
Deep Neural Network Pruning with Progressive
Regularizer

Yexu Zhou1♣, Haibin Zhao1♣, Michael Hefenbrock2, Siyan Li1, Yiran Huang1, and Michael Beigl1
1Karlsruhe Institute of Technology, 2RevoAI GmbH

1{yexu.zhou, haibin.zhao, siyan.li, yiran.huang, michael.beigl}@kit.edu
2michael.hefenbrock@revoai.de

Abstract—Pruning is a pivotal approach in network compres-
sion. It not only encourages lightweight deep neural networks, but
also helps to mitigate overfitting. Generally, regularization is used
to guide more parameters towards zero and thus reduce the overall
model complexity. Unfortunately, there are two issued remaining
unsolved in regularization based pruning. One is that the optimal
trade-off between regularization and loss minimization, often
expressed via a scaling hyperparameter, needs to be found through
extensive experimentation. The other one is the importance criteria
that can reflect the true relative importance. The most widely
used criterion is the magnitude-based, which has been argued
to be inaccurate. To these two issues, in this paper, we propose
a progressive regularization scheme, in which the factor scaling
the regularization term is gradually increased during training,
until the target sparsity for filter pruning is reached. Compared
to the previous approach, the scaling factor is no longer a
hyperparameter that needs to be tuned, but is replaced with
a sparsity-aware parameter that increases progressively. In this
way, the value of the scaling factor can be automatically aligned
with the target sparsity, avoiding the drawbacks in its tuning.
Furthermore, Only parameters below a minimal and learnable
soft threshold are pruned, therefore, informative parameters (even
with small magnitudes) are optimally preserved. Consequently, the
performance loss due to pruning is mitigated. Experiments with
various models and benchmark datasets prove the effectiveness
of the proposed method.

Index Terms—progressive regularizer, neural network, tiny
machine learning, lightweight

I. INTRODUCTION

Due to the remarkable expressiveness and scalability [1],
deep neural networks (DNNs) have achieved astonishing results
in many fields, such as machine vision [2], human activity
recognition [3], and natural language processing [4]. However,
for large DNNs, the enormous number of parameters leads to
expensive computation and memory demands [5]. Consequently,
this severely affects their real-time performance and hinders
their deployment on edge devices [6].

Regularization-based neural network pruning has gained
significant interest among researchers due to its ability to not
only shrink network size by promoting greater sparsity but also
to mitigate overfitting to a certain degree. Despite extensive
research on regularization functions and pruning methods,
two key issues still remain to be addressed: 1) The scaling
factor (a hyperparameter) for regularization requires careful
tuning. Selecting a small scaling factor may not sufficiently

♣Co-first authors contributed equally to this work.

drive parameters toward zero, while a large scaling factor,
though increasing sparsity, may result in increasingly worse
conditioning of the optimization problem; 2) Establishing a
definitive pruning criterion, specifically, a reliable metric to
assess parameter importance, is yet to be determined. Only
parameters that are precisely zero are pruned, have no impact
on the model performance.

In this work, we propose a progressive scheme for
regularization-based pruning, which addresses the aforemen-
tioned problems. Specifically, after the training converged with
a certain regularization scaling factor, the sparsity of the DNN
is assessed. Here, only parameters, e.g., weights or filters,
whose values below a minimal and learnable threshold, are
considered. If the sparsity does not reach the target value,
the scaling factor is increased and the training continues until
the next convergence. This procedure is repeated until the
network displays the target sparsity. To avoid large gradients
resulting in ill-conditioning, we derive an update rule for the
scaling factor of the regularization term. After the target sparsity
is reached, the DNNs is pruned and fine-tuned. Moreover,
as we use a learnable threshold for parameter pruning, only
non-informative parameters will be pruned, whereas small but
sensitive parameters can be optimally retained. Consequently,
the accuracy loss due to pruning can be remedied.

Experiments on benchmark datasets (CIFAR-10/100, Im-
ageNet) with structured pruning of SOTA models (ResNet,
VGG) prove the effectiveness of our approach.

In summary, the contributions of this work are:
• We propose a neural network pruning based on progressive

regularization, which can overcome the drawbacks of the
hyperparameter tuning of the scaling factor.

• We derive reasonable step sizes of the growth of the
scaling factor, by which the ill-conditioning caused by the
update of the scaling factor can be mitigated.

• We introduce a learnable parameter as the soft threshold to
distinguish non-informative parameters from informative
parameters.

• We conduct extensive experiments with various datasets,
DNN models, and regularization functions. The results
show that the progressive strategy outperforms previous
strategies involving direct hyperparameter tuning for the
scaling factor.

The rest of this work is structured as follows: Section II
gives an overview of the related work on neural network

pruning. Section III motivates and introduces the progressive
regularization-based pruning. In Section IV, we describe our
experiment and evaluate our approach by comparing with
previous approaches and other methods. Section V summarizes
this work.

II. RELATED WORK

Pruning in neural networks is typically categorized into
two types: structured and unstructured. Unstructured pruning
involves the independent removal of individual parameters, as
described by Han et al. [7]. This approach offers flexibility
and can enhance performance, but it necessitates the use of
specialized libraries for sparse matrix operations. In contrast,
structured pruning, which targets specific filters or channels
within the network [8], is more straightforward to implement
in practical applications. In this work, since we mainly focus
on model acceleration, so that we focused on the filter pruning
scenarios.

The primary goal of pruning is to eliminate filters that
contribute minimal information, thereby reducing redundancy.
Various criteria have been proposed to assess the infor-
mativeness of filters. For example, the research by Li et
al. [9] eliminates filters based on their variance and inter-
filter similarity, identifying those that are non-informative or
redundant. Other studies, such as those by Yang et al. [10]
and Verdenius et al. [11], utilize sensitivity-based criteria to
evaluate the impact of filter removal on model performance.
However, a challenge with this approach is the difficulty to
match the predetermined pruning ratio, as the training process
may not be attuned to this goal. To achieve high pruning ratios,
filters that still influence outcomes may be removed, potentially
leading to a decline in accuracy.

Magnitude-based pruning, which estimates the importance
of parameters based on their values or scaling factors in
batch normalization [12], [13], is a popular method for
attaining higher pruning ratios. This technique incorporates a
regularization term to encourage more parameters to approach
zero, thereby minimizing the impact of their removal. Various
regularization functions have been proposed, with the ideal
being the ℓ0-norm [14]. However, due to its non-differentiable
nature, the ℓ1-norm is frequently employed as a practical
substitute [15]. Research has explored diverse regularizers,
such as ℓ0.5-norm [16], transformed ℓ1 (tℓ1) [17], capped ℓ1
(cℓ1) [18], smoothly clipped absolute deviation (SCAD) [19],
minimax concave penalty (MCP) [20], log penalty [21], relaxed
ℓ0 (rℓ0) [22], etc. All regularizers have been shown to
outperform the ℓ1-norm in specific cases.

Despite its advantages, magnitude-based pruning has limita-
tions, as some parameters with low magnitudes are sensitive
for network output [23]. Removing these parameters can
degrade model performance. Additionally, setting the trade-off
parameter in regularization-based pruning poses a challenge. A
parameter that is too small may fail to drive sufficient weights
to zero, hindering the achievement of the target pruning ratio.
Conversely, a parameter that is too large can cause many filters

to attain very small values prematurely, impeding the model’s
learning ability [24].

To address these challenges, some studies have proposed
progressive regularization, which involves gradually increasing
the strength of regularization during training. For instance,
the approach in [22] progressively transforms a regularization
function from a negative squared exponential to a near-ℓ0
shape, mitigating the drawbacks of ℓ0 regularization. Wang
et al.[23] suggest progressively pushing unimportant filters to
very small values through increasing regularization. However,
as mentioned earlier, very small values may still impact perfor-
mance. Similarly, the DPFPS method [24] proposes gradually
increasing the regulation imposed on unimportant filters, setting
them to zero when their norms fall below a progressively
increasing threshold. Nonetheless, the pattern of this threshold
increase is predetermined, and experimental results indicate that
the hyperparameters involved significantly affect the outcomes.
Another progressive approach PSFP [25] involves gradually
increasing the pruning ratio in combination with a soft threshold
to achieve the target pruning ratio. However, this method
requires a predefined function to determine the variation of the
pruning ratio, and the hyperparameters must also be set within
this function.

In contrast, our approach offers several distinctive features:
1) We utilize a learnable soft threshold that is automatically

adjusted in conjunction with the objective function, effectively
pushing more weights to exact zero values.

2) Our progressive strategy focuses on the scaling factor
of the regularizer, rendering it compatible with a variety of
regularization functions from previous research.

3) We avoid predefined schedules for pruning ratios or
regularization.

4) Unlike gradual pruning methods, which remove filters
during the training process, our approach prunes DNNs only
at the end of training. This prevents the premature removal
of parameters that exhibit zero magnitude only temporarily,
allowing such parameters the opportunity to recover.

III. PROGRESSIVE REGULARIZATION

We first motivate our approach and introduce the progressive
regularizer in detail. In addition, we derive the step size
of the scaling factor update during training and introduce a
learnable soft threshold to prune non-informative parameters
while retaining sensitive parameters as far as possible. Lastly,
we suggest an invariant regularization against increasing model
size and varying functional forms of regularizers.

A. Motivation

In previous works on regularization-based pruning, attention
has often been paid to the design of regularization functions to
encourage higher sparsity. They thus usually follow the pruning
strategy described in Algorithm 1 [8]. However, several flaws
might arise in this process.

• The scaling factor here is a hyperparameter, that requires
numerous experiments for tuning. Additionally, general
regularizers are not invariant to the model size and

Progressive
Tuning 𝛼 = 10!"

Tuning 𝛼 = 10!#

Tuning 𝛼 = 10$

Tuning 𝛼 = 10#

Tuning 𝛼 = 10"
start train prune endfine

tune

Fig. 1. Trajectories of a two-dimensional pruning example with 50% target
pruning ratio. The bold green line indicates the progressive scheme, while
the thin lines in different colors denote the non-progressive (hyperparameter
tuning) scheme. Black point indicates the start point, solid lines refer to
training, dash-and-dot lines refer to pruning, dot lines refer to fine-tuning, and
points in corresponding colors denote the end position of the training.

Training without regularization
Training with regularization

Fig. 2. Exemplary weight changes during the training process. Since the
100-th epoch, a large regularization is introduced to force weights towards
zero.

regularization functional forms, i.e., the magnitude of
the regularization term varies strongly across networks
and regularizers (see Section III-E). Therefore, a priori
knowledge of the scaling factor tuning from other works
is generally not helpful. Figure 1 shows an example of
pruning with different scaling factors. While small factors
can lead to weak regularization, large factors can lead to
unstable dynamics of the optimization process.

• The pruning criterion is not well-defined. In general,
smaller parameters are pruned according to the target
sparsity S (in percentage) or pruning ratio. However,
if the scaling factor is small, the target sparsity S can
not be reached. In this case, some small but important
(sensitive) parameters, such as w2 in Figure 1, might be
pruned, which could lead to a significant drop in model
performance. In contrast, if the scaling factor is large, a
higher sparsity will be achieved than the target value. In
this case, the pruning can be seen as somehow randomly
performed among those ”zero-valued” parameters1 (see
red trajectory in Figure 1 and weight values in Figure 2).

1The parameters are not exactly zero due to numerical computing, but
fluctuate almost randomly around zero.

Algorithm 1: Baseline [8]
Data: D = {x,y}
Input : NN, L, R, α, P , S, optimizer
Init : patience← 0, Lbest ←∞
while patience < P do
L ← L(w,D) + αR(w)
NN← optimizer(L,NN)
if L < Lbest then
Lbest ← L
patience← 0

else
patience← patience + 1

end
end
pruning(NN,S)
fine tune(NN)

B. Progressive Regularization

To mitigate the aforementioned drawbacks, we propose a
progressive regularization strategy for neural network pruning
(see Algorithm 2, the differences from the baseline are marked
in red). Generally, the typical objective function L for training
DNNs with regularization is

L = L(w,D) + αR(w), (1)

where L is the loss function (e.g., cross entropy in classification)
of data D = {x,y} and model parameters w, R(·) is the
regularization function, and α is the scaling factor of the
regularization term, which is usually a tuning parameter.

However, in this work, we grow α gradually (and dynami-
cally) with consideration of the network sparsity. After each
training convergences (by early-stopping with patience P),
α is increased slightly, and the training will then continue
from the current solution. As α grows, the regularization
term progressively dominates the objective function, thus, the
sparsity of the network increases continuously, until the target
sparsity is reached. Then, we aim to remove only the zero-
valued pruning parameters, and perform fine-tuning to account
for the changes in the architecture. The bold green curve
in Figure 1 shows an example of progressive regularization
for pruning. As can be seen, some parameter values decrease
at the start of regularization, but cannot be forced smaller
further (even with large regularization penalty), such as w2,
these are sensitive parameters that are important for the DNN
and should not be pruned. Therefore, our intuitive idea was to
prune only zero-valued parameters, as they can be removed
without any effect on the output. However, due to numerical
computing, there is no ideal ”zero-valued” parameter during
training. The zero-valued parameters fluctuate around zero. To
decide a reasonable threshold, below which parameters should
be pruned, we introduce a learnable soft threshold.

C. Factor Update

Large gradient often leads to instabilities in gradient-based
optimization [26][27], therefore, to avoid large gradient caused

by factor update, we derive the update size of the scaling factor.
a) Derivation of step size: Suppose the training can be

converged by early-stopping criterion in the k-th update, we
have

∇wL(k) = ∇wL(w,D) + α(k)∇wR(w) = 0. (2)

Therefore, after the (k + 1)-th update, the following condition
holds for the warm start position

∇wL(k+1) = ∇wL(w,D) + α(k+1)∇wR(w) (3)

= −α(k)∇wR(w) + +α(k+1)∇wR(w) (4)

= (α(k+1) − α(k))︸ ︷︷ ︸
=:∆

(k+1)
α

∇wR(w) (5)

= ∆(k+1)
α ∇wR(w). (6)

To avoid large gradient ∇wL(k+1) after factor update that
may lead to instable optimization process, it should hold that

∇wL(k+1) = ∆(k+1)
α ∇wR(w) ≤ ∇max, (7)

where ∇max indicates the maximal acceptable gradient after
each update. Therefore, we observe that, for a given regular-
ization function R and the maximum acceptable gradient norm
∇max, the step size ∆α can be determined, i.e.,

α(k+1) − α(k) ≤ ∇max

∥∇wR(w)∥∞
. (8)

Here, ∥∇R∥∞ can be obtained by argmaxw R(w), where w
is the model parameters to be regularized, and ∇max can be
chosen empirically as 1.

b) Step size for certain regularizers: In the following, we
derive the update step for certain regularizers, which are used
in our experiment.

ℓp-norm: For ℓp-regularization, rather than going to a strictly
mathematical form, we adopted a slightly different variation,
which is also widely used in other machine learning works,
such as [28]–[33], i.e.,

R(w) =
∑
n

wp
n, ∇wR(w) = pwp−1. (9)

where w = [w1, w2, w3, ...] collecting all the parameters in a
DNN. Therefore, for p ≥ 1, the maximum value occurs at

∥∇wR(w)∥∞ = pwp−1
∣∣
w=wmax

= pwp−1
max, (10)

where wmax = ∥w∥∞, i.e., the element with the maximum
absolute value in w that can be found from the DNN parameters.
Therefore, the update step size is limited to

∆α ≤ ∇max
1

p
w1−p

max. (11)

For 0 < p < 1, the maximal gradient is

∥∇wR(w)∥∞ = pwp−1
∣∣
w=wmin

= pwp−1
min , (12)

where wmin is the minimal absolute value in w, which can be
found from the DNN parameters. Thus,

∆α ≤ ∇max
1

p
w1−p

min . (13)

Capped ℓ1 (cℓ1):

R(w) =
∑
n

min{c, wn}, (14)

∇wR(w) = 0 · 1{wn≥c} + 1 · 1{wn<c}, (15)

where c is the hyperparameter determining the specific shape
of the cℓ1-regularizer and 1{·} denotes an indicator function
returning 1 if the respective condition is true, else 0. Therefore,

∥∇wR(w)∥∞ = 1, i.e., ∆α ≤ ∇max (16)

Log-norm:

R(w) =
∑
n

log(γ|wn|+ 1)

log(γ + 1)
, (17)

∇wR(w) =
γ

log(γ + 1)

1

γ|w|+ 1
, (18)

where γ > 0 is the hyperparameter determining the specific
shape of the regularizer. Therefore,

∥∇wR(w)∥∞ =
γ

log(γ + 1)

1

γ|wmin|+ 1
, (19)

thus,

∆α ≤ ∇max(γ|wmin|+ 1)
log(γ + 1)

γ
. (20)

Minimax concave penalty (MCP):

R(w) =
∑
n

P (wn), (21)

with P (wn) =


λ|wn| −

w2
n

2γ
, |wn| ≤ γλ

γλ

2
, |wn| > γλ

, (22)

∇wR(w) = (λ− 1

γ
w) · 1{|wn|≤γλ} + 0 · 1{|wn|>γλ},

(23)

where γ > 1 and λ > 0 are hyperparameters determining the
specific shape of the regularizer, therefore,

∥∇wR(w)∥∞ = λ− 1

γ
wmin, thus, ∆α ≤ ∇max

γ

γλ− wmin
.

(24)

D. Learnable Soft Threshold

During the progressive regularization, an increasing number
of parameters will be gradually pushed to zero. Parameters,
that exhibit zero values earlier (for smaller values of α),
are generally less important than those reaching zero later
(for higher values of α), as their reduction can provide
more regularization gain compared to reduction in loss. This
observation forms the basis of our approach.

In training, the values of the parameters usually do not
reach exactly zero, but rather oscillate around it. In Figure 2,
we visualize some parameters, which oscillate frequently
between positive and negative values during the training
process. In this work, we consider these parameters to be
zero-valued parameters. However, at the same time, there are

also parameters that can be pushed to small magnitudes by
the regularization, but cannot be reduced to zero, as a slight
reduction in their values may cause huge change in the loss. In
this work, these parameters are defined as sensitive parameters.

To distinguish these two kinds of parameters, we introduce a
learnable soft threshold [34]. For this, we express the original
network parameters w as

w 7→sign(w)⊙ ReLU(|w| − t), (25)

where ”⊙” denotes element-wise multiplication, ReLU(x) =
max{x, 0} is also applied in element-wise on its arguments,
and t ∈ R+ is the learnable soft threshold. The positive value
of t can be guaranteed by mapping it through a differentiable
function with only positive range. Here we use a sigmoid
function, which is kept the same as in [34].

Intuitively, t should be a value close to zero, as soft pruning
of parameters below t affects the performance of the DNN,
unless the parameters below t have only a subtle or even
negative effect on the network performance. In this case, those
”zero-valued” parameters, which are, due to the numerical
computing, embodied as values fluctuating around zero, are
removed through the learnable threshold. Conversely, this
learnable threshold will not increase to a large magnitude,
as a larger threshold would remove informative and sensitive
parameters. Consequently, the soft threshold will learn to stay
at a value to optimally (w.r.t. objective function) filter out
non-informative parameters among low value parameters.

E. Invariant Regularization

In Equation 1, α can be interpreted also as the trade-off
between task loss L(w,D) and the regularization term R(w)
corresponding to the sparsity. However, the value of R(w) is
usually highly related to the size of DNNs (i.e., size of w)
and the functional form of R(·). Therefore, if either the size
of DNNs or the regularization function changes, the value of
R(w) will also change. Consequently, the magnitude of α has
to be re-tuned for rebalancing L(w,D) and R(w). However,
this process re-tune process generally has no a priori knowledge.
To overcome this problem, we modified all the regularizers to
be invariant of the growing model size. Moreover, to balance
the magnitudes among different regularization functions, we
suggest to normalize the regularization values in consideration
of the initial parameter distribution.

a) Size invariant regularization: To guarantee the invari-
ance of the regularization against model size, we scaled the
regularization term by 1/Nk, i.e.,

R̃(w) =
R(w)

Nk
, (26)

where N is the size of the vector being regularized (here w),
and k is the order of N contributing to the growing of the
regularization, i.e., O(Nk). Taking ℓ1-norm, as an example,
i.e.,

ℓ1(w) =

N∑
n=1

|wn|,

Algorithm 2: Progressive Regularization
Data: D = {x,y}
Input : NN, L, R, ∆α, P , S, optimizer
Init : sparsity← 0
while sparsity(l) < S(l), ∀ l do
Lbest ←∞
patience← 0
while patience < P do
L ← L(w,D) + αR(w)
NN, t← optimizer(L,NN)
if L < Lbest then
Lbest ← L
patience← 0

else
patience← patience + 1

end
end
update sparsity(l), ∀ l
α(l) ← α(l) +∆

(l)
α , ∀ sparsity(l) < S(l)

end
pruning (NN, t)
fine tune (NN)

where wn is the parameter following a certain distribution with
expected value E {w}, the expected value of ℓ1(w) is

E {ℓ1(w)} = E

{
N∑

n=1

|wn|

}
= NE {|w|} = O(N), (27)

i.e., the magnitude of ℓ1-regularizer increases with the size N
of w by O(N). Therefore, for the invariance against model
size, the ℓ1-regularizer is then modified to

ℓ̃1(w) =
1

N

N∑
n=1

|wn|.

By now, the value of ℓ1-regularizer is stable with growing size
of w.

b) Functional form invariant regularization: After mak-
ing the regularization values invariant to model size, we also try
to keep the values at the same level among different functional
forms. To this end, we normalize the regularization value by
the initial parameters, i.e.,

R(w) =
R̃(w)

R̃(winit)
. (28)

Here, winit is the initial value of the parameters, e.g., whose
distribution generally follows a Gaussian distribution [35].

c) Invariant regularizer for group sparsity: As mentioned
earlier, we employ structured pruning on filter level. Therefore,
rather than putting each parameter separately into the regular-
izer R(·), we collect them in groups (also known as group
sparsity [36]), i.e.,

R(f) = R([f1, f2, ...]), (29)

where f summarizes all the size-invariant Euclidean lengths
of filters fi with

fi = ℓ̃2([w
(fi)
1 , w

(fi)
2 , ...]) =

1√
N

∥∥∥[w(fi)
1 , w

(fi)
2 , ...]

∥∥∥
2
. (30)

Here, [w(fi)
1 , w

(fi)
2 , ...] collects all parameters within the i-th

filter. We can interpret Equation 29 in the following way: We
first express the filters by their scalar Euclidean lengths, and
then use a regularizer to encourage higher sparsity on filter
level, i.e., to encourage more filter lengths towards zero. It is
worth noting that N and R̃(winit) for invariant regularization
R(·) in the last paragraphs are modified accordingly to the
number of filters and R̃(f(winit)).

TABLE I
REGULARIZERS AND TUNING PARAMETERS IN THE EXPERIMENTS WITH

CIFAR DATASETS.

Regularizer Functional form Shape tuning
ℓp-norm

∑
n wp

n p ∈ {0.1, 0.2, 0.5, 1, 2}
tℓ1

∑
n

(a+1)|wn|
a+|wn| a ∈ {e−2, e−1, e0, e1, e2}

cℓ1
∑

n min{|wn|, c} c ∈ {e−2, e−1, e0, e1, e2}
log-norm

∑
n

log(γ|wn|+1)
log(γ+1)

γ ∈ {e−4, e−2, e0, e2, e4}
MCP

∑
n P (wn)∗ λ ∈ {0.25, 0.5, 1}, γ ∈ {2, 5, 8}

∗ P (wn) = λ|wn| − w2
n/(2γ).

for |wn| ≤ γλ and P (wn) = γλ2/2, for |wn| > γλ

F. Layer-wise Pruning

Our approach can be easily adapted to global pruning [7]
or layer-wise pruning [34]. In this work, we perform uni-
form pruning on DNNs, the reasons are two-folds: 1) The
expressiveness of DNNs is also partly determined by the
architecture [37], global pruning might destroy the model
architecture by removing all parameters in a certain layer.
2) Global pruning usually results in higher FLOPs than layer-
wise pruning [38], [39]. A comparison of global and layer-wise
pruning is reported in section IV-E.

Note that, in layer-wise pruning, either uniform or non-
uniform pruning can be realized by setting the same or different
target sparsity S(l) to the l-th layer in the DNN. Analogous,
the learnable soft thresholds will also be learned independently
cross layers, i.e., t(l) for each layer l. In this case, we denote
them by S = {S(1), S(2), ...} and t = {t(1), t(2), ...} for target
sparsity and learnable threshold, respectively.

G. Discussion

In this section, we propose a progressive regularization
scheme to overcome the weaknesses of the previous pruning
scheme. We progressively increase α to force higher sparsity
in the network continuously until the target sparsity is reached.
In this way, the parameters being pushed to zero might have
less importance than others. For this process, we also suggest
the step size for factor updating and invariant regularization. To
distinguish between the informative and non-informative small
parameters, we introduce a learnable soft threshold with aims
at pruning them without severe effects on the objective function.

Although ∇max is an adjustable parameter, it generally needs
no tuning, as it essentially does not change the convergence
point of the optimization. A simple experiment shows that, the
performance of DNNs is also not sensitive to its value (see
section IV-D). Another independent work may also support this
perspective, i.e., ∇max, as a hyperparameter of hyperparameter
(α), tends to be more robust than the hyperparameter itself [40].
Empirically, ∇max = 1 works well and usually needs no
additional change.

IV. EXPERIMENT

To evaluate the proposed progressive regularization, we
conduct extensive experiments on the image classification tasks
based on the framework developed by Intel2 [41]. Our code is
available at www.github.io. The experiments are conducted on
Nvidia A100 40G GPUs.

A. Experiment Setup

We first carry out the experiments on CIFAR-10 and CIFAR-
100 [42] with ResNet56 [43] and VGG19 [44] respectively.
Then to further evaluate the effect of progressive regularization
on large scale dataset, we evaluate ResNet34 and ResNet50 [43]
on ImageNet [45]. Regarding the pruning setup, we follow the
common settings described in, e.g., [46] and [23]. Specifically,
the pruning is applied to all convolution layers in VGG (except
the first layer), while only applied to the first convolution layer
of the normal residual blocks and the first two convolution
layers of the bottleneck blocks in ResNet.

For CIFAR datasets, we first pretrain the models to have
comparable accuracy to their original works, and then employ
the progressive regularization. Afterwards, pruning and fine-
tuning are performed. On ImageNet, due to the large scale
dataset and the long training time, we directly employ our
progressive scheme on the pretrained ResNet34 and ResNet50
model provided by PyTorch [47] with the MCP regularizer
(γ = 2, λ = 1). All training setups (e.g., optimizer, batch size
and learning rate) are kept the same as [23].

For fair comparisons, we also adopt the released pruning
ratios from [23]. Namely, on CIFAR, uniform pruning is
conducted with target pruning ratios ranging from 50% to
90%. While on ImageNet dataset, for comparable FLOPs drops,
specified pruning ratios are applied.

In terms of our progressive regularization, we combine our
approach with five regularizers, namely ℓp-norm, tℓ1, cℓ1, log-
norm, and MCP. For each regularizer, we tune the scaling
factor α ∈ {10−2, 10−1, 100, 101, 102} (as a baseline) and
progressively increase α (for our approach). Moreover, as some
regularizers have additional hyperparameters for modifying
their shape, we additionally tune those in both approaches. The
functional forms of regularizers and the tuning parameters are
listed in Table I.

As evaluation metrics, three aspects are taken into account,
namely, storage/memory, computing complexity, and model
performance. For storage/memory, we consider the pruning

2https://github.com/IntelLabs/distiller

www.github.io
https://github.com/IntelLabs/distiller

TABLE II
COMPRESSION AND TOP-1 ACCURACY (%) COMPARISON ON CIFAR-10 WITH RESNET56.

Pruning ratio 50 % 60 % 70 % 80 % 90 %
FLOPs / #Params 65.39M / 0.43M 52.88M / 0.35M 40.13M / 0.26M 27.60M / 0.18M 14.85M / 0.09M

ℓ1 + one-shot [23] 92.97±0.15 92.31±0.23 91.88±0.09 91.03±0.14 87.34±0.21

ours

ℓp-norm
baseline 93.07±0.16 92.74±0.20 92.26±0.12 90.97±0.24 88.40±0.20

progressive 93.52±0.06 93.26±0.09 92.75±0.06 91.47±0.11 89.42±0.16

tℓ1
baseline 93.13±0.14 92.79±0.11 92.32±0.21 91.32±0.23 88.73±0.13

progressive 93.52±0.25 93.26±0.11 92.75±0.24 91.45±0.10 89.47±0.10

cℓ1
baseline 92.94±0.07 92.65±0.19 92.11±0.12 90.99±0.13 88.93±0.22

progressive 93.64±0.13 93.01±0.08 92.80±0.05 91.43±0.14 89.66±0.25

log-norm
baseline 93.04±0.24 92.84±0.13 92.18±0.14 91.33±0.23 88.68±0.13

progressive 93.69±0.11 93.34±0.21 92.59±0.19 91.66±0.08 89.58±0.12

MCP
baseline 93.22±0.19 92.92±0.20 92.23±0.11 91.37±0.19 88.33±0.12

progressive 93.58±0.20 93.41±0.23 92.81±0.22 91.46±0.05 89.65±0.06

Greg [23] 93.06±0.09 92.77±0.12 92.23±0.21 91.39±0.17 89.49±0.23

Improvement over Greg 0.63 0.64 0.58 0.27 0.16

TABLE III
COMPRESSION AND TOP-1 ACCURACY (%) COMPARISON ON CIFAR-100 WITH VGG19.

Pruning ratio 50 % 60 % 70 % 80 % 90 %
FLOPs / #Params 111.29M / 5.05M 75.35M / 3.24M 45.97M / 1.83M 24.38M / 0.82M 9.35M / 0.21M

ℓ1 + one-shot [23] 71.49±0.14 70.27±0.12 66.05±0.04 61.59±0.03 51.36±0.11

ours

ℓp-norm
baseline 71.32±0.16 70.14±0.14 66.51±0.11 61.94±0.10 52.39±0.22

progressive 71.45±0.17 70.42±0.17 67.50±0.09 63.37±0.20 56.29±0.17

tℓ1
baseline 71.43±0.20 70.29±0.06 66.99±0.13 62.30±0.06 52.03±0.05

progressive 71.62±0.05 70.34±0.23 67.37±0.03 63.46±0.05 56.15±0.04

cℓ1
baseline 71.32±0.17 70.04±0.06 66.21±0.22 61.72±0.09 51.85±0.21

progressive 71.45±0.18 70.43±0.10 67.50±0.16 63.53±0.16 55.29±0.22

log-norm
baseline 71.44±0.13 70.21±0.21 66.42±0.09 61.95±0.15 51.76±0.11

progressive 71.57±0.17 70.49±0.04 67.29±0.09 63.39±0.22 56.43±0.12

MCP
baseline 71.37±0.08 70.18±0.13 66.22±0.09 61.63±0.13 52.20±0.10

progressive 71.63±0.12 70.42±0.18 67.39±0.13 63.78±0.06 57.47±0.06

Greg [23] 71.50±0.12 70.33±0.12 67.35±0.15 63.55±0.29 57.09±0.03

Improvement over Greg 0.13 0.16 0.15 0.23 0.38

ratio, sparsity, and number of parameters; for computing com-
plexity, we consider the number of floating points operations
(FLOPs); while for the model performance, we adopt the top-1
accuracy.

B. Result on CIFAR

The mean and standard deviation of the top-1 accuracy (in
percentage) of three random runs are summarized in Table II
(for CIFAR-10 with ResNet56) and Table III (for CIFAR-100
with VGG19). For each regularizer, we report the baseline (with
best tuned α) and our approach (with progressive α). Moreover,
we also report the results from a comparable work Greg [23]
and ℓ1 + one-shot as its baseline. For better comparison, the
accuracy gain is shown in the last row of each table.

It can be seen from Table II and Table III that, pruning
with progressive α can outperform tuning α in all cases of
regularizers (at least for the α values evaluated). This supports
our hypothesis that, through a progressively growing scaling
factor α, the unimportant parameters can be pushed to zero
earlier than important ones.

On CIFAR-10 with ResNet56, our progressive regularizer
exhibits better accuracy in most cases compared to the SOTA
Greg. For example, with cℓ1 regularizer, all baselines perform
worse than Greg, but with progressive scheme, the pruned
models outperform Greg. This improvement is also evident

with ℓp and log-norm regularizers. In most case with MCP and
tℓ1 regularizers, even our baselines can suppress Greg. For this,
we speculate that, tuning of scaling factor and functional form
of regularizers enhance the model performance. Nevertheless,
even though these baselines are already strong, they can still
be further enhanced by our progressive approach. The most
significant improvement (accuracy gain) can reach 0.64%.

On CIFAR-100 with VGG19, similar phenomena can be
observed with pruning ratio varying from 50% to 70%. How-
ever, at 80% and 90% pruning ratios, progressive regularization
shows less superiority against Gerg. Surprisingly, however, the
MCP regularizer brings in this case even a higher accuracy
gain instead.

We also notice that, in most cases, pruning with MCP
regularizers provide the best performances. Therefore, we take
MCP regularizer with λ = 1 and γ = 2 in further experiment
on the large scale ImageNet, as this function yields the best
model performance (in terms of average accuracy over all
experiments with CIFAR).

C. Result on ImageNet

The results on ImageNet with ResNet34 and ResNet50 are
summarized in Table IV and Table V respectively. The methods
for comparison include four SOTA pruning methods, namely,
SFP [48], FPGM [49], Greg [23], CCEP [50]. For fair and

TABLE IV
FLOPS DROP (%) AND TOP-1 ACCURACY (%) COMPARISON ON IMAGENET

WITH RESNET34.

Method Baseline Pruned Acc ↓ FLOPs ↓
Greg-2 73.31 73.61 −0.30 24.24

ours 73.29 73.68 −0.39 24.24

CCEP-1 73.30 73.64 −0.34 25.44

SFP 73.92 71.83 2.09 41.10

CCEP-2 73.30 72.67 0.63 42.10

ours 73.29 72.69 0.60 43.82

TABLE V
FLOPS DROP (%) AND TOP-1 ACCURACY (%) COMPARISON ON IMAGENET

WITH RESNET50.

Method Baseline Pruned Acc ↓ FLOPs ↓
FPGM 76.15 74.83 1.32 54.00

CCEP-2 76.13 75.55 0.58 56.35

GReg-2 76.13 75.36 0.77 56.71

ours 76.11 75.60 0.51 56.71

CCEP-3 76.13 74.87 1.26 64.09

GReg-2 76.13 73.90 2.23 66.51

ours 76.11 74.87 1.24 66.51

easy comparison, the methods are ranked and grouped by their
FLOPs drop percentage. All results are obtained directly from
their original reports.

From Table IV, we can observe that, our approach outper-
forms Greg in terms of accuracy under same FLOPs drop
on both ResNet34 and ResNet50. When compared to CCEP,
although our method exhibits similar performances in terms
of the top-1 accuracy, the accuracy drops due to the pruning
are always lower than CCEP.

D. Experiment for ∇max

We conduct a simple experiment on CIFAR-10 with
ResNet56 to investigate the influence of ∇max on the accuracy
of the DNNs. In the experiment, MCP regularizer with γ = 2
and λ = 1 is utilized, the model is uniformly pruned with
50% target sparsity, three ∇max values are tested, namely 0.25,
0.5, 1.0, and 2.0. The result (mean and standard deviation
of top-1 accuracy) of three runs is reported in Table VI. We
thus conclude that, the influence of ∇max on the result is not
significant.

TABLE VI
COMPARISON FOR DIFFERENT ∇max .

∇max 0.25 0.5 1.0 2.0

accuracy 93.62±0.17 93.56±0.21 93.58±0.20 93.49±0.24

E. Comparison of Global and Layer-wise Pruning

In our experiments, we also performed global pruning with
independent learnable soft thresholds for each layer. Since
the expressiveness of DNNs is partly determined by their
architecture [37], we avoid pruning all filters of any layer
by setting an upper limit of 95% pruning ratio for each layer.
The pruning algorithm is described in Algorithm 3. Note that,

Algorithm 3: Progressive Regularization for Global
Pruning
Data: D = {x,y}
Input : NN, L, R, P , S, optimizer
while sparsity(global) < S do
Lbest ←∞
patience← 0
while patience < P do
L ← L(w,D) + αR(w)
NN, t← optimizer(L,NN)
if L < Lbest then
Lbest ← L
patience← 0

else
patience← patience + 1

end
end
update sparsity(global)

α← α+∆α
end
pruning (NN, t)
fine tune (NN)

the upper limit of pruning ratio is considered during the update
of sparisty(global).

89

90

91

92

93

94

50% 60% 70% 80% 90%

Top-1 accuracy and FLOPs of global vs. uniform pruning

94%

93%

92%

91%

90%

89%

80M

64M

48M

32M

16M

0M 55

60

65

70

75

80

50% 60% 70% 80% 90%

Top-1 accuracy and FLOPs of global vs. uniform pruning

80%

75%

70%

65%

60%

55%

275M

220M

165M

110M

55M

0M

To
p-
1
ac
cu
ra
cy

FLO
Ps

Sparsity
To
p-
1
ac
cu
ra
cy FLO

Ps

Sparsity

acc global acc uniform FLOPs global FLOPs uniform

FLOPs and Top-1 accuracy on CIFAR-10 with ResNet56 FLOPs and Top-1 accuracy on CIFAR-100 with VGG19

To
p-
1
A
cc
ur
ac
y

FLOPs and Top-1 Accuracy
on CIFAR-10 with ResNet56

FLOPs and Top-1 Accuracy
on CIFAR-100 with VGG19

To
p-
1
A
cc
ur
ac
y 94%

93%
92%
91%
90%
89%

50% 60% 70% 80% 90%

80M
64M
48M
32M
16M
0M

FLO
P
s

To
p-
1
A
cc
ur
ac
y 80%

75%
70%
65%
60%
55%

50% 60% 70% 80% 90%

275M
220M
165M
110M
55M
0M

FLO
P
s

Acc global Acc uniform FLOPs uniformFLOPs global
Sparsity Sparsity

Fig. 3. FLOPs and top-1 accuracy of global and uniform pruning on ResNet56
and VGG19.

Figure 3 summarizes the FLOPs and top-1 accuracy on
CIFAR-10 with ResNet56 and on CIFAR-100 with VGG19.
It can be seen that, global pruning results generally both in
higher FLOPs and higher accuracy.

a) VGG19: In Figure 4 we plot the FLOPs versus various
filter pruning ratios of each layer in VGG19. Note that, unlike
uniform pruning, the pruning ratios in global pruning is non-
deterministic, therefore, we also report the standard deviation
of three runs. It can be observed that, in VGG19 shallow layers
tend to have higher FLOPs than deeper layers, however, with
global pruning, the deeper layers are preferentially pruned,
leading to much higher FLOPs than uniform pruning.

b) ResNet56: In Figure 5 we plot the FLOPs versus
various filter pruning ratios of each layer in ResNet56. Different
from VGG19, each layer in ResNet56 has similar FLOPs,
therefore, even with global pruning, the FLOPs stay similar
with that in uniform pruning.

Generally, the difference between global and layer-wise
pruning is that, global pruning has much higher FLOPs given

FLO
Ps(

10!
)

Pru
nin
gra
tio
(%)

40

0

10

20

30

25

50

75

100

Layer

FLO
Ps(

10!
)

Pru
nin
gra
tio
(%)

40

0

10

20

30

25

50

75

100

Layer

FLO
Ps(

10!
)

Pru
nin
gra
tio
(%)

40

0

10

20

30

25

50

75

100

Layer

FLO
Ps(

10!
)

Pru
nin
gra
tio
(%)

40

0

10

20

30

25

50

75

100

Layer

FLO
Ps(

10!
)

Pru
nin
gra
tio
(%)

40

0

10

20

30

25

50

75

100

Layer

Pr
un
in
g

ra
tio
(%
)

FL
O
Ps

(10
!) 4030

20
10
0
25
50
75
100

Layer

Filter Pruning Ratio : 50%

Layer

Pr
un
in
g

ra
tio
(%
)

FL
O
Ps

(10
!) 4030

20
10
0
25
50
75
100 Filter Pruning Ratio : 60%

Layer

Pr
un
in
g

ra
tio
(%
)

FL
O
Ps

(10
!) 4030

20
10
0
25
50
75
100

Filter Pruning Ratio : 80%

Filter Pruning Ratio : 70%

Pr
un
in
g

ra
tio
(%
)
FL
O
Ps

(10
!) 4030

20
10
0
25
50
75
100

Pr
un
in
g

ra
tio
(%
)

FL
O
Ps

(10
!) 4030

20
10
0
25
50
75
100

Filter Pruning Ratio : 90%

Layer

Layer

No Pruning UniformPruning Global Pruning

Fig. 4. Comparison of global and uniform pruning of VGG with different
filter pruning ratios.

the same sparsity. This is primarily because the parameters
in the shallow layers, due to convolution with data with
larger spatial size, are involved in more computations. Thus,
they have a higher impact on the output than that in deep
layers. Consequently, in global pruning, the parameters in deep
layers are more likely to be pushed to smaller magnitudes by
regularization or weight decay, and thus be pruned. In contrast,
parameters in shallow layers, leading to more FLOPs, will
be retained. This view was provided by the work of [39],
and can be also supported by our experiments. This feature
may guarantee that global pruning has a significantly better
performance, but also higher computational cost at the same
time. Therefore, global pruning is preferred in devices with
limited storage/memory but high computational power.

V. CONCLUSION

In this paper, we propose a progressive regularizer for
DNN pruning. The essential idea is to encourage more zero-
valued parameters by a progressively increasing scaling factor
of the regularizer. In this process, unimportant parameters
are pushed to zero earlier (at a small scaling factor) than
the important ones, and thus, can be removed with minimal
impact on the output. To avoid large gradient, which may
unstabilize the optimization process, due to the factor growing,
we derived an update schedule for the scaling factor α. The
initial plan was to prune only the zero-valued parameters, since
the pruning of the zero-valued parameters has no effect on
the output of the DNN. However, due to numerical computing,

FL
O
Ps
(1
0!
)

Pr
un
in
g
ra
tio
(%
)

2.5

0

1.0
1.5
2.0

25
50
75
100

Layer

0.5

FL
O
Ps
(1
0!
)

Pr
un
in
g
ra
tio
(%
)

2.5

0

1.0
1.5
2.0

25
50
75
100

Layer

0.5

FL
O
Ps
(1
0!
)

Pr
un
in
g
ra
tio
(%
)

2.5

0

1.0
1.5
2.0

25
50
75
100

Layer

0.5

FL
O
Ps
(1
0!
)

Pr
un
in
g
ra
tio
(%
)

2.5

0

1.0
1.5
2.0

25
50
75
100

Layer

0.5

FL
O
Ps
(1
0!
)

Pr
un
in
g
ra
tio
(%
)

2.5

0

1.0
1.5
2.0

25
50
75
100

Layer

0.5

Layer

Layer

Layer

Layer

Layer

No Pruning UniformPruning Global Pruning

Filter Pruning Ratio : 50%

Filter Pruning Ratio : 60%

Filter Pruning Ratio : 80%

Filter Pruning Ratio : 70%

Filter Pruning Ratio : 90%

2.5
2.0
1.5
1.0
0.5
0

50
25

75
100
2.5
2.0
1.5
1.0
0.5
0

50
25

75
100
2.5
2.0
1.5
1.0
0.5
0

50
25

75
100

2.5
2.0
1.5
1.0
0.5
0

50
25

75
100
2.5
2.0
1.5
1.0
0.5
0

50
25

75
100

Pr
un
in
g

ra
tio
(%
)
FL
O
Ps

(10
!)

Pr
un
in
g

ra
tio
(%
)
FL
O
Ps

(10
!)

Pr
un
in
g

ra
tio
(%
)
FL
O
Ps

(10
!)

Pr
un
in
g

ra
tio
(%
)
FL
O
Ps

(10
!)

Pr
un
in
g

ra
tio
(%
)
FL
O
Ps

(10
!)

Fig. 5. Comparison of global and uniform pruning of ResNet56 with 50%
filter pruning ratio.

no parameters are exactly zero. To distinguish zero-valued
parameters (which are usually small values) from small but
informative parameters, we introduce a learnable soft threshold
to optimally (w.r.t. the objective function) force non-informative
parameters to zero. To make the regularization more stable
against different model sizes and different functional forms,
we suggest invariant regularizers. In this way, the balance
between the regularization term and the task loss becomes
more stable and robust. Experiments on multiple benchmark
datasets and SOTA models prove that our progressive scheme
outperforms the hyperparameter tuning scheme for all given α
in the experiment. Furthermore, our method outperforms the
compared SOTA methods with the same target sparsity (on
CIFAR) and the same FLOPs drop (on ImageNet).

ACKNOWLEDGMENT

This work has been partially supported by the Carl-Zeiss-
Foundation as part of ”stay young with robots” (Jubot) project
and the German Ministry of Research and Education as part
of the SDIL (01IS19030A).

REFERENCES

[1] C. Louizos, M. Welling, and D. P. Kingma, “Learning Sparse Neural
Networks Through ℓ0 Regularization,” in International Conference on
Learning Representations, 2018.

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks
for Semantic Segmentation,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 3431–3440.

[3] Y. Zhou, H. Zhao, Y. Huang, T. Riedel, M. Hefenbrock, and M. Beigl,
“Tinyhar: A Lightweight Deep Learning Model Designed for Human
Activity Recognition,” in Proceedings of the 2022 ACM International
Symposium on Wearable Computers, 2022, pp. 89–93.

[4] R. Nakano, J. Hilton, S. Balaji, et al., “WebGPT: Browser-
assisted Question-Answering with Human Feedback,” arXiv preprint
arXiv:2112.09332, 2021.

[5] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model Compression and
Hardware Acceleration for Neural Networks: A Comprehensive Survey,”
Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[6] Y. Zhou, T. King, Y. Huang, et al., “Enhancing efficiency in har
models: Nas meets pruning,” in 22nd IEEE International Conference
on Pervasive Computing and Communications (PerCom 2024), Institute
of Electrical and Electronics Engineers (IEEE), 2024.

[7] S. Han, J. Pool, J. Tran, and W. Dally, “Learning Both Weights
and Connections for Efficient Neural Network,” Advances in neural
information processing systems, vol. 28, 2015.

[8] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
Filters for Efficient Convnets,” arXiv preprint arXiv:1608.08710, 2016.

[9] H. Li, C. Ma, W. Xu, and X. Liu, “Feature Statistics Guided Efficient
Filter Pruning,” in Proceedings of the 20th International Conference
on International Joint Conferences on Artificial Intelligence (IJCAI),
2021, pp. 2619–2625.

[10] C. Yang and H. Liu, “Channel pruning based on convolutional neural
network sensitivity,” Neurocomputing, vol. 507, pp. 97–106, 2022.

[11] S. Verdenius, M. Stol, and P. Forré, “Pruning via iterative ranking of
sensitivity statistics,” arXiv preprint arXiv:2006.00896, 2020.

[12] J. Lee, S. Park, S. Mo, S. Ahn, and J. Shin, “Layer-Adaptive Sparsity
for the Magnitude-Based Pruning,” in International Conference on
Learning Representations (ICLR), 2020.

[13] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
Efficient Convolutional Networks Through Network Slimming,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2736–2744.

[14] E. J. Candès and M. B. Wakin, “An Introduction to Compressive
Sampling,” IEEE signal processing magazine, vol. 25, no. 2, pp. 21–30,
2008.

[15] D. L. Donoho and M. Elad, “Optimally Sparse Representation in Gen-
eral (Nonorthogonal) Dictionaries via ℓ1 Minimization,” Proceedings
of the National Academy of Sciences, vol. 100, no. 5, pp. 2197–2202,
2003.

[16] Z. Xu, X. Chang, F. Xu, and H. Zhang, “ℓ1/2 Regularization:
A Thresholding Representation Theory and A Fast Solver,” IEEE
Transactions on neural networks and learning systems, vol. 23, no. 7,
pp. 1013–1027, 2012.

[17] R. Ma, J. Miao, L. Niu, and P. Zhang, “Transformed ℓ1 Regularization
for Learning Sparse Deep Neural Networks,” Neural Networks, vol. 119,
pp. 286–298, 2019.

[18] T. Zhang, “Multi-Stage Convex Relaxation for Learning with Sparse
Regularization,” Advances in neural information processing systems,
vol. 21, 2008.

[19] J. Fan and R. Liu, “Variable Selection via Penalized Likelihood,” 1999.
[20] C.-H. Zhang, “Nearly Unbiased Variable Selection Under Minimax

Concave Penalty,” The Annals of statistics, vol. 38, no. 2, pp. 894–942,
2010.

[21] R. Mazumder, J. H. Friedman, and T. Hastie, “SparseNet: Coordinate
Descent with Nonconvex Penalties,” Journal of the American Statistical
Association, vol. 106, no. 495, pp. 1125–1138, 2011.

[22] S. Liu, Q. Feng, D. Eriksson, B. Letham, and E. Bakshy, “Sparse
Bayesian Optimization,” arXiv preprint arXiv:2203.01900, 2022.

[23] H. Wang, C. Qin, Y. Zhang, and Y. Fu, “Neural Pruning via Growing
Regularization,” in International Conference on Learning Representa-
tions (ICLR), 2021.

[24] X. Ruan, Y. Liu, B. Li, C. Yuan, and W. Hu, “Dpfps: Dynamic and
progressive filter pruning for compressing convolutional neural networks
from scratch,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, 2021, pp. 2495–2503.

[25] Y. He, X. Dong, G. Kang, Y. Fu, and Y. Yang, “Progressive deep
neural networks acceleration via soft filter pruning,” arXiv preprint
arXiv:1808.07471, vol. 1, no. 2, p. 8, 2018.

[26] H. Adeli and N.-T. Cheng, “Augmented Lagrangian Genetic Algorithm
for Structural Optimization,” Journal of Aerospace Engineering, vol. 7,
no. 1, pp. 104–118, 1994.

[27] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the Exploding
Gradient Problem,” CoRR, abs/1211.5063, vol. 2, no. 417, p. 1, 2012.

[28] T. Van Laarhoven, “ℓ2 Regularization Versus Batch and Weight
Normalization,” arXiv preprint arXiv:1706.05350, 2017.

[29] B. Bilgic, I. Chatnuntawech, A. P. Fan, et al., “Fast Image Reconstruc-
tion with ℓ2-regularization,” Journal of magnetic resonance imaging,
vol. 40, no. 1, pp. 181–191, 2014.

[30] R. C. Moore and J. DeNero, “ℓ1 and ℓ2 Regularization for Multiclass
Hinge Loss Models,” in Symposium on Machine Learning in Speech
and Natural Language Processing, 2011.

[31] X. Ni, L. Fang, and H. Huttunen, “Adaptive ℓ2 Regularization in Person
Re-Identification,” in 2020 25th International Conference on Pattern
Recognition (ICPR), IEEE, 2021, pp. 9601–9607.

[32] F. Wen, L. Chu, P. Liu, and R. C. Qiu, “A Survey on Noncon-
vex Regularization-Based Sparse and Low-rank Recovery in Signal
Processing, Statistics, and Machine Learning,” IEEE Access, vol. 6,
pp. 69 883–69 906, 2018.

[33] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien, “ℓp-norm Multiple
Kernel Learning,” The Journal of Machine Learning Research, vol. 12,
pp. 953–997, 2011.

[34] A. Kusupati, V. Ramanujan, R. Somani, et al., “Soft Threshold Weight
Reparameterization for Learnable Sparsity,” in International Conference
on Machine Learning, PMLR, 2020, pp. 5544–5555.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[36] J. Yoon and S. J. Hwang, “Combined Group and Exclusive Sparsity
for Deep Neural Networks,” in International Conference on Machine
Learning, PMLR, 2017, pp. 3958–3966.

[37] D. Mittal, S. Bhardwaj, M. M. Khapra, and B. Ravindran, “Recovering
from Random Pruning: On the Plasticity of Deep Convolutional
Neural Networks,” in 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV), IEEE, 2018, pp. 848–857.

[38] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging the
Lottery: Making All Tickets Winners,” in International Conference on
Machine Learning, PMLR, 2020, pp. 2943–2952.

[39] H. Mostafa and X. Wang, “Parameter Efficient Training of Deep
Convolutional Neural Networks by Dynamic Sparse Reparameterization,”
in International Conference on Machine Learning, PMLR, 2019,
pp. 4646–4655.

[40] K. Chandra, A. Xie, J. Ragan-Kelley, and E. Meijer, “Gradient Descent:
The Ultimate Optimizer,” in Advances in Neural Information Processing
Systems.

[41] N. Zmora, G. Jacob, L. Zlotnik, B. Elharar, and G. Novik, “Neural
Network Distiller: A Python Package for DNN Compression Research,”
Oct. 2019.

[42] A. Krizhevsky et al., “Learning Multiple Layers of Features from Tiny
Images,” 2009.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[44] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556,
2014.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in 2009 IEEE conference
on computer vision and pattern recognition, Ieee, 2009, pp. 248–255.

[46] T. Gale, E. Elsen, and S. Hooker, “The State of Sparsity in Deep Neural
Networks,” arXiv preprint arXiv:1902.09574, 2019.

[47] A. Paszke et al., “Pytorch: An Imperative Style, High-Performance
Deep Learning Library,” in Advances in Neural Information Processing
Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.

[48] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft Filter Pruning for
Accelerating Deep Convolutional Neural Networks,” in Proceedings of
the 27th International Joint Conference on Artificial Intelligence, 2018,
pp. 2234–2240.

[49] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter Pruning
via Geometric Median for Deep Convolutional Neural Networks
Acceleration,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 4340–4349.

[50] H. Shang, J.-L. Wu, W. Hong, and C. Qian, “Neural Network Pruning
by Cooperative Coevolution,” arXiv preprint arXiv:2204.05639, 2022.

