
Machine Learning: Science and
Technology

PAPER • OPEN ACCESS

Actively learning costly reward functions for
reinforcement learning
To cite this article: André Eberhard et al 2024 Mach. Learn.: Sci. Technol. 5 015055

View the article online for updates and enhancements.

You may also like
In situ tumor model for longitudinal in silico
imaging trials
Aunnasha Sengupta, Miguel Lago and
Aldo Badano

-

Decoding of unimanual and bimanual
reach-and-grasp actions from EMG and
IMU signals in persons with cervical spinal
cord injury
Marvin Frederik Wolf, Rudiger Rupp and
Andreas Schwarz

-

One-loop contributions for $h\rightarrow
\ell \bar{\ell}\gamma$ and $e^-
e^+\rightarrow h\gamma$ in $U(1)_{B-L}$
extension of the standard model
Khiem Hong Phan, Dzung Tri Tran and
Huy Thanh Nguyen

-

This content was downloaded from IP address 141.52.248.2 on 28/03/2024 at 13:01

https://doi.org/10.1088/2632-2153/ad33e0
/article/10.1088/1361-6560/ad3322
/article/10.1088/1361-6560/ad3322
/article/10.1088/1741-2552/ad331f
/article/10.1088/1741-2552/ad331f
/article/10.1088/1741-2552/ad331f
/article/10.1088/1741-2552/ad331f
/article/10.1088/1674-1137/ad2441
/article/10.1088/1674-1137/ad2441
/article/10.1088/1674-1137/ad2441
/article/10.1088/1674-1137/ad2441

Mach. Learn.: Sci. Technol. 5 (2024) 015055 https://doi.org/10.1088/2632-2153/ad33e0

OPEN ACCESS

RECEIVED

15 November 2023

REVISED

12 February 2024

ACCEPTED FOR PUBLICATION

14 March 2024

PUBLISHED

26 March 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Actively learning costly reward functions for reinforcement learning
André Eberhard1, HoussamMetni1,2,5, Georg Fahland3, Alexander Stroh3 and Pascal Friederich1,4,∗

1 Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
2 Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
3 Institute of Fluid Mechanics, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
4 Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
5 Current address: Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany.
∗ Author to whom any correspondence should be addressed.

E-mail: pascal.friederich@kit.edu

Keywords: reinforcement learning, optimization, natural science, machine learning

Supplementary material for this article is available online

Abstract
Transfer of recent advances in deep reinforcement learning to real-world applications is hindered
by high data demands and thus low efficiency and scalability. Through independent improvements
of components such as replay buffers or more stable learning algorithms, and through massively
distributed systems, training time could be reduced from several days to several hours for standard
benchmark tasks. However, while rewards in simulated environments are well-defined and easy to
compute, reward evaluation becomes the bottleneck in many real-world environments, e.g. in
molecular optimization tasks, where computationally demanding simulations or even experiments
are required to evaluate states and to quantify rewards. When ground-truth evaluations become
orders of magnitude more expensive than in research scenarios, direct transfer of recent advances
would require massive amounts of scale, just for evaluating rewards rather than training the
models. We propose to alleviate this problem by replacing costly ground-truth rewards with
rewards modeled by neural networks, counteracting non-stationarity of state and reward
distributions during training with an active learning component. We demonstrate that using our
proposed method, it is possible to train agents in complex real-world environments orders of
magnitudes faster than would be possible when using ground-truth rewards. By enabling the
application of RL methods to new domains, we show that we can find interesting and non-trivial
solutions to real-world optimization problems in chemistry, materials science and engineering. We
demonstrate speed-up factors of 50–3000 when applying our approach to challenges of molecular
design and airfoil optimization.

1. Introduction

Reinforcement learning (RL) techniques have achieved impressive results in a wide range of applications such
as robotics [44], games [56, 74, 84] or natural sciences [55, 94]. This success is the result of improvements
along multiple independent branches of RL research such as an improved understanding of rewards in
difficult environments [1, 17, 70, 89], more sample-efficient training via experience replay [4, 45, 51, 71] or
more effective sampling via active learning [12, 20, 22], more powerful algorithms [28, 32, 50, 56, 82] and
more efficient and scalable implementations [21, 35, 36] of established techniques. These extensions were
primarily developed and benchmarked in simulated environments such as OpenAI Gym [13],MuJoCo [81]
or the Deepmind Control Suite [80], among many others. In these scenarios, research is primarily centered
around improving sample efficiency, e.g. the Atari100k benchmark [91], exploration techniques [14], or
better representation learning in very high-dimensional, visual environments [15, 46, 90]. In all these
environments, the underlying Markov decision process (MDP) is well-designed with meaningful and
computationally cheap rewards, such that agents can be trained for millions or even billions [6] of steps.

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ad33e0
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ad33e0&domain=pdf&date_stamp=2024-3-26
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0006-6880-8809
https://orcid.org/0000-0003-0675-7322
https://orcid.org/0000-0003-0850-9883
https://orcid.org/0000-0003-4465-1465
mailto:pascal.friederich@kit.edu
https://doi.org/10.1088/2632-2153/ad33e0

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

Figure 1. Processing speeds of rewards for different environments or simulators. Numbers for Gigastep are from [48]. Numbers
for Brax are from [26]. Numbers for Classic Control, Atari andMuJoCo and their EnvPool variants are from [86]. Numbers from
ProcGen are from [19].

However, in real-world tasks rewards do not follow this principle and may be either difficult to formulate
or to collect. Whenever this is the case, a viable approach is to learn the reward function. Why and how to
learn a reward model differs based on the exact task to perform. Early approaches, rooted in the field of
robotics, aim to learn high-level behavior (placing or grasping objects) while having access to only low-level
primitives (actuators) of the robot. In these scenarios, the reward function is assumed to be absent as it is
difficult to engineer it manually. Instead, an agent must infer it from demonstration [1, 70] or, whenever
demonstration is difficult or impossible, from ranked alternatives [17, 89]. Another scenario in which a
reward model can be learned is model-based reinforcement learning (MBRL) [47]. In MBRL, the agent not
only learns a policy, but also tries to learn the transition dynamics and/or reward function. Both models can
then be used for planning, i.e. a hypothetical interaction with the environment with no real-world effects in
contrast to executing the policy, which always causes a state transition in an MDP. In these scenarios, a
learned reward function can be used to reduce the number of real-world interactions, thus improving
sample-efficiency. Since testing algorithms is easier in simulation, the majority of RL research focuses on
discrete [6, 91] or continuous [81] control tasks in simulated environments, which are suitable testbeds for
general RL research. In these scenarios, researchers primarily study, compare and improve algorithmic
components, potentially running environments for billions [6] of timesteps. Due to the availability of cheap
rewards, learning the reward function is uncommon in these environments.

Apart from traditional RL research, there is an increasing interest to transfer these methods to other
domains, e.g. to the natural sciences or engineering domain. In those scenarios, rewards are frequently the
result of computationally demanding optimization procedures or algorithms, which are, even though in
simulation, orders of magnitude more costly to evaluate than in benchmark scenarios.

Figure 1 compares different environments and simulators with regard to their number of possible reward
evaluations per second. A neural network forward pass is conservatively estimated at 1 ms. Human judgment
is assumed to be on the order of 1 min. The time to evaluate one reward for a particular task is based on our
experiments in section 4. The drag optimization task is based on a Computational Fluid Dynamics
simulation, which runs for approximately 10 min on a single core, but was run on multiple cores in our
experiments. Density functional theory refers to expensive quantum chemical calculations. In contrast,
distributed architectures such as Gigastep [48] are able to process a billion steps per second, while other
optimized architectures such as Brax [26] report around 100 million steps per second. Even though orders of
magnitude slower, popular environments in OpenAI Gym [13] such as Atari [6] orMuJoCo [81] are still able
to process a considerable number of rewards per second, which can further be increased by using
parallelization, e.g. as in EnvPool [86].

As such, the current trend in RL is to scale systems massively by running multiple independent copies of
agent-environment interactions in parallel. While using massive amounts of compute resources may be
justified by the outstanding results such as [38, 75], following this trend in scenarios with complex rewards,

2

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

evaluations have two major drawbacks. First, it may exclude all but the largest institutions to engage in this
area of research at all. Second, establishing scale as the default to gather enough data to train agents can be
considered Red AI [72].

When ground-truth evaluations become orders of magnitude more expensive than in common
environments, vanilla RL would require massive amounts of scale, just for evaluating rewards rather than
training the policy. For problems in the context of natural sciences and engineering, in which simulations
with different computational budgets are needed in order to obtain rewards, it would be more practical to
provide proxy rewards in the form of a learned model. As can be seen in figure 1, such tasks, when not
evaluated in a parallel or distributed context, can be even slower to evaluate than human feedback. In
contrast, a neural network model of the reward function has the potential to speed up reward generation
considerably, given that it is possible to learn such a model for a particular task. Human feedback still
remains a special case, as it cannot be parallelized. However, even if we would evaluate rewards in the
scenarios we consider in a distributed context, it still would require a considerable amount of compute,
which may not be available, as we are required to bridge several orders of magnitude in order to reach a
reasonable number of training samples.

In this work, we explicitly focus on learning policies with costly rewards (red areas in figure 1) in a
model-free setting. We show that it is possible to combine reinforcement and active learning to resolve the
issue of reward collection in real-world scenarios, where the relevant domain-specific quantities are difficult
to obtain. We show that with our approach, which we term ACRL (Actively Learning Costly Reward
Functions for Reinforcement Learning)6, neural networks, pre-trained on a relatively small initial dataset and
regularly updated during training via active learning, can be used as reward proxies. We furthermore show
that agents trained with our method achieve competitive results across different real-world tasks with varying
computational cost, while training several times faster compared to training with ground-truth rewards.

2. Related work

2.1. Active reward learning and sample efficiency
Active reward learning techniques [12, 20, 22] build upon the insight that not all training samples are equally
important for learning and aim to select only those samples which are most beneficial for learning. The
selection is usually done by some form of uncertainty estimation, often within the Bayesian framework.
Reducing the number of state queries is vital in cases where reward evaluation is expensive. While existing
work employs active learning to reduce the number of queries for the agent to accelerate convergence of the
RL training [52], we employ active learning for the reward model such that predictions become more
accurate on states the agent visits during exploration.

In vanilla RL, every observation is used only once to update the agent’s policy, making learning slow and
sample-inefficient. A popular technique to overcome this is to use experience replay [51] in off-policy
algorithms, which improves sample-efficiency in terms of sample usage by storing experience in a replay
buffer and performing parameter updates on batches uniformly sampled from it. Improvements of
experience replay use different forms of non-uniform sampling [45, 71], handle sparse and binary reward
signals and multi-goal environments [4], and are also extended to a distributed context [36].

In our work, we do not aim to improve sample efficiency in its general sense, even though we
dramatically reduce the number of ground-truth environment interactions. Rather, we avoid expensive and
repetitive ground-truth evaluations for known regions of the state space by using a reward model. We
increase the size of this region over the course of training by providing ground-truth labels for a small
fraction of states selected by some sampling method. We use the learned reward model as a drop-in
replacement for the actual reward, hence we do not use any form of model-based learning or planning to
improve training efficiency. In addition, since our method assumes a modification of the environment’s
properties, i.e. the reward, it is possible to use techniques such as information directed reward learning
(IDRL) [52] with our method to reduce the number of reward model queries. Specifically, we show that we
can improve training time without using any of the more advanced techniques in the RL toolbox to keep our
solution lean and to avoid common reproducibility issues [34, 37].

2.2. Learning reward functions
In theory, every agent accumulates rewards under a unified mathematical framework. In practice, though,
the exact properties of a reward function depend on the task. For example, a reward function could produce
immediate (dense) or delayed (sparse) rewards, which themselves could be binary, discrete, or continuous.
Sometimes, a reward function is not even available and hence cannot produce any rewards. In this section,

6 Our code is available at: https://github.com/32af3611/acrl.

3

https://github.com/32af3611/acrl

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

we provide an overview about why and how to learn reward functions in different scenarios. We put most
emphasis on why it is required to learn a reward function in a variety of cases as opposed to how to do so.
Investigating in detail the question of why to learn a reward model for expensive computational simulations
differs from traditional and more recent work. For example, the reason to learn a reward function in the
branch of MBRL is conceptual, i.e. methods require it for planning. In the model-free branch of RL, learning
a reward function is not a requirement, and we learn a model of it for practical reasons as we may have
different issues with using the true reward function directly, if it exists.

RL provides a powerful framework for solving problems in which it is not directly possible to specify the
correct solution but only an indicator of quality or progress as measured by the reward. Unfortunately, even
specifying how well an agent did in certain tasks is difficult in some cases. The field of robotics can provide
many such example tasks, e.g. to carry around an object or to place it on a table. To solve such tasks, the
paradigm of learning from demonstration [70] emerged, which is most commonly also referred to as
apprenticeship learning [1] or imitation learning [70]. In [70], a real-world robotic arm is trained to solve the
classic Cart-Pole balancing problem using MBRL. While the task can be learned from scratch, the authors
show that by pretraining the policy at = π(st) or both the policy and the dynamics model st+1 = f(st,at) on
only a small number of demonstrations, the task can be learned from fewer trials.

A concept related to learning from direct demonstration is Inverse Reinforcement Learning (IRL) [60].
The goal in IRL is to extract a reward function given observed, optimal behavior. The extracted reward
function should be able to explain the observed behavior, i.e. IRL is indirect in that it first learns a reward
function from demonstration and subsequently optimizes a policy using this reward function. In [1], the
authors’ objective is to learn from demonstration via IRL. They first assume that the unknown, true reward
function R∗ is defined as a linear combination of state features ϕ, i.e. R∗(s) = w∗ ·ϕ(s). Defining
µ(π) = E[

∑∞
t=0 γ

tϕ(st)|π] to be a vector of feature expectations, the expected policy performance can be
expressed as a linear combination of learned weights w and µ(π). Another assumption is that one can
observe sequences of state vectors generated by an expert policy and therefore the expert feature expectations
µ(πE). The authors then propose an iterative algorithm to estimate the reward function using a series of
policies π(i), expected features µ(i) = µ(π(i)) and weights w(i). Weights w(i) are calculated based on the
distance µ(πE)−µ(π(i)). One can then obtain a policy π(i+1) by optimizing it with a learned reward
function R= (w(i))Tϕ . Using the policy π(i+1), expected features µ(i+1) = µ(π(i+1)) and weights w(i+1) can
be calculated and so on. A major drawback of this algorithm is that it requires learning a policy in every
iteration and therefore is limited in the ability to scale. IRL is also considered an ill-posed problem as there
are many reward functions which can explain a particular behavior as well as the degenerate reward function
induced by w= 0, which makes all policies optimal. An advantage compared to direct learning from
demonstration is that the policy can be transferred to similar environments by learning a new policy with the
learned reward function, while direct learning from imitation depends on the environment’s dynamics and
cannot be transferred [2]. As such, learning from demonstration, direct or indirect, whenever possible, is an
elegant way to avoid hand-crafting a reward function for complex, high-level behavior.

Unfortunately, there are certain cases where it is not easily possible to demonstrate optimal behavior. For
example, while a human could demonstrate optimal behavior for a humanoid robot, it is less possible for
robots with a different morphology [17]. Under mild assumptions, it is believed that whenever it is not
possible to describe optimal behavior, it may be possible to learn behavior from an ordered set of
demonstrations, which need not necessarily be optimal [49]. As a result, Reinforcement Learning from
Human Feedback (RLHF) [17] has emerged as a paradigm. The authors of [49] argue that one can separate
the what, i.e. the user intention, summarized in form of a reward model, from the how, i.e. maximizing this
reward via RL. The underlying intuition of this approach is that there are frequent cases where humans are
able to compare and order a set of candidate solutions, while being less able to produce optimal solutions
directly with sufficient quality or amount. A prominent application of RLHF is InstructGPT [63], a chatbot
able to solve a large variety of text-based tasks with high quality.

While the above examples of why to learn a reward function are the most prominent ones, there is also
literature learning reward functions in a more narrow scope. In a model-free setting, the authors in [68]
show that when the reward signal is noisy, corrupted or stochastic, a learned reward model can be used for
variance reduction. A different reward concept is that of intrinsic rewards [16], which serve as an exploration
bonus in addition to the external reward provided by the environment. Agents are intrinsically rewarded
when visiting novel states and therefore, one must be able to quantify how frequently a state has been visited.
In large state spaces, a model of state novelty must be learned, for example by distillation [14] or with
generative models [43].

4

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

Table 1. Categorization of different concepts of reward model learning and their characteristics.

Scenario
Sample
efficiency

Difficult
specification

Active
Learning

Expensive
human
rewards

Expensive
computational

rewards

Apprenticeship
learning

8 3 3 3 8

Inverse reinforcement
learning

8 3 3 3 8

Reinforcement
learning from human
feedback

8 3 3 3 8

Model-based
reinforcement
learning

3 8 3 8 8

Our scenarios 3 8 3 8 3

In the context of learning reward functions, active learning is frequently encountered as a component, as
it reduces the number of reward queries to make, which is especially beneficial when rewards are expensive.
In RLHF [17], queries are selected based on an ensemble of reward models to estimate uncertainty. Also
motivated by the fact that both evaluation and demonstration of tasks in robotics are difficult, the authors
of [12] propose to learn a reward with Gaussian Processes, which are also suitable methods for active
learning as they can provide uncertainty quantification without ensembles, but do not scale to large datasets.
Similarly, the authors of [76] use a binary classifier as a reward model which predicts whether a particular
state is a goal state. During training, the user can be queried to provide binary labels, which are relatively easy
to obtain as a human is able to quickly distinguish a goal from a non-goal state. The authors in [53] use
active learning to reduce the number of samples required in IRL. IDRL [52] actively learns a reward model
such that additional queries help with identifying the optimal policy rather than uniformly improving the
reward model at all states.

We summarize our categorization of the different concepts of learning a reward function in table 1. Cells
are marked with 3 if a column is the defining characteristic of a particular type and 8 otherwise. For
example, sample efficiency is also a concern when learning from demonstration or feedback but the defining
characteristics are that rewards are difficult to formulate and that human feedback is required. Conversely, in
MBRL, rewards are not always difficult to specify and human feedback is not always required, as it is a more
general concept itself, even though it can also be part of learning from demonstration. When learning reward
models, active learning is a frequently encountered component to reduce the number of expensive queries
and to speed up training.

In summary, most of the existing literature uses learned reward models to avoid a human to specify a
whole reward function or rewards for single transitions. The former is often difficult to do and the latter is
very time-consuming when training a policy for many steps. While there exists a large body of literature
where RL is applied in simple simulators, the simulations we consider are of scientific nature and are orders
of magnitude more difficult to evaluate (see figure 1). In addition, the specification of a reward function for
RL as well as an acquisition function for active learning allows, due to the rewards being physically
meaningful, to unify how we can learn policies specifically in these environments, which is the primary
contribution of our work.

2.3. Efficient implementations
The effects of other extensions within the RL framework have been studied in [35], showing recent advances
can be integrated to improve their standalone-performance. From a practical point of view, the authors
of [77] provide a unified implementation view of RL algorithms to leverage modern, parallel hardware
architectures to further reduce training time.

In our work, we do not aim to leverage massively scaled RL in order to solve the issue of costly rewards.
Rather, we propose an extension to restore the effectiveness of these methods in scenarios where their
efficiency would be threatened by the reward evaluation bottleneck. We note that our method is scalable and
naturally can be integrated into distributed architectures such as those in [24, 36, 58].

5

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

2.4. RL for optimization
The idea of optimizing functions with RL was already investigated several decades ago [88]. In [88], the
authors used REINFORCE [87]-like algorithms on a set of experiments with known maxima to show that it
is possible to learn an adaptive system that generates optima by trial and error. Interestingly, they found that
their algorithms converge to suboptimal single-mode solutions in the presence of multiple equally-valued
actions and corrected this behavior by maximizing entropy in addition to reward, which today is a standard
technique in robust RL and also a core component in one of the current state-of-the-art algorithms, Soft
Actor-Critic and its variants [18, 32, 33].

Since then, RL has been applied to many instances of combinatorial optimization due to its ability to
efficiently explore large spaces without handcrafted heuristics. Canonical NP-hard problems such as the
Travelling Salesman Problem (TSP) and other graph-related problems have been the focus due to the
difficulty of obtaining optimal solutions for these problems [8, 41]. Furthermore, there is an increased
interest in using these methods in real-world applications, with applications for road [93] or computer [83]
networks. A broader overview of machine learning for combinatorial optimization can be found in [9].

Besides applications in computer science, RL has been applied for optimization and discovery in a variety
of other domains. In chemistry and materials science, optimizing properties of molecules or their molecular
graphs, respectively, is of major interest. Existing work such asMolDQN [94] uses RL to find local
modifications of molecules that yield improved properties. Besides single-property optimizations, other
work aims for molecules meeting multiple criteria at the same time [29], geometry optimization [3] or
design and discovery [27, 62, 64].

Another source of interest is the optimization of airfoils to improve their aerodynamic properties, with
all kinds of applications in aeronautics. While traditionally these kinds of problems are tackled with
optimization methods such as gradient-based optimization, the authors in [23] argue that these methods,
even though computationally efficient in large spaces, are susceptible to poor local minima, and do not work
well with non-linear cost functions. While machine learning techniques are less susceptible to these kinds of
errors, the authors in [10] point out that using high-fidelity data for training can become prohibitively
expensive.

While there is much interest in using RL for different kinds of optimization problems, in many cases,
most effort is spent on finding a solution, with the general assumption that it can be verified fast. Methods
such asMolDQN [94] orMoleGuLAR [29] optimize cheap properties, e.g. logP and QED (for a description of
the quantities, see section 4.1), while in the case of airfoil design, lower-fidelity data is used to accelerate data
generation [10]. For real-world domains, the validation of solutions may be orders of magnitude slower than
in research scenarios, which hinders training agents in environments that require a very large number of
steps. In this work, we show that we can alleviate the computational burden of reward evaluation by actively
sampling data points and learning a reward model. By using a cheap reward model, we can provide rewards
much faster and, in addition, avoid repetitive and thus redundant evaluation of frequently visited states. We
show that we can use the originalMolDQN with an actively learned reward model to optimize properties of
molecules which are much more costly to evaluate. We also show that we can train agents for hundreds of
thousands of steps without excessive amounts of computational effort in an airfoil optimization task. This
does not only contribute to Green AI [72] in these scenarios, but also may allow smaller institutions to
engage in this area of research.

3. Our method: ACRL

In this section, we introduce our method for the optimization of physical systems whose properties are
computationally costly to evaluate. We use a standard MDP formulation as found in [79].

Let f (s) be a quantity or metric associated with state s, f being a known but expensive to evaluate
function of s. Without loss of generality, we aim to find a (local) minimum of f, or equivalently, a (locally)
optimal state s∗ = argmin

s
f(s). Due to high computational cost as well as non-convexity of f in real-world

tasks, we neither can directly solve for s∗ nor is it likely that we can find s∗ with heuristic search in general.
We therefore propose a more principled search of s∗ by framing it as a sequential decision-making problem
within the RL framework. A natural definition of reward in such environments is rt = f(st−1)− f(st), i.e. the
agent aims to accumulate reward by sequentially visiting states s with decreasing f (s). We note that this
formulation lends itself well to attract the agent to minima and is a popular choice in optimization
scenarios [41]. Nevertheless, the standard cumulative, discounted return formulation can be used whenever

6

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

appropriate. However, the potential-based reward formulation should be the primary choice when applicable
due to its favorable properties in terms of reward shaping and credit assignment [59].

Let s0 be a possibly random initial state, the agent then aims to maximize the total cumulative
(undiscounted) reward RT =

∑T
t=1 f(st−1)− f(st) = f(s0)− f(sT). Due to the computational complexity of f,

training an agent for a large number of steps may become infeasible or at least very time-consuming.
To reduce the computational burden of state evaluations during training, our method requires only a few

modifications of the standard training loop, namely the introduction of a reward model and its improvement
via active learning. In general, the interaction of policy and reward model closely mirrors the interaction of
policy and value networks in generalized policy iteration [79], except that in our method trajectories
generated by the policy are used to improve the reward model, which itself is used to improve the value
function. The two steps are then as follows.

The first step is to pre-train an approximate reward model f̂, e.g. a neural network, on a small, initial
dataset D in a supervised manner. f̂ is then used as a drop-in replacement for the true evaluation function f.
Doing so is theoretically sound as the reward distribution does not depend on the agent’s policy. This allows
using our method with both value-based and policy gradient methods without the necessity to change the
underlying theory. At this point, we make several mild assumptions about f. In contrast to the general RL
setting, we assume that we can evaluate f in any state, thus providing dense and instantaneous rewards on
state transitions. Hence, our method is not well-suited for sparse or delayed rewards, as found in
conventional RL scenarios, which we do not aim to cover since it is rarely the case that we cannot evaluate
any property of a system.

The second step is then to actively improve the reward model during agent training. Since the initial state
distribution in D likely differs from states visited by an exploring agent, f̂may have poor extrapolation
capabilities which will cause agent training to diverge as estimated state quantities may not have their true
value predicted accurately. This particularly applies in scenarios where it is difficult to define good initial
states, for example in the case of optimization problems where the optimal solution is to be found rather
than given. To overcome this issue, we propose to sample a small number of states encountered during agent
training and to provide the expensive ground-truth labels for them. In the most general form, we define an
acquisition function h(s) which hypothesizes about how beneficial adding the true label f (s) to D is for
training the reward model. We then periodically evaluate h for a small fraction of the agent’s experience E ,
e.g. the last N steps, where N is an application-dependent hyperparameter. We set s ′ = argmax

s∈E
h(s),

D= D∪{s ′} and subsequently update f̂ on the new D, either by training from scratch or fine-tuning. At this
point, we assume that the reward model can be trained reasonably fast such that the training time can be
amortized given enough reward evaluations. For example, h(s) may be chosen to be f̂(s), ||∇f̂(s)|| or other
sampling techniques such as uniform or uncertainty sampling. We hypothesize that this active learning
component allows to explore relevant regions of the state space effectively and efficiently. An important
implication of using active learning is that, depending on the task at hand, the initial reward model must not
be perfectly accurate, which is a recurring theme in RL when viewed from the perspective of policy iteration.
For example, when using our method for optimization tasks where it is unlikely that the optimal solution
space is included in the initial dataset D, perfect accuracy in this space is not necessary since the agent moves
away from the initially covered space towards a more optimal region. It is thus more important for the
reward model to be accurate on the on-policy distribution of states rather than on randomly selected initial
data points. The reward model is only required to improve as the agent’s policy improves and stabilizes. We
found this active learning component to be crucial in our tasks.

A summary of the overall procedure can be found in algorithm 1. We note that even though we use
variations of Double DQN [82] agents in all experiments, our method does not assume any particular type of
RL implementation and can be integrated into existing implementations with minimal changes, even in
asynchronous and distributed settings. Due to the freedom of choice of algorithms, our method can be used
for both discrete and continuous optimization problems. The same holds for sampling strategies or active
learning approaches in general.

7

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

Algorithm 1. Double Deep-Q-Learning within ACRL.

1: agent A, replay buffer B, initial dataset D, environment E, randomly initialized reward network
f̂

2: f̂← train(̂f,D) ▷ train reward network

3: E.reward← f̂ ▷ E.step() uses f̂ instead of f
4: for episode= 1 to M do ▷ training loop
5: st← initial state
6: for step= 1 to T do ▷ episode loop
7: at← A.action(st) ▷ϵ-greedy

8: st+1, r̂t+1← E.step(at) ▷r̂t+1 = f̂(st,at)
9: obs← (st,at, r̂t+1, st+1)
10: B.add(obs) ▷ save observation
11: obs← B.sample() ▷ sample experience from B
12: A.optimize(obs) ▷ update parameters
13: end for
14: if sample state then ▷ e.g. periodically
15: s ′← argmax

s∈E
h(s) ▷ any method

16: y ′← f(s ′) ▷ calculate ground-truth label
17: D← D∪{(s ′,y ′)}
18: end if
19: if update model then ▷ e.g. periodically

20: f̂← train(̂f,D) ▷ retrain reward network

21: E.reward← f̂ ▷ update reward network
22: end if
23: end for

4. Applications

4.1. Proof-of-principle: molecular property optimization
The algorithm described above is first used in molecular property optimization tasks as a proof-of-principle.
We use two fast-to-evaluate benchmarking properties to evaluate the performance of the algorithm and to
choose its optimal hyperparameters. Both the Q-network and the reward network are trained on Morgan
fingerprint vectors as molecular representations [57, 67]. States and actions are based on prior work [94],
where states are discrete molecular graphs and actions are semantically allowed local graph modifications.

The first benchmarking property is the penalized logP score, a widely used metric in the literature for
evaluating and benchmarking machine learning models on regression and generative tasks [30, 61, 92]. The
logP score is the logarithm of the water-octanol partition coefficient, quantifying the lipophilicity or
hydrophobicity of a molecule. Penalized logP additionally takes into account the synthetic accessibility (SA)
and the number of long cycles (ncycles):

pen.logP= logP− SA− ncycles. (1)

The second benchmarking property used here is the QED score, which is a quantitative estimate of
druglikeness based on the concept of desirability [11]. QED is an empirical score quantifying how ‘drug-like’
a molecule is. Both properties are computationally inexpensive and can be calculated using RDKit [66]. We
use them as benchmarking properties to study the effect of replacing the ground-truth reward with an
approximation and to choose hyperparameters of our algorithm. In both applications, empty initial states
are optimized for T= 40 steps. We then test our method on a real-life application in molecular improvement
with a more costly property value to calculate.

4.2. Application I: molecular design
In our first application, we evaluate ACRL on a molecular design task involving more costly rewards. We aim
to optimize electronic properties of molecules such as energies of the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) by performing sequential
modifications. These values can be calculated using semiempirical quantum mechanical methods such as
density functional tight binding methods as implemented in xTB [7, 31]. xTB-based reward evaluations on
one Intel Xeon Gold 6248 CPU range from seconds to minutes, depending on size and structure of the
molecule. Compared to other RL applications, this is comparably expensive, especially considering the
number of reward evaluations needed during agent training. The algorithm described above is applied using
the hyperparameters found in the experiments of section 4.1. Here, the agent learns a more

8

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

application-oriented optimization goal, i.e. how to decrease the LUMO energy of randomly sampled starting
molecules with only T= 5 steps per episode, while keeping the HOMO-LUMO gap constant. Therefore, the
goal of the agent is to find optimal local improvements of given molecules with a limited number of actions,
i.e. changes of the chemical structure. Let s0 be a randomly sampled molecule at the beginning of an episode,
then the improvement of the molecule st at timestep t over s0 is defined as:

R(st) =−|gap(st)− gap(s0) | − (LUMO(st)− LUMO(s0)) (2)

with gap(s) = LUMO(s)−HOMO(s) being the HOMO-LUMO energy difference of molecule s.

4.3. Application II: optimization of airflow drag around an airfoil
The control technique of wall-normal blowing or/and suction constitutes a promising approach for the
reduction of drag in turbulent boundary layers [42]. This technique has been successfully utilized not only in
flat-plate boundary layers [39] but also on more complex curved geometries such as airfoils [5]. The
majority of studies on the aforementioned control technique, however, considers uniform distribution of the
introduced blowing or suction profiles. In our second application, we use ACRL to minimize aerodynamic
drag around an airfoil by sequential adjustment of a set of blowing and suction coefficients represented as
vectors in Rd (see figure 3(a)), which form the state space in R2d. As higher coefficients trivially reduce drag,
we seek to optimize profiles with a constrained mean value for each side. By choosing a different constraint at
the start of each episode, we aim to generalize across multiple instances of optimization. We use a Double
DQN [82] agent with discrete actions corresponding to exactly one (or no) modification of an entry of s per
step to keep the action space as small as possible. Thus, we seek to find a (near-)optimal state s∗ ∈ R2d under
given constraints. In our experiments, we use an episode length of T= 30 steps. While policy gradient
methods would be more appropriate for this task, we use Double DQN for the sake of consistency.

Let d0 = f(s0) be the drag coefficient of starting state s0 corresponding to a uniform profile on each side.
Our agent then seeks to find a sequence of modifications such that RT =

∑T
t=1 dt−1 − dt = d0 − dT becomes

as large as possible. We note that while the agent seeks to maximize RT , we are primarily interested in the
shape of states sT close to the (globally) optimal state s∗ rather than the exact value of f(sT).

The incompressible flow around airfoils is analysed using Reynolds-averaged Navier–Stokes equation
based simulations in order to assess the effect of localized blowing and suction on the global aerodynamic
performance of the airfoil. The simulations are carried out with the open-source CFD-toolbox
OpenFOAM [85] using a steady state, incompressible solver. For the current study we consider a flow around
the NACA4412 airfoil at the Reynolds number Re= U∞c/ν = 4 · 105 and the angle of attack α= 5◦. For a
more detailed description of the setup the reader is referred to [25].

One particular difficulty in training an RL agent in this scenario is the fact that the true state evaluation
function f is a computational fluid dynamics (CFD) simulation. On one core of an Intel Xeon Platinum 8368
CPU, the simulation runs for approximately 10 min. Due to a fixed mesh size, we found that parallelization
beyond 4 cores did not result in a significant speed-up, hence one reward evaluation takes approximately 2 to
3 min and cannot be reduced significantly, which severely limits the applicability of conventional RL
algorithms with thousands of sequential reward evaluations.

5. Results and discussion

We summarize our results in table 2. The main quantity of interest in our experiments is the time it takes to
evaluate a particular number of rewards to train an agent successfully. Given several queries and the duration
for each query, we calculate the total query time for both ground-truth (oracle) and model queries. The
standard training protocol for RL agents evaluates the environment’s reward function on every step, while
our training protocol uses a reward model as a proxy.

Our results are two-fold. First, while not being our primary objective, using a reward proxy directly
improves sample efficiency, which is a direct consequence of not using the environment to provide rewards.
Second, by using a reward proxy, we can improve computational efficiency. On the one hand, given the high
cost of running a full simulation and the low cost of a neural network forward pass, the time to produce
enough samples to learn a model exceeds the time it takes to provide rewards for all steps during training. On
the other, and more importantly, the combined time to collect ground-truth samples and to run a particular
number of environment steps with proxy rewards is significantly lower than if we provided ground-truth
rewards in every step. Note that this does not include the total training time of the reward model. The reason
we do not include an exact number is that the time to train the reward model depends on hyperparameter
settings, the retraining frequency, and the number of environment steps. Even if we estimate model training
time on the order of how long it takes to run our most expensive experiment, which trained for

9

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

Table 2. Relative and absolute speed-up factors for different tasks comparing the number of oracle and model queries. The time for a
neural network forward pass has been conservatively estimated at 1 ms.

Task
Oracle
queries

Model
queries

Model
training

Oracle
duration

Model
duration

Oracle
time

Model
time

Oracle
training

Sample
efficiency

Mol. opt. ∼4000 ∼200 000 12 h ∼1 s ∼0.001 s ∼1 h ∼0.05 h ∼56 h +50×
Mol. imp. ∼4000 ∼25 000 12 h ∼1 m ∼0.001 s ∼66 h ∼0.007 h ∼416 h +6.25×
Drag opt. ∼3000 ∼9 000 000 12 h ∼3 m ∼0.001 s ∼150 h ∼2.5 h ∼450 000 h +3000×

Figure 2. Evolution of the reward reached by the agent during the optimization of logP and QED: The red curve was obtained by
training the agent on real (oracle-based) rewards, while the blue, orange and green curves are the ACRL model, the static reward
model and a fully updated reward model, respectively. Due to high computational costs, only ACRL and static models can be
tested in (c). In (c), solid lines represent modelled rewards while diamonds represent ground-truth rewards.

approximately ten hours, we can train agents with our approach several times faster. This is especially
pronounced in the airfoil design experiments as the simulation is expensive to run and training requires a
large number of steps, resulting in even one potential training run being prohibitively expensive to evaluate.

In the following sections, we show that we achieve our computational savings without sacrificing the
performance of the resulting policy. Our results indicate that using an actively learned reward model is
especially beneficial in the non-stationary or low-data regimes. When large databases exist for a particular
problem (section 5.1), it should be possible to train a reward model of sufficient quality. In the high-data
regime, we therefore cannot expect large improvements against a high-quality reward model in general.
However, in our benchmark scenarios (see figures 2(a) and (b)), we can observe two important properties of
ACRL agents. First, they match, even though using a relatively small number of queries, the performance of
agents trained with more powerful initial but static reward models, with results being similar to the original
MolDQN [94]. Second, a reward model trained on some fixed prior distribution cannot aid the learning
process in general when specifically working on tasks such as molecular discovery, which are inherently
out-of-distribution. In such cases, active learning is a crucial component (see figure 2(b)) as the reward
model might fail to generalize well enough outside its prior distribution. Therefore, our approach is efficient
and flexible and is especially useful when working with expensive quantities which have not been studied
extensively before (see sections 5.2 and 5.3). In the following sections, we provide a more detailed description
of the exact training protocol for each of our tasks before we draw our conclusion.

5.1. Speedup of molecular property optimization
Based on prior work [94], we used cheap chemistry benchmarking properties logP and QED as a proof of
concept to evaluate how the use of actively learned rewards performs in comparison to the real reward.
Figures 2(a) and (b) show the performance of three different agents with NN-approximated rewards
compared to a reference agent (‘oracle-based reward’) trained on the real reward. One of the reward
approximation agents is only trained once in the beginning (‘static’). One of the agents (‘ACRL’) uses a
reward model which is updated at regular intervals using additional oracle queries selected based on
uncertainty sampling. The last agent (‘full update’) is updated after every episode using oracle queries of all
states encountered in that episode (i.e. closest to the reference agent which directly uses oracle queries for
training). After approximately 2000 episodes in case of logP optimization and already at the beginning of
QED optimization, the performances of the agents start to differ. While the performance of the static agent
stagnates, all three other agents show similar performance.

The failure of the static agent to learn is due to the low generalization ability of the initial reward model
itself, which is trained on the QM9 dataset [65, 69] containing approximately 134.000 molecules with up to 9
non-hydrogen atoms. To some extent, the weak generalization can be attributed to not using state-of-the-art
graph neural networks. However, we decided to use the same molecular representation and model as in the

10

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

original Q-networks in [94], i.e. fingerprint representations and MLPs. Furthermore, during the learning
process, the molecules generated (especially after a high number of episodes) contain many more atoms,
which explains why the static reward model fails to correctly estimate the real property values. The strength of
this effect depends on the property studied. In the logP optimization task, the property values reached with a
static reward model follow the general trend of learning with real reward, even though the final performance
after 5000 episodes is lower. In case of QED optimization, the static reward model fails to predict QED-values
for molecules outside the training distribution. As a consequence, the RL agent learns to exploit errors of the
static reward model and finds adversarial examples, rather than samples with desirable properties.

The active learning component within ACRL agent allows the reward model to learn from molecules
outside its initial training distribution, thus improving reward evaluations during agent training. By only
selecting a small subset of labels obtained using oracle queries to be added to the training set, the objective of
the ACLR agent is to mimic the reference agent’s real behavior as closely as possible. This includes finding
(nearly) optimal points (see e.g. [52]) to be selected for retraining of the reward model to minimize its errors
while at the same time minimizing the number of costly oracle queries. We experimented with different
sampling strategies (see SI), from which a query-of-committee model (see [73]) performed best. Therefore,
in the ACLR model used in the molecular design and improvement tasks, three reward models were trained
independently to form a query-of-committee model. The three reward models are retrained after 500
episodes with the initial training set along with all 400 new molecules generated during the agent learning
process and their computed real property values. The selection of new oracle queries to extend the dataset is
based on the disagreement between the three reward models measured by the standard deviation of the
predictions. However, our work is independent of the particular sampling strategy (even random sampling
of visited states can work well in some applications), as long as the reward model’s training distribution
follows the exploration of the RL agent. Overall, the speed-up achieved by the ACRL model in this
experiment compared to the fully updated and oracle-based model is 50 (see table 2). The relationship
between speed-up and rewards reached is analyzed in the SI.
Fully updating the reward model on oracle queries of all samples (‘full update’) aids the learning process.

In case of logP optimization and even stronger in case of QED optimization, learning by fully updating the
reward model has even surpassed learning with actual reward values at certain episodes. One potential
reason for that can be that the exploration of the fully updated agent is stronger than that of the reference
agent (see SI), which needs to be confirmed in future work. However, in practice, fully updating the reward
model by adding every single generated point (along with its real property value) to the initial dataset and
retraining the neural network is as expensive as training the reference agent, so it cannot be applied to tasks
with costly rewards.

In order to understand why the fully updated reward model in some cases (e.g. figure 2(b)) outperforms
the oracle-based training, we analyzed the effect of additional noise and thus exploration which might be
induced by replacing oracle-based rewards with (noisy) approximated rewards. We therefore varied the
ϵ-greedy strategy of the learning process. In particular, we varied final ϵ values (i.e. probabilities of random
actions) and the form of the ϵ-decay function used on the learning process. However, none of the changes in
ϵ-decay could improve the learning behaviour, i.e. the ϵ-decay rate and function used by [94] was optimal.
Therefore, for the rest of the simulations we used a fully exponential decay reaching approximately 1%
randomness in episode 5000. The results of this study are available in the supplementary information
section. Further study of the improvement effect due to a fully updated reward model is part of ongoing
work as it has the potential to improve the performance of RL agents with little computational overhead.

5.2. Speedup of molecular improvement
After evaluating the performance of our agent on easy-to-compute properties such as penalized logP and
QED, we test our ACRL approach on a molecular improvement task with more costly rewards, where an
oracle-based reference study is unfeasible. In particular, we study a RL agent with the goal of independently
varying two quantum mechanically calculated energy levels of molecules with only very few, in our case five,
modification steps (see section 4). Figure 2(c) shows the evolution of the ACRL and the static reward agents’
rewards as a function of the training episode. We observe that the reward becomes positive after
approximately 1000 episodes and stagnates after approximately 2000 episodes. Therefore, the agent has
learned to improve given (arbitrary) molecules, since the reward value of the starting reference molecule is
zero, each episode starts with a randomly sampled molecule, and any molecule with negative reward would
have less desirable properties than the initial one. This suggests that even though the agent deals with
different starting reference molecules at each episode, it has managed to learn a strategy to increase the
reward in a limited number of steps.

In contrast to the property optimization task discussed before, the performance of the ACRL and the
static reward agents are equal within the confidence intervals. A likely explanation for this observation is that

11

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

Figure 3. (a) blowing/suction distribution discretized with 30 coefficients corresponding to 15 sections on each side of the
considered airfoil. (b) drag evolution of two independent runs. (c) coefficient distribution for low-drag profiles. In (b), solid lines
represent modelled rewards while diamonds represent ground-truth rewards.

the number of steps per epoch in this task is limited to five, whereas 40 steps were possible in the prior task.
Therefore, the agent here cannot generate molecules that are far outside the initial distribution of starting
molecules, i.e. the QM9 dataset. Furthermore, the ratio of reward model queries to oracle queries in this
experiment is comparably high (see table 2), meaning that the ACRL reward model is updated on a high
fraction of actually encountered molecules. A reference calculation with oracle based rewards or a fully
updated reward model to check if the ACRL model found near-optimal results (within the DQN framework)
are computationally too costly here and thus unfeasible. However, we compared the predictions of the
reward models for randomly selected molecules throughout the training process to oracle predictions (see
points in figure 2(c)). We found excellent agreement, indicating that the ACRL as well as the static reward
models are reliable. Thus, the solutions found are not exploiting weaknesses of the reward models, nor is the
training limited by wrong predictions of the reward models. Therefore, it is likely that the found solutions are
of comparable quality as ones that a hypothetical oracle-based RL model would find. The speed-up achieved
in this experiment compared to a hypothetical oracle based model is 6.25, which still has room for
improvement, given the high reliability of the reward models. Even though the ACRL agent does not exceed
the performance of a static reward model trained on QM9, these results have another important implication.
While QM9 contains all molecules with up to nine heavy atoms, of which around 130 000 exist and on which
the static model has been trained on, the ACRL agent matches its performance using only 4000 ground-truth
queries. While large databases exist for molecules, this may not be the case in other and especially new
domains. This showcases the effectiveness of our approach in the low-data regime.

5.3. Speedup of optimization of airflow drag around an airfoil
Our ACRL method is applicable to a large number of different tasks in natural sciences and engineering, not
only limited to chemistry. Therefore, in this section we present the results of a task in engineering, namely
the reduction of airflow drag around an airfoil, e.g. an airplane wing (see section 4). The objective in this task
was to find a set of coefficients minimizing drag and to analyze the resulting profiles. Figure 3(b) shows the
evolution of drag during 300 000 episodes of training. The discrete jumps of the ACRL model coincide with
retraining of the reward model every 100 00 episodes. As higher mean constraints are highly correlated with
lower drag, we choose samples for ground-truth evaluation based on reward rather than drag. Dots represent
oracle-based ground-truth evaluations of random profiles sampled during training.

The results demonstrate that the ACRL agent is able to find profiles with significantly lower drag
coefficients than the static reward model. They also show that in this task (in contrast to the molecular
improvement task) it is crucial to actively update the reward model during training. This is related to the fact
that in order to improve upon the initially uniform profile, the RL agent has to perform a constrained
optimization in high-dimensional real space (30-dimensional in our case). Accurate reward model
predictions require sufficient coverage of the relevant space within the initial dataset which is difficult to
assert because the relevant region is, in general, not known, which is also true for many other real-world
problems. As a consequence, an agent trained without active updates of the reward model only slightly
improves upon a uniform profile. At the same time, model updates result in sharp drops of both predicted
and ground-truth drag especially in the beginning of training as the relative effect of new ground-truth
samples is high and the RL agent probably exploits wrong predictions of the early-stage reward models. This
effect decreases as more and more samples are obtained along the trajectories towards the low-drag region in
parameter space.

12

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

Figure 3(c) shows the distribution of a small number of low-drag profiles sampled with ground-truth
labels during training. The resulting profiles are non-trivial and have a regular, alternating pattern of
coefficients with physically explainable meaning [40, 54, 78]. We note that due to various limitations of the
simulated environment such as discretization of action space, a limited number of coefficients due to
limitations in OpenFOAM simulations (used as an oracle) and limited episode length, these results are only
locally optimal w.r.t. our setup. Yet, we find consistent, physically interpretable and highly non-trivial results.

6. Conclusion

We introduced ACRL, an approach to learn reward functions in RL in the context of computationally
expensive rewards, which models the reward of given applications using machine learning models. Because
optimal regions in the search spaces are not known a priori and thus typically are not included in initial
training sets, we use active learning while exploring the state space to update the reward model over the
course of training. We first showed that it is possible to train agents with an incrementally improving reward
model on existing benchmark tasks using cheap benchmark quantities. We then showed in two more realistic
scenarios that by learning a reward model jointly with our policy, we can reduce the time for reward
evaluations by several orders while still being able to produce meaningful results. In turn, it becomes feasible
to train agents without massive distribution within reasonable timeframes, which saves computational
resources and energy and at the same time accelerates research since resources can be spent on training
models rather than evaluating rewards.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/32af3611/acrl.

Acknowledgment

We would like to thank the Federal Ministry of Economics and Energy under Grant No. KK5139001AP0. We
acknowledge support by the Federal Ministry of Education and Research (BMBF) Grant No. 01DM21001B
(German-Canadian Materials Acceleration Center). We acknowledge funding by the German Research
Foundation (Deutsche Forschungsgemeinschaft, DFG) within Priority Programme SPP 2331.

ORCID iDs

André Eberhard https://orcid.org/0009-0006-6880-8809
Houssam Metni https://orcid.org/0000-0003-0675-7322
Alexander Stroh https://orcid.org/0000-0003-0850-9883
Pascal Friederich https://orcid.org/0000-0003-4465-1465

References

[1] Abbeel P and Andrew Y N 2004 Apprenticeship learning via inverse reinforcement learning ICML ’04: Proc. 21st Int. Conf. on
Machine Learning (ACM) p 1

[2] Adams S, Cody T and Beling P A 2022 A survey of inverse reinforcement learning Artif. Intell. Rev. 55 4307–46
[3] Ahuja K, Green W H and Yi-Pei Li 2021 Learning to optimize molecular geometries using reinforcement learning J. Chem. Theory

Comput. 17 818–25
[4] Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R, Welinder P, McGrew B, Tobin J, Abbeel O P and Zaremba W 2017

Hindsight experience replay Advances in Neural Information Processing Systems vol 30, ed I Guyon, U V Luxburg, S Bengio,
H Wallach, R Fergus, S Vishwanathan and R Garnett (Curran Associates, Inc)

[5] Atzori M, Vinuesa R, Fahland G, Stroh A, Gatti D, Frohnapfel B and Schlatter P 2020 Aerodynamic effects of uniform blowing and
suction on a NACA4412 airfoil Flow Turbul. Combust. 105 735–59

[6] Badia A P, Piot B, Kapturowski S, Sprechmann P, Vitvitskyi A, Daniel Guo Z, and Blundell C 2020 Agent57: outperforming the
atari human benchmark CoRR (arXiv:2003.13350)

[7] Bannwarth C, Caldeweyher E, Ehlert S, Hansen A, Pracht P, Seibert J, Spicher S and Grimme S 2020 Extended tight-binding
quantum chemistry methodsWIREs Comput. Mol. Sci. 11 e01493

[8] Bello I, Pham H, Quoc V L, Norouzi M and Bengio S 2016 Neural combinatorial optimization with reinforcement learning
(arXiv:1611.09940)

[9] Bengio Y, Lodi A and Prouvost A 2021 Machine learning for combinatorial optimization: a methodological tour d’horizon Eur. J.
Oper. Res. 290 405–21

[10] Bhola S, Pawar S, Balaprakash P and Maulik R 2023 Multi-fidelity reinforcement learning framework for shape optimization J.
Comput. Phys. 482 112018

[11] Bickerton R, Paolini G, Besnard J’emy, Muresan S and Hopkins A 2012 Quantifying the chemical beauty of drugs Nat. Chem.
4 90–98

13

https://github.com/32af3611/acrl
https://github.com/32af3611/acrl
https://orcid.org/0009-0006-6880-8809
https://orcid.org/0009-0006-6880-8809
https://orcid.org/0000-0003-0675-7322
https://orcid.org/0000-0003-0675-7322
https://orcid.org/0000-0003-0850-9883
https://orcid.org/0000-0003-0850-9883
https://orcid.org/0000-0003-4465-1465
https://orcid.org/0000-0003-4465-1465
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1007/s10462-021-10108-x
https://doi.org/10.1007/s10462-021-10108-x
https://doi.org/10.1021/acs.jctc.0c00971
https://doi.org/10.1021/acs.jctc.0c00971
https://doi.org/10.1007/s10494-020-00135-z
https://doi.org/10.1007/s10494-020-00135-z
https://arxiv.org/abs/2003.13350
https://doi.org/10.1002/wcms.1493
https://doi.org/10.1002/wcms.1493
https://arxiv.org/abs/1611.09940
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.jcp.2023.112018
https://doi.org/10.1016/j.jcp.2023.112018
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1038/nchem.1243

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

[12] Biyik E, Huynh N, Kochenderfer M J and Sadigh D 2020 Active preference-based gaussian process regression for reward learning
Robotics: Science and Systems XVI (Virtual Event / Corvalis) (Oregon, USA, 12–16 July 2020) ed M Toussaint, A Bicchi and
T Hermans (arXiv:2005.02575)

[13] Brockman G, Cheung V, Pettersson L, Schneider J and Schulman J Tang J and Zaremba W 2016 OpenAI gym (arXiv:1606.01540)
[14] Burda Y, Edwards H, Storkey A and Klimov O 2018 Exploration by random network distillation (arXiv:1810.12894)
[15] Chen L, Lee K, Srinivas A and Abbeel P 2021 Improving computational efficiency in visual reinforcement learning via stored

embeddings Advances in Neural Information Processing Systems vol 34 pp 26779–91
[16] Chentanez N, Barto A and Singh S 2004 Intrinsically motivated reinforcement learning Advances in Neural Information Processing

Systems p 17
[17] Christiano P F, Leike J, Brown T, Martic M, Legg S and Amodei D 2017 Deep reinforcement learning from human preferences

Advances in Neural Information Processing Systems p 30
[18] Christodoulou P 2019 Soft actor-critic for discrete action settings (arXiv:1910.07207)
[19] Cobbe K, Hesse C, Hilton J and Schulman J 2020 Leveraging procedural generation to benchmark reinforcement learning Int.

Conf. on Machine Learning (PMLR) pp 2048–56
[20] Cui Y and Niekum S 2018 Active reward learning from critiques 2018 IEEE Int. Conf. on Robotics and Automation (ICRA) (IEEE)

pp 6907–14
[21] Dalton S and frosio iuri 2020 Accelerating reinforcement learning through gpu atari emulation Advances in Neural Information

Processing Systems vol 33, ed H Larochelle, M Ranzato, R Hadsell, M F Balcan and H Lin (Curran Associates, Inc) pp 19773–82
[22] Daniel C, Kroemer O, Viering M, Metz J and Peters J 2015 Active reward learning with a novel acquisition function Auton. Robots

39 389–405
[23] Dussauge T P, Je Sung W, Pinon Fischer O J and Mavris D N 2023 A reinforcement learning approach to airfoil shape optimization

Sci. Rep. 13 9753
[24] Espeholt L et al 2018 Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures Int. Conf. on

Machine Learning (PMLR) pp 1407–16
[25] Fahland G, Stroh A, Frohnapfel B, Atzori M, Vinuesa R, Schlatter P and Gatti D 2021 Investigation of blowing and suction for

turbulent flow control on airfoils AIAA J. 59 4422–36
[26] Freeman C D, Frey E, Raichuk A, Girgin S, Mordatch I and Bachem O 2021 Brax–a differentiable physics engine for large scale rigid

body simulation (arXiv:2106.13281)
[27] Fromer J C and Coley C W 2023 Computer-aided multi-objective optimization in small molecule discovery Patterns 4 100678
[28] Fujimoto S, Hoof H and Meger D 2018 Addressing function approximation error in actor-critic methods Int. Conf. on Machine

Learning (PMLR) pp 1587–96
[29] Goel M, Raghunathan S, Laghuvarapu S and Deva Priyakumar U 2021 Molegular: molecule generation using reinforcement

learning with alternating rewards J. Chem. Inf. Modeling 61 5815–26
[30] Gómez-Bombarelli R et al 2018 Automatic chemical design using a data-driven continuous representation of molecules ACS Cent.

Sci. 4 268–76
[31] Grimme S, Bannwarth C and Shushkov P 2017 A robust and accurate tight-binding quantum chemical method for structures,

vibrational frequencies and noncovalent interactions of large molecular systems parametrized for all spd-block elements (z=
1–86) J. Chem. Theory Comput. 13 1989–2009

[32] Haarnoja T, Zhou A, Abbeel P and Levine S 2018 Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a
stochastic actor Int. Conf. on Machine Learning (PMLR) pp 1861–70

[33] Haarnoja T et al 2018 Soft actor-critic algorithms and applications (arXiv:1812.05905)
[34] Henderson P, Islam R, Bachman P, Pineau J, Precup D and Meger D 2018 Deep reinforcement learning that matters Proc. AAAI

Conference on Artificial Intelligence vol 32 (available at: https://dl.acm.org/doi/abs/10.5555/3504035.3504427)
[35] Hessel M, Modayil J, Van Hasselt H, Schaul T, Ostrovski G, Dabney W, Horgan D, Piot B, Azar M and Silver D 2018 Rainbow:

combining improvements in deep reinforcement learning 32nd AAAI Conf. on Artificial Intelligence
[36] Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, van Hasselt H and Silver D 2018 Distributed prioritized experience

replay 6th Int. Conf. on Learning Representations, ICLR 2018 (Vancouver, BC, Canada, 30 April–3 May 2018) (Conference Track
Proceedings)

[37] Huang S, Fernand Julien Dossa R, Raffin A, Kanervisto A and Wang W 2022 The 37 implementation details of proximal policy
optimization The ICLR Blog Track 2023 (available at: https://openreview.net/forum?id=Hl6jCqIp2j)

[38] Jumper J et al 2021 Highly accurate protein structure prediction with alphafold Nature 596 583–9
[39] Kametani Y and Fukagata K 2011 Direct numerical simulation of spatially developing turbulent boundary layers with uniform

blowing or suction J. Fluid Mech. 681 154–72
[40] Kametani Y, Fukagata K, Örlü R and Schlatter P 2016 Drag reduction in spatially developing turbulent boundary layers by spatially

intermittent blowing at constant mass-flux J. Turbul. 17 913–29
[41] Khalil E, Dai H, Zhang Y, Dilkina B and Song L 2017 Learning combinatorial optimization algorithms over graphs Advances in

Neural Information Processing Systems p 30 (available at: https://dl.acm.org/doi/10.5555/3295222.3295382)
[42] Kinney R B 1967 Skin-friction drag of a constant-property turbulent boundary layer with uniform injection AIAA J. 5 624–30
[43] Klissarov M, Islam R, Khetarpal K and Precup D 2019 Variational state encoding as intrinsic motivation in reinforcement learning

Task-Agnostic Reinforcement Learning Workshop at Proc. Int. Conf. on Learning Representations vol 15 pp 16–32
[44] Kober J, Bagnell J A and Peters J 2013 Reinforcement learning in robotics: a survey Int. J. Robot. Res. 32 1238–74
[45] Kong S H, Nahrendra I M A and Paek D-H 2021 Enhanced off-policy reinforcement learning with focused experience replay IEEE

Access 9 93152–64
[46] Kostrikov I, Yarats D and Fergus R 2020 Image augmentation is all you need: Regularizing deep reinforcement learning from pixels

(arXiv:2004.13649)
[47] Kuvayev Rich Sutton L 1996 Model-based reinforcement learning with an approximate, learned model Proc. 9th Yale Workshop on

Adaptive and Learning Systems vol 1996 pp 101–5
[48] Lechner M, Yin L, Seyde T, Wang T-H, Xiao W, Hasani R, Rountree J and Rus D 2023 Gigastep-one billion steps per second

multi-agent reinforcement learning 37th Conf. on Neural Information Processing Systems Datasets and Benchmarks Track
[49] Leike J, Krueger D, Everitt T, Martic M, Maini V and Legg S 2018 Scalable agent alignment via reward modeling: a research

direction (arXiv:1811.07871)

14

https://arxiv.org/abs/2005.02575
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1810.12894
https://doi.org/10.48550/arXiv.2103.02886
https://doi.org/10.48550/arXiv.1706.03741
https://arxiv.org/abs/1910.07207
https://doi.org/10.48550/arXiv.1912.01588
https://doi.org/10.1109/ICRA.2018.8460854
https://doi.org/10.48550/arXiv.1907.08467
https://doi.org/10.1007/s10514-015-9454-z
https://doi.org/10.1007/s10514-015-9454-z
https://doi.org/10.1038/s41598-023-36560-z
https://doi.org/10.1038/s41598-023-36560-z
https://doi.org/10.48550/arXiv.1802.01561
https://doi.org/10.2514/1.J060211
https://doi.org/10.2514/1.J060211
https://arxiv.org/abs/2106.13281
https://doi.org/10.1016/j.patter.2023.100678
https://doi.org/10.1016/j.patter.2023.100678
https://doi.org/10.1021/acs.jcim.1c01341
https://doi.org/10.1021/acs.jcim.1c01341
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acs.jctc.7b00118
https://doi.org/10.1021/acs.jctc.7b00118
https://arxiv.org/abs/1812.05905
https://dl.acm.org/doi/abs/10.5555/3504035.3504427
https://openreview.net/forum?id=Hl6jCqIp2j
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1017/jfm.2011.219
https://doi.org/10.1017/jfm.2011.219
https://doi.org/10.1080/14685248.2016.1192285
https://doi.org/10.1080/14685248.2016.1192285
https://dl.acm.org/doi/10.5555/3295222.3295382
https://doi.org/10.2514/3.4039
https://doi.org/10.2514/3.4039
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1109/ACCESS.2021.3085142
https://doi.org/10.1109/ACCESS.2021.3085142
https://arxiv.org/abs/2004.13649
https://arxiv.org/abs/1811.07871

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

[50] Lillicrap T P, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, Silver D and Wierstra D 2015 Continuous control with deep
reinforcement learning (arXiv:1509.02971)

[51] Lin L-J 1992 Self-improving reactive agents based on reinforcement learning, planning and teachingMach. Learn. 8 293–321
[52] Lindner D, Turchetta M, Tschiatschek S, Ciosek K and Krause A 2021 Information directed reward learning for reinforcement

learning Advances in Neural Information Processing Systems vol 34, ed M Ranzato, A Beygelzimer, Y Dauphin, P S Liang and
J W Vaughan (Curran Associates, Inc) pp 3850–62

[53] Lopes M, Melo F and Montesano L 2009 Active learning for reward estimation in inverse reinforcement learning Joint European
Conf. on Machine Learning and Knowledge Discovery in Databases (Springer) pp 31–46

[54] Mahfoze O A, Moody A, Wynn A, Whalley R D and Laizet S 2019 Reducing the skin-friction drag of a turbulent boundary-layer
flow with low-amplitude wall-normal blowing within a bayesian optimization framework Phys. Rev. Fluids 4 094601

[55] Mahmud M, Shamim Kaiser M, Hussain A and Vassanelli S 2018 Applications of deep learning and reinforcement learning to
biological data IEEE Trans. Neural Netw. Learn. Syst. 29 2063–79

[56] Mnih V et al 2015 Human-level control through deep reinforcement learning Nature 518 529–33
[57] Morgan H L 1965 The generation of a unique machine description for chemical structures-a technique developed at chemical

abstracts service J. Chem. Doc. 5 107–13
[58] Nair A et al 2015 Massively parallel methods for deep reinforcement learning (arXiv:1507.04296)
[59] Ng A Y, Harada D and Russell S 1999 Policy invariance under reward transformations: theory and application to reward shaping

Int. Conf. on Machine Learning vol 99 pp 278–87 (available at: https://dl.acm.org/doi/10.5555/645528.657613)
[60] Ng A Y, Russell S et al 2000 Algorithms for inverse reinforcement learning Int. Conf. on Machine Learning vol 1 p 2 (available at:

https://dl.acm.org/doi/10.5555/645529.657801)
[61] Nigam A, Friederich P, Krenn M and Aspuru-Guzik A 2020 Augmenting genetic algorithms with deep neural networks for

exploring the chemical space 8th Int. Conf. on Learning Representations, ICLR 2020, (Addis Ababa, Ethiopia, 26–30 April 2020)
(OpenReview.net)

[62] Olivecrona M, Blaschke T, Engkvist O and Chen H 2017 Molecular de-novo design through deep reinforcement learning J.
Cheminf. 9 1–14

[63] Ouyang L et al 2022 Training language models to follow instructions with human feedback Advances in Neural Information
Processing Systems vol 35 pp 27730–44

[64] Pereira T, Abbasi M, Ribeiro B and Arrais J P 2021 Diversity oriented deep reinforcement learning for targeted molecule generation
J. Cheminform. 13 1–17

[65] Ramakrishnan R, Dral P, Rupp M and von Lilienfeld A 2014 Quantum chemistry structures and properties of 134 kilo molecules
Sci. Data 1 08

[66] RdKit 2006 Rdkit: Open-source cheminformatics
[67] Rogers D and Hahn M 2010 Extended-connectivity fingerprints J. Chem. Inf. Model. 50 742–54
[68] Romoff J, Henderson P, Piché A, Francois-Lavet V and Pineau J 2018 Reward estimation for variance reduction in deep

reinforcement learning (arXiv:1805.03359)
[69] Ruddigkeit L, van Deursen R, Blum L C and Reymond J-L 2012 Enumeration of 166 billion organic small molecules in the

chemical Universe database GDB-17 J. Chem. Inf. Model. 52 2864—2875
[70] Schaal S 1997 Learning from demonstration Advances in Neural Information Processing Systems vol 9, ed M CMozer, M Jordan and

T Petsche (MIT Press)
[71] Schaul T, Quan J, Antonoglou I and Silver D 2015 Prioritized experience replay (arXiv:1511.05952)
[72] Schwartz R, Dodge J, Smith N A and Etzioni O 2020 Green ai Commun. ACM 63 54–63
[73] Seung H S, Opper M and Sompolinsky H 1992 Query by committee Proc. 5th Annual Workshop on Computational Learning Theory,

COLT ’92 (Association for Computing Machinery) pp 287–94
[74] Silver D et al 2016 Thore Graepel and Demis Hassabis. Mastering the game of Go with deep neural networks and tree search Nature

529 484–9
[75] Silver D et al 2017 Mastering chess and shogi by self-play with a general reinforcement learning algorithm (arXiv:1712.01815)
[76] Singh A, Yang L, Hartikainen K, Finn C and Levine S 2019 End-to-end robotic reinforcement learning without reward engineering

(arXiv:1904.07854)
[77] Stooke A and Abbeel P 2018 Accelerated methods for deep reinforcement learning (arXiv:1803.02811)
[78] Stroh A, Hasegawa Y, Schlatter P and Frohnapfel B 2016 Global effect of local skin friction drag reduction in spatially developing

turbulent boundary layer J. Fluid Mech. 805 303–21
[79] Sutton R S and Barto A G 2018 Reinforcement Learning: An Introduction (MIT Press)
[80] Tassa Y et al 2018 Deepmind control suite (arXiv:1801.00690)
[81] Todorov E, Erez T and Tassa Y 2012 Mujoco: a physics engine for model-based control 2012 IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IEEE) pp 5026–33
[82] Van Hasselt H, Guez A and Silver D 2016 Deep reinforcement learning with double q-learning Proc. AAAI Conf. on Artificial

Intelligence vol 30 (available at: https://dl.acm.org/doi/10.5555/3016100.3016191)
[83] Vesselinova N, Steinert R, Perez-Ramirez D F and Boman M 2020 Learning combinatorial optimization on graphs: a survey with

applications to networking IEEE Access 8 120388–416
[84] Vinyals O et al 2019 Grandmaster level in StarCraft II using multi-agent reinforcement learning Nature 575 350–4
[85] Weller H and Jasak H 2011 OpenFOAM (available at: www.openfoam.com/)
[86] Weng J et al 2022 Envpool: a highly parallel reinforcement learning environment execution engine Advances in Neural Information

Processing Systems vol 35 pp 22409–21
[87] Williams R J 1992 Simple statistical gradient-following algorithms for connectionist reinforcement learning Reinforcement Learn.

5–32
[88] Williams R J and Peng J 1991 Function optimization using connectionist reinforcement learning algorithms Connect. Sci. 3 241–68
[89] Wirth C, Akrour R, Neumann G and Fürnkranz J 2017 A survey of preference-based reinforcement learning methods J. Mach.

Learn. Res. 18 1–46
[90] Yarats D, Fergus R, Lazaric A and Pinto L 2021 Mastering visual continuous control: improved data-augmented reinforcement

learning (arXiv:2107.09645)

15

https://arxiv.org/abs/1509.02971
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/978-3-642-04174-7_3
https://doi.org/10.1103/PhysRevFluids.4.094601
https://doi.org/10.1103/PhysRevFluids.4.094601
https://doi.org/10.1109/TNNLS.2018.2790388
https://doi.org/10.1109/TNNLS.2018.2790388
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/c160017a018
https://arxiv.org/abs/1507.04296
https://dl.acm.org/doi/10.5555/645528.657613
https://dl.acm.org/doi/10.5555/645529.657801
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1186/s13321-021-00498-z
https://doi.org/10.1186/s13321-021-00498-z
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t
https://arxiv.org/abs/1805.03359
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://arxiv.org/abs/1511.05952
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1904.07854
https://arxiv.org/abs/1803.02811
https://doi.org/10.1017/jfm.2016.545
https://doi.org/10.1017/jfm.2016.545
https://arxiv.org/abs/1801.00690
https://doi.org/10.1109/IROS.2012.6386109
https://dl.acm.org/doi/10.5555/3016100.3016191
https://doi.org/10.1109/ACCESS.2020.3004964
https://doi.org/10.1109/ACCESS.2020.3004964
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://www.openfoam.com/
https://doi.org/10.1007/BF00992696
https://doi.org/10.1080/09540099108946587
https://doi.org/10.1080/09540099108946587
https://arxiv.org/abs/2107.09645

Mach. Learn.: Sci. Technol. 5 (2024) 015055 A Eberhard et al

[91] Ye W, Liu S, Kurutach T, Abbeel P and Gao Y 2021 Mastering atari games with limited data Advances in Neural Information
Processing Systems vol 34 pp 25476–88

[92] You J, Liu B, Ying Z, Pande V S, Leskovec J Larochelle H 2018 Graph convolutional policy network for goal-directed molecular
graph generation Advances in Neural Information Processing Systems 31: Annual Conf. on Neural Information Processing Systems
2018, NeurIPS 2018, (Montréal, Canada 3–8 December 2018) ed S Bengio, H MWallach, K Grauman, N‘o Cesa-Bianchi and
R Garnett pp 6412–22

[93] James J Q, Yu W and Jiatao G 2019 Online vehicle routing with neural combinatorial optimization and deep reinforcement
learning IEEE Trans. Intell. Transp. Syst. 20 3806–17

[94] Zhou Z, Kearnes S, Li Li, Zare R N and Riley P 2019 Optimization of molecules via deep reinforcement learning Sci. Rep. 9 10752

16

https://doi.org/10.1109/TITS.2019.2909109
https://doi.org/10.1109/TITS.2019.2909109
https://doi.org/10.1038/s41598-019-47148-x
https://doi.org/10.1038/s41598-019-47148-x

	Actively learning costly reward functions for reinforcement learning
	1. Introduction
	2. Related work
	2.1. Active reward learning and sample efficiency
	2.2. Learning reward functions
	2.3. Efficient implementations
	2.4. RL for optimization

	3. Our method: ACRL
	4. Applications
	4.1. Proof-of-principle: molecular property optimization
	4.2. Application I: molecular design
	4.3. Application II: optimization of airflow drag around an airfoil

	5. Results and discussion
	5.1. Speedup of molecular property optimization
	5.2. Speedup of molecular improvement
	5.3. Speedup of optimization of airflow drag around an airfoil

	6. Conclusion
	References

