

Data 

Method

Parametrization

Dataset Camp Fire (IV) Landiras Fire (V)

VGI Data

Var Fire (VI)

Contextual 
Information

Figure 3.9.: Visualization of the framework for natural hazard impact zone estimation from
Volunteered Geographic Information (VGI) for stationary hazards, representatively for
wildfire scenarios. The following abbreviation is used: RS - Remote Sensing.
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Secondly, the development of a methodology to estimate natural hazard impact areas
of hazards with higher degrees of temporal development, like TCs, is being emphasized.
These are in the following called moving hazards. For the development of an intuitive but
suitable methodology for the estimation of these moving hazards, the methodology first
focuses on the estimation of TCs in a stationary setting. Only then, the methodology is
transferred to moving TCs by looking at specified time periods to include the characteristic
temporal change of moving hazards. For this estimation methodology, the applicability
of a regression model to estimate the distance from VGI datapoints to the natural hazard
extent is investigated. Figure 3.10 shows our applied regression framework structured into
different levels. First, the data are described in the dataset level covering the exemplary
examined hazard scenarios Irma (VII) and Ida(VIII) as described in Section 2.2 and the
extracted input datasets (Section 3.2.2). The generated dataset is described in Section 3.2.3,
including the reference generation in the feature level in Figure 3.10. On the data level,
the generated datasets are processed and split, which is necessary for the regression’s
training and evaluation. The selected regression models, their optimization, and the
model evaluation metrics included in the model level of the framework are presented in
Section 3.2.3.

TC
Track Data

Supplementary
Data

Reference Data
Generation

Dataset 
Preprocessing

Dataset
Splitting

Regression Model

Evaluation

Final Model

Data Level

Model Level

Feature  Level
Distance Feature

Generation

Dataset Level TC Irma (VII) TC Ida (VIII)

VGI Data

Figure 3.10.: Visualization of the regression framework for natural hazard impact zone estimation
from Volunteered Geographic Information (VGI) for moving hazards, representatively
for tropical cyclone (TC) scenarios divided into the data level, the feature level, and
the model level. Orange: Components associated with the reference data generation
phase within the framework. Adapted from [44].
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3.2.2 Data

Selected Application Scenarios Two natural hazard types are investigated repre-
sentatively, for stationary and moving hazards. This variety in hazards illustrates the
applicability of VGI data for hazard impact assessments on the one hand. On the other
hand, the transferability of using VGI data, which can be employed for various types of
hazards is demonstrated.

This work relies on different application scenarios of fire hazards that occurred in CA, US,
and France in the past years. These are the following fires: Camp (IV) fire near Paradise in
2018 (CA), and the fires near Landiras (V) in 2022, and Var (VI) in 2021 (France). These
study areas are chosen considering their different constellations of parameters, as explained
in Table 3.4, to show the possibilities and limitations of the developed methodology. Fire
characteristics, like the fire’s size and spreading rate, are considered since it influences
the amount and dynamics of available tweets. Furthermore, general factors that influence
VGI occurrence, like land cover information, population density, general tweet behavior,
and whether agencies like firefighters or road security agencies use VGI as a medium to
spread the news, are considered. Figure 3.11 (top and middle) visualizes the locations of
the fires.

Furthermore, two exemplary TCs in the region of mainland US are chosen as application
scenario hazards. The considered TCs are TCs Ida (VII) 2021 and Irma (VIII) 2017. TC
Ida formed on August 26, 2021, and dissipated on September 4, 2021. It made landfall
on the US coast in Louisiana on August 29, 2021. TC Ida caused destruction in many
states of the US. It became the second-most damaging and intense TC to strike the US
state of Louisiana on record, behind TC Katrina [230]. TC Irma formed on August 30,
2017, and made its first landfall on Cudjoe Key, Florida, US, on September 10, prior to
another landfall on Marco Island, Florida, the same day. It dissipated on September 13,
2017, and became the sixth costliest US Atlantic TC [230]. Figure 3.11 (bottom) visualizes
the locations and extent of the TCs.

Datasets The first datasets used for the natural hazard area estimation with VGI
data are the Camp (IV) fire, and the fires near Landiras (V) and Var (VI) described
in Section 2.2. These are used as datasets for the development of a methodology for
the natural hazard area estimation with VGI for stationary hazards. Secondly, for the
development of a methodology for the natural hazard area estimation with VGI for moving
hazards, the used datasets are the TC Ida (VIII) and Irma (VII) described in Section 2.2.

This study uses Twitter data as VGI to exploit its high usage and accessibility. The selected
Twitter data are obtained through Twitter’s download API accessed via Python. The direct
location extraction method (compare Section 2.1.1) obtains the most accurate locations
from the tweet metadata.
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Figure 3.11.: Overview of cases study hazard locations and respective hazard types: Camp (IV),
Landiras (V) and Var (VI) fires, Ida (VII) and Irma (VIII) tropical cyclones (TCs).
Data basis: © 2018 GADM. Projection: WGS84.
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Table 3.5.: Overview of numbers (#) of extracted tweet data for stationary and moving hazards.
The following abbreviations are used: coord. - coordinates.

Hazard Camp (IV) Landiras (V) Var (VI) Irma (VII) Ida (VIII)

Tweet dates
08/11/2018-
10/11/2018

12/07/2022-
16/07/2022

16/08/2021-
17/08/2021

10/09/2017-
13/09/2017

28/08/2021-
02/09/2021

# of tweets
with coord.

52 0 3 1375 1332

# of tweets
with place

157 30 82 not used not used

Only a limited number of tweets contain the coordinates’ information. In addition, the
place field also contributes to the hazard location estimation, although with lower accuracy.
Tweets with a filled place field are still helpful as they contain textual information about
affected areas. Tweets that contain keywords like the hazards name or type and happen
during the hazard time in a specified approximate hazard zone are pulled from the API.
Tweet text, date and time, and location are extracted for each hazard scenario. Table 3.5
displays the number of tweet data extracted per application scenario for the stationary
hazard investigation. We differentiate between tweets with coordinates information and
place information for location information. For the analysis of stationary hazards both
location types are used, due to the generally low number of available data. However,
we employ only the coordinates given in the metadata to achieve the highest possible
accuracy for the regression task of the moving hazards.

The supplementary data are pulled or derived from different OSM and non-OSM sources,
as displayed in Table 3.6. In our case, the supplementary data are population density,
altitude, slope, aspect, distance to the nearest road, Digital Divide Index (DDI) [231],
and landcover for the investigation areas. A systematic relationship between population
density and Twitter use has been reported by Arthur et al. [232]. Altitude and slope
are additional factors influencing tweet density and may have interaction effects with
population density. By including them separately, we allow the model to capture potential
non-linear relationships or interactions that might be missed when they are combined in a
single feature.

Slope and aspect (orientation of slope, measured clockwise in degrees from 0 to 360) are
calculated based on the altitude using ArcGIS [233]. Aspect can influence temperature,
vegetation, and potentially the desirability of locations for various activities, which may,
in turn, be related to tweet density. The distance to the nearest road can also influence
tweet density through more people mostly staying near roads and not staying in entirely
secluded regions. The distance is calculated from an OSM road feature dataset using the
software ArcGIS [233]. The DDI [234] is an index that measures the physical access and
adoption of broadband infrastructure and the socioeconomic characteristics that limit their
use. It comprises two scores: the infrastructure/adoption and the socioeconomic scores.
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Table 3.6.: Supplementary data with their sources and years of creation. The following abbre-
viations are used: CGIAR SRTM - Consultative Group on International Agricultural
Research, Shuttle Radar Topography Mission; DDI - Digital Divide Index; CGLS-LC100 -
Copernicus Global Land Cover Layers. Reprinted from [44].

Data Data Source Year

Population Density worldpop.org [236] 2020

Altitude
Hijmans [237] - CGIAR SRTM
(3 seconds resolution)

2018

Slope Derived from altitude 2018
Aspect Derived from altitude 2018
Distance to nearest road Hijmans [237] - Digital Chart of the World independent
DDI Gallardo [234] 2019
Landcover CGLS-LC100 Collection 3 [202] 2019

The added supplementary data are included as they can be more explanatory for the
occurrence of tweet points itself. For example, more VGI data occur in areas with higher
population density. Different data affecting tweet data, e.g., population data, have been
investigated in several studies [235, 22]. For distinct hazards and methodologies, distinct
supplementary datasets must be employed for the weighting of influencing factors on tweet
occurrence.

Finally, the utilization of hazard information data that serve as (pseudo-) reference is
crucial. These data are considered as so-called ’known’ hazard data. These are necessary
for both training and testing of supervised approaches and the evaluation of unsupervised
estimation approaches from VGI. Pseudo-reference data are hazard areas extracted from
Sentinel-2 RS for the fire application scenarios. The most temporally proximate available
RS images to the start of the fire (as listed in Table 3.4) are extracted for the application
scenarios. As suitable non cloud-obstructed Sentinel-2 data are not available for one
application scenario, we rely on California Department of Forestry and Fire Protection
(CalFire) agency data in this case. These data are provided in vector files, showing the
extent of a fire area.

Reference data are TC track data provided by weather services for the TC application
scenarios. These are vector data that provide the calculated best track of the TC(compare
Figure 3.11). It is usually generated after the season when forecasters gather all the
available information from different sources and datasets [238]. These data are available,
from the responsible weather services, e.g., the National Hurricane Center (NHC) for our
application scenario hazards. Furthermore, to evaluate the temporal aspect of the TC
development, we need information on the time-dependent location of the TC. We use the
NHC’s Tropical Cyclone Public Advisories (TCPA) [239] to extract information about when
the TC eye passed at which location. The TCPA are issued every six hours and provide
the actual TC eye geographic location-specific time. We employ these data to differentiate
between tweets that occur during a hazard and those that are posted after a hazard has
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taken place at a specific location and time. We choose the respective geolocations day-wise
for our analysis of the temporal aspect of TC track estimation.

3.2.3 Methodology

Considering the different characteristics of the two varying hazard scenarios stationary
and moving and the different requirements for an impact area estimation using VGI, two
separate methodologies are developed for these hazards, representatively.

Stationary Hazards Methods

In this section, the two primary method types for stationary hazard impact zone approx-
imation are explained. These are approximate barycenter calculation and approximate
location estimation from tweet datapoints. For these methodologies landcover and popula-
tion density datasets are used as supplementary data. Figure 3.12 displays the methods
overview.

Extract Tweets*

Exclude Tweets With
Unmatching Land Cover

Estimate Fire Affected Areas

Calculate Barycenter Estimate Location by
Viewing Angle (LVA)

Estimate Area With Road
Closure Information

Estimate Area With
Distance Information

Apply Kernel Density Detect & Exclude
Outliers

Point in Fire Area

LVA With Outlier
Detection

LVA With Kernel
Density

Buffer Approach for
Road Closure Area

Buffer Approach for
Distances

Overlay all Area
Approaches & Count

Matches

Areas of Combined
Approach

Estimate Fire Affected Areas

Point in Fire Area Approach

* Tweets contain dates, geographic locations, and text information.

Figure 3.12.: Methodology overview for approximating fire-affected areas based on Twitter data.
Reprinted from [43].
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Approximation of the Barycenter When evaluating the tweet data in a geospatial
manner, we first calculate the weighted barycenter location of the tweet points, considering
the influencing factors. Utilizing population density and land cover as weighting factors
for barycenter approximation offers significant advantages:

• Population Density: More people in an area means a higher probability of someone
witnessing and reporting a wildfire.

• Land Cover: Land cover diversity impacts the visibility and detectability of wildfires
and fire propagation.

The geospatial barycenter is calculated as follows:

X̄w =
∑n

i=1 xi · wi

∑n
i=1 wi

, Ȳw =
∑n

i=1 yi · wi

∑n
i=1 wi

(3.2)

where denstweet is the point density per tweet calculated by kernel density from all the
tweets. denspop is the population density according to WorldPop.org at the point location.
wlandcov is a custom weight depending on the underlying landcover type at the point for
each point i.

wi = log(
denstweet,i

denspop,i
) + wlandcov,i (3.3)

where denstweet is the point density per tweet calculated by kernel density from all the
tweets, denspop is the population density according to WorldPop.org at the point location,
and wlandcov is a custom weight depending on the underlying landcover type at the point
for each point i. Highly combustible landcover types like shrubs or forest have a higher
weight. These are more likely for a fire to burn and continue to burn to an area with such
landcover, compared to, e.g., a water landcover area.

Approximation of the areal location Next, we estimate approximate hazard locations
or affected areas with several methods according to the availability of the respective data
in the tweet texts. These include the viewing angle of the fire by mentioned places in the
text (1), road segment blocking information (2), and distance to the fire information (3).
Figure 3.13 displays exemplary tweet text snippets containing the relevant information for
the employed methods.

1. We approximate the hazard location by considering names of places that are men-
tioned in the tweets’ texts talking about the respective hazard (see Figure 3.13,
(1)). This method is therefore referred to as the Location by Viewing Angle (Location
by Viewing Angle (LVA)) approach. We extract these mentioned places with two
approaches: NER or pattern recognition by RegEx (e.g., [240, 241, 242]), which are
NLP methods. For NER, we employ the Spacy Python library [243], an open-source
NLP library. We use it to detect of the entities GPE (Geopolitical Entities: Countries,
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cities, states) and LOC (Non-GPE locations, mountain ranges, bodies of water). We
apply RegEx in addition to NER, as NER recognizes general location places, while we
can extract more specific areas with RegEx. For RegEx, we employ our own developed
algorithm, which consists of the two steps of name detection and geoparsing. It
searches for spatial places like Mt. Wilson or Monrovia Peak, employing word search
(e.g., Peak). Furthermore, it uses Regex patterns that search for associated nouns
(e.g., Monrovia). After extracting place names, we geoparse, which converts text
descriptions of places into geographic identifiers like coordinates. Next, we apply a
methodology to check for the viewing angle. The people might not see mentioned
places in their tweet locations, as obstructions like mountains could prevent them.
Therefore, we check the plausibility of the viewing angle by considering the occur-
rence of viewing obstructions in the line of sight from the location to the mentioned
place. As a result, we obtain locations to which the speaker can view, and which are
probable that he is seeing the hazard there. With the obtained points, we conduct
two separate methods again to get more independent results. These are in line with
the principle that where more people think the hazard is there, the hazard is more
likely to be there. These are:

• Kernel density estimation on viewing angle points: Based on the resulting points
of 1., we conduct kernel density estimation as implemented in ArcGIS [233].
It places a kernel (smooth, continuous function) on each datapoint and sums
these kernels to create a smooth representation of the underlying probability
distribution. We extract areas with a specific density and a higher probability of
the hazard’s presence within those areas.

• Non-outlier estimation on viewing angle points: We use an Isolation Forest,
implemented in ArcGIS [233] to detect non-outlier points. It works by isolating
instances using binary splits and constructing an ensemble of decision trees.
Outliers are identified as instances that require fewer splits to be isolated. We
then calculate a convex hull spanned by non-outlier points in the following.

(1)

(2)

(3)

I can see the flames over Mt. Wilson 
from my house.

The road is closed on WB37 between 
Atherton Ave and US101.

We are five miles away from the fire.

Figure 3.13.: Exemplary tweet text snippets from which information about approximate areal
locations of natural hazards can be extracted: (1) Named places, (2) Road closure
information, (3) Distance information. The relevant text information that is consid-
ered is marked in bold. Texts are simplified and adapted from original extracted
tweet texts. Reprinted from [43].
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2. In this step, we consider blocked road information (see Figure 3.13, (2)). Road
authorities often post information about such in emergency or hazard cases. We
search tweets mentioning such information or posted by responsible agencies and
extract their locations. From this information, we extract the exact road locations via
RegEx implemented for roads (compare Section 3.3). We geoparse and obtain points
of blocked road information, mainly two road intersection information per tweet
(e.g., Angeles Crest Hwy & Upper Big Tujunga Rd). We can then extract the closed
road segments between those two mentioned points and the area they are spanning
which most probable corresponds to the hazard area.

3. Finally, we consider distance information in the texts (see Figure 3.13, (3)). We
search tweets mentioning distance information and buffer their location with the
this specific distance. We obtain a circle on which the hazard seen by the speaker
might lie. To account for coarse estimates by speakers, we apply a buffer around this
circle with a distance of 30 % of the initial space. This assumption is based on the
idea that people tend to gauge distances more accurately when hazards are in closer
proximity to them. Furthermore, we limit the buffer areas by landcover plausibility,
e.g., a buffered area is not considered if overlapping a landcover area that is not
plausible to contain fire, e.g., water or bare rock.

With the above methodological approaches, we consequently obtain approximations of
areas that could be or are perceived by tweet text speakers as hazardous areas. Then, we
cross-check all the results from these methods with land cover plausibility (areas in certain
landcover areas are more likely combustible; see above). Finally, we combine the single
estimation method results to estimate the fire’s minimal and maximal possible affected
area with a confidence interval.

Additionally, using pseudo-reference data for approach evaluation (testing for supervised
approaches, comparison for unsupervised approaches) helps to validate the approaches’
performance and assess its generalizability to different hazard scenarios. For the evaluation
of our methodology, we provide qualitative results in the form of maps. We compare
the calculated barycenter and the fire approximation areas with the RS fire extents. We
refer to the latter as a pseudo-reference, since the employed RS images are only the most
temporally proximate available RS images to the start of the fire. These images do not
accurately depict the actual state of the fire at the time when the tweet data were collected
(compare Table 3.4 in Section 3.2.2).
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Moving Hazards Methods

In this section, the method of location approximation from tweet datapoints for moving
hazard impact zones is explained. An unsupervised estimation as employed for stationary
hazards is not suitable for moving hazards due to the temporal component in these
cases. Since many more supplementary data that are thought to explain the occurrence
of tweets have to be considered, a manual weighting scheme is not practical. Therefore,
a supervised multivariable regression, taking into account the tweet locations and the
supplementary data as features is used. Reference data are incorporated into the training
process for the supervised estimation approach. These allow machine learning models to
learn the spatial relationships between VGI datapoints and actual hazard occurrences. The
target variable to be estimated is the TC track, which represents the hazard’s approximate
location. However, it can not be estimated directly. Therefore, a substitute variable is
used. This variable can easily be used as label for the regression task (→ Reference Data
Generation and Dataset). Furthermore, this section describes the dataset preparation
(→ Dataset Preparation). Two different regression models are tested for the regression
task (→ ML Models). Postprocessing steps are conducted after the regression task (→
Postprocessing).

Reference Data Generation and Dataset As reference data, known information about
the natural hazard is used. In this case, this is the TC track information obtained from
weather services. A substitute value should be easily usable for the regression task and
represent the spatial information of the TC track. This substitute value is each tweet point’s
geodesic distance to the nearest TC track point in km (compare Figure 3.14). This geodesic
distance implicitly contains information about the location of the TC track. It serves as the
label for the regression model and is the dependent variable estimated by the regression
approaches.

A dataset with all datapoints containing the input features and the corresponding labels
of the distance from tweet point to TC track is created. In the following, the steps to
preprocess the input data to be used as features is summarized: First, the Twitter data
locations, which are referred to as datapoints, are preprocessed. Each point possesses its x
and y geographical coordinates transformed into Universal Transverse Mercator (UTM)
coordinates. These two UTM coordinates are the first two input features for the ML models.
Furthermore, we retain the posting time information for the tweets. This information is
not used as an input feature but is relevant for the temporal hazard evaluation, especially
for partitioning datapoints in during- and post-hazard tweets. Next, we combine the
tweets’ information with the supplementary data (compare Table 3.6 in Section 3.2.2).
The values of each of the supplementary raster datasets are extracted for each datapoint
and added as an additional feature. In conclusion, the Irma dataset contains eight features
(tweet location x, tweet location y, population density, altitude, slope, aspect, distance to
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nearest road, DDI), the distance to TC track label, and the date column for 1375 datapoints,
exemplary. The Ida dataset is processed accordingly, following the same procedures.

Dataset Preparation The TC track approximation is first investigated in a stationary
mode to develop and evaluate the regression model’s suitability for the task. It is then
being transferred to a moving scenario. Figure 3.14 displays the overview of both dataset
preparation scenarios.

Known TC TrackVGI (Tweet) Points - Train 
Distance Reference

Timestep 1

Timestep 2

TestTrain/ 
Validation/Test

Legend

Unknown TC Track

Estimated Distance

Timestep 1

Baseline split Temporal-non-stationary split

Train/
Validation

1 2

VGI (Tweet) Points - Validation 

VGI (Tweet) Points - Test 

Figure 3.14.: Methodology overview for approximating tropical cyclone (TC)-affected areas based
on Twitter data. The following abbreviation is used: VGI - Volunteered Geographic
Information.

For the development of the regression model in a stationary setting, we randomly split
the TC Irma dataset into three sets for training, validation and testing with a ratio of
60 : 20 : 20 (Figure 3.14 (1)). Standard ML guidelines are followed with the chosen split
ratio (see, e.g., Kattenborn et al. [208]). The randomized split guarantees an independent
distribution of the subsets. The training dataset is reserved for the respective regression
model’s training, while the evaluation of the model is conducted on the test dataset.
Besides, the model’s hyperparameters (Table A.2 in Appendix B.1) are optimized on the
validation dataset. In Figure 3.14 (1) the geodesic distances that serve as label for the
regression used in the training and validation phase are depicted in purple. The geodesic
distances that are estimated by the regression models in the testing phase are depicted in
light blue. This split is referred to as the baseline (BS) split in the following.

Finally, we add the temporal component investigating the hazard’s development estimation.
For this scenario, the TC Ida is used for investigation. A TC moves over a spatially extensive
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area at a certain speed, resulting in the fast development of its impact zone. Its evolution
leads to some areas being currently impacted in timestep 1 but not in timestep 2 and vice
versa. Figure 3.14 (2) displays this scenario. To model such a scenario that should be able
to represent an application scenario, we choose the following:

• Considering the movement direction of the TC, we spatially split the area that it
overpasses into two parts. One part that will serve as training (timestep 1) contains
significantly more datapoints than the other (testing/ timestep 2) part.

• The training dataset comprises all during- and post-disaster tweets in the spatially
distinct training part of the spatial area.

• The test dataset comprises the during-disaster tweets in the spatially distinct testing
part of the spatial area.

The reference label for the regression equals the geodesic distance from tweet point to
known TC track in timestep 1. The geodesic distance is estimated by the regression model
for timestep 2, which implicitly contains information about the location of the TC track.
This scenario corresponds to a TC’s evaluation whose eye has moved over a spatial area
used for the models’ training and is now located over the testing part. Therefore, only the
during-hazard tweets are used for the testing, as post-hazard tweets would not have been
created in a real application scenario. We select a major spatial area as training data and a
very small area as testing data. The testing area comprises tweet data posted in the area
containing half of the city of New York City, hit by TC Ida. The training area comprises
tweet data posted in the other half of this area and all the datapoints from other tweet
data along the TC Ida track and along the complete TC Irma track, to obtain a maximum
of training sample points. Such a spatial split is necessary to allow the models to learn
from spatially not very distinct datapoints (New York first half) and estimate in a spatially
similar environment (New York second half). Data of the TC Irma are included to augment
the number of training datapoints. This split is referred to as the temporal-non-stationary
(TN) split in the following.

ML Models This subsection describes the model level (see Figure 3.10), including
the ML models to solve the underlying regression task, as well as their optimization and
evaluation. Estimating hurricane tracks from tweet data can be done using regression of
the nearest distance from the tweets to the track. Since we have several input features
and are trying to depict a rather complex connection with our output label, we need to
employ a sophisticated regression approach. Therefore, we apply two different ML models
to evaluate their estimation performances on the different splits and datasets.

The study investigates two different machine learning models, ET and Geographically
Weighted Regression (GWR), to solve the regression task. ET is applied as a tree-based
regression model and is associated with decision trees (DTs). Generally, they include
a root and a leave node linked by branches. During the training of DTs, the data of
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the respective dataset are split at every branch. These splits generate subsets, which
correlate highly to the input features. However, an ET can only incorporate very different
geographical variances by coordinates given as input features. It might not be able to model
the local relationships between the coordinates. Therefore, we select GWR as a different
approach [244]. GWR considers non-stationary input features by incorporating features
within each target value’s neighborhood. It can therefore link the local relationships
between the features and the label , which makes it especially suitable for geographical
applications. The models’ hyperparameters are tuned by a grid search for the ET and
manually through iterative experimentation using the ArcGIS software for the GWR. Model
performance is evaluated using the following metrics, defined in Table A.3 in Appendix B.2:
Coefficient of Determination (R2), Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and Maximum Error (ME).

Postprocessing For the regression task, the distance from the tweet point to the
hurricane track was used as a substitute value to enable the deployment as a data label.
Only the distance is estimated from the approach, but no directional information is given.
Therefore, trilateration is necessary to obtain the hurricane-impacted zone from the
estimated data. We conduct the following steps to obtain the impact zone:

1. Buffer the tweet points with their respective estimated distance.

2. Calculate the intersections of the buffer circles.

3. Calculate the kernel density of the intersection points. This step is based on the
assumption that where more of the buffers intersect, the higher the chance that this
area is actually a hazard impact zone.

3.2.4 Results

In this section, the results for the estimation of natural hazard impact zones using VGI data
are presented. The overall estimation performance of the applied models on stationary
hazards like wildfires and moving hazards like TCs will be presented, respectively.

Stationary Hazards Results

The results and their cartographic visualization achieved based on the applied unsupervised
combined method presented for each fire case are displayed in Figure 3.15. As mentioned
above, the results are compared and overlaid with the RS data generated fire extents as
pseudo-reference. For each map, the total number of tweets before the availability of the
RS image is included in the approaches. By qualitative analysis, it can be verified that
all the resulting maps agree with the RS fire pseudo-reference on a coarse level, while
differences are observed on a finer level. Additionally, Table 3.7 displays the deviances
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between the approximated barycenter and hazard extends as estimated using the developed
methodology.

Figure 3.15.: Visualization of the impact zone estimation for the selected fires: the Camp (IV)
fire near Paradise (row 1), California, and the wildfires near Landiras (V) (row 2)
and in the Var (VI) region (row 3), France. The following abbreviation is used:
LVA - Location by Viewing Angle. Data basis: © 2018 GADM. Projection: WGS84.
Reprinted from [43].

In the result obtained for the Camp fire (IV) (Figure 3.15, row 1), the barycenter (column
1) also corresponds well with the RS fire area. LVA (column 2), distance area, and road
closure area (column 3) can be estimated. LVA with outlier detection and distance and
road closure area results correspond mostly to the pseudo-reference area but are located in
the western part of the RS fire area. LVA with kernel density detects three significant point
cluster densities: a small one in the North, one in the South, and one on the axis from
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Chico and Paradise. Consequently, the overlaps, as a combination of all applied approaches,
(column 4) indicate the estimated area in the western part of the pseudo-reference area
and are heterogeneous.

In the result obtained for the Landiras fire (V) (Figure 3.15, row 2), the barycenter
(column 1) also lies beyond the RS fire area. However, the barycenter still approximates
the course affected area. LVA (column 2) and distance area (column 3) can be estimated
and correspond primarily with the northern and eastern regions of the fire area, respectively.
Consequently, the overlaps of the approaches (column 4) combined show the estimated
area in the northern half of the RS fire area.

In the result obtained for the Var fire (VI) (Figure 3.15, row 3), the barycenter (column 1)
lies beyond the RS fire pseudo-reference. However, given the very distinct shape of the fire
area, the barycenter still approximates the course-affected fire area. LVA (column 2) and
distance area (column 3) can be estimated and correspond mainly with the central location
of the fire area. Consequently, the overlaps of the approaches (column 4) combined show
the estimated area in the central part of the RS fire area. The overlaps miss out on the
upper and lower part of the very distinct fire area shape.

Table 3.7.: Deviances in km for the wildfire hazard approximation methods: Distances are given
between the calculated barycenter and the center of remote sensing (RS) pseudo-
reference areas, and the center of the combined approaches area approximation and
the center of RS pseudo-reference areas, respectively.

Wildfire
Barycenter
Deviance

Area Approximation
Deviance

Camp 3 km 4 km
Landiras 10 km 3-4 km
Var 4 km <2 km

Moving Hazards Results

The selected models on the selected BS split trained on datapoints of the TC Irma achieve
generally high scores. Table 3.8 shows the estimation results of the applied models on the
respective test sets. ET model on the baseline split show the best regression results with an
R2-score of >93 %. The GWR produces minor accurate results with an R2 =82 %. When
considering RSME and MAE, the ET model achieves satisfactory regression results between
4 km and 6.5 km. These metrics are much higher for the GWR approach.

We visualize our approach’s geographical accuracy in Figure 3.16 (top) for the BS split
with the GWR model. The displayed subset consists of a regional area in Florida, US. For
the visualization of the respective results, we focus on the selected study area subsets to
allow the recognition of details for better understanding. The total area of the hurricane
passage could not be visualized due to its size. Very few estimated test datapoints show
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deviations from their expected distance compared to their surrounding points of about
15 km. Most deviating test datapoints differ from their expected distance compared to
their surrounding datapoints by only about 5 km. In the eastern part of the subset, a major
part of the test datapoints is estimated to be of a distance of ≤30 km from the track, while
they should be rather ≤50 km from the track according to the training datapoints. When
postprocessing the estimated distance from the tweet point to track to derive the actual
impact area, we obtain distinct areas characterized by varying degrees of likelihood for the
impact area’s presence. Overall, the estimated impact area corresponds very well with the
hurricane track reference, especially for the central area of the subset. Towards the edges
of the investigated subset, the impact area is not estimated with high likelihood.

Since the ET model achieved the higher scores for the regression task, this model is applied
for the impact zone estimation considering the hazard’s development. The selected model
on the TN split trained considering the temporal aspect, using datapoints from both the TCs
Irma and Ida, achieves medium scores (Table 3.8). ET model shows a medium score for
R2 results with a value of about 67 %. When considering RSME, MAE, and ME, ET achieves
still outstanding results considering the temporal distinct datapoints (RSME: 8.5 km, MAE:
6.4 km, and ME: 22.8 km). We apply the ET model exemplary to visualize our model’s
geographical accuracy in Figure 3.16 (bottom). The displayed subset consists of a regional
area in New York, US. Most of the estimated test datapoints’ distances corresponds well
with the closest actual train datapoint’s distances. We see no major miscalculations of
test points except for one test point closest to the TC track. It shows a deviation from the
expected distance compared to its surrounding points of about 20 km. Additionally, in this
visualization, we explicitly display the estimated distances from the test datapoints to the
yet-to-be-estimated hurricane track. This presentation aims to enhance the comprehension
of the factual meaning of the estimated values. When postprocessing the estimated distance
from the tweet point to track to derive the actual impact area, we obtain distinct areas
characterized by varying degrees of likelihood for the impact area’s presence.

Table 3.8.: Regression metrics in of all TC approximation estimation models predicted on the test
dataset and compared to the reference data. The following abbreviations are used:
R2 - Coefficient of Determination; RMSE - Root Mean Square Error; MAE - Mean
Absolute Error; ME - Maximum Error; ET - Extremely Randomized Tree Regressor;
GWR - Geographically Weighted Regression; TN - temporal-non-stationary. Adapted
from [44].

Model Split R2 in %
RMSE
in km

MAE
in km

ME
in km

ET Baseline 93.2 6.5 4.0 57.4
GWR Baseline 82.4 10.5 5.9 130.5
ET TN 66.8 8.5 6.4 22.8

3.2 Natural Hazard Impact Zone Estimation with Volunteered Geographic
Information Data

61



Figure 3.16.: Visualization of the estimated distances of test datapoints to the Irma (VII) track of
the baseline (BS) split based on the Geographically Weighted Regression (GWR) (top)
and the estimated distances of test datapoints to the Ida (VIII) track of the temporal-
non-stationary (TN) split based on the Extremely Randomized Tree (ET) (bottom).
Note that we do not display the reference distances nor the estimated distances for
the Irma track results directly due to loss in visualization clarity. Instead, we display
the distances only by color-coding of the respective tweet points. The estimated
impact area obtained from the postprocessing of the estimated distances is displayed
with its respective likelihood values. Data basis: © 2018 GADM. Projection: WGS84.
Adapted from [44].
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3.2.5 Discussion

The application scenarios’ findings indicate that natural hazard impact zone estimations
from VGI with methodologies for stationary and moving natural hazards showed satisfactory
accuracies when compared with the respective (pseudo-) references. However, since
perfectly fitting reference data (ground truth acquired during the hazard) are lacking,
available reference data must be used. These are RS sensed images of the wildfires
and NHC-provided TC tracks. These references, and the Twitter point locations’ accuracy
represent a limiting step in the workflow. The discussion of the applied models on stationary
hazards like wildfires and moving hazards like TCs will be presented, respectively.

Stationary Hazards Discussion

For the wildfires, the findings indicate that tweets’ weighted barycenter center calculation
aligns well with the fire area pseudo-reference, as determined from RS imagery. The
presented approaches also demonstrate that the estimated minimal and maximal affected
area corresponds closely to the area detected from RS. Overall, no single one of the applied
methods does achieve the best results for all investigated fires. The methodology performs
satisfyingly on all investigated fire scenarios. While it does not work better or worse in any
application scenario, the results are very different and influenced by various factors.

For the Camp fire, the barycenter also lies well within the pseudo-reference area, due to a
distribution of VGI data mainly influenced by population density, whose effects we removed
by weighting. Large areas of the extent overlap with the pseudo-reference. According to
all approaches, fire areas of the highest likelihood are located near the most populated
places, Chico and Oroville in the south and the devastated town of Paradise right in
the center of the fire. Due to the location of the fire in the Sierra Nevada foothills, less
information is available about the eastern area of the fire, which is located in the higher
mountainous region with no significant settlements. However, the primary area of the fire
corresponding with the pseudo-reference area was estimated using our approaches. Since
the pseudo-reference represents the final extent of the fire at the end of the fire duration, it
is spatially more extensive than our estimated extent three days after the start of the fire.

For the Landiras fire, the barycenter lies outside of the pseudo-reference area and is
comparatively far from the areal estimation. This occurs due to the distribution of VGI
datapoints that occur very far from the actual fire area, e.g., in the city of Bordeaux, which
is located approximately 30 km from the fire location. Despite the weighting of datapoints
the barycenter is shifted towards this high-density population and tweet occurrence hub.
The estimated area from VGI corresponds to the northern area of the RS data area. The
fire spread from the north to the south in this application scenario, which corresponds well
with the findings. Despite a deficient amount of VGI data in this application scenario, the
area estimation is good. This is attributed to a suitable estimation geometry, as this area
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is generally flat, and the fire was seen from even distant places without obstruction. The
estimated area is also closer to populated places where people might be more affected.

For the Var fire, the barycenter lies slightly shifted from the pseudo-reference area, which
can be explained by the characteristic, very narrow shape of the fire area. The narrowness of
the area makes it challenging to pinpoint the actual center accurately. The correspondence
of the VGI extent with the RS extent is mostly limited to the middle of the RS area. Though
the number of VGI datapoints is acceptable in this application scenario (compare Table 3.5),
several factors contribute to the quality of VGI data for estimating the fire area. Firstly, the
rapid spread of this fire covered the entire area in just one and a half days. Observations
were hindered as it ignited in the late afternoon and continued to propagate through the
night. Additionally, the fire area was relatively small (compare Table 3.4), and citizens in
more distant areas showed little interest, contributing to suboptimal estimation geometries.
Due to the fire’s location traversing the hilly region of the Massif des Maures, visibility
towards the fire was constrained to specific places, leading to a non-ideal distribution of
VGI points. Additionally, for the Var and Landiras, the fire and road agencies responsible
do not use Twitter as an information distribution tool. Consequently, the estimation of road
closure areas, as outlined in the developed methodology, is unavailable in these cases.

In conclusion, the most impactful error source for estimating wildfire extents from VGI is,
of course, the distribution of VGI. Even with low data (e.g., Landiras fire), the fire area can
be well estimated if the viewing geometry is suitable. Factors that influence the distribution
of VGI are mostly related to the visibility towards the fire (e.g., mountain obstruction,
night, places very distant to fire, small fires). These are the main limiting factors to
obtaining suitable information from VGI data. Moreover, utilizing distinct methodologies,
specifically the barycenter and area estimation approaches, prove highly valuable. The
influence of various factors affecting these analyses results in independent outcomes that
mutually complementing each other. For instance, in the case of the Landiras fire, the
barycenter is less precise due to VGI data characteristics distant from the fire location,
which is attributable to good visibility. Conversely, these characteristics contribute to highly
accurate results in estimating the fire area.

In contrast to the studies focusing on information retrieval from VGI data during wildfires
(e.g., [167, 168]) and the few existing studies for spatial analysis of wildfire hazards using
VGI data [158, 177, 178], the developed methodology can be easily transferred to other
wildfire scenarios. The use of a variety of freely available information from VGI data and
the use of supplementary data to account for demographic biases has not been employed
frequently [22]. Due to the use of these in this study, the transfer to other wildfire studies
is possible, as demonstrated. Additionally, accuracies range within several kilometers
compared to temporally close hazard extents derived from other data sources. These
accuracies indicate that wildfire extent estimations are achieved at significantly higher
accuracy levels compared to estimations using, for instance, only kernel density [22].
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Moving Hazards Discussion

For the TC, the findings indicate that the underlying regression task for impact zone esti-
mation is feasible, based on the provided input features extracted from the tweet locations
and the supplementary data. All model and split combinations achieve comparatively high
R2-values. With RMSE and MAE of 4 km to 10 km, all models and splits (BS split vs TN
split) estimate the points at a reasonable distance from the actual reference distance to
the TN track. However, the ME should be considered when evaluating the results, and
outliers might be removed to achieve a corresponding overall result. Evaluating the overall
performance, the results of the ET model are most beneficial for the regression task to
estimate the distance to the natural hazard.

The visual results (see Figure 3.16 in Section 3.2.4) reveal that our model can accurately
regress the distance from tweet points to the natural hazard. Most of the test points’
predicted distance correspond well with the train point’s reference distance of datapoints
in a near area. Compared to the reference track, the estimated distances for the datapoints
clearly show the regression approach’s applicability for natural hazard extent estimation.
However, the model miscalculates a few test points. With a few points of 15 km and
some points of 5 km deviation, these misclassifications can be neglected. Our employed
postprocessing of the estimated distance from tweet points to the hurricane track is suitable
for the delineation of the impact area’s presence. For the Florida subset region, comparing
the estimated impact areas with the hurricane track confirms the high accuracy of the
estimation approach, particularly in the central region of the subset. However, as moving
towards the periphery of the investigated subset, the likelihood of accurately estimating the
impact area decreases due to lower test point density distributions in this area. Combining
such partially estimated impact areas from various high tweet density hubs could be used
subsequently to interpolate from the total hurricane track length impact area. In the
investigated New York subset region, the circular shape of the estimated area can be
explained by the distribution of the test datapoints to the track. These are all located on
the track’s northern side, leading to a less suitable trilateration arrangement. In general,
the estimation of the impact zone including the temporal component of moving hazards, is
much more difficult than the estimation of stationary hazards.

Overall, this approach demonstrates high accuracy compared to traditional weather data
forecasts (e.g., [245, 246]), which are mostly based on weather models, e.g., European
Centre For Medium-Range Weather Forecasts [247]. Numerical models relying on such data
are the primary prediction method [248] for TC track estimation. Precise actual hurricane
tracks with traditional methods are only provided after a TC event, sometimes not until one
year after the event [249]. In contrary, this approach is able to estimate the hazard impact
zone in near-real time using the temporal-non-stationary split method. Furthermore, this
approach provides a first approach towards a TC impact area estimation using VGI. In
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contrary, studies using VGI data for TC analysis so far only focus on information retrieval
for the event [164, 165] and very coarse spatial analysis [131, 176].

General Discussion

It is essential to note that the employed methodologies are not meant to display the
exact hazard area per se. Instead they should give a quick, first approximation of where
the hazard might be positioned and might have an impact on human life. Therefore,
the developed methodologies are an excellent first measure to localize the approximate
hazard position, especially when lacking other data. Especially when introducing a further
challenge with high degrees of temporal development of the hazard estimation, accuracies
drop. Nevertheless, these estimation results remain valuable, especially in the absence of
other data for the approximate hazard extent estimation.

The developed approaches are applicable for a generic natural hazard estimation from
VGI data. They offer high accuracies compared to existing approaches for natural hazard
impact zone modeling (e.g., TC track modeling [250, 251, 252], and stationary hazard
extent estimation [22, 21]). Furthermore, near-real-time availability is given compared
to remote sensing data, normally used for natural hazard estimation and mapping [14,
253]. Finally, we can adequately estimate a near-real-time scenario for a hazard with high
degrees of temporal development. We extracted information from the tweet locations,
texts and dates.

Limitations of VGI VGI data provides approximate indicators of hazard locations
with limitations. It lacks data in uninhabited areas, introducing biases towards populated
regions. Data accuracy varies, with human estimations being less precise. Viewing angle
calculations and corrections are used to account for inaccuracies. Additionally, VGI is
influenced by regional factors and randomness, making it less accurate than technical
sensors.

Advantages of VGI VGI, like Twitter data, offers a real-time alternative to RS data for
hazard identification. VGI’s immediate availability is a critical advantage, enabling rapid
response during natural disasters. It provides richer information, including text details
about hazards, sentiments, and areas where humans are impacted. This complements RS
data, making VGI valuable for rescue services. Estimations using VGI data are particularly
useful when other data sources are lacking for initial hazard assessments.
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3.2.6 Conclusion and Integration in Framework

Overall Conclusion Overall, the results for the approximate area estimation for sta-
tionary and moving natural hazards from VGI data are very promising. The investigated
hazards, chosen to represent a diversity of natural hazards, come with varying available
reference data for the hazard scenarios. Furthermore, different characteristics of the
hazards and the tweeting behaviour, in these cases, require various supplementary data
that help to describe tweet occurrence. Due to these varieties in hazard scenarios, di-
vergent methodologies need to be developed for stationary and moving natural hazards,
separately. One significant contribution of VGI and an advantage compared to, e.g., remote
sensing data, is the availability of text messages. While these methodologies may not
provide the highest accuracy, they serve as first tools for rapidly identifying and assessing
potential hazard areas, particularly in scenarios where alternative data sources are limited
or unavailable.

Limitations and Outlook The challenge of diverse hazard characteristics has been
addressed by developing methods for stationary and moving hazards. However, varying
availability of reference data is another challenge for the estimation of hazard impact zones
using VGI. The reference data used for the evaluation of the moving hazards methodology
have been accurate. In contrary, actual reference data for the investigated time of the
wildfire using VGI data was not available. Instead, pseudo-reference data from later time
steps have been used. The evaluation of the developed methodology would benefit from
incorporating accurate and temporally aligned reference data. E.g., MODIS data could
be employed. These are available day-wise but with a much lower spatial resolution.
Furthermore, the developed methodologies could profit from the pre-processing of tweet
text, including reliability analysis, to enhance their accuracy. More specific information
about the hazard event could be extracted via NLP from the texts to improve the hazard
impact zone estimation methodology.

Framework Integration These methodologies can be adapted to a range of hazards
based on the hazard’s respective characteristics. For instance, the methodology developed
for wildfires can be adapted for other stationary hazards like floods. While this section
primarily focuses on estimating the impact zones of fires and TCs, it contributes to a
broader framework for assessing the effects of various natural hazards on road networks.
The presented approach demonstrates the possibility of integrating VGI data into the
broader context of natural hazard management. By evaluating the spatial alignment of the
estimated hazard zones from VGI with the road network, it becomes possible to estimate
their impacts on roads, as discussed in more detail in Section 4.3.2.
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3.3 Road Impact Extraction from Volunteered Geographic
Information Data

Besides spatial analysis (compare Section 3.2), information extraction (e.g., [24, 157, 163])
is a valuable task using VGI data. In the context of road network analysis, one significant
application of VGI is the extraction of road impact information and its geolocalisation.
A methodology is developed to extract road-related data, such as road intersections and
segments, obtained from tweets texts that contain information regarding damage or
blockages of the roads using NLP techniques. Subsequently, the extracted road locations
are geocoded.

3.3.1 Introduction

VGI has been used in various studies for extracting location information from text. Ex-
tracting place names from text, in general, is conducted using geoparsing. Geoparsing
is converting text descriptions of places into geographic identifiers, like coordinates. It
consists of two steps:

1. extracting place names from text and

2. geocoding the extracted place texts into geographic identifiers.

The first step (1) is mainly conducted mostly with NER or RegEx (e.g., [240, 241, 242]).
New studies focus on improving general place extraction from texts by using various
techniques like convolutional neural networks for text analysis [254] and transformer mod-
els [255]. Some studies also focus specifically on improving road names’ extractions [25].
Secondly (2), only a few studies focus on the improvement of the place names’ geocoding.
However, it is equally important, as a better place name extraction is only valuable for
geographic applications if all the newly extracted place names can also be allocated to a
geographic location. Currently, the main geocoding methods employed are Google Place
API [240, 256, 241], Yahoo Placemaker [257] and ArcGIS geocoding [258], which are
not freely available. Recently, more studies have also used open-source geodatabases
(e.g., [259, 260]). However, not all APIs and databases offer precise geoparsing at road
level.

VGI has been used in a few studies in road analysis contexts. It has generally been
applied mainly for road location approximation from Twitter posting location [261] or
text indicators [262]. Furthermore, VGI has been used for event detection near roads
(e.g., traffic event detection) [263, 258, 262]. These studies, however, do not focus on
detailed road intersections or road segment locations. Using VGI text for specific road
place extraction, among other traffic event-related named entities, has been described
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in Ünsal [264]. Vallejos et al. [265] geocode traffic incident locations recognized from
NER precisely. Yu et al. [25] and Gelernter et al. [138] focus on road extraction, which
extracts place names from text data but do not conduct the geoparsing step. In summary,
geoparsing has improved in the past years when focusing on road name extraction, but
gaps exist in specific geographical road location extraction. VGI data has yet to be studied
for intersection or road segment information extraction for geographical applications. As a
result, the accuracy requirements for such applications have yet to be adequately addressed.

3.3.2 Data

Selected Application Scenario The application scenario used for this investigation
is a flooding that occurred in 2022/23 in the San Francisco Bay Area, CA, US (IX).
This application scenario was selected as the hazard occurred in an urban area with
high numbers of VGI data and with a dense road network. Starting on 31/12/2022
heavy precipitation led to widespread flooding in large parts of California, persisting until
25/03/2023. The flooding resulted in evacuation orders for 6,000 people in total, 200,000
homes without electricity and 22 fatalities. The analysis of VGI data for flood hazard
impact determination includes data obtained within the entire San Francisco Bay Area.
Figure 3.17 visualizes the location of the flood.
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Figure 3.17.: Overview of the cases study hazard location for the San Francisco Bay Area (IX)
flood. Data basis: © 2018 GADM. Projection: WGS84.

Datasets Information about closed roads or deteriorated road conditions during a
natural hazard is usually available from responsible agencies like firefighters or police.
Still, recently more studies have focused on including citizen science [266] in the form
of VGI data. This section employs Twitter data as VGI data for impacted road extraction.
Twitter is used in recent studies due to its widespread usage and easy accessibility [20, 267,
268]. The specific Twitter data are acquired from Twitter’s download API using Python
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programming. The tweet data containing relevant keywords about the hazard, for the
time when the natural hazard takes place, are extracted for the application scenario. Next,
only tweets containing relevant keywords about infrastructure are selected. We extract the
tweet location, date and text.

In total, we collected 32 non-identical road-related and hazard-related tweets. The low
number is due to the exclusion of:

• Messages of identical content if a specific road segment is closed for a longer time
and the identical message is repeated for update purposes.

• Messages that are road-related but related to another hazard than the investigated
one (e.g., car fires in the investigation region).

3.3.3 Methodology

We consider blocked road information. Road authorities often post this information in
emergency or hazard cases. We search tweets with mentioning such information or tweets
posted by the responsible agencies. Tweets by road agencies or other agencies posting
about road conditions have mostly a similar structure, mentioning a major road affected
between certain intersections with that road. Considering this structure, we conduct our
methodology. The road extraction can be divided into three tasks:

• Text processing

• Geoparsing

• Geographic Information System (GIS) processing.

Figure 3.18 displays the process. The tasks are conducted as follows for each tweet text:

1. From the tweets’ texts, we first extract place locations via NER (e.g., Oakland, CA).
Furthermore, we extract road locations via RegEx implemented for roads (e.g.,
Angeles Crest Hwy).

2. We save the extracted locations of one tweet text in a merged format, saving (1) the
general location and (2) all extracted road names separately.

3. We geoparse the general location by searching the location name in the geodatabase
and extracting the associated place polygon. This general area is used to search for
the road names only in a specific area in the following steps, which is vital as specific
road names appear in different neighborhoods or even different cities.

4. We geoparse the road names by post-processing the road names and searching for
their names in the road database. Thus, we extract road lines in a GIS.
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Figure 3.18.: Visualization of the impacted road extraction framework during natural hazards from
Twitter data. The following abbreviations are used: NER - Named Entity Recognition;
RegEx - Regular Expression. Reprinted from [1].

5. We overlap the extracted road lines with a general location polygon to ensure we
extract the correct road of the specified neighborhood.

6. We then compute the intersections of the extracted road lines if several road names
have been mentioned in the text (e.g., Atherton Ave & US101) and obtain intersection
points.

7. Finally, to find affected road segments as mentioned in the tweets’ texts (if several
road names have been mentioned), we extract the road segments located between
the extracted intersection points.

3.3.4 Results

For the San Francisco Bay Area floods, from a total of 32 messages that contain road
location information, four messages have data that are not accurate enough for road
information extraction (e.g., Flooding in all lanes on Interstate 580 EB.) . This kind of
message would allow us to extract the road name Interstate 580. But since the highway
passes through the total region of the San Francisco Bay Area and from the text, we do not
know which segment(s) of the road are meant. Therefore, these messages are considered
too unspecific. Furthermore, the methodology fails on another four messages either in the
text processing step or in the geoparsing step. The name extraction fails due to different
naming conventions, e.g., Camino Pablo. In this example the English RegEx and NER do
not consider Camino (Spanish) as a road name. The geoparsing fails because the extracted
road location names can not be linked with a geographical location (e.g., Bryant onramp)
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as they are not named in our database. In total, we obtain 24 messages from which road
extraction is possible.

With our road extraction method, we obtain three types of information about roads,
depending on the information available in the text:

1. Only a single road name is mentioned, which means we can extract the total road
segment as a line feature.

2. Only an intersection of two roads is mentioned, so we can extract this intersection as
a point feature.

3. Several roads and/or specific intersections of several roads are mentioned, which
means we can extract the road segments between the said intersections as a line
feature. Therefore, this type of information offers the most precise impacted road
segment extraction.

Figure 3.19 displays the different extracted roads for the application scenario of the
Oakland flood. We observe that from most text information data we obtained road
segments and corresponding intersection locations. Only for one example, we only extract
a single intersection information, which doesn’t allow us to extract a corresponding
affected road segment. The extracted roads are distributed all over the investigated areas.
Furthermore, we observe that major roads are mostly being extracted, as these are talked
about in tweets from road agencies.

3.3.5 Discussion

For the San Francisco Bay Area (IX) flood scenario, we have a low number of non-
repeating texts about the road conditions during the hazards. However, these few texts
allow the extraction of relevant impacted road segments for this hazard. We encountered
few challenges in accurately extracting road information from the messages. We encoun-
tered a few challenges in accurately extracting road information from the messages. We
found that a few messages needed to be more accurate for road information extraction,
containing only general road names without intersection locations. These messages are
not suitable for our analysis. Additionally, we encountered issues with the name extraction
step that failed due to different naming conventions and the geoparsing step that failed
due to location names needing to be linkable to geographical locations. Furthermore, when
only a single intersection location is extractable, determining the corresponding affected
road segment is impossible. However, a substantial number of roads that are impacted
by the hazard can be extracted with a high level of detail (intersection-wise). Due to the
extraction from authority data which verify and often update the data compared to other
tweet data, these roads can be extracted with a high level of certainty. Our presented
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Figure 3.19.: Visualization of extracted impacted roads from Volunteered Geographic Information
(VGI) text information data for the flood in the San Francisco Bay Area (IX). Data
basis: © 2018 GADM. Projection: WGS84. Reprinted from [1].

methodological approach is a first approach towards precise road place extraction, includ-
ing name extraction and geocoding, which has not been conducted before. Though Yu
et al. [269] focused on precise road name extraction, they focus on something other
than geocoding. Other studies do not focus on road extraction specifically and often use
geocoding with nonspecific place names, e.g., [255, 240]. A drawback of the developed
methodology is that extracted roads primarily consisted of major roads, as they were the
ones prominently discussed in general tweets and from road agencies. Information about
smaller impacted roads can not be gained from these data sources.

3.3.6 Conclusion and Integration in Framework

Overall Conclusion The road extraction methodology allows the extraction of im-
pacted roads from text messages of VGI data. Overall, our road information extraction
methodology provided valuable insights into the impact of hazards on road networks.
While facing particular challenges, it still demonstrated its potential in capturing relevant
road information from social media messages during hazard events.

Limitations and Outlook However, future improvements could be made to address
the limitations encountered during name extraction and geoparsing. Improvements could
include, e.g., RegEx patterns for other languages that could extract Spanish road naming
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conventions or the integration of other databases including highway ramp names for
geoparsing. Additionally, as the developed methodology is based on general text assess-
ment, it could be transferred to other textual information sources, such as police reports
documenting road issues. This expansion could improve the accuracy and increase the
amount of extracted information regarding impacted roads.

Framework Integration The road extraction from VGI methodology contributes to
the framework by providing valuable insights into the direct impact of hazards on road
networks. Traditional hazard impact assessment approaches often rely on official reports
of responsible agencies. By extracting road-related information directly from VGI text
messages, the framework gains a more immediate view of road conditions during hazard
events from freely and openly available data sources. However, the impacted road location
extraction methodology could be applied to various text information data. Furthermore,
the approach can be easily transferred for any hazard scenario and type where tweet
or general text data are generated. Integrating road information extracted from VGI
sources complements the multi-source geoinformation approach of the broader framework
of natural hazard impact determination from geoinformation data. Extracting directly
impacted roads from VGI provides a more precise evaluation of the extent and severity
of damage on the specified object of the road infrastructure, compared to impact zone
extraction. Assessing the spatial alignment of the extracted impacted roads with the road
network enables the analysis of the impacts on roads described in Section 4.3.2.

3.4 Synthesis on the First Module

In conclusion, Module I forms the basis of the framework designed to assess the possible
impacts of natural hazards on road network accessibility. The module thereby relies on
various geoinformation data: RS and VGI. These data provide an appropriate basis for
the determination of hazard impacts. The assessment of the hazard impacts on road
networks requires a nuanced approach that distinguishes between two fundamental types
of impact: hazard-affected areas and direct impacts of the hazard on road infrastructure.
Affected areas involve estimating hazard impact zones first. Figure 3.20 displays the
components developed in Module I to determine the natural hazard’s influence using
various geoinformation data, subdivided into hazard impact zones estimation and direct
road impact extraction.
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Figure 3.20.: Visualization of Module I, the natural hazard impact determination with geoinfor-
mation data, subdivided into natural hazard impact zone estimation with remote
sensing (RS) data (Section 3.1) and Volunteered Geographic Information (VGI) data
(Section 3.2) for stationary and moving hazards, and direct road impact extraction
with VGI (Section 3.3). The following abbreviations are used: Supp. - Supplementary
Data; Ref. - Reference Data; TC - Tropical Cyclone.

Hazard impact zones can be accurately estimated using high-resolution remote sensing,
which is demonstrated for the mapping of wildfires (Section 3.1). For other hazards, the
methodology can be adapted using similar machine learning models and similar data
sources (compare also Section 2.1.1). However, when high-resolution RS data are not
available due to the non-commercial satellites’ overpass time of a few days, VGI data can be
used to map hazard impact zones in near-real-time. With two different methodologies for
two hazard types (stationary and moving), it is demonstrated that the use of VGI data for
hazard impact zone estimation is possible. Other hazards that show similar characteristics
to wildfires (e.g., floods) in terms of their rather stationary extent, can be estimated
with the adaption of these methodologies using similar models and the same data sources
(Section 2.1.1). In this thesis, it is demonstrated that wildfire hazards can be approximately
estimated and areas where people are majorly affected by the hazard can be identified.
TC hazards are characterized by high degrees of temporal development- Their impacts
zones can not be properly mapped using RS data. It is shown, that for TC hazards, VGI
data offer the opportunity to map hazard impact zones in near-real-time. Furthermore,
direct impact analyses focus on the immediate consequences of a hazard’s direct influence
on road segments. Direct hazard impacts on roads for a flood hazard can be determined
accurately by extracting road information from VGI (Section 3.3). By relying on text data,
this approach offers a substantial advantage over RS techniques because text data yield
additional information about roads impacted by hazards.
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Extracting direct impacts in the form of impacted roads offers a more certain assessment
of immediate consequences on, e.g., road infrastructure. Affected area estimation provides
a broader understanding of potential disruptions. Both are essential for effective hazard
management. In scenarios where complete data on direct road impacts might not be
immediately available, the significance of estimated impact zones becomes evident.

All components (Section 3.1, Section 3.2, Section 3.3) are designed to be applied inde-
pendently on hazards in different geographical locations and environments. Additionally,
the components are designed to be easily transferable to other hazard types (see Chap-
ter 5, Section 5.4.2). Furthermore, the determined hazard impacts serve as the basis for the
assessment of the accessibility of road networks (Module II, Chapter 4) under the influence
of hazard impacts in this thesis. By analyzing the spatial relationship between hazard
impact zones and roads, planners and emergency responders can evaluate which segments
of the road network may be affected (compare Module II, Chapter 4). Subsequently, they
could conduct accessibility analyses based on the determined hazard impacts.
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International Journal of Geo-Information 13.4 (2024), p. 107

marked with a green line.

Module II - Road Network Accessibility Assessment during Natural Hazards is the second
part of the framework for the assessment of natural hazards’ impact on road infrastructure.
Figure 4.1 displays the steps developed in Module II for the road network accessibility
assessment during natural hazards. First, the degraded network which experiences hazard
impacts is constructed. Secondly, the network accessibility under hazard impacts is
analyzed. Like the first module, the network analysis relies only on freely and openly
available road data in the form of OSM data. To estimate the hazards’ impact on road
networks an overlay operation that superimposes the hazard impacts on the road network
datasets is performed in Section 4.3.2. This overlay operation provides valuable insight
into the spatial intersection of hazards and roads, highlighting the precise locations
where road functionality may be compromised. The resulting degraded road network
then becomes the basis for conducting in-depth accessibility analyses. Degraded road
conditions are investigated to evaluate the overall accessibility within the network before
and during/shortly after the hazard as well as the change in accessibility (Section 4.3.3).
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Figure 4.1.: Visualization of Module II, the road network accessibility assessment during natural
hazards using input from Module I, subdivided into the introduction of the Open Street
Map (OSM) road network data (Section 4.3.1), the hazard-induced degraded network
construction (Section 4.3.2) and the network accessibility analysis (Section 4.3.3).
The final result of this module and the infrastructure assessment during natural
hazards framework in total is the road network accessibility under natural hazards’
impacts.

4.1 Introduction

Road network analysis studies relationships and interactions between entities (nodes and
edges) in a road network, utilizing tools to calculate paths within the network. A path
refers to the route between nodes in a network. It is a series of interconnected edges that
connect one node to another. The paths within a network can be computed using various
performance measures as basis. E.g., the distance corresponds to the calculation of the
shortest paths, or the travel time corresponds to the computation of the fastest paths [35,
12].

Further performance measures are throughput and capacity [270, 271], topological mea-
sures [272, 273], economic measures [274], and accessibility [275]. One important
measure defining the road network performance is accessibility [275]. Accessibility is
defined as the ease with which a location can be reached. However, there are various
measures of how accessibility can be determined. Accessibility indices [12, 276] have
been applied in a few studies. These metrics mostly rely on connectivity information but
require more detailed traffic and travel demand data for more complex network analysis
(e.g., [270, 277]). Obtaining daily or average travel demand data is often already diffi-
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cult [278, 279]. This difficulty is intensified in hazard situations that deviate from average
daily traffic scenarios. Even when average travel demand data are available, they may not
accurately reflect travel patterns in hazardous situations. As a result, metrics that do not
rely on other traffic data are more useful in such cases.

Utilizing accessibility-based metrics enables a fast and generic analysis of the hazard-
impacted road network. Such metrics measure the connectivity between locations, which
is a direct road network performance measure. Many methods rely on graph theory
(e.g., [31, 32]). Common accessibility methods include the use of various measures
of connectivity (e.g., beta index, association number, alpha index, gamma index) and
accessibility indices (Shimbel index and nodal degree) [33, 280, 281]. For network analysis,
the graph theoretical measures betweenness and closeness centrality are often used [282,
283, 284]. They provide a fast and overall picture of accessibility in a road network but
do not include specific scenarios that could be important to natural hazard planning and
emergency response. Antunes et al. [285] and Santos et al. [286] present accessibility-
maximization approaches in a critical road infrastructure context. Accessibility-based
performance measures are also proposed by Chen et al. [287].

Otherwise, accessibility indices can be adapted to situational requirements, like an im-
mediate emergency response (evacuations or emergency facility access [12]) or general
connectivity investigations (remoteness of places [276]). As a basis serves the calculation
of shortest paths according to Dijkstra [288]. However, here, different metrics can be
used again, like the distance along graph edges or the travel time along graph edges
[289, 12], for calculating the shortest or fastest path, respectively. Applying graph theory
for road network analysis, different criteria apart from the simple shortest paths can be
valuable in general [290, 291] and for accessibility measures [280]. The use of k-shortest
paths has been investigated, e.g., in Chondrogiannis et al. [292] and [290]. However,
these criteria have not been considered for alternative road network accessibility analysis
measures in a hazard context. In total, we rely on four different methods to analyze the
accessibility change due to the hazards’ impacts. These are the theoretical accessibility
measures betweenness centrality (BN, 1) and closeness centrality (CN, 2) based on graph
theory (e.g., [293, 283]) that are employed for the first time in an accessibility change
estimation using a degraded road network. Furthermore, we use a free-flow assumption
accessibility index adapted from Guth [12] for shelter accessibility analysis (SAI, 3). Be-
sides, an alternative routing assumption accessibility measure (ARAA, 4) will be newly
developed. This measure is the first of its kind to consider anticipated congestion scenarios.
Each method is applied to the data of the intact and degraded road network and the
differences in accessibility are computed.
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4.2 Data

Selected Application Scenario For the road network accessibility analysis, the flood
data from the San Francisco Bay Area (see Figure 3.17 in Section 3.3.2) are employed
once more as an exemplary hazard. This hazard is suitable, as the it occurred in an urban
area with a dense road network and a high number of impacts on the road conditions.
However, due to the large size of this region, the application of the network analysis is
restricted exclusively to a subset within this area, specifically the city of Oakland (X). The
city of Oakland, located within the San Francisco Bay Area, documented unprecedented
24-hour rainfall records during the course of this event. Figure 4.2 visualizes the location
of the flood.
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Figure 4.2.: Overview of the cases study hazard location for the Oakland (X) flood, a subset of
the San Francisco Bay Area (IX) flood (Figure 3.17 in Section 3.3.2). Data basis:
© 2018 GADM. Projection: WGS84.

Road Network Related Data To carry out the accessibility analysis, we use a road graph
network (compare Section 2.1.2) retrieved from the OSMnx [184] python package. For
the selected Oakland (X) application scenario, we selected a reasonable region of interest
and extracted the graph’s nodes and edges within this region. It is essential to use cleaned
graphs that only contain relevant nodes that represent road intersections. This is assured
by the preprocessed OSM road data obtained from OSMnx (compare Section 2.1.2).

The OSM data need to be evaluated to address the concerns about the reliability of VGI
data, which can be subject to various biases and limitations. We use authoritative road
data from government sources of the respective application scenario region. These are
the San Francisco Bay Region Roadways by the Metropolitan Transportation Commission,
which is the transportation planning, financing, and coordinating agency for the nine San
Francisco Bay Area counties. Additionally, we use Maxar World Imagery, a high-resolution
satellite imagery prepared by a free provider.
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Table 4.1.: Overview of network analysis data for the Oakland (X) flood. Adapted from [1].

Shelter locations N° Edges N° Nodes

St. Vincent de Paul,
Ira Jinkins Community Center

22,289 8,472

Additionally, some of our network analysis approaches need specified destination points
within the network (compare Section 4.3.3). In our study case, the destination points are
emergency shelters. Data about the location of emergency shelters are obtained from the
respective responsible agency, the city of Oakland administration (oaklandca.gov), for the
flood hazard. The reason for the selection of the subset of the city of Oakland (X) is the
availability of a reasonable number of emergency shelters (two) that can be reached within
this region. Table 4.1 displays the selected shelters’ information and the number of edges
and nodes that were selected for the application scenario.

Hazard Impact-Related Data For the construction of the degraded network after the
hazard started, we use the impacted roads extracted from VGI (Section 3.3) for the selected
scenario region of Oakland (X). Additionally, impact zones for the Oakland floods are
used. This is a 100/500-year flood hazard map provided by the Association of Bay Area
Governments for the San Francisco Bay Area. These Federal Emergency Management
Agency’s flood hazard zones are based on historical data about regional flooding. 100-year
floodplains are areas with a 1% (1 in 100) annual chance of flooding that are likely to
be flooded at least 0.15 m. 500-year floodplains are areas with a 0.2% (1 in 500) annual
chance of flooding. The map includes the 100 and 500-year floodplains designated by the
agency and potential floodplains currently protected by levees. The used map was updated
on July 1, 2022.

4.3 Methodology

In the following, the network basics (Section 4.3.1), the methodology to construct the
degraded network (Section 4.3.2), and the network accessibility analysis (Section 4.3.3)
are described.

4.3.1 Road Network Basics

The OSM data are evaluated to address the concerns about the reliability of VGI data,
which can be subject to various biases and limitations. We compare the edges of the OSM
network data to the authoritative road data to evaluate the OSM data’s accuracy. Between
the OSM and the administrative data source, 6% of the road data are different. When
visually comparing OSM road data and Maxar World Imagery, OSM data mostly deviate on
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private property grounds, e.g., harbor area and open cast mine land. The reason being
private roads not mapped in OSM data.

The network analysis focuses on the accessibility of the road network and therefore on the
accessibility of points within the road network only. Origin and destination points for path
calculations in the network are graph nodes, in the following referred to as starting and
endpoints. The starting and endpoints for the calculation of our accessibility measures
(Section 4.3.3) depend on the specific region of the network being analyzed and the
selected measure. In general, the starting and end points for the investigated pathways are
all nodes within the network. The starting point is any node within the network, and the
endpoint is each of the other nodes in the network. However, few accessibility measures
do not calculate the accessibility to each node but only to few specified destination (end)
points. A use-case scenario focusing on the accessibility analysis of evacuation shelters is
investigated. These shelters are crucial during natural hazard events. In contrast to e.g.
emergency facilities, which are also crucial during hazard events, non-emergency-vehicles
trying to reach shelters are more likely to be stuck in congestions. Evacuation shelters
(see Section 4.2) are therefore predisposed to scenarios of expected congestion. Therefore,
their use as destination points allows the evaluation of accessibility under anticipated
congestion scenarios.

As the nodes of the road network are the starting points for the network accessibility
analysis, the accessibility measures are calculated and stored for each network node. The
edges’ accessibility is calculated as the minimum accessibility of its two connecting nodes,
as an edge can be only as accessible as the node with the lowest accessibility among the
nodes it is connected to.

4.3.2 Degraded Road Network Construction based on Hazard-Induced
Impact

In this section, the focus lies on identifying the network edges that have been degraded
by the hazard. Therefore, the determined hazard impacts are overlapped with the road
network data. These are the impacted roads, as extracted using VGI data (e.g., Section 3.3)
for this application scenario, and the hazard impact zone. The hazard impact zone for
this application scenario is a 100/500-year flood hazard map (see Section 4.2). During
the overlapping process, roads in the network that experience direct impacts during the
hazard (as extracted in Section 3.3) are categorized as degraded. Furthermore, roads in
the network that overlap with the hazard impact zone are categorized as degraded as these
roads are at risk of being degraded, too. This categorization also applies to situations
where only a part of the road edge or a road segment end node is affected. When one
node is degraded, the entire segment is affected because the degradation of a critical point
disrupts the continuity and functionality of the entire network segment.
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The degraded network is constructed from the uncorrupted network by eliminating the
degraded segments (edges) and degraded intersections (nodes). When degraded nodes
and edges are removed, parts of the network might become disconnected when they do
not have any connection to the rest of the network anymore. In this case, we keep
the main network with the largest number of connected components for the subsequent
analysis. Degraded and disconnected nodes are considered non-accessible, and therefore
an accessibility measure is not calculated for them.

4.3.3 Road Network Accessibility

To evaluate the impact of natural hazards on road network accessibility, all accessibility
measures for the uncorrupted and the degraded network are calculated. Finally, to
assess the network accessibility change, the difference in network accessibility before
(uncorrupted network) and during (degraded network) the hazard is calculated. For each
measure M for each node v, the impact is calculated as:

MImpact,v = Mbe f ore,v − Ma f ter,v = Mintact,v − Mdegraded,v (4.1)

Accessibility Measure Definition Betweenness and closeness centrality are measures
that indicate accessibility for a network in a general, holistic view. They are selected as
measures representative of general measures (compare Section 4.1) of graph structure
widely used in network theory. Betweenness Centrality (BN) [294] is a measure that
quantifies the importance of a node within a network based on the number of shortest
paths that pass through that node. Betweenness centrality of a node v is the sum of the
fraction of all-pairs shortest paths that pass through v:

BN(v) = ∑
s,t∈V

σ(s, t|v)
σ(s, t)

(4.2)

where V is the set of nodes, σ(s, t) is the number of shortest (s, t)-paths considering the
travel time, and σ(s, t|v) is the number of those paths passing through some node v other
than s, t [295]. A node with a high betweenness centrality value acts as a bridge or
connector within the network. A node with a low betweenness centrality value has limited
influence on the overall network structure.

Closeness Centrality (CN) [296] is a measure that quantifies how quickly a node can be
accessed from other nodes in a network. It calculates the average shortest path distance
from a node v to all other nodes in the network:

CN(v) =
n − 1

∑n−1
w=1 d(w, v)

(4.3)
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where d(w, v) is the shortest path distance between w and v considering the travel time,
and n − 1 is the number of nodes reachable from v. A node with a high closeness centrality
value is able to reach other nodes in the network more quickly. On average, a node with
a low closeness centrality value takes longer to reach other nodes in the network. All
centrality values are finally normalized to the range [0, 1], fitted on the value range before
the hazard, and transformed into the value range before and after.

Free-flow assumption accessibility indices have been used, e.g. for emergency response
(Emergency Facility Accessibility Index (EFAI) [12]) or general connectivity investiga-
tions (Accessibility and Remoteness Index of Australia (ARIA) [276]). For our evacuation
scenario, we slightly adapted the EFAI towards reaching emergency shelters instead of
emergency facilities. An emergency facility or shelter accessibility index can consider spe-
cific facilities and critical locations to provide a more targeted assessment of accessibility in
the hazard-affected areas compared to global measures. Therefore, the Shelter Accessibility
Index (SAI) for an origin node v is defined as:

SAI(v) = ∑
S

tvS

tS̄
(4.4)

where tvS is the travel time from origin v to the nearest shelter S and tS̄ is the mean
travel time of all origins to the respective nearest shelter S. The EFAI and ARIA define
the index with a fixed threshold of three for the ratio. This threshold is employed to
remove the effects of extreme values. EFAI and ARIA have predominantly been used to
analyze overland road networks and focus primarily on the hierarchy of roads ranging
from motorways to tertiary roads, excluding residential roads. Our study area, in contrast,
includes all levels of road hierarchy. For example, residential roads contribute significantly
to the total road count. This inclusion tends to reduce the mean travel time. However,
in rural, mountainous regions, the travel times can be notably higher than the mean.
When divided by relatively small mean values, destinations in these regions result in
comparatively high index values.

Consequently, extreme values might be much more prevalent in some application scenarios,
which makes it necessary to consider these values, too. Therefore, contrary to the EFAI and
ARIA, we do not define the SAI with a fixed threshold of three for the ratio. A node with a
low SAI value is more accessible, as it indicates that its travel time to the nearest shelter is
relatively short compared to the average travel time. On the contrary, a node with a high
SAI value is less accessible. Note that this measure operates inversely compared to all the
other measures, where a higher value denotes greater accessibility. However, the existing
and the adapted shelter indices consider a free-flow scenario. Especially for evacuation
scenarios where many people leave the same location at the same time, these free-flow
assumptions might be critical. As many people are prone to take the same routes (the
fastest one), this can lead to congestion. These, in turn, lead to other routes being faster
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than the routes that are normally the fastest in free-flow cases but are not considered in
the index calculation.

Therefore, the use of an alternative routing assumption accessibility to measure accessibility
is advantageous. Since a free-flow assumption is probably wrong in evacuation scenarios,
it would be favorable to consider travel demand and capacity data to account for congested
roads [277, 297] correctly. However, obtaining travel demand data is difficult, especially in
a hazard-case scenario (compare Section 4.1). Therefore, we develop an approach that is
independent of travel demand and considers routing alternatives to the respective shortest
paths. The measure Alternative Routing Assumption Accessibility (ARAA) considers not
only one shortest path but a selected number of k shortest paths. We assume that people
would be using paths that are

1. still short (fast) compared to the shortest path, but

2. considerably different (few overlaps) to the shortest path.

following Kondo et al. [280]. The accessibility measure is therefore the sum of the number
of common nodes between the k shortest selected paths. In contrast to other approaches
that try to find several non-overlapping shortest paths [280], we adapt the underlying
assumption to develop an approach that uses the amount of overlapping as an accessibility
measure. The fewer the found paths between two points are overlapping partially, the more
these points are accessible and vice versa. As a measure for the amount of overlapping of
paths we use the sum of the number of common nodes between the selected paths. The
ARAA for each origin node v is therefore calculated as:

ARAA(v) =
1

∑k
i,j=1 |Set(pathi) ∩ Set(pathj)|

(4.5)

for pathi, pathj ∈ pathsvS(t), i ̸= j, where k is the number of calculated shortest paths
between origin node v to the nearest shelter S considering the travel time. A node with a
high ARAA value is more accessible as it has more paths leading to a shelter that are not
(partially) overlapping. A node with a low ARAA value is less accessible as it has fewer
paths leading to a shelter that are not (partially) overlapping.
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4.4 Results

In this section, we present the results of the construction of the degraded network and
the subsequent accessibility analysis of the intact and the constructed degraded road
network.

Figure 4.3 shows the network degradation estimation process exemplary for the Oakland
(X) flood application scenario. Figure 4.3, top left, shows the hazard impact zone, in this
case, a 100/500-year flood map for the San Francisco Bay Area. Figure 4.3, top right,
shows the road segments directly impacted by the flood in 2022/23 as extracted from
VGI data (Section 3.3). Combining the degraded roads affected directly by the floods in
2022/23 and the possibly degraded roads obtained from the overlap of the impact zone
with the road network, a more complete picture of the roads that may be degraded due
to the hazards’ impact is given. Thus, the degraded road edges and nodes of the road
network in Figure 4.3, bottom, are obtained.
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Figure 4.3.: Visualization of the impact zone of a hazard responsible for anticipated impacts on
the road network (top left) and the degraded road extraction results responsible for
direct impacts on the road network (top right) on the Oakland (X) flood application
scenario. Visualization of the complete degraded roads due to the hazard’s impact
(roads crossing impact zone and directly extracted) (bottom) on the Oakland (X)
flood application scenario. Data basis: © 2018 GADM. Projection: WGS84. Adapted
from [1].
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In the following, we will present the results of the four measures applied to the intact
and degraded road network for the Oakland (X) study region. Furthermore, the change
in network accessibility from before (intact road network) and during/after (degraded
road network) a flood is presented for the four measures. The change is called the
hazard’s impact on road infrastructure in the following. We visualize the road network
accessibility and the hazard’s impact estimated by the four measures in a road map
(Figure 4.4). The values of these measures were grouped into five classes defined by
quintiles. For the visualization of the after-hazard accessibility the quintiles of the before-
hazard accessibility are used to show possible changes. Furthermore, we present the
results of the four accessibility measures for the network edges because the visualization
of the node accessibility values’ becomes less effective when numerous nodes overlap
(compare Figure A.2 in Appendix C.1). The display of the edge accessibility values allows
a more straightforward interpretation of the degraded and less accessible road sections
and facilitates the assessment of the hazard’s impact on the road infrastructure.

Figure 4.4, row 1, shows the results for the betweenness accessibility measure for the road
network before and during/after the hazard (Q0.2: 0.0053, Q0.4: 0.0130, Q0.6: 0.0300, Q0.8:
0.0760) and the accessibility change due to the hazard impact (Q0,2: 0.00016, Q0.4: 0.00057,
Q0.6: 0.00170, Q0.8: 0.00730, range [0, 0.12]) for the Oakland (X) application scenario. We
see that this measure highlights major traffic arteries as highly accessible, while roads
in residential neighborhoods are less accessible. As several major arteries become less
accessible due to the impact of the hazard, we see a shift of accessibility towards other
arteries. Some arteries were moderately accessible before the hazard and became highly
accessible after the hazard. These become more important for the general traffic flow, as
the previously important ones are less accessible. Roads in urban neighborhoods remain
lowly accessible. Consequently, we see less change in neighborhood roads and in general
to the east of the area, where accessibility has not changed much as no major arteries were
present neither before nor after the hazard.

Figure 4.4, row 2, shows the results for the closeness accessibility measure for the road
network before and during/after the hazard (Q0.2: 0.64, Q0.4: 0.73, Q0.6: 0.79, Q0.8: 0.83)
and the accessibility change due to the hazard impact (Q0.2: 0.0004, Q0.4: 0.0005, Q0.6:
0.0007, Q0.8: 0.0009, range [0, 0.001]) for the application scenario. Before the hazard, using
this measure, edges in the center of the study area were much more accessible, while edges
at the borders of the area were less accessible. For large parts of the area, accessibility
is very high, especially in the center of the study area. During/after the hazard, large
parts of the area are less accessible overall, especially in the center-west. The edges in
the center-east remain the most accessible. Looking at the change, we see a pattern
where especially edges near the center-east area show a higher change to less accessibility.
Accessibility of edges in the east remains about the same. We can see which neighborhoods
are clearly affected by the impact of the hazard on the road network and therefore the
change in accessibility.
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Figure 4.4.: Visualization of the betweenness centrality (BN), row 1, closeness centrality (CN),
row 2, Shelter Accessibility Index (SAI), row 3, and Alternative Routing Assumption
Accessibility (ARAA), row 4, measures for the flood in Oakland displayed for the
intact network before the hazard, the degraded network during/after the hazard and
the change in accessibility between the two for the network edges. Quintiles for each
measure are given in the text. Note that the SAI impact values are visualized with
different intervals (interval boundaries I1: 0.1, I2: 2.45, I3: 4.89, I4: 7.33). Data basis:
© 2018 GADM. Projection: WGS84. Reprinted from [1].
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Figure 4.4, row 3, shows the results for the SAI measure for the road network before
and during/after the hazard (Q0.2: 1.3, Q0.4: 1.1, Q0.6: 0.9, Q0.8: 0.6, range [0, 10]) and
the accessibility change due to the hazard impact (Q0.2: 0.012, Q0.4: 0.018, Q0.6: 0.022,
Q0.8: 0.027, range [0, 9.86]) for the application scenario. Note that for this measure, the
value range is inversed, where a high SAI value represents low accessibility and a low
SAI value represents high accessibility. Using the shelters as destination points, we see a
significantly higher accessibility of the edges that are close to the shelters. For the intact
road network, the center of the study area is also comparatively highly accessible. However,
the center-north is more accessible because it is more connected to the northern shelter
area, mainly by a major road that runs to the south. The eastern study area is the least
accessible. For the degraded network, we see almost the same pattern of accessibility
overall, as places near the shelters, whose paths are not obstructed are still very accessible.
However, several major arteries such as Interstate 580 and 880 (Points A and B) become
much less accessible in certain segments near degraded roads. The area near the Oakland
Airport (Point C) obtains higher accessibility values. The distribution of the SAI values is
extremely right-skewed (median: 0.02) with 95.2% of the values lying below the value
of 0.1, meaning that the accessibility of most road segments has not changed. The first
interval (interval boundary I1) is defined as "no change" with values below 0.1. Four further
classes are formed with equal interval boundaries (I2: 2.45, I3: 4.89, I4: 7.33). Only for a
few roads, changes in accessibility have been observed around points A, B, and C and a
few locations close to degraded edges.

Figure 4.4, row 4, shows the results for the ARAA measure for the road network before and
during/after the hazard (Q0.2: 5.05, Q0.4: 6.09, Q0.6: 7.24, Q0.8: 9.25, range [0, 55]) and the
accessibility change due to the hazard impact (Q0.2: 0.00, Q0.4: 0.34, Q0.6: 2.11, Q0.8: 3.98,
range [0, 39]) for the application scenario. Similar to the SAI measure results, we see the
most accessible places near the shelter points. Accessibility declines quickly when moving
away from these locations. Major traffic arteries and connecting segments are shown with
slightly higher accessibility values compared to purely residential neighborhood roads.
The least accessible areas are some in the center, in the east, and the southeast of the
study area. In the degraded network, the areas nearest to shelter locations maintain high
accessibility, as degraded roads do not need to be used to reach shelters. The areas at the
center become less accessible. Regarding the change in network accessibility, we observe
that the areas close to the shelter locations that already had good accessibility before
and after the hazard , experienced the least amount of change. The center of the study
area between the two shelters is most affected by the impact of the hazard , while the
central-east and northwest show moderate changes in accessibility.
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4.5 Discussion

In this section, we discuss the presented study and results achieved in accessibility. We
discuss the OSM data usage and the construction of the degraded dataset. The hazard’s im-
pact on the road network accessibility for the Oakland floods obtained from the developed
methodology is discussed. Finally, we discuss the suitability of the selected accessibility
measures for the task.

Road Network Data With variations of 6% compared to authority road data, OSM data
are suitable for road network analysis applications due to their accuracy and completeness
of relevant public spaces and infrastructure. These findings correspond with the findings of
other studies that investigated the accuracies of OSM road network data, especially in urban
environments [298, 299]. The relevant road network attributes, such as road distance
and travel time for network analysis, have high completeness in most regions [12]. If
missing, these attributes can be quickly filled using the OSMnx package [184]. Shelter
locations are available with superior accuracy as they are extracted from responsible hazard
management authorities.

Degraded Road Network In this scenario, the hazard impact zone is extracted using
data provided by hazard management authorities. However, hazard impact zones estimated
with geoinformation data (Section 3.1 and Section 3.2) can be used instead. When
the overlap of the hazard impact zone with the road network is combined with the
roads directly impacted by the hazard, a complete overview of the roads at risk of being
degraded within the study region can be gained. The construction of the degraded network
as described, as also conducted, e.g., in Guth [12], ensures the construction without
connectivity errors.

Overall, we conclude that the flood hazard heavily impacts the road network of the
Oakland study region. The degradation of many major roads is mentioned in Twitter
messages texted during the 2022/23 flood. Additionally, when including minor roads that
are most likely influenced as derived from the inundation zones map, large portions of
the road network became degraded due to the hazard. The degradation influences the
network accessibility largely. Furthermore, the road network accessibility overall changes
heavily comparing the intact and the degraded road network. Large portions of the total
area experience changes due to the impact of the hazard. This results from having many
impacted roads in a comparatively small urban area, where impacts on major roads that
traverse the city largely influence the whole road network.

Network Accessibility Four accessibility measures have been investigated. Table 4.2
shows a short summary of the advantages and drawbacks of each measure. The between-
ness centrality gives a good overview of general network accessibility by highlighting
important and highly accessible traffic arteries. In the context of the degradation of the
road network due to a hazard, this measure balances the accessibility degradation of
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Table 4.2.: Advantages and disadvantages of different accessibility measures. The following
abbreviations are used: SAI - Shelter Acccessibility Index; ARAA - Alternative Routing
Assumption Accessibility. Reprinted from [1].

Measure Advantages Disadvantages

Betweenness • Fastest connections easily
distinguishable

• In hazard case newly
fastest connections easily
distinguishable

• No differentiation for
absolute accessibility

Closeness • Area-wide not punctual
accessibility values

• Good for degradation
impact on accessibility

• Accessibility depends on
choice of network borders

• Not for absolute
accessibility estimation

SAI • Adapted to situational
requirements

• Most important roads
degradation highlighted

• Reduced interpretability
• Too optimistic (shortest

path does not consider
possible congestions)

ARAA • Adapted to situational
requirements

• Less optimistic (realistic
for congestions)

• Important arteries visible

• Calculation time

former major arteries with the accessibility amelioration of new major arteries. Therefore,
this measure is valuable for route planning to select major arteries that can provide fast
access to edges in intact road networks and degraded networks. Here, it would be valuable
to display if a positive or negative change happened to the different edges.However, the
measure’s drawback is its tendency to ignore absolute accessibility. It highlights new
arteries as highly accessible, even though they may still be less accessible than the former
major arteries of the intact network.

Using the closeness centrality, it is easily distinguishable which edges in the network
are able to reach other edges easily. For network degradation, the measure displays
neighborhoods that become less accessible. Overall, the accessibilities in all areas are
similar and less scattered and heterogeneous than for the betweenness centrality. This
helps to investigate which regions might have more difficulty being reached by emergency
vehicles or other places in the case of an evacuation. The drawback of this method is the
major dependence of the accessibility value on the selected investigation area. Edges in
the center of the selected area are, by default, more accessible. This measure computes
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a very universal picture, with almost all road experiencing a drop in accessibility due to
the degraded roads. Therefore, the measure is suitable to display changes in accessibility
accurately , but needs to be used with caution for absolute accessibility analyses.

Our betweenness and closeness centrality findings correspond with other studies that used
those measures for network accessibility analysis (e.g., [282, 283, 284]). These measures
provide valuable insights into networks’ structural characteristics and efficiency and are
fast and easy to apply to any kind of network. Betweenness and closeness centrality
are global measures that capture the overall importance of nodes in the network very
well. However, they heavily rely on the network structure. Due to natural hazards, the
degraded road network has an altered network structure. Therefore, betweenness and
closeness centrality values may change significantly (betweenness centrality for major
arteries, closeness centrality overall, compare Section 4.4), even for minor disruptions.
Minor changes can completely alter the selected paths, leading to different nodes being
much more important from a theoretical perspective. Viewed from a practical point of
view during a natural hazard, it is important to recognize that certain regions or specific
roads that hold significance in the intact network may retain their critical importance even
when assigned lower accessibility values in a degraded network.

Accessibility indices can be adapted to situational requirements, like immediate emergency
response (evacuations or emergency facility access [12]) or general connectivity investiga-
tions (remoteness of places [276]). These indices can consider specific facilities and critical
locations to provide a more targeted accessibility assessment during a natural hazard.
Compared to the previous measures, the SAI is adaptable to situational requirements for
route planning investigations to provide a more targeted assessment of the accessibility
of regions. However, the inverse definition of the SAI (like EFAI and ARIA) could be
more optimal and this measure is less straightforward and more challenging to interpret.
Adapting the SAI to avoid using a fixed threshold (see Section 4.3) enhances its usability for
networks with all hierarchies of roads, especially when compared to EFAI and ARIA [195,
276]. However, the SAI still follows an extremely right-skewed distribution and is not
optimal for the visualization of accessibility and especially its changes. Only few major
arteries (Points A and B in Figure 4.4, row 3) and few other roads especially in the South
(around Point C) experience changes. Additionally, due to the definition of this measure,
using the mean travel time value, roads near the Oakland Airport (Point C in Figure 4.4,
row 3) become more accessible compared to the mean, as the mean value becomes larger
overall. Furthermore, considering only one shortest path, the measure can be seen as too
optimistic in evaluating the accessibility impact. In reality, when evacuation orders are
given, and all people decide to choose the depicted shortest path, the accessibility of this
path would drop rapidly. This would lead to congested scenarios where free-flow measures
can not estimate accessibility.

The ARAA can be adapted to situational requirements as much as the SAI, e.g., for shelter
or emergency facility accessibility. With the ARAA, major traffic arteries, as well as regional
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clusters of accessibility, can be easily detected. In the context of degradation of road
networks, the ARAA can give clear statements about areas of change in accessibility. For
the impact, the ARAA shows a very detailed and differentiated accessibility value pattern
for the impacted regions (center of study region). Only very few edges closest to the
shelter locations are considered highly accessible when assuming congestions. The ARAA
can be adjusted to simulate congestion severity by augmenting the number of k paths
to be computed. Furthermore, due to the use of alternative routes, it is a more realistic
measure for congested scenarios than free-flow measures [195]. Therefore, this measure
is valuable for route planning in hazard scenarios compared to other accessibility-based
measures [287]. Additionally, it is valuable compared to methods that rely on more
complex and often non-available data like traffic data (e.g., [277, 297]). However, due
to the higher number of paths to be calculated one drawback of the ARAA is the longer
calculation time.

Overall, the measures focus on different attributes of a network, e.g., connection function
of a node or reachability to any other node. Furthermore, they consider different scenarios,
e.g., general accessibility or evacuation scenarios. A direct comparison of outcomes from
these measures is unfeasible, given their distinct definitions of accessibility stemming from
divergent attributes and application uses. As a result, their comparability needs to be
improved. Nevertheless, the measures complement each other by providing divergent
perspectives on road network accessibility. These contribute to a more comprehensive
understanding of the accessibility dynamics within the road network during natural hazards
and enable a nuanced evaluation of the network’s vulnerabilities in hazard management.

However, for the evaluation of the developed network accessibility analysis, the comparison
to more detailed network analysis models, for example, for a defined hazard where traffic
information is available, would be favorable. For example, including road capacity data in
congestion scenarios using detailed modeling [300, 301] can give more detailed insights
into network accessibility. The complexity of modeled parameters concerning network
accessibility could be increased to a high degree according to the desired accuracy and
detailing of accessibility analysis. Furthermore, a straightforward model for evacuation
scenarios is used in this case: we assume that people are evacuated to two shelters.
In reality, evacuation scenarios are much more complex, incorporating, e.g., scenarios
where people choose their evacuation destination or where roads are blocked to regulate
traffic [302]. Such scenarios are defined, e.g., in the Sea to Sky Multimodal Evacuation
Plan developed by the District of Squamish and the Resort Municipality of Whistler [303].
However, in our framework, the choice of destinations can easily be adapted according to
necessities and each authorities’ evacuation plans.

4.5 Discussion 93



4.6 Conclusion and Integration in Framework

For a flood application scenario, it is demonstrated how the presence of hazard impacts
affects road conditions and overall accessibility within the network. The analysis of hazard
impacts on road networks is based on overlaying impact zones onto road network datasets
(Section 4.3.1), revealing the locations where road functionality may be compromised
(Section 4.3.2). Additionally, directly extracted road impacts are considered (Section 3.3).
Overlapping the road network with the hazard impacts and subtracting roads that are
marked as impacted from the intact road network proves to be an effective approach
creating a degraded road network. In the following, the degraded network serves as the
basis for the accessibility analyses.

Different measures of accessibility change are employed to assess the network’s perfor-
mance before and during the hazard, all of which are valid for road network impact analysis
(see Section 4.5). Two standard accessibility measures ([294, 296]) are benchmarks for
evaluating and contrasting our developed approaches. Specifically, we introduced an
alternative routing assumption accessibility measure that considers anticipated congestion
scenarios. All employed measures achieve the objective of estimating road network accessi-
bility without using additional traffic data. Therefore, they are all suitable for road network
accessibility analysis independently of restricted global data availability on hazard-induced
road network impacts. In total, the use of each measure is justified, as each measure could
demonstrate the accessibility change due to the degradation of the network. However,
their combination and comparison give valuable insights. In summary, this framework
offers a quick and straightforward assessment of natural hazard impact on road networks.
It serves as an initial step for disaster risk management planning shortly after a hazard
event. The proposed approaches are particularly valuable due to their applicability using
only degraded road network information without any additional data sources.

While this section focuses explicitly on a flood hazard, it contributes to the broader frame-
work for the evaluation of road accessibility under natural hazard impacts. Demonstrating
how the presence of hazard impacts affects road accessibility in a road network, the
developed methodology can easily be transferred to analyze of road networks impacted by
various other hazards.

4.7 Synthesis on the Second Module

The Module II represents the second step in a framework for assessing the impact of natural
hazards on road infrastructure. This module analyzes the effects of natural hazards impacts
on road infrastructure. It builds upon the direct road impacts extracted in Chapter 3 and,
in the selected application scenario, on the flood impact zone from a 100/500-year flood
hazard map. The analysis of hazard impacts on road networks is based on overlaying
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the employed impact zones and direct impacts onto road network datasets. The degraded
road network is created, overlapping the road network with the hazard impact (zones).
Then, the degraded network serves as the basis for the accessibility analyses. This module
employs various methods to analyze accessibility changes due to hazard impacts. These
methods include established theoretical measures on the one hand. These are betweenness
centrality and closeness centrality, which are rooted in graph theory. On the other hand,
it utilizes a free-flow assumption accessibility index and a congested-flow assumption
accessibility measure. For a flood hazard, all of them are valuable for road network impact
analysis.
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Figure 4.5.: Visualization of Module II for the road network accessibility assessment during natural
hazards. The degraded network construction is based in the information of the
impacted roads as extracted in Module I and the External impact zone overlapped
with Open Street Map (OSM) road network data. Impact zones estimated in Module I
could be employed. The road network accessibility analysis is based on the constructed
network.

Figure 4.5 displays the components developed in Module II to assess road network ac-
cessibility during natural hazards. The Module is subdivided into the hazard-induced
degraded network construction based on the overlaying of impacts and road network
data and the road network accessibility analysis. The developed Module II is designed to
be easily transferable to different hazard types affecting other road networks (see Chap-
ter 5). The components (hazard-induced degraded network construction and road network
accessibility analysis) could also be applied independently. More details are discussed
in Section 5.4.2).
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Like Module I, Module II relies exclusively on openly available data, namely OSM data
and the impacts as extracted from openly available geoinformation data. All accessibility
measures achieve the objective to estimate road network accessibility without using
additional traffic data. Therefore, the framework can tackle the challenge of restricted
global data availability on road network impacts due to hazard occurrence. The impact
zones for the Oakland floods have not been extracted using the methodology developed
in Module I (Section 3.1, Section 3.2), yet. However, the developed methodology could
be used in its entirety for the estimation of hazard impact zones for the further use in
Module II. Using only the impact (zones) determined in Module I, before applying the
Module II, a complete framework for assessing the impact of natural hazards on road
infrastructure can be constructed (see Chapter 5).
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The developed methodology for the assessment of natural hazards impacts on road infras-
tructure comprising of Module I and Module II is applied exemplary for the application
scenario of the Bobcat (XI) wildfire hazard. This chapter summarizes the entire process
for the assessment of natural hazards’ impacts on road infrastructure. It includes all the
steps as presented in Module I (Chapter 3) and Module II (Chapter 4). It begins with
the presentation of the study region in Section 5.1, followed by the results applying the
methods of Module I, the determination of hazard impact zone and road impact extraction
in Section 5.2. Then, the results applying the methods of Module II, the road network
accessibility analysis, are presented in Section 5.3. Finally, the total framework for the
assessment of natural hazards impacts on road infrastructure for the application scenario
is discussed Section 5.4.

5.1 Application Scenario

The developed methodology for the assessment of natural hazards impacts on road infras-
tructure is applied exemplary for the application scenario of the Bobcat wildfire hazard
(XI). The Bobcat wildfire occurred in 2020 in the Angeles National Forest, CA, US. Fig-
ure 5.1 visualizes the location of the fire. The Bobcat wildfire started in early September
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2020 in the Angeles National Forest, a large mountainous area situated near Los Angeles.
It predominantly stroke in the central area of the San Gabriel Mountains, which include
the Angeles National Forest. Due to a combination of dry vegetation, strong winds, and
challenging firefighting conditions, the wildfire escalated quickly in size and intensity. The
fire stands out as one of the most extensive wildfires documented in the history of Los
Angeles County. It was fully contained only on December 18. The fire initially spread
out in a southern direction, which lead to evacuation directives for inhabitants in Sierra
Madre, Monrovia, Bradbury, and Duarte. Additionally, evacuation alerts were provided for
residents in Arcadia, Pasadena, and Altadena. Table 5.1 shows the different characteristics
concerning the fire as well as tweet information for this hazard.
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Figure 5.1.: Overview of the cases study hazard location for the Bobcat (XI) fire. Data basis:
© 2018 GADM. Projection: WGS84.
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Table 5.1.: Overview of fire characteristics and characteristics influencing tweet data for the Bobcat
Fire. Adapted from [1].

Location Bobcat Fire

Fire Starting Date 06/09/2020

Fire Duration -19/10/2020 (43 days)

Total Fire Area ∼ 469km2

Fire Behaviour
98km2 within 4 days,
+/- constant spreading

Landcover
Forest/shrub landcover,
mountainous, no population

Population Density/
Distribution

High density, irregular
distribution around
possible fire area

Tweet Behavior
More tweets, less place
information in text

Agencies (Fire/Road) Using twitter

First Available Remote
Sensing Data

4 days after fire start
(10/09/2020)

5.2 Module 1

In the following, the three developed methodologies of Module I - Natural Hazard Impact
Determination with Geoinformation Data are applied to the Bobcat (XI) application
scenario. These methodologies are: the natural hazard impact zone estimation using RS
data (Section 5.2.1) and VGI data (Section 5.2.2) and the road impact extraction from VGI
(Section 5.2.3).

5.2.1 Natural Hazard Impact Zone Estimation with Remote Sensing Data

As documented in Table 5.1 the first Sentinel-2 high resolution RS image is available four
days after the fires ignition on 10/09/2020. A combined fire and burned area detection
approach using the supervised ML model 1D-CNN is applied for the natural hazard impact
zone estimation with Sentinel-2 satellite images (compare Section 3.1). Figure 5.2 shows
the extracted burned and fire areas. The methodology extracts the areas that are burned
and the areas affected from currently burning fires in a very detailed 10 m resolution.
Burning fires occur on the edges of the already burned area, where they develop towards
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newly burnable materials. These areas are comparatively small compared to the already
burned area.
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Figure 5.2.: Visualization of the results of the hazard impact extraction (burned area and fire area)
from remote sensing data for the selected natural hazard, the Bobcat wildfire (XI).
Data basis: © 2018 GADM. Projection: WGS84. Adapted from [43].

5.2.2 Natural Hazard Impact Zone Estimation with Volunteered
Geographic Information Data

There is a time gap of four days until high-resolution RS data becomes available after the
fire. VGI data can be used to estimate the natural hazard impact area (Section 3.2) of
the Bobcat (XI) fire for the days of 06/09 to 10/09 [304]. Tweet text and location data
for these specific dates are extracted to subsequently apply the methodology for natural
hazard impact zones estimation using VGI data to the Bobcat fire. Figure 5.3 shows the
results of the hazard impact zone estimation using VGI data for the Bobcat wildfire. By
visual inspection, it can be verified that the estimated hazard impact zone agrees with the
extent of the impact zones estimated by RS data on a coarse level, while differences are
observed on a finer level. The barycenter lies within the fire impact zone estimated by RS
data (Figure 5.3 A) and corresponds with a distance of approximately 3 km to the pseudo-
reference’s center. The estimated fire impact zones using LVA (Figure 5.3 B) and buffer
approaches (Figure 5.3 C) coincidences with the southern part of fire zone estimated by
RS data. Consequently a similar picture is observed for the combined approach (Figure 5.3
D). The center of the VGI estimated area and the RS estimated area vary by approximately
6 km. The results show that the fire location can be approximately estimated using VGI
data and indicate where people are majorly affected by the hazard.
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Figure 5.3.: Visualization of the results of the hazard impact extraction from Volunteered Geo-
graphic Information (VGI) data for the selected natural hazard, the Bobcat wildfire
(XI). Data basis: © 2018 GADM. Projection: WGS84. Adapted from [43].

5.2.3 Road Impact Extraction from Volunteered Geographic Information
Data

In the context of road network analysis one significant application of VGI is the extraction
of road impact information and its geolocalisation in addition to hazard impact zone
estimation. Extracting tweet texts corresponding to the time of natural hazard events,
scanning the text data for road impact information, and geocoding (Section 3.3) allows
the extraction of roads degraded by the hazards’ impacts. For the Bobcat (XI) wildfire,
we obtain a total of 303 messages that contain road location information. However, most
texts contain road information that does not consider degradation from the investigated
fire but, e.g., general road closures. Since we want to concentrate on roads degraded from
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hazard impact, we choose only texts associated with fire. Furthermore, the degradation of
the same road is reported several times if the hazard lasts several days. After removing
messages with identical information, we retain two messages associated with the Bobcat
fire. From these two messages, road extraction is possible. Figure 5.4 displays the different
extracted roads for the application scenario. We observe that we obtained road segments
and corresponding intersection locations for the text information data. For the wildfire,
only a few non-identical closed or damaged roads are mentioned in tweet texts, and
therefore, the number of extracted road segments is low. Furthermore, we observe that
significant roads are mainly extracted as they are talked about in tweets from road agencies
and hence extracted as degraded.
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Figure 5.4.: Visualization of degraded roads extracted from Volunteered Geographic Information
(VGI) text information for the Bobcat fire (XI). Data basis: © 2018 GADM. Projection:
WGS84. Adapted from [1].

5.3 Module 2

In this section, Module II - Road Network Accessibility Assessment during Natural Hazards,
the second part of the framework for the assessment of natural hazards’ impact on road
infrastructure, is applied to the Bobcat (XI) application scenario. The module considers
the impacts caused by the Bobcat (XI) wildfire as determined in Module I (Section 5.2).
The module consists of the introduction of the road network data for the Bobcat wildfire
(Section 5.3.1) and the construction of the degraded network (Section 5.3.2) from the
impacts of the hazard extracted in Section 5.2. Finally, the network accessibility under the
hazard impacts is evaluated (Section 5.3.3).
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5.3.1 Road Network Data

A reasonable region of interest is selected for the application scenario. The OSM network
graph’s nodes and edges within this region are extracted with the OSMnx [184] python
package (compare Section 4.3.1). For the Bobcat (XI) scenario the selected region is the
region within the bounding box of 118,2063881°W 34,5815616°N (top left corner) and
117,6357117°W 34,1330156°N (bottom right corner). This selection covers the Angeles
National Forest as well as the surrounding urban areas (North: Palmdale, South: Arcadia,
Azusa, parts of Pasadena). The reason for these selections is the availability of a reasonable
number of emergency shelters (two) that can be reached in this region, which is essential
for our network accessibility measures. Table 5.2 displays the selected shelter information
and the number of edges and nodes.

The road network of this selected area has a high number of nodes and edges compared to
the Oakland (X) flood application scenario (Table 4.1 in Section 4.3.1). Some preprocess-
ing steps are necessary to deal with this high number of edges and nodes. As each node
would serve as a starting point for the measures of accessibility calculation, the calculation
would require too much computation time. Therefore, we preprocess the network data
and thin the node data used as starting points. We consider only nodes from roads of
high hierarchy levels, not including nodes of residential roads as starting points. This
technique aims to reduce the density of data points, allowing for a more manageable
dataset while preserving crucial spatial information. Note that the accessibility calculation
does consider all nodes and edges to find the shortest paths; only the amount of starting
points is reduced.

Table 5.2.: Overview of network analysis data for the Bobcat wildfire (XI). Adapted from [1].

Shelter locations N° Edges N° Nodes

Palmdale High School, Santa Anita Park 36.634 14.319

5.3.2 Degraded Road Network Construction based on Hazard-Induced
Impact

This section links Module I: the determination of natural hazard impacts, and Module II:
the road network analysis. The road network degradation is a result of the hazard-induced
impacts. The degraded road network is constructed (compare Section 4.3.2) by overlaying
the hazard impacts on the intact road network of the study region. Hazard impacts are
described by hazard impact zones estimated using RS data (Section 5.2.1) and VGI data
(Section 5.2.2) and degraded roads extracted from VGI data (Section 5.2.3).

Figure 5.5 shows the overlay process for the Bobcat (XI) wildfire application scenario.
Figure 5.5, top left, shows the hazard impact zones as estimated using Sentinel-2 RS data
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(Section 5.2.1) and Twitter VGI data (Section 5.2.2). Figure 5.5, top right, shows the
degraded road segments as extracted from VGI data (Section 5.2.3). Combining the deter-
mined hazard impacts and overlapping them with the road network, the degraded road
edges and nodes anticipated for being at risk for hazard impact are obtained in Figure 5.5,
bottom. Note, that the entire road segment is designated as degraded even in cases where
only one end node is situated within the hazard impact area.
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Figure 5.5.: Visualization of the hazard impact zones as estimated using remote sensing (RS) data
and Volunteered Geographic Information (VGI) data (top left) for the Bobcat wildfire
application scenario (XI). The barycenter and the results of the combined approach,
giving count numbers of how many distinct VGI approaches overlap, are displayed.
The degraded roads extracted from VGI data (top right) and the degraded road edges
and nodes at risk for hazard impact constructed by overlaying (bottom) are displayed.
The road network is limited to primary to tertiary roads for visualization purposes.
Data basis: © 2018 GADM. Projection: WGS84. Adapted from [1].
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5.3.3 Road Network Accessibility Analysis

The road network accessibility analysis methodology (compare Section 4.3.3) is applied
to the intact and degraded network depicting the roads in the region where the Bobcat
(XI) wildfire happened. In the following, we will present the results of the four measures
applied to the intact Angeles National Forest road network before the fire and the degraded
road network affected by the fire. Furthermore, the change in network accessibility from
before and during the fire is subsequently presented for the four measures. Accessibility
and impact value visualization are conducted as described in Section 4.4.

Figure 5.6, row 1, shows the results for the betweenness accessibility measure for the
road network before and during/after the hazard (Q0.2: 0.0003, Q0.4: 0.0008, Q0.6: 0.0021,
Q0.8: 0.0081) and the accessibility change due to the hazard impact (Q0.2: 0.00022, Q0.4:
0.00064, Q0.6: 0.00120, Q0.8: 0.00330, range [0, 0.002]) for the application scenario. Similar
to the Oakland application scenario results, the Bobcat (XI) application scenario results
reveal that this metric highlights major traffic arteries as having high accessibility. On the
other hand, roads within residential neighborhoods and rural mountainous regions, which
do not serve as significant city connectors, exhibit lower accessibility levels. The wildfire
event does not significantly affect the condition of the road network. However, three road
segments on both sides of the degraded segment of the Angeles Crest Highway (Hwy)
(Point A) experience degradation, resulting in decreased accessibility. A minor alteration
in accessibility is observed for a few road segments situated in the southern part of the
Angeles National Forest (around San Gabriel Canyon Road, Point B) and the urban area
close to degraded edges.

Figure 5.6, row 2, shows the results for the closeness accessibility measure for the road
network before and during/after the hazard (Q0.2: 0.63, Q0.4: 0.67, Q0.6: 0.76, Q0.8: 0.80)
and the accessibility change due to the hazard impact (Q0.2: 0.000010, Q0.4: 0.000025, Q0.6:
0.000059, Q0.8: 0.00027, range [0, 0.00042]) for the application scenario. For the intact road
network, a cluster characterized by high accessibility is situated in the southwest region.
In contrast, the accessibility in the northern region is comparatively lower according to
this metric. The accessibility of connecting road segments between the south and north
regions is moderate, depending on the road’s proximity to the respective clusters. In the
degraded network, for road segments crossing the Angeles National Forest and linked to
degraded segments, a decrease in accessibility exists. Looking at the change, the Angeles
Crest Hwy (Point A) and connecting edges in the Angeles National Forest are significantly
affected along its length. A few connecting road segments leading to the Angeles Crest
Hwy and a few mountain roads connected to the San Gabriel Canyon Road (Point B) are
also impacted.
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Figure 5.6.: Visualization of the betweenness centrality (BN), row 1, closeness centrality (CN),
row 2, Shelter Accessibility Index (SAI), row 3, and Alternative Routing Assumption
Accessibility (ARAA), row 4, measure for the Bobcat wildfire (XI) displayed for the
intact network before the hazard, the degraded network during/after the hazard and
the change in accessibility between the two for the network edges. Quintiles for each
measure are given in the text. Note that the SAI impact values are visualized with
different intervals (interval boundaries I1: 0.1, I2: 0.58, I3: 0.93, I4: 1.27). Data basis:
© 2018 GADM. Projection: WGS84. Reprinted from [1].
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Figure 5.6, row 3, shows the results for the SAI measure for the road network before,
during, and after the hazard (Q0.2: 1.49, Q0.4: 1.03, Q0.6: 0.81, Q0.8: 0.53, range [0, 4.79])
and the accessibility change due to the hazard impact (Q0.2: 0.0012, Q0.4: 0.0018, Q0.6:
0.0023, Q0.8: 0.0033, range [0, 1.63]) for the application scenario. Note that for this measure
the value range is inversed. A high SAI value represents low accessibility and a low SAI
value represents high accessibility. For this measure, we rely on the thinned node data
(as described in Section 5.3.1), which does not include residential roads’ nodes and edges
as starting points. Residential neighborhood roads in the northeastern study area are not
displayed. Using the shelters as destination points for this measure, we see significantly
higher accessibility of the edges near these shelter locations. For the intact road network,
edges in a relatively large radius around the shelters exhibit notably high accessibility
levels. The accessibility levels decline as one moves farther away from these shelter
points, particularly in the mountainous areas. For the degraded network, the analysis
reveals no visualized fluctuations in accessibility. Nonetheless, when assessing the visual
representation of the change based on the suitable tailored intervals "no change" (interval
boundary I1: 0.1) and equal intervals on the remaining values (I2: 0.58, I3: 0.93, I4: 1.27)
(explanation see Section 4.4), it becomes apparent that there is a marginal decrease in
accessibility along the Angeles Crest Hwy (Point A) and its connecting edges. Moreover,
the connecting route to the San Gabriel Canyon Road (Point B) in the Angeles National
Forest exhibits a substantial decrease in accessibility.

Figure 5.6, row 4, shows the results for the ARAA measure for the road network before,
during, and after the hazard (Q0.2: 4.44, Q0.4: 5.92, Q0.6: 7.20, Q0.8: 9.34, range [0, 91])
and the accessibility change due to the hazard impact (Q0.2: 0.000001, Q0.4: 0.039, Q0.6:
0.045, Q0.8: 0.267, range [0, 2.31]) for the application scenario. For this measure, we also
rely on the thinned node data, which does not include residential roads’ nodes and edges
as starting points and are, therefore, not displayed. Using the shelters as destination
points for this measure, we see significantly higher accessibility of the edges near these
shelter locations. Edges in the mountainous areas still have comparatively high accessibility
values as more alternative routes to shelters can be found here, moving towards both
valley sides. In contrast, urban areas, e.g., in the South-East, mostly connected to only
one shelter without alternative routes, are least accessible. For the degraded network, it
is again challenging to visualize the slight accessibility decrease effectively. The impact
visualization shows that the Angeles Crest Hwy (Point A) and connecting edges to degraded
edges overall are highly affected.
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5.4 Discussion

In this section, the applicability of the developed framework for the assessment of the
natural hazard’s impact on road infrastructure on the Bobcat application scenario hazard
(Section 5.4.1) and the transferability of the framework (Section 5.4.2) are discussed.

5.4.1 Applicability of Framework on Bobcat Fire

In the Bobcat (XI) application scenario example, the estimation of the hazard impact zones
using both RS and VGI data sources is demonstrated. RS data, provide a high level of
accuracy for the precise estimation of the fire and burned areas within the Angeles National
Forest near Los Angeles. The applied 1D-CNN is suitable for the task and estimates very
detailed burned and fire areas, similar to the estimation on the independent dataset of
central Spain (III) in Section 3.1. Fire areas are a lot smaller and located around the
borders of the burned area, as the RS imagery captures only one point in time which depicts
the current flames progress. At the moment of capture, the fire spreads primarily towards
the North and the South. RS data were only accessible four days after the wildfire’s start, a
similar time range to the RS data investigated in Section 3.2. The VGI-based methodology
proves valuable to extract hazard impact zones in the meantime. Using this technique for
the Bobcat fire, the barycenter lies well within the RS area, due to a distribution of VGI
data mainly influenced by population density, whose effects we removed by weighting.
Nevertheless, the impact zone estimated by VGI data lies to the south of the RS area. This
can have several reasons, like the significantly higher population density in the city of Los
Angeles, where people are more affected by the hazard. These results are similar to the
investigated Landiras fire (V)(Section 3.2). Additionally, due to the mountainous regions
of the Angeles National Forest in the northern area, less VGI data are available in this
part. Finally, the fire developed from the south to the north, spreading in the days until RS
imagery was obtained a few days later.

Moreover, the developed methodology enables the extraction of the direct impacts on road
infrastructure for the Bobcat wildfire application scenario. In this application scenario,
a more limited amount of non-repeating text information about road conditions during
the hazard is available compared to the investigation on the San Francisco Bay Area (IX)
(Section 3.3) flood application scenario. However, the methodology can correctly extract
and geoparse all road segments mentioned in tweets. The extracted road data primarily
consists of major roads because these were mainly discussed in text messages. The low
number of non-repeating texts in this application scenario is explained by the low number
of roads in general and the low number of major roads within the impacted area of the
Angeles National Forest. Except for the two roads from which information is extracted,
mainly local and private roads are located within the impact zone. This situation is very
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different from the situation in the Oakland application scenario (X) (Section 4.4), where
the impact zone was located within an urban area.

In the Bobcat wildfire application scenario (XI) the impact zone is estimated using the
methodology developed and described in Module I. This differs from the Oakland (X) flood
application scenario, where the impact zone is derived from a 100/500-year flood map
provided by the Association of Bay Area Governments. Overlaying the estimated hazard
impact zone (Module I) with the intact road network for the Bobcat wildfire study region
reveals eleven road segments at risk to be impacted by the hazard. Additionally, two major
roads are directly extracted as impacted by the hazard (Module I) using VGI information.
Applying the developed methodology based on freely available data, like RS, VGI, and
OSM data, to the Bobcat wildfire, it was possible to determine road segments directly or
possibly impacted by the actual hazard. These identified road segments are subsequently
removed from the intact road network based on OSM data to construct the actual road
network impacted by the wildfire. To handle the large number of nodes and edges in this
application scenario network, network preprocessing steps to reduce computational time
are necessary.

Considering the network accessibility analysis, we concluded that the road network is
not heavily impacted by the wildfire hazard for the Bobcat wildfire application scenario.
Though significant roads that lead in the Angeles National Forest are impacted, these do
not influence the overall network degradation as these are no connecting roads to other
major roads. A segment of the Angeles Crest Highway is degraded, but this closure does
not cause an overall degradation, as a bypass is available for this segment. The degradation
only slightly impacts the total Angeles Crest Highway accessibility. Therefore, the road
network accessibility overall changes only slightly compared to the intact and the degraded
road network. The overall accessibility remains high due to the numerous connections
between cities south and north of the Angeles National Forest that don’t necessitate travel
through the mountains. Additionally, accessibility within the respective city regions is
unaffected.

Comparing the outcomes of accessibility measures applied to the Bobcat wildfire study with
the Oakland (X) (Section 4.4) flood application scenario reveals significant differences. In
the Oakland application scenario context, the developed measures show that the flood
hazard heavily impacts the road network overall. Furthermore, the developed measures
show divergent results. On the contrary, within the Bobcat application scenario, the
measures agree mostly. Furthermore, they consistently identify a few edges as the most
impacted ones. These results can be linked to the difference in network characteristics (e.g.,
urban vs regional, rural, crossing mountains) and the quantity and spatial distribution
of degraded edges within each network for the two application scenarios. Due to the
excellent alignment of the accessibility measures in the Bobcat application scenario, the
impacted edges can be identified, and the impacts of the hazard on the road infrastructure
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can be evaluated with high certainty. Therefore, the developed framework offers valuable
insights into road accessibility for first responders in hazard scenario route planning.

5.4.2 Transferability of Framework

The application of the developed modules I and II of the framework for the assessment of
road network accessibility to the Bobcat (XI) wildfire demonstrates that the transfer of all
modules and components is feasible. To adapt the framework for the application to the
Bobcat wildfire, only the data sources, namely RS, VGI, and OSM data need to be adapted.
The developed methods of Module I and Module II can be transferred to other regions
impacted by hazards without further modifications. Furthermore, the framework can be
transferred to other hazard types by only updating the data sources and adapting the
impact zone estimation approaches. For example, adaptions are necessary for the use of
RS data for other types of natural hazards (Section 3.1.6). A variety of methods has been
developed using RS data for hazard extent estimation for various hazards, e.g., [85, 55,
64] (Section 2.1.1). These could easily replace the conducted wildfire extent estimation
method.

Furthermore, adaptions are necessary for the use of VGI data for other types of natural
hazards, as well (Section 3.2.6). Two distinct methodologies for stationary and moving
hazards have been already developed to account for the major difference, the degree of
temporal development, between these hazard types. However, different hazard types are
characterised by further differences, like propagation pattern, onset speed, and terrain-
dependency. Therefore, the developed methodologies still require slight adaptions when
being transferred (e.g., [21, 150]). E.g., flood hazard estimation from VGI ([132, 158,
174] Section 2.1.1) could be tackled with the developed stationary hazard approximation
approach. The developed approach could then profit from the additional incorporation of
water depth information [175] extracted from VGI for this hazard type. Additionally, floods
might more likely occur in places with lower elevation. The inclusion of weighting factors
based on terrain information using Digital Elevation Models [305] could be introduced for
barycenter calculation.

Overall, these developed methods (Module I, Section 3.1, Section 3.2) constitute a robust
foundation for slight adaptions to different hazard types. The methodologies concerning
the extraction of directly impacted roads (Module I, Section 3.3) and the road network
accessibility assessment (Module II) do not need adaption for other hazard types. They
can be applied instantly, after changes of data sources.

Additionally, the framework’s modular structure and various possibilities for impact assess-
ment (impact zone using RS and VGI data and direct road impact) also allows the flexibility
to assemble framework components as needed. For example, external elements can be
used. These could be impact zones from other data source, as it has been demonstrated
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in the Oakland (X) flood application scenario. The impact zone was obtained from a
100/500-year flood hazard map for the San Francisco Bay Area provided by the Association
of Bay Area Governments. In the Oakland study, the road network accessibility was as-
sessed based on a degraded network using this type of impact zones to determine possibly
impacted roads. Vice versa, the determined impact zones of Module I could be used
as input information for other network analyses (e.g., railroad networks). Additionally,
the developed methods for impact (zone) determination could also be used separately
or combined with further impact information from other data sources depending on the
availability of suitable data. These could be used for general hazard analysis, such as
spatial information investigations about trapped people, those at risk of displacement, or
cautionary considerations. This flexibility enables the use of the developed framework in a
variety of hazard types and possible network analysis scenarios.

5.5 Conclusion

In this chapter, the objective was to demonstrate the applicability and transferability of the
developed framework for the assessment of the natural hazard’s impact on road infrastruc-
ture. It was demonstrated on a specific independent application scenario, which has not
been used before for the development of the methodology. It presents the combination
and application of both integral components of the complete framework, the Module I, the
natural hazard impact determination (Chapter 3) and Module II, the assessment of road
network accessibility (Chapter 4) for the Bobcat (XI) wildfire near Los Angeles in 2020.

The combination of RS and VGI data is valuable. It provides very detailed hazard impact
zones and larger areas, where people might be affected by the hazards. Additionally,
specific information about impacted roads can be gained. For the Bobcat wildfire hazard
application scenario, it was possible to obtain hazard impact information using the devel-
oped methodology of Module I of the framework. Furthermore, it was possible to obtain
an intact road network using OSM data and to construct a degraded road network using
the developed methodology of Module II of the framework. Overlaying the impact zones
and direct impact on roads results in an actual degraded network illustrating the situation
of the road infrastructure during the wildfire in the region of the Angeles National Forest.
All accessibility metrics are able to analyze the road network accessibility without the need
for additional traffic data for this specific hazard in this application scenario.

In summary, the integration of both Module I and Module II facilitates a robust assessment
of the wildfire’s influence on road infrastructure. This assessment is made possible by
leveraging diverse freely and openly available geoinformation data sources, including RS
and VGI data. The modularity and transferability of the developed framework enable its
use in a variety of hazard types and regions and possible network analysis scenarios.
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Synopsis and Outlook 6
This chapter includes elements from

[1] J. Florath, J. Chanussot, and S. Keller. “Road Accessibility during Natural Hazards
Based on Volunteered Geographic Information Data and Network Analysis”. In: ISPRS
International Journal of Geo-Information 13.4 (2024), p. 107

marked with a green line.

The main objective of this thesis was the development of a generic framework for the
network accessibility analysis of natural hazards’ impacts on road infrastructure. The
first research goal, addressed in Module I of this thesis, is the natural hazard impact
determination using openly available multi-source geoinformation. The second research
goal, addressed in Module II of this thesis, is the subsequent road network accessibility
analysis based on the determined hazard impacts of Module I.

The detailed discussions and conclusions for each of the subtopics can be found within
their respective chapters (Chapter 3 and Chapter 4) of this thesis. The generic framework
for the network accessibility analysis under natural hazards’ impacts on infrastructure
results from a combination of both parts as discussed and concluded for an application
scenario example in Chapter 5. This chapter gives a synoptical discussion and conclusion
on the complete generic framework (Section 6.1). Finally, future improvements for the
framework and adaptions for its application potential in disaster management are presented
in Section 6.2.

6.1 Synoptical Discussion and Conclusion

Before giving general concluding remarks on the generic framework, which comprises
the two independent Modules I and II, conclusions are drawn for the two modules,
separately.

The first module addresses the first research goal of this thesis, the natural hazard impact
determination with multi-source geoinformation data. In this module the impact of
natural hazards, its location and impact on roads, are determined. The module relies
on various geoinformation data: RS and VGI. The assessment of the hazards’ impacts on
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road networks requires an approach that distinguishes between two fundamental types
of impact: affected areas in general and direct impacts on road infrastructure. Affected
areas involve estimating hazard impact zones first. By overlaying these impact zones onto
the surveyed area, we can identify regions susceptible to the hazard’s impacts. Specifically,
when overlapped with the road network, we can extract information about roads that are
at risk of being impacted. Furthermore, direct impact extractions focus on the immediate
consequences of a hazard’s direct influence on road segments.

Overall, geoinformation data like RS and VGI are suitable for the determination of hazard
impacts. In contrast to, e.g., other geoinformation data sources, RS and VGI offer distinct
advantages. Especially, the combination of RS and VGI results in the enhancement of
accuracies and a higher level of detail of hazard impact assessments. It also allows
large-scale surveys (RS) and rapid updates (VGI) in response to changing conditions.
Moreover, the easy accessibility and open availability of these data sources make them
most cost-effective for hazard impact determination.

The second module addresses the second research goal of this thesis, the road network
accessibility assessment during natural hazards. The second module focuses on road
network analysis, which relies on publicly available OSM data. A degraded network is
constructed by overlaying impacts determined in Module I with a road network. Examining
the direct impacts gives a more transparent, immediate picture, but looking at the impact
zones gives a broader view of possible impacts. In scenarios where complete data on direct
impacts might not be immediately available, the significance of the estimated impact zone
becomes evident. Different accessibility measures are calculated to assess the network’s
performance before, during, or shortly after the hazard. Notably, this study introduces a
novel approach that considers anticipated congestion scenarios. All measures achieve the
objective of analysing road network accessibility well, without using additional traffic data.
They therefore tackle the challenge of restricted global data availability on hazard-induced
road network impacts.

The complete generic framework for assessing network accessibility during natural hazard
impacts combines both modules. The presented framework addresses the gap in the
existing literature related to road network analysis in a natural hazard context. While
some studies have considered degraded network scenarios, they often focus on single
application scenarios in specific locations, e.g., [8, 10, 11]. This limits their applicability to
other hazards and regions. Additionally, access to complex degraded road datasets after a
natural hazard is challenging, hindering the transferability of proposed advanced models
or simulations, e.g. [34]. The developed framework tackles the significant challenges for a
holistic hazard-impacted road network analysis:

1. The framework is complete, from the hazard data acquisition to the road network
accessibility analysis. The framework ensures that all necessary steps are integrated
by covering the entire process chain, eliminating potential gaps.
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2. It uses only freely available data and does not rely on restricted access data or data
that might not be accessible during a natural hazard crisis. This is valid for both
modules, using RS and VGI data to determine the impact of the natural hazard in
Module I and OSM data as a road network basis in Module II (Section 2.1).

3. It is applicable in near-real time. One advantage of the used data is that it is
primarily available in near-real time during or shortly after a natural hazard event
(Section 2.1).

4. The framework profits from the use of multi-source geoinformation data like RS and
VGI. Integrating these data sources offers several advantages: High-resolution RS
provides comprehensive, objective data of large regions but very detailed. VGI offers
localized, real-time insights and information about people’s sentiment in affected
areas. Furthermore, more specific information content about the hazard can be
extracted from VGI texts (Section 2.1.1).

5. It is constructed to be able to consider different hazards that exhibit various hazard
characteristics. The framework can be applied, e.g., to hazards of different temporal
development speeds (wildfires vs TCs, Section 3.2) and hazards in diverse settings
(floods vs wildfires, Chapter 4 and Chapter 5).

6. The framework is easily adaptable, independently of the scale and geographic location
of the road network under investigation. It can be transferred across various hazards
and network characteristics such as urban or rural, regional or local networks. Only
slight adaptions, like data source changes, are necessary when transferring the
developed methodologies (Section 5.4.2).

7. Due to the modular structure of the framework, it is very flexible and modules and
methodologies can be applied independently from each other. For example, only
Module I can be applied if hazard impact information is needed for other applications
than network analysis. Or only Module II can be applied to conduct road network
accessibility analysis based on external road impact information data.

In conclusion, this study successfully addresses the challenges of developing a generic,
complete framework from determining a hazard’s impact to network analysis independently
of scale and characteristics of road network types. The proposed generic framework offers a
valuable contribution to road network analysis in a natural hazard context. The exemplary
applications in different hazard scenarios demonstrate the framework’s versatility and
effectiveness in assessing road network performance during hazardous events.
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6.2 Outlook

The modules and their respective sub-topics developed in this thesis offer possibilities for
future enhancements. In the following, these potential advances are presented for the
Module I and Module II, respectively.

Module I This module comprises various components for the natural hazard impact
determination using multi-geoinformation data. Therefore, each sub-topic presents op-
portunities for advancing the methodology. The first developed methodology to estimate
natural hazard impact zones employing RS data primarily focuses on the precise differ-
entiation between burned and active fire area extents as hazard impact zones. For the
extension of this methodology to address other natural hazards with RS data, adaptations
are necessary. The adaptation to other hazards would need different data sources, such as
SAR or InSAR data for flood mapping (e.g., [84, 15]), in contrast to optical data employed
for fire mapping. The established supervised methodology can serve as a basis for the
estimation of other hazards (e.g., [306]).

In the future, adaptations of the developed methodologies for natural hazard impact
zone estimation using VGI data could be explored for various natural hazards. Tweet
occurrence patterns exhibit variations across different hazard types and sociodemographic
and geographical factors. Therefore, the distribution of tweet data points for other hazards
or in other regions may be more favorable for the impact zone extraction methodology
(e.g., [21]). Furthermore, instead of tweets, alternative VGI data sources, such as data
from other social media platforms [307], could be explored. The integration of volunteered
image analysis [177] could improve the assessment of hazard characteristics and contribute
to augmenting the overall volume of available data.

Regarding direct road impact extraction from VGI data, further development of the method
is possible. Instead of relying solely on tweets, other textual data sources, including rescue
service notifications and alternative VGI data, could be employed. The utilization of such
information can lead to even greater precision in terms of incident location identification.
Moreover, NLP techniques for information retrieval enable the extraction of additional
information, such as hazard severity, through text content classification [24].

Module II Potential improvements could be made in various aspects of the second
module. OSM data are a valuable source for road networks; however, its utility can be
impacted by the voluntary nature of contributions. These can lead to variations in data
coverage and accuracy. OSM’s global community of contributors continually improves the
quality and coverage. Despite the improvements, OSM data may not consistently include
comprehensive road information, such as travel speed or maximum number of lanes
necessary for network analysis. To address these limitations, techniques (e.g., a fuzzy
framework for the estimation of speeds along OSM road segments) outlined in prior work
can be applied to enhance the routability of OSM data [12].
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To further evaluate and enhance the developed framework’s effectiveness, it would be
advantageous to conduct comparisons with other, more detailed network analysis models
(e.g., cascading failure models [271, 273] or models using travel demand data [270, 277]).
Such comparisons can provide valuable insights into the developed framework’s strengths
and areas for improvement. Additionally, impact data derived from other geoinformation
sources, e.g., of detailed traffic data [270, 277], could be included or used for comparison.
These data would require the condition of openly and timely availability. The current
framework employs a simplified model for evacuation scenarios using only two shelter
locations. However, real-world evacuations are more complex and involve factors like
destination choice and road blockages [302]. These inclusions could provide more precise
assessments of network accessibility especially during congestion.

General Framework In the future, with further developments, the framework could
be integrated in a practical application in disaster assessment. The framework’s ability to
provide a rapid overview of natural hazard impacts on road networks is valuable as an
initial step in disaster risk management planning. The integration with natural hazard
management strategies of local authorities and relevant stakeholders could be pursued.
Practical implementation issues like legal issues for the use of VGI data or multilingualism
would need to be considered for a tool for natural hazard management. So far, the
framework focuses on the determination of current hazard impacts. Meteorological data,
like precipitation and wind speed data (e.g., [188, 189]), could be integrated in the future
to include the predictions of areas at risk. Prospective possible hazard extents could be
included to directly account for possible hazard developments in hazard management.
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Appendix A
A Supplementary Material of Natural Hazard Impact Zone

Estimation with Remote Sensing Data

A.1 Hyperparameters

Table A.1.: Hyperparameter setup for the classification approaches. The approaches are imple-
mented mostly in scikit-learn [223] and TensorFlow [308], while the SOM is
implemented according to Riese et al. [215]. The following abbreviations are used: ET
- Extremely Randomized Tree; GradientBoost - Gradient Boosting; MLP - Multi-Layer
Perceptron; SOM - Self-Organizing Map; SVM - Support Vector Machines; 1D-CNN -
one-dimensional Convolutional Neural Network. Reprinted from [14].

Model Package Hyperparameter setup

ET [210] scikit-learn n_estimators = 200; max_depth = 100

AdaBoost [211] scikit-learn n_estimators = 100; learning_rate = 1.0

GradientBoost [212] scikit-learn
learning_rate = 0.1; loss = "deviance";
n_estimators = 100; max_depth = 3

MLP [213] scikit-learn
hidden_layer_sizes = (5, 2); solver = "adam";
activation = "relu"

BaggingSVM [218] scikit-learn base_estimator = "SVC"; C = 0.7; γ = "auto"

SOM [217, 216, 215] other
SOM size = 100 × 100; NIt, Input = 1000;
learning rates αStart = 0.1

1D-CNN [219] TensorFlow
Keras sequential model: epochs = 80;
batch_size = 50; 2 convolutional layers {64, 32};
1 dense layer 100 neurons; activation = "relu"

A.2 Confusion Matrices
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Figure A.1.: Normalized confusion matrices for the applied ML models. The prediction is per-
formed on Subset 2 and compared to the reference data. The ML models have been
trained on Uset 3. The following abbreviations are used: ET - Extremely Random-
ized Tree; GradientBoost - Gradient Boosting; MLP - Multi-Layer Perceptron; SOM -
Self-Organizing Map; SVM - Support Vector Machines; 1D-CNN - one-dimensional
Convolutional Neural Network. Reprinted from [14].
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B Supplementary Material of Natural Hazard Impact Zone
Estimation with Volunteered Geographic Information
Data - Moving Hazards

B.1 Hyperparameters

Table A.2.: Hyperparameter setup for the ML models. The models are implemented in
scikit-learn [223] and ArcGIS. The following abbreviations are used: BS - baseline;
ET - Extremely Randomized Tree; GWR - Geographically Weighted Regression; TN -
temporally non-stationary. Adapted from [44].

Model Split Package Hyperparameter setup

ET [210] BS scikit-learn
n_estimators = 100; max_depth = 12;
min_samples_leaf = 1; min_samples_split = 2

GWR [244] BS ArcGIS number_of_neighbours = 30

ET [210] TN scikit-learn
n_estimators = 5; max_depth = 5;
min_samples_leaf = 1; min_samples_split = 6

B.2 Evaluation Metrics

Table A.3.: Evaluation metrics for regression approaches. i represents a respective datapoint, yi
is the true label and ŷi is the estimated label of the i-th datapoint. ȳ is the mean
of the observed data and n is the number of estimated datapoints. (R2: coefficient
of determination, RMSE: root mean squared error, MAE: mean absolute error, ME:
maximum error).

Metric Formula Description

R2 R2 = 1 − ∑(yi−ŷi)
2

∑(yi−ȳ)2 Represents the proportion of variance that has
been explained by the independent variables in
the model.

RMSE RMSE =
√︂

∑(ŷi−yi)2

n
The square root of the mean squared error (MSE)
measures in the same units as the response vari-
able, in contrast to the MSE.

MAE MAE = ∑|yi−ŷi |
n

The average of the absolute differences between
the predicted values and the actual values in a
dataset.

ME ME = Max(|yi − ŷi|) It is the worst case error between the predicted
values and the actual values in a dataset.

B Supplementary Material of Natural Hazard Impact Zone Estimation with
Volunteered Geographic Information Data - Moving Hazards
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C Supplementary Material of Network Accessibility
Assessment during Natural Hazards

C.1 Result Presentation Rationale

Coordinate System: GCS WGS 1984

Esri, NASA, NGA, USGS; California State Parks, Esri, HERE,
Garmin, SafeGraph, METI/NASA, USGS, Bureau of Land
Management, EPA, NPS, USDA
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Figure A.2.: Visualization of the Shelter Accessibility Index (SAI) measure for the flood in Oakland
displayed for the intact network before the hazard, the degraded network during/after
the hazard and the change in accessibility between the two for the network nodes
(row 1) and the network edges (row 2), respectively. Data basis: © 2018 GADM.
Projection: WGS84.
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