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Abstract—Recent trends in Wearable Human Activity Recog-
nition (WHAR) have led to an unprecedented 42.9% increase
in scholarly articles in 2022, underscoring the urgency for a
comprehensive review to systematically categorize their varied
research directions. Moreover, our analysis reveals that the
contributions of current articles often deviate from the traditional
stages of the human activity recognition pipeline, as established
in prior literature. This misalignment suggests the necessity for
an updated pipeline that more accurately reflects the intricacies
and nuances of WHAR studies. In response, we review WHAR
articles from 2021 to 2023 and introduce an innovative WHAR
pipeline, emphasizing a research-focused approach. This new
pipeline offers distinct advantages: it provides researchers with
a clear and systematic categorization of WHAR articles, thereby
enhancing understanding of the field. For practitioners, it facili-
tates the selection of customized methods for each stage, thereby
optimizing final assembled model efficacy.

Index Terms—wearable human activity recognition, machine
learning, deep learning

I. INTRODUCTION

Progress in scientific endeavor has always been driven
by the collection and analysis of data [1]. Recently, the
proliferation of wearable devices has been remarkable. Com-
prehensive surveys have indicated that by the end of 2022,
global shipments of wearable devices reaches approximately
500 million units, a dramatic increase from the 82 million
units shipped in 2016, an increase of nearly 500%, as shown in
Fig. 1. A detailed analysis of the data reveals that smartwatch
is the predominant category, comprising 216 million units.
Notably, about 20% of adult males in the United States in 2022
own a smartwatch. Other significant categories include smart
trackers and smart glasses, with shipments of 105 million and
32 million units, respectively.

Corresponding to the improvement of shipment, in 2022,
the academic field of Wearable Human Activity Recognition
(WHAR) experienced a notable surge [2], with around 100
new articles marking a significant 42.9% increase from the
previous year. Based on their primary contributions, these
articles predominantly fall into the following categories:

• Mitigation Solutions to Persistent Challenges Inno-
vative methodologies have been introduced to address
ongoing issues in WHAR. For instance, Khtun et al. [3]
explore the use of Fourier coefficients as discriminators
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Fig. 1. Global shipment of wearable devices from 2016 to 2022.

for activity detection, effectively addressing the challenge
of noisy signals in real-world settings.

• Extensions to Uncharted Areas The applicability of
wearable sensors in unexplored areas has also been a
focus of recent research. Considering the detrimental
effects of smoking, especially the correlation with cancer,
cardiovascular disease and premature death, Hnoohom
et al. [4] combine a deep learning framework with a
smartwatch for detecting smoking behaviour. This study
exemplifies the integration between WHAR and health
interventions. Fang et al. [5], [6] investigate novel human
machine interaction method.

• Extensions to Unexplored Sensors The technological
limitations of current wearables, particularly the power
consumption of inertial activity sensors, have catalysed
the search for alternative solutions [7]. On this basis,
Solar et al. [8] investigate the dual functionality of solar
cells, serving concurrently as activity sensors and energy
reservoirs.

• Introduction of Novel Datasets The advent of sensor
technology has, in turn, stimulated the generation of
specialized datasets. One example is the surface elec-
tromyography (EMG) signal, which is gaining traction
in the wearable tech community due to its real-time
feedback capabilities. However, existing public EMG
datasets predominantly capture hand movements. To this
end, Luan et al. [9] assemble a comprehensive lower limb



EMG dataset using six sensors attached to the left leg.
• Addressing Emerging Challenges WHAR continues

to face evolving challenges, particularly in model pre-
training [10]–[12]. The multimodal nature of WHAR data
complicates the application of conventional pre-training
techniques, creating a frontier challenge in developing
task-independent or sensor-independent models that can
be refined with minimal data.

The rapid advancement in WHAR necessitates a systematic
review to summarize the large amount of articles, highlighting
current challenges and future directions.

At the same time, our analysis indicates that many contribu-
tions of these articles do not easily align with the conventional
stages of the human activity recognition pipeline as outlined by
Gupta et al. [13], which divides the human activity recognition
pipeline into four processes namely signal capturing, data pre-
processing, model training, and user interface development.
For example, the evolving area of model pre-training, while in-
tegral to task-specific predictions, does not neatly fit within the
standard model training phase. Pre-trained models, invariably
require refinement and fine-tuning before practical application.
In addition, the definition of data processing process becomes
ambiguous when considering data augmentation techniques.
Unlike traditional data processing, which focuses on optimiz-
ing individual data sample, data augmentation aims to increase
sample size and diversity by artificially expanding datasets
using machine or deep learning algorithms.

These insights underscore that while the existing pipeline
offers a basic outline for constructing WHAR systems, it
inadequately captures the complexity and subtlety necessary
for research-driven exploration, which necessitates the re-
thinking of the WHAR pipeline through a more research-
oriented perspective. Adopting this new approach promises
dual advantages:

1) For researchers: It provides a clearer delineation of
research areas, allowing for a more structured cate-
gorization of individual scientific contributions. This
clarity not only facilitates effective synthesis of existing
research, but also helps emerging researchers to easily
identify and explore potential avenues of investigation.
Such a framework enhances the comprehensibility and
navigability of the WHAR research landscape, facilitat-
ing a more focused and efficient research process.

2) For practitioners: The new pipeline allows the selection
of the appropriate method from each stage. As a result,
it facilitates the rapid identification and combination
of the most appropriate techniques tailored to specific
situations, thereby optimizing model performance.

Based on these, we reviewed and summarized the recent high
quality articles published in the WHAR field.

II. SEARCH STRATEGY AND LITERATURE REVIEW

We collected relevant and important articles for our research
target based on the Preferred Reporting Items for Systematic

review and Meta-Analysis Protocols (PRISMA-P). We com-
pleted this search using two protocols: the search protocol and
the exclusion protocol.

Search Protocol: We used Google Scholar for our re-
search because of its comprehensive coverage of academic
literature across a range of disciplines. Its constantly updated
database provided access to the most recent scientific papers.
Our search was guided by three sets of keywords: (”Human
Activity Recognition” OR ”HAR”), (”Machine Learning” OR
”Deep Learning” OR ”Neural Network”), and (”Wearable”
OR ”Smartphone” OR ”Smartwatch” OR ”Smartglasses” OR
”Smartband”). These were combined with specific search
restrictions to match our research objectives. We limited our
search to the period from 2021 to June 2023, reflecting our
focus on the latest developments in the field. This search
yielded 4,960 articles.

Exclusion Protocol: Our selection process emphasized
relevance and impact. We first eliminated duplicates, non-
English papers, non-conference/journal articles, and those
without references. Titles not aligned with our research focus
were also excluded. To ensure quality, we sorted the articles
by the number of citations and selected accordingly. This
initial screening reduced our pool to 274 articles. We then
read the abstracts to exclude survey articles and those not
specifically focused on WHAR tasks, further narrowing down
to 208 papers. After a quick content review of these papers,
we removed less rigorous studies and duplicates, culminating
in a final selection of 150 papers.

III. RESULT

Following an exhaustive review of 150 articles, we devel-
oped a new pipeline for WHAR, as shown in Fig. 2. This
pipeline consists of a number of sequential stages, each of
which is critical to the development and implementation of
WHAR systems:

• Data Preparation This initial stage involves the collec-
tion and preparation of sensor data for human activity
analysis. The focus in this phase is to generate new
datasets, demonstrating the applicability of WHAR across
various domains and employing data augmentation to
enhance dataset quality and address specific challenges.

• Model Preparation Crucial for pattern recognition and
predictive accuracy, this phase involves the design of
novel deep learning architectures. It also includes the se-
lection of the most effective models through comparative
performance analysis across different scenarios.

• Data Processing This stage is driven by four main objec-
tives: improving data quality through noise reduction and
mitigation of data loss; highlighting specific data features
using techniques such as Fourier transformations; extract-
ing detailed features for accurate activity recognition; and
transforming data into compatible formats (one, two, or
three-dimensional) for various model inputs.

• Model Pre-training: Model pre-training involves initially
training a model on general datasets, followed by fine-
tuning with task-specific datasets to adapt it for specific



Fig. 2. The proposed Wearable Human Activity Recognition pipeline.

tasks. Mirroring trends seen in vision and natural lan-
guage processing (NLP) domain, although the number
of articles related to WHAR are limited, we are of the
opinion that it has a great potential.

• Task-specific Model Training This process focuses on
refining a pre-trained or initial model to suit a specific
target task. Researches in this stage concentrate on opti-
mizing model performance based on the specificities of
the model and dataset, culminating in a model ready for
application in the intended task.

• Model Post Enhancement The final stage includes two
critical aspects: model privatization and model explana-
tion. Model privatization involves fine-tuning the model
with private data to enhance user-specific performance.
In contrast, model explanation aims to make the model’s
decision-making processes transparent and understand-
able, fostering trust and facilitating effective human-
machine collaboration.

A. Observation

Before specifically describing the study of each stage in the
pipeline, we present several key observations focusing on two
main areas in the field:

Focus on Model Architecture and Data: Our review
reveals that a significant portion of the articles (50%) are
dedicated to model preparation, with another 30% focusing on
data preparation. This distribution underscores the critical roles
these elements play in WHAR. However, it also highlights
potential research gaps in the areas of model pre-training and
post-training techniques, which constitute only 4% and 5%
of the articles, respectively. The relatively lower emphasis
on these techniques suggests untapped potential for future
research, particularly in enhancing the generalizability and
efficiency of models.

Evaluation Metrics: The prevalent use of accuracy and
f1-score as evaluation metrics demonstrates their widespread
acceptance as standard measures of model performance in
WHAR. Nonetheless, the limited attention to factors like time,
energy, and computational complexity (FLOPs) reveals a gap
in current research. These aspects are particularly crucial for

applications involving real-time and edge computing. Future
studies are therefore suggested to broaden their scope to
include metrics such as latency, energy efficiency, and com-
putational complexity, in addition to traditional accuracy and
f1-scores.

B. Data Preparation

WHAR systems function by meticulously analyzing data
from sensors in smart devices. With advancements in equip-
ment technology and research, the art and quality of collected
data are continually evolving, necessitating ongoing explo-
ration of new data. This exploration is multi-dimensional, and
from the articles reviewed, discussions on data preparation can
be categorized into three primary areas:

Articles that present novel data sets These scholarly
articles provide detailed explanations of the processes involved
in data collection. Key aspects covered include the rationale
behind data collection, settings chosen for data accrual, demo-
graphic distribution of participants, preferences for equipment,
methods of equipment application [14], selection of activities,
and techniques for data collection. Additionally, these articles
offer access to the data they generate within their articles.
Table I summarizes newly available public datasets in WHAR
since 2021.

Articles that demonstrate the viability of WHAR within
a particular domain These studies typically involve extensive
experimentation using a range of machine learning and deep
learning algorithms. The effectiveness of WHAR in these do-
mains is often validated by the accuracy or f1-score of the most
efficient models identified through the research. Recent key
studies in this area include: Sandhu et al. [8] investigate the
innovative use of solar cells mounted on a wrist device as both
activity sensors and power sources. They encoded activity-
related information by monitoring the variable power levels
in response to the user’s movements. This approach proved
more accurate in detecting activity (an 8.3% improvement)
than methods relying on converting kinetic energy to electrical
energy. Additionally, the energy yield from the solar method
greatly surpassed that of the kinetic approach. Human walking
is a complex orchestration that requires precise coordination



TABLE I
SUMMARIZE OF THE NEW WHAR DATASETS FROM 2021 TO 2023, WHERE IMU STANDS FOR INERTIAL MEASUREMENT UNIT AND EMG FOR

ELECTROMYOGRAPHY.

Dataset Year #Subjects #Activities Domain Device
WEAR [15] 2023 18 18 Daily Living, Sport Camera, Smartwatch
XUHAR [16] 2023 10 32 Daily Living; Sport Smartglass, IMU
Hang-Time [17] 2023 24 15 Sport (basketball) Accelerometer
EmoPain [18] 2023 18 101 Daily Living (chronic pain) IMU
HUHAR [19] 2023 14 16 Daily Living Smartband, Smartphone
Ego4d [20] 2022 931 110 Daily Living Camera, IMU
UCA-EHAR [21] 2022 20 8 Daily Living Smartglass
FLAAP [22] 2022 8 10 Daily Living Smartphone
MPJA-HAD [23] 2022 10 6 Daily Living IMU
BON [24] 2022 25 18 Office Activities Camera
ClimHAR [25] 2022 52 24 Daily Living Smartband
CareHAR [26] 2022 7 9 Care Activities IMU
BijalHAR [27] 2022 30 7 Daily Living IMU
DamenHAR [28] 2022 37 149 Kitchen Activities Camera
ActionSense [29] 2022 10 20 Kitchen Activities IMU
Har-semg [9] 2021 9 5 Daily Living Trigno Wireless Biofeedback System
Oppo++ [30] 2021 4 18 Daily Living Kitchen Activities
harAGE [31] 2021 19 11 Daily Living Smartwatch
HARTH [32] 2021 22 12 Daily Living Camera, Accelerometer
CSL-SHARE [33] 2021 20 22 Locomotion, Sport IMU, EMG, Electrogonimometer, Michrophone

between cerebral functions and the lower limbs. Chakraborty
et al. [34] evaluate the practicality of using low-cost leg
mounted sensors (termed ’m-module’) in tandem with fingertip
pulse sensors (termed ’p-module’). The aim was to distin-
guish regular walking activity from the repetitive, regressive
swinging motions typically observed in a seated position.
The aforementioned studies explore innovative data acquisition
devices and their synergistic applications. In contrast, another
significant study by Yeh et al. [35] explores the feasibility
of real-time action recognition using a Raspberry Pi platform
connected to Inertial Measurement Units (IMUs) positioned
on the user’s right wrist, waist, and right ankle. Their findings
show a latency of 2.6 seconds for the first action recognition,
reducing to 1.33 seconds for subsequent recognition, while
maintaining an accuracy rate of over 98%.

Articles emphasising innovative data augmentation tech-
niques Data augmentation has been proved to be an advance
method to address common challenges associated with existing
datasets, particularly data skewness and paucity of labelled
data. Recently several strategies have been proposed: Ni et
al. [36] employ the SMOKE technique to address the is-
sue of uneven sample sizes across different activity classes.
This method aims to create a more balanced distribution of
samples, enhancing the robustness of the training process.
Khaertdinov et al. [37] augment data sets through a range
of operations such as jittering, scaling, channel shuffling,
rotation and permutation. Shi et al. [38] utilize Generative
Adversarial Network (GAN) to generate new samples. GANs
are particularly effective in creating realistic synthetic data,
thereby enriching the dataset with diverse examples that may
not be present in the original data.

C. Model Preparation

The model in WHAR system is tasked with extracting
distinct activity patterns from the provided input data to

facilitate subsequent predictions. Its architecture is funda-
mentally connected to its feature extraction capabilities. A
rigorous model selection, design and optimization process is
essential to ensure the effectiveness of WHAR systems. In the
surveyed academic articles, this phase of model preparation is
distinguished by two predominant research directions:

Articles that elucidate the design of novel deep model
architectures The focus of these academic articles is to
enhance WHAR models’ capability to extract features from
raw data by introducing innovative model architectures.

WHAR model architecture is continually evolving, with
deep learning currently being the most prominent. However,
the influence of traditional machine learning, though reduced,
remains significant, contributing valuable insights and method-
ologies. For example, Liu et al. [39] decompose human ac-
tivity into common, discriminative states called ’motor units’,
analogous to phonemes in speech recognition, and use Hidden
Markov Models (HMM) to predict activity. Vu et al. [40]
propose the use of Uniform Manifold Approximation and
Projection (UMAP) to map high-level data to 30-dimensional
features, and then refine these features for activity prediction
using data from the target domain.

Deep learning’s dominance in WHAR stems from its au-
tonomous feature extraction capacity. This is exemplified in
the diverse architecture of deep models.

Ismail et al. [41] use a genetic algorithm to optimize
Convolutional Neural Network (CNN) architecture, segment-
ing a CNN block into conv1d, batch normalization, and
LeakyReLU, and encoding it with a 5-bit system, where the
first three bits indicate the parameters of conv1d, such as the
number of filters, padding and activation function. The fourth
bit indicates batch normalization, while the fifth bit indicates
the parameter value of the LeakyReLU activation function.
Hurtado et al. [42] present an autoencoder architecture that
is trained simultaneously using both the reconstruction loss



of unlabeled data and the prediction loss of labeled data.
Hnoohom et al. [4] merge the residual model with the
Squeeze-and-Excitation block to form a ResNetSE block. A
deep CNN model is then constructed based on this new block.

The research by Haresamudram et al. [10] is based on
contrastive predictive coding. The study investigates the effec-
tiveness of integrating stridden convolutions, causal convolu-
tional aggregators, and replacing masks with future predictions
in improving the performance of human activity recognition
models. Sarkar et al. [43] use the Continuous Wavelet Trans-
form (CWT) to transform time series data into image formats.
Following this transformation, a CNN architecture is used for
feature extraction. These extracted features are then selected
using an unsupervised genetic algorithm based on metrics
such as mutual information, Relief-F and m-RMR. The final
stage of the process uses the K-Nearest Neighbours (KNN)
algorithm for activity prediction. Normalization procedures
often lead to the phenomenon of ”channel collapse”: many
channels converge to minima, resulting in a significant fraction
of channels contributing minimally to the overall output.
Huang et al. [44] present a novel method, termed ”channel
equalization”, which aims to revitalize these dormant channels
through whitening or decorrelation operations. Given the lim-
ited computational resources of edge devices, to improve CNN
performance without increasing memory or computational
load, Tang et al. [45] propose the concept of hierarchical
segmentation convolution to promote superior multi-scale fea-
ture representation. Sensor signals are first segmented into
fixed length windows using a sliding window approach. These
windows are then passed through a convolutional layer to
produce a basic feature map. Subsequent processing involves
partitioning these feature maps, performing selective convolu-
tion operations, and applying identity mapping or cascading
operations. This complex process of splitting and merging
continues iteratively, culminating in a concatenation of refined
sub-feature maps. These are then passed through standard
convolutional layers for further feature reconstruction.

The architectures illustrated above focus solely on the
CNN module for deep models. There is research that uses
Long Short-Term Memory (LSTM) component as the primary
building block. For example, Ramos et al. [46] use the residual
bidirectional LSTM block for feature extraction, suggesting
the potential of LSTMs in WHAR applications. The Trans-
former module has been proven as a powerful tool in the NLP
domain, its practicability in the WHAR domain is validated
by Dirgova et al. [47].

There is a trend towards hybrid models that combine
different architectures. Such hybrid models seek to exploit
the strengths of individual architectures to achieve improved
performance in specific applications.

For example, combining convolutional layers with recurrent
layers allows for effective spatial and temporal feature extrac-
tion [48], [49]. [50] extend this setup by integrating residual
module and bidirectional LSTMs. Transformers provide pow-
erful attention mechanisms. Shavit et al. [51] combine CNN
with a Transformer to integrate the capability of extracting

long term dependency. Multi-branch techniques, like those
employed by Lu et al. [52] and Park et al. [53] process data
from different channels separately before aggregation. These
varied approaches underscore the ongoing evolution of HAR
architectures, emphasizing adaptability based on data type,
computational resources, and task-specific needs.

Ensemble methods, recognized for improving predictive
performance, are increasingly applied in deep learning for
WHAR tasks. Bhattacharya et al. [54] present a variant
of the ensemble approach. It involves splitting the training
set into two parts. Different deep learning architectures are
trained on the first subset, and the second subset is used to
gather predictions from these trained models. The collected
predictions are then used as features for a final prediction
head. This approach capitalizes on the different representations
captured by different architectures and uses another model to
find the optimal combination of these representations.

Articles that focus primarily on the facet of model
selection. These articles meticulously assess various models
across diverse scenario configurations for specific WHAR
tasks, offering valuable insights into model selection through
a comparative analysis. Jimale et al. [55] explore the impact
of subject variability on machine learning classifiers and
convolutional neural networks. Palimkar et al. [56] provide an
extensive comparative study of traditional machine learning
models in WHAR. Their review encompasses a broad range
of models, including support vector machines, multilayer
perceptron, decision tables, C4.5, k-nearest neighbors, naive
Bayes, adaptive boosting, hidden Markov models, logistic
regression, rule-based classifiers, Bayes nets, best-first trees,
K-stars, conditional inference trees, random forests, extra
tree classifiers, ensemble extra trees, label propagation, and
label spreading. This comprehensive analysis offers a detailed
perspective on the efficacy and applicability of each model
in the context of WHAR, thereby guiding researchers and
practitioners in their model selection process.

D. Data Processing

Raw sensor data in WHAR often contains various forms of
noise, such as electronic disturbances and external environ-
mental interference. Effective data processing, which includes
cleaning and filtering, is crucial for mitigating these issues.

Additionally, data processing plays a pivotal role in en-
hancing the quality of data for subsequent modeling. It can
accentuate certain desirable features, like energy or frequency
variations, and suppress unwanted characteristics. This se-
lective highlighting and suppression facilitates better model
performance. Furthermore, given the multi-modal nature of
WHAR data, processing is essential to adjust and align the
collected data to meet specific model requirements.

Data processing in WHAR differs from data preparation in
that it focuses more on the qualitative aspects of data rather
than merely quantitative elements. Based on the manner in
which the processed data is presented, data processing methods
in WHAR can be categorized into three distinct types.



1D Transformation These transformations produce feature
vectors as outputs, where each vector represents a unique
sample. Each component within the vector corresponds to a
distinct feature, with features maintaining independence from
each other. Thakur et al. [57] exemplify this by extracting
signal features in both time and frequency domains, followed
by feature selection using a guided regularized random forest.
In the [58], an initial denoising step is applied to the input
data, followed by windowing and segmentation. After pre-
processing, the data is subjected to a feature extraction module,
which retrieves features such as Parseval energy, skewness,
kurtosis, Shannon entropy, along with time and frequency
domain statistical characteristics. It further refines the feature
selection process by employing the Luca metric-based fuzzy
entropy (LFE) and the Lukasiewicz similarity measure (LS),
resulting in a 25% reduction in the feature set. The research
then applies a feature optimization algorithm based on the
Yeo-Johnson power transformation. The research carried out
by [59] employs a multi-dimensional approach for feature
extraction, utilizing a Butterworth low-pass filter, time dif-
ferentiation, and the Fast Fourier Transform. The importance
of these features is assessed using the Gini coefficient, and
varying levels of Laplace noise are added to ensure data
confidentiality and prevent unintentional data leakage.

2D Transformation This transformation results in 2D ar-
rays as outputs, with the first dimension representing different
features and the second dimension indicating the value for
each feature. Although different features retain their indepen-
dence, there is a sequential relationship between the values
within an individual feature. [60] integrates a Kalman filter
to reduce noise in the original data. Similarly, [61] delves
into the analysis of the energy distribution across different
signal frequencies using Welch’s method for power spectral
density plotting. [62] introduces wavelet-based learnable filters
for sensor channel selection.

3D Transformation This transformation yields a three-
dimensional array as its output. The first dimension often
referred to as the ’channel’, denotes various features. The
subsequent second and third dimensions provide the value of
these features, typically in the form of an image. Gholamrezaii
et al. [63] generate spectrograms via FFT as distinguishing
features and Gholamiangonabadi et al. [64] explore the ef-
fectiveness of the stationary wavelet transform coupled with
empirical mode decomposition in action recognition.

E. Model pretraining

The effectiveness of pre-training has been strongly demon-
strated in multiple domains such as text and vision. It facil-
itates the transfer of knowledge gained from large datasets
to more specialized tasks. This knowledge transfer not only
speeds up the training process, but also improves model
performance when the available labeled dataset is modest in
size, as is the case in WHAR. Training a large model from
its inception on a limited dataset can inadvertently lead to
overfitting. In recent research, [65] employs a cyclical training
scheme for a multitask model, thereby fostering a task-agnostic

backbone. [37] performs feature extraction from augmented
data via a transformer and then employs nt-xent loss for
unlabeled data in the model’s pre-training phase.

F. Model training

In model training, a critical aspect is the exploration of
methods to adjust and optimize model parameters to ef-
fectively meet pre-defined objectives. This process involves
using data in innovative ways to refine the decision-making
mechanism of the model and applying automatic machine
learning strategy [66] for training parameter optimization.

Tang et al. [67] leverage both the labeled dataset and an
unlabeled dataset. First, a ”teacher” model is trained using
the labeled dataset. The teacher model then annotates the
unlabeled data. A ”student” model is then trained with the
prediction and unlabeled data and fine-tuned with labeled
data. Hu et al. [68] introduce a dynamic sample weighting
mechanism designed to tailor the model to specific user pro-
files. This innovative strategy incorporates a domain classifier
to determine the source of samples and a weight allocator
that adjusts sample weights based on loss metrics. Such a
personalized approach is critical in addressing the variability
inherent in user data and enhancing model performance for
individual users.

With the proliferation of personal sensor data from wearable
devices, traditional centralized model training presents signif-
icant risks regarding user data privacy. Federated Learning
(FL) has emerged as a viable solution, offering distributed
training while ensuring data privacy and reducing communi-
cation overheads. Gonul et al. [69] and Arikumar et al. [70]
conduct empirical evaluations comparing FL with central-
ized training methods, finding similar performance metrics
between the two approaches. This highlights FL’s effectiveness
in maintaining model performance while offering enhanced
privacy protections. Lu et al. [52] propose a bifurcated FL
framework that tackles challenges such as data isolation and
secure data sharing. This framework is designed to integrate
heterogeneous data into a unified feature space. It also in-
corporates encryption schemes for the secure aggregation of
parameters, addressing privacy and security concerns in a
distributed training environment.

G. Post Enhancement

Post-training optimization techniques in machine learning
models, particularly in the context of WHAR, play a crucial
role in refining performance, adaptability, efficiency, and ex-
plainability [71]–[73]. Various studies have proposed innova-
tive methods in this regard.

Suh et al. [74] utilize self-knowledge distillation, where the
student model’s predictions serve as ”soft targets” to enhance
the final performance of the target model. This technique
leverages the model’s own outputs for further improvement.
An et al. [12] investigate the user independence of intermediate
layer outputs in a CNN architecture. They divide the archi-
tecture into user-independent and user-dependent segments,
where the user-independent part remains fixed during new



user encounters. This approach not only boosts accuracy for
target users but also reduces the time needed for model
retraining. Contoli et al. [75] analyze the impact of three model
compression methods on model performance and energy con-
sumption, namely lite conversion, dynamic quantization and
full integer quantization. Cui et al. [76] employ reinforcement
learning to train an agent capable of deciding whether new
data samples require labeling, based on the confidence level
of the classifier’s posterior probability. This method enhances
the model’s adaptability to novel data. Amrani et al. [77]
present a scenario where data in the target domain is split
to train two models, which then operate in conjunction with
the original model for final prediction in an ensemble manner.
This approach increases the robustness and personalization of
the predictions. Das et al. [78] introduce a methodology based
on traditional explainability techniques like LIME and SHAP.
Huang et al. [71] explain human activity with state sequence.

These post-training techniques are essential in refining the
capabilities of machine learning models, particularly in the
dynamic and diverse domain of WHAR, ensuring they are
not only high-performing but also user-friendly, and energy-
efficient.

IV. CHALLENGE AND RESEARCH DIRECTION

The challenges in WHAR stem from the complexity and
diversity of the data involved as well as the need to be
user-centred, driving the need for continuous methodological
advancements to enhance accuracy and reliability in real-world
scenarios. These challenges include:

The WHAR data is complex. The WHAR data encapsu-
lates a multifaceted relationship between users and their activ-
ities, making activity recognition challenging due to complex
data associations. Chen et al. [79] note that identical activities
can vary significantly. From the user perspective, identical
activities can vary significantly not only among different
individuals but also within the same person under different
circumstances [55]. This variability is influenced by numerous
factors, including, but not limited to, differences in the exercise
habits [64], how the device is worn [80], variations in health
conditions [81], age [82], and the specific environment where
the activity occurs [79]. These factors necessitate a nuanced
and meticulous approach in data collection and analysis to
accurately interpret activity data. In addition, the range of
activities that need to be recognized varies across different
application domains. Each type of activity recognition requires
specific data acquisition devices and tailored methodologies
for processing the data. This diversity demands extensive
datasets that cover a wide range of activities and scenarios,
underscoring the importance of continuous data collection and
analysis. Moreover, the evolving nature of wearable technol-
ogy further accentuates the need for ongoing data collection.
As devices develop, they introduce new capabilities and data
types, making it imperative to continually update the data used
for training and validating WHAR systems. This evolution
necessitates a sustained effort in data collection and analysis

to keep pace with technological advancements and ensure the
continued relevance and effectiveness of WHAR systems.

The constraint of data quality substantially limits prac-
tical applications of WHAR. The practicality of WHAR
systems is significantly impacted by data quality constraints,
primarily stemming from the inherent characteristics of the
sensors used and the efficiency of data transmission mecha-
nisms. Two key factors illustrate these challenges:

i The accuracy of models in WHAR systems varies widely
based on their sensor type and cost. Lower accuracy sensors
tend to introduce greater data noise and signal distortion.
These inaccuracies compromise the reliability and validity
of the collected data, hindering precise interpretation and
application in WHAR systems [83]; ii Various technical and
systemic issues contribute to data loss in WHAR systems.
This includes power constraints that limit continuous sensor
operation, limitations in sensor data transmission, hardware
malfunctions, and network-related issues such as packet col-
lisions, unreliable communication links, and accidental data
corruption [84]. These challenges underscore the need for
careful attention to sensor selection and deployment, as well
as robust data handling and transmission strategies, to mitigate
the adverse effects of data quality limitations in WHAR
applications.

We need to train recognition models in a privacy-
preserving manner. The training of WHAR models neces-
sitates a strong emphasis on preserving user privacy, given the
inherently sensitive nature of the data involved. WHAR data
offers detailed insights into a user’s daily activities, health,
movement patterns, biometric indicators, and routines. Such
personal data is highly sensitive and requires stringent security
measures to prevent unauthorized access or misuse, thereby
safeguarding user privacy. It is therefore imperative that ap-
propriate measures and controls are built when training the
WHAR systems. Ensuring the protection of personal privacy
while enabling the accuracy of the trained recognition models
is a complex but essential aspect of ethical practice in the use
of WHAR technologies.

Federated learning represents a distributed learning
paradigm with significant implications for privacy and data
security. In federated learning, models are trained locally on
individual devices, and only the updated models are shared
centrally. This method effectively maintains the confidentiality
of user data. Articles like [69], [70], [85] have explored
this approach within the WHAR context, demonstrating its
potential to safeguard user privacy while enabling effective
model training.

Besides, [59] employs methods such as the Butterworth low-
pass filter to extract the features of the input data in the time
and frequency domains, and after confirming the importance
of these features through the Gini coefficient, different levels
of Laplace noise are added according to the importance, as
a way to ensure that these features do not reveal the user’s
information.

These research efforts highlight the critical importance of
user privacy in WHAR. By prioritizing privacy-preserving



methods like federated learning and strategic noise addition,
the field is aligning with responsible and ethical data usage
practices. Such initiatives are not only pivotal for the current
state of human activity recognition but also signify a major
research direction for future developments in the field. The
balance between privacy preservation and model accuracy
remains a complex but essential aspect of WHAR technology,
emphasizing the need for continuous innovation and refine-
ment in privacy-centric methodologies.

Real-Time Processing Requirements: Some applications of
WHAR necessitate immediate or near real-time activity de-
tection. This demand places substantial stress on the computa-
tional resources of wearable devices and requires sophisticated
optimization of algorithms to achieve real-time processing
without compromising accuracy or efficiency.

Model deployment is under constraints. The deployment
of WHAR models faces significant constraints due to the
inherent limitations of wearable devices. These constraints
influence the design and functionality of WHAR models in
several key ways: (i) Limited computational resources: Wear-
able devices typically possess reduced computational power
and limited storage capacity. This makes it challenging to host
complex machine learning models on these devices, neces-
sitating the development of models that are computationally
efficient yet effective; (ii) The operation of complex models
on wearable devices can lead to increased power consumption,
which in turn reduces battery life. This factor is crucial in
the design of WHAR models, as they need to be energy-
efficient to ensure prolonged device usability; (iii) Some
applications of WHAR necessitate immediate or near real-time
activity detection. This demand places substantial stress on
the computational resources of wearable devices and requires
sophisticated optimization of algorithms to achieve real-time
processing without compromising accuracy or efficiency.

Given these limitations, the use of WHAR models requires
innovative solutions that balance model sophistication with the
practical limitations of wearable technology. Research in this
area is currently progressing in three main directions:

The first direction is research on small volume models. De-
velop small but powerful models through network architecture
design or automated methods [86], [87]. The second is the
model quantization. This approach involves investigating the
effects of model compression techniques on performance and
energy consumption. Techniques such as streamlined trans-
formation, dynamic quantization, and full integer quantization
are explored to reduce the computational load and memory
requirements of models without significantly impacting their
effectiveness. This research direction is pivotal in developing
WHAR models that are both efficient and practical for deploy-
ment on wearable devices with limited capabilities. The third
option could be employing next-generation computing devices
that beyond von-Neumann architecture, e.g., neuromorphic
computers [88] that have integrated memory and processing
units and allow high computing efficiency. In this area, several
initial works have been progressed [89]–[91] and may be
favorable platforms for WHAR deployment in the near future.

Model Personalizing is needed The challenge of model
Personalizing stems from the inherent heterogeneity of
datasets, which often leads to overfitting in machine learning
models. This overfitting results in models that perform well
on training data but exhibit suboptimal performance when
generalized to previously unseen individuals. The key question
is how these models can be fine-tuned using either unlabeled
data or a small amount of labelled data from the target user
to improve performance specifically for that user.
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